Multiplicity Results for Classes of Infinite Positone Problems

Eunkyung Ko, Eun Kyoung Lee and R. Shivaji

Abstract. We study positive solutions to the singular boundary value problem

$$
\begin{cases}\n-\Delta_p u = \lambda \frac{f(u)}{u^{\beta}} & \text{in } \Omega\\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

where $\Delta_p u = \text{div} \left(|\nabla u|^{p-2} \nabla u \right), p > 1, \lambda > 0, \beta \in (0,1)$ and Ω is a bounded domain in $\mathbb{R}^N, N \geq 1$. Here $f: [0, \infty) \to (0, \infty)$ is a continuous nondecreasing function such that $\lim_{u\to\infty}\frac{f(u)}{u^{\beta+p-1}}=0$. We establish the existence of multiple positive solutions for certain range of λ when f satisfies certain additional assumptions. A simple model that will satisfy our hypotheses is $f(u) = e^{\frac{u}{u}+u}$ for $\alpha \gg 1$. We also extend our results to classes of systems when the nonlinearities satisfy a combined sublinear condition at infinity. We prove our results by the method of sub-supersolutions.

Keywords. Singular boundary value problems, infinite positone problems, multiplicity of positive solutions, sub-supersolutions

Mathematics Subject Classification (2000). 35J25, 35J55

1. Introduction

We first consider the boundary value problem

$$
\begin{cases}\n-\Delta_p u = \lambda \frac{f(u)}{u^{\beta}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(1)

E. Ko: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA; e-mail: ek94@msstate.edu

E. K. Lee: Department of Mathematics, Pusan National University, Busan, 609-735, Republic of Korea; e-mail: eunkyoung165@gmail.com

R. Shivaji: Department of Mathematics and Statistics, Center for Computational Science, Mississippi State University, Mississippi State, MS 39762, USA; e-mail: shivaji@ra.msstate.edu

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$ is the p-Laplacian of $u, p > 1, \beta \in (0, 1), \lambda$ is a positive parameter and Ω is a bounded domain with a smooth boundary in $\mathbb{R}^N, N \geq 1$. We assume that f is a $C([0,\infty))$ -function satisfying the following assumptions:

- (H1) $f(u) > 0$ for all $u \geq 0$,
- (H2) $\lim_{u \to \infty} \frac{f(u)}{u^{\beta+p-1}} = 0.$

We note that $\lim_{u\to 0} \frac{f(u)}{u^{\beta}} = \infty$, and hence (1) is a singular boundary value problem which we call here as an infinite positone problem. Our results in this paper are motivated by the problem:

$$
\begin{cases}\n-\Delta_p u = \lambda \frac{\exp[\frac{\alpha u}{\alpha + u}]}{u^{\beta}} & \text{in } \Omega\\ \nu = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(2)

When $\beta = 0$ for every $\alpha > 0$ and $\lambda > 0$ it is known that there exist a positive solution and when $\alpha \gg 1$ there exists a range of λ for which there exist at least three positive solutions [8]. In this paper, we extend this study to the singular case when $0 < \beta < 1$. In particular, we establish the existence of a positive solution for all $\alpha > 0$ and for all $\lambda > 0$ and a multiplicity result for certain range of λ when $\alpha \gg 1$. However, our multiplicity result is restricted two positive solutions. In [1], the author studied this singular problem (2) when $p = 2$ by treating it as a limit problem of the class of non-singular problems defined by $-\Delta u_{\epsilon} = \lambda \frac{e^{\frac{\alpha u}{\alpha+u}}}{(u+\epsilon)}$ $\frac{e^{\alpha+u}}{(u+\epsilon)^{\beta}}$ in Ω and $u_{\epsilon}=0$ on $\partial\Omega$. Here we establish the our results for all $p > 1$ directly by method of sub- and supersolutions associated with such singular problems. Also our proofs easily extend to classes of system where the nonlinearities satisfy a combined sublinear condition at infinity.

By a subsolution of (1) we mean a function $\psi : \overline{\Omega} \to \mathbb{R}$ such that $\psi \in$ $W^{1,p}(\Omega) \bigcap C(\overline{\Omega})$ and satisfies:

$$
-\Delta_p \psi \leq \lambda \frac{f(\psi)}{\psi^{\beta}} \quad \text{in } \Omega
$$

$$
\psi > 0 \qquad \text{in } \Omega
$$

$$
\psi = 0 \qquad \text{on } \partial\Omega
$$

and by a supersolution of (1) we mean a function $\phi : \overline{\Omega} \to \mathbb{R}$ such that $\phi \in$ $W^{1,p}(\Omega) \bigcap C(\overline{\Omega})$ and satisfies:

$$
-\Delta_p \phi \ge \lambda \frac{f(\phi)}{\phi^{\beta}} \quad \text{in } \Omega
$$

$$
\phi > 0 \qquad \text{in } \Omega
$$

$$
\phi = 0 \qquad \text{on } \partial \Omega.
$$

Then we have the following lemma:

Lemma 1.1 (See [2, 5, 9]). If there exist a subsolution ψ and a supersolution ϕ of (1) such that $\psi \leq \phi$ on $\overline{\Omega}$, then (1) has at least one solution $u \in$ $W^{1,p}(\Omega) \bigcap C(\overline{\Omega})$ satisfying $\psi \leq u \leq \phi$ on $\overline{\Omega}$.

We first establish:

Theorem 1.2. Assume $(H1) - (H2)$. Then (1) has a positive solution for all $\lambda > 0$.

We refer to [7] for a more general existence result for (1). However, for certain classes of f we can get at least two positive solutions for certain range of λ . To state this multiplicity result, for any $0 < a < d$ we define

$$
Q(a, d) := \frac{a^{\beta + p - 1}}{f(a)} \frac{f(d)}{d^{\beta + p - 1}}.
$$

Further, let

$$
A := \left(\frac{(N+p-1)^{N+p-1}}{N^N}\right)^{\frac{1}{p-1}}.
$$

Throughout this paper, $w \in W^{1,p}(\Omega) \bigcap C(\overline{\Omega})$ (see [4, Lemma 3.1]) is the unique solution of

$$
\begin{cases}\n-\Delta_p w = \frac{1}{w^\beta} & \text{in } \Omega\\
w = 0 & \text{on } \partial\Omega.\n\end{cases}
$$
\n(3)

We now assume that f further satisfies:

- (H3) $f(u)$ is nondecreasing for all $u \geq 0$
- (H4) There exist a and b such that $0 < a < \frac{p}{A}b$ and $\frac{f(u)}{u^{\beta}}$ is nondecreasing on $(a,b).$

We establish:

Theorem 1.3. Assume $(H1) - (H4)$. Further assume that there exists d such that

$$
a < d < \frac{p}{A}b
$$
 and $Q(a,d) > \frac{A^{p-1}N||w||_{\infty}^{\beta+p-1}}{(p-1)^{p-1}R^p} := C(\beta, N, \Omega),$

where R is the radius of the largest inscribed ball B_R in Ω . Then (1) has at least two positive solutions for $\lambda_* < \lambda < \lambda^*$, where

$$
\lambda_* = \frac{d^{\beta+p-1}}{f(d)} \frac{A^{p-1}N}{(p-1)^{p-1}R^p} \quad and
$$

$$
\lambda^* = \min \left\{ \frac{d^{\beta}}{f(d)} \frac{N}{R^p} \left(\frac{p}{p-1} \right)^{p-1} b^{p-1}, \frac{a^{\beta+p-1}}{f(a)} \frac{1}{\|w\|_{\infty}^{\beta+p-1}} \right\}.
$$

Figure 1: Graph of the function $\frac{f(u)}{u^{\beta}}$

Remark 1.4. Since $d < \frac{p}{A}b$, we have $\frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \frac{d^{\beta}}{f(d)}$ $f(d)$ $\frac{N}{R^p} \left(\frac{p}{p-1} \right)$ $\frac{p}{p-1}$)^{p-1} b^{p-1} and since $Q(a, d) > \frac{A^{p-1}N||w||_{\infty}^{\beta+p-1}}{(p-1)^{p-1}R^p}$, we obtain $\frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \frac{a^{\beta+p-1}}{f(a)}$ $f(a)$ 1 $\frac{1}{\|w\|_{\infty}^{\beta+p-1}}.$ Therefore, (λ_*, λ^*) is not empty.

Remark 1.5. A simple example satisfying the hypotheses of Theorem 1.2 and Theorem 1.3 is

$$
\begin{cases}\n-\Delta_p u = \lambda \frac{e^{\frac{\alpha u}{\alpha + u}}}{u^{\beta}} & \text{in } \Omega\\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

Clearly, $f(u) := e^{\frac{\alpha u}{\alpha + u}}$ satisfies hypotheses (H1) – (H3). Choosing $a = 1, d = \alpha$ and $b=\frac{\alpha^2}{2}$ $\frac{x^2}{2}$, we can easily show that $\frac{f(u)}{u^{\beta}}$ is nondecreasing on (a, b) for $\alpha \gg 1$. Further $Q(a, d) = \frac{a^{\beta+p-1}}{f(a)}$ $f(a)$ $f(d)$ $\frac{f(d)}{d^{\beta+p-1}} = \left[\frac{1}{\alpha}\right]^{\beta+p-1} \exp\left[\frac{\alpha}{2} - \frac{\alpha}{\alpha+1}\right]$ and hence, for any given Ω , we have $a < d < \frac{\dot{p}}{A} \dot{b}$ and $Q(1, \alpha) > C(\beta, N, \Omega)$ for α large.

Next we note that the method of sub- and supersolutions discussed in Lemma 1.1 extends to the system:

$$
\begin{cases}\n-\Delta_p u = \lambda \frac{f(v)}{u^{\beta}} & \text{in } \Omega \\
-\Delta_p v = \lambda \frac{g(u)}{v^{\beta}} & \text{in } \Omega \\
u = v = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(4)

This follows by using the result in [5]. For the system (4) by a subsolution we mean a pair of functions $(\psi, \bar{\psi}) : \overline{\Omega} \to \mathbb{R} \times \mathbb{R}$ such that $(\psi, \bar{\psi}) \in$ $(W^{1,p}(\Omega) \cap C(\overline{\Omega})) \times (W^{1,p}(\Omega) \cap C(\overline{\Omega}))$ and satisfy

$$
-\Delta_p \psi \leq \lambda \frac{f(\bar{\psi})}{\psi^{\beta}} \quad \text{in } \Omega
$$

$$
-\Delta_p \bar{\psi} \leq \lambda \frac{g(\psi)}{\bar{\psi}^{\beta}} \quad \text{in } \Omega
$$

$$
\psi > 0, \quad \bar{\psi} > 0 \quad \text{in } \Omega
$$

$$
\psi = \bar{\psi} = 0 \quad \text{on } \partial\Omega.
$$

By a supersolution we mean a pair of functions $(\phi, \bar{\phi}) : \bar{\Omega} \to \mathbb{R} \times \mathbb{R}$ such that $(\phi, \overline{\phi}) \in (W^{1,p}(\Omega) \cap C(\overline{\Omega})) \times (W^{1,p}(\Omega) \cap C(\overline{\Omega}))$ and satisfy

$$
-\Delta_p \phi \ge \lambda \frac{f(\bar{\phi})}{\phi^{\beta}} \quad \text{in } \Omega
$$

$$
-\Delta_p \bar{\phi} \ge \lambda \frac{g(\phi)}{\bar{\phi}^{\beta}} \quad \text{in } \Omega
$$

$$
\phi > 0, \quad \bar{\phi} > 0 \quad \text{in } \Omega
$$

$$
\phi = \bar{\phi} = 0 \quad \text{on } \partial\Omega.
$$

We now assume that f and g are $C([0,\infty))$ functions satisfying the following assumptions:

- (G1) f and g are nondecreasing and $f(0) > 0$ and $g(0) > 0$
- (G2) $\lim_{x\to\infty} \frac{f(Mg(x))}{x^{\beta+p-1}} = 0$ for all $M > 0$ (a combined sublinear condition at infinity).

We establish:

Theorem 1.6. Assume $(G1) - (G2)$. Then (4) has a positive solution for all $\lambda > 0$.

Next, under certain combined nonlinear effects of $\frac{x^{\beta+p-1}}{f(x)}$ $\frac{g+p-1}{f(x)}$ and $\frac{x^{\beta+p-1}}{g(x)}$ we study the existence of multiple positive solutions to (4) . To state the multiplicity result, for any $0 < a < d$ we define

$$
Q_1(a,d):=\frac{a^{\beta+p-1}}{g(a)}\frac{f(d)}{d^{\beta+p-1}}.
$$

We also assume:

(G3) $f(u) \le g(u)$ for all $u \ge 0$

(G4) There exist a and b with $0 < a < b$ such that $a < \frac{p}{A}b$ and $\frac{f(u)}{u^{\beta}}$ is nondecreasing on (a, b) .

We establish:

Theorem 1.7. Assume $(G1) - (G4)$. Further assume there exists d such that $a < d < \frac{p}{A}b$ and $Q_1(a,d) > C(\beta, N, \Omega)$, where $C(\beta, N, \Omega)$ is as defined in Theorem 1.3. Then (4) has at least two positive solutions for $\lambda_* < \lambda < \lambda^*$, where

$$
\lambda_{*} = \frac{d^{\beta+p-1}}{f(d)} \frac{A^{p-1}N}{(p-1)^{p-1}R^{p}} \quad and
$$

$$
\lambda^{*} = \min \left\{ \frac{d^{\beta}}{f(d)} \frac{N}{R^{p}} \left(\frac{p}{p-1} \right)^{p-1} b^{p-1}, \frac{a^{\beta+p-1}}{g(a)} \frac{1}{\|w\|_{\infty}^{\beta+p-1}} \right\}.
$$

Remark 1.8. Since $d < \frac{p}{A}b$, we have $\frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \frac{d^{\beta}}{f(d)}$ $f(d)$ $\frac{N}{R^p} \left(\frac{p}{p-1} \right)$ $\frac{p}{p-1}$)^{p-1} b^{p-1} and since $Q_1(a,d) > \frac{A^{p-1}N||w||_{\infty}^{\beta+p-1}}{(p-1)^{p-1}R^p}$, we obtain $\frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \frac{a^{\beta+p-1}}{g(a)}$ $g(a)$ 1 $||w||_{\infty}^{\beta+p-1}$ Therefore, (λ_*, λ^*) is not empty.

Remark 1.9. A simple example satisfying the hypotheses of Theorem 1.6 and Theorem 1.7 is α ^{*v*}

$$
-\Delta_p u = \lambda \frac{e^{\frac{u}{\alpha + v}}}{u^{\beta}} \quad \text{in } \Omega
$$

$$
-\Delta_p v = \lambda \frac{u^q + M}{v^{\beta}} \quad \text{in } \Omega
$$

$$
u = 0 = v \quad \text{on } \partial\Omega,
$$

where $q > 0$ and $M \gg 1$ so that (G3) is satisfied. Clearly, $f(u) := e^{\frac{\alpha u}{\alpha + u}}$ and $g(u) := u^q + M$ satisfy hypotheses (G1) – (G3). Choosing $a = 1, d = \alpha$ and $b = \frac{\alpha^2}{2}$ $\frac{x^2}{2}$, we can easily show that $\frac{f(u)}{u^{\beta}}$ is nondecreasing on (a, b) for $\alpha \gg 1$. Further $Q_1(a,d) = \frac{a^{\beta+p-1}}{a(a)}$ $g(a)$ $f(d)$ $\frac{f(d)}{d^{\beta+p-1}} = \left(\frac{1}{1+1}\right)$ $\frac{1}{1+M}$) $\left(\frac{1}{\alpha}\right)^{\beta+p-1}$ exp $\left[\frac{\alpha}{2}\right]$ and hence, for any given Ω we have $a < \tilde{d} < \frac{p}{A}b$ and $Q_1(1, \alpha) > C(\beta, N, \Omega)$ for α large.

We will prove Theorems 1.2 and 1.3 in the Section 2 and the Theorem 1.6 and 1.7 in Section 3.

2. Proof of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. We construct a positive supersolution ϕ_1 of (1).

Let $f^*(u) = \max_{0 \le x \le u} f(x)$. Then $f^*(u)$ is nondecreasing and $\frac{f^*(u)}{u^{\beta+p-1}} \to 0$ as $u \to \infty$, since $\frac{f(u)}{u^{\beta+p-1}} \to 0$ as $u \to \infty$. So there exists $M_\lambda \gg 1$ such that

$$
\frac{f^*(M_\lambda \|w\|_\infty)}{(M_\lambda \|w\|_\infty)^{\beta+p-1}} \le \frac{1}{\lambda \|w\|_\infty^{\beta+p-1}}.
$$

Let $\phi_1 = M_\lambda w$, where w is defined in (3). We have

$$
-\Delta_p \phi_1 = \frac{M_{\lambda}^{p-1}}{w^{\beta}} \ge \lambda \frac{f^*(M_{\lambda} ||w||_{\infty})}{(M_{\lambda}w)^{\beta}} \ge \lambda \frac{f^*(M_{\lambda}w)}{(M_{\lambda}w)^{\beta}} \ge \lambda \frac{f(M_{\lambda}w)}{(M_{\lambda}w)^{\beta}} = \lambda \frac{f(\phi_1)}{\phi_1^{\beta}},
$$

showing that ϕ_1 is a positive supersolution of (1).

Now we construct a positive subsolution ψ_1 . Let λ_1 be the first eigenvalue of $-\Delta_p$ with Dirichlet boundary condition and $e > 0$ be a corresponding eigenfunction. Hence e and λ_1 satisfy:

$$
\begin{cases}\n-\Delta_p e = \lambda_1 e^{p-1} & \text{in } \Omega \\
e = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

Since $\frac{f(u)}{u^{\beta}} \to \infty$ as $u \to 0$, there exists a sufficiently small m_{λ} such that

$$
\lambda_1(m_\lambda e)^{p-1} \le \lambda \frac{f(m_\lambda e)}{(m_\lambda e)^\beta} \quad \text{for all} \quad \lambda > 0.
$$

Let $\psi_1 = m_{\lambda}e$. We have $-\Delta_p \psi_1 = \lambda_1(m_{\lambda}e)^{p-1} \leq \lambda \frac{f(m_{\lambda}e)}{(m_{\lambda}e)^{\beta}}$ $\frac{f(m_\lambda e)}{(m_\lambda e)^\beta} = \lambda \frac{f(\psi_1)}{\psi_1^\beta}$ $\frac{(\psi_1)}{\psi_1^{\beta}}$. Thus ψ_1 is subsolution of (1), and if m_{λ} is chosen sufficiently small, then $\psi_1 \leq \phi_1$. Hence, Theorem 1.2 is proven. \Box

Proof of Theorem 1.3. Here we construct a second positive supersolution ϕ_2 of (1) with $\|\phi_2\|_{\infty} = a$ when $\lambda \leq \frac{a^{\beta+p-1}}{f(a)}$ $f(a)$ 1 $\frac{1}{\|w\|_{\infty}^{\beta+p-1}}$. Let $\phi_2 = a \frac{w}{\|w\|}$ $\frac{w}{\|w\|_{\infty}},$ where w is defined in (3). Since $\lambda \leq \frac{a^{\beta+p-1}}{f(a)}$ $f(a)$ 1 $\frac{1}{\|w\|_{\infty}^{\beta+p-1}},$

$$
-\Delta_p \phi_2 = \frac{a^{p-1}}{\|w\|_{\infty}} \frac{1}{w^{\beta}} = \frac{\|w\|_{\infty}^{\beta}}{a^{\beta} w^{\beta}} \frac{a^{\beta+p-1}}{\|w\|_{\infty}^{\beta+p-1}} \ge \lambda \frac{f(a)}{\phi_2^{\beta}} \ge \lambda \frac{f\left(a \frac{w}{\|w\|_{\infty}}\right)}{\phi_2^{\beta}} = \lambda \frac{f(\phi_2)}{\phi_2^{\beta}}.
$$

Next we construct a second positive subsolution ψ_2 of (1) when

$$
\frac{d^{\beta+p-1}}{f(d)} \frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \lambda < \frac{d^{\beta}}{f(d)} \frac{N}{R^p} \left(\frac{p}{p-1}\right)^{p-1} b^{p-1}
$$

Let $a^* \in (0, a]$ be such that $f(a^*) = \min_{0 \le x \le a} f(x)$ and define $h \in C([0, \infty))$ such that

$$
h(u) = \begin{cases} \frac{f(a^*)}{(a^*)^{\beta}}, & u \leq a^* \\ \frac{f(u)}{u^{\beta}}, & u \geq a, \end{cases}
$$

so that h is nondecreasing on $(0, a]$ and $h(u) \leq \frac{f(u)}{u^{\beta}}$ for all $u \geq 0$ (See Figure 2).

Consider the following nonsingular problem:

$$
\begin{cases}\n-\Delta_p u = \lambda h(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega.\n\end{cases}
$$
\n(5)

.

Figure 2: Graph of the function $h(u)$ below $\frac{f(u)}{u^{\beta}}$

Let R be the radius of the largest inscribed ball B_R of Ω . For $0 < \epsilon < R$, and $\delta, \mu > 1$, define $\rho(r) : [0, R] \rightarrow [0, 1]$ by

$$
\rho(r) = \begin{cases} 1, & 0 \le r \le \epsilon \\ 1 - \left(1 - \left(\frac{R-r}{R-\epsilon}\right)^{\mu}\right)^{\delta}, & \epsilon < r \le R. \end{cases}
$$

Then

$$
\rho'(r) = \begin{cases} 0, & 0 \le r \le \epsilon \\ -\frac{\delta\mu}{R-\epsilon} \left(1 - \left(\frac{R-r}{R-\epsilon}\right)^{\mu}\right)^{\delta-1} \left(\frac{R-r}{R-\epsilon}\right)^{\mu-1}, & \epsilon < r \le R. \end{cases}
$$

Let $v(r) = d\rho(r)$. Here note that $|v'(r)| \leq \frac{d\delta\mu}{R-\epsilon}$ since $| \rho'(r)| \leq \frac{\delta\mu}{R-\epsilon}$. Define ψ as the radially symmetric solution of

$$
\begin{cases}\n-\Delta_p \psi(x) = \lambda h(v(|x|)) & \text{in } B(0, R) \\
\psi = 0 & \text{on } \partial B(0, R).\n\end{cases}
$$

Then ψ satisfies

$$
\begin{cases}\n-(r^{N-1}G(\psi'(r)))' = \lambda r^{N-1}h(v(r)) \\
\psi'(0) = 0, & \psi(R) = 0,\n\end{cases}
$$

where $G(t) = |t|^{p-2}t$ for all $t \in \mathbb{R}$. Integrating once, for $0 < r < R$, we get

$$
-G(\psi'(r)) = \frac{\lambda}{r^{N-1}} \int_0^r s^{N-1} h(v(s)) ds.
$$
 (6)

Since G is monotone, G^{-1} is also continuous and monotone. Hence, we have

$$
-\psi'(r) = G^{-1}\left(\frac{\lambda}{r^{N-1}} \int_0^r s^{N-1} h(v(s)) ds\right).
$$
 (7)

We claim that

$$
\psi(r) \ge v(r), \quad \forall \ 0 \le r \le R \tag{8}
$$

and

$$
\|\psi\|_{\infty} \le b,\tag{9}
$$

when $\frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \lambda < \frac{d^{\beta}}{f(d)}$ $f(d)$ $\frac{N}{R^p} \left(\frac{p}{p-1} \right)$ $\frac{p}{p-1}$ $\frac{p-1}{p-1}$. If our claim is true, ψ is a positive subsolution of the nonsingular problem (5) since $-\Delta_p\psi = \lambda h(v) \leq$ $\lambda h(\psi)$. In order to show (8), since $\psi(R) = v(R) = 0$, it is enough to show that

$$
\psi'(r) \le v'(r), \quad \forall \ 0 \le r \le R. \tag{10}
$$

Note that for $0 \le r \le \epsilon$, clearly $\psi'(r) \le 0 = v'(r)$. Now for $r > \epsilon$, from (6)

$$
-G(\psi'(r)) = \frac{\lambda}{r^{N-1}} \int_0^r s^{N-1} h(v(s)) ds
$$

>
$$
\frac{\lambda}{R^{N-1}} \int_0^{\epsilon} s^{N-1} h(v(s)) ds
$$

=
$$
\frac{\lambda}{R^{N-1}} h(d) \frac{\epsilon^N}{N}
$$

=
$$
\frac{\lambda}{R^{N-1}} \frac{f(d)}{d^{\beta}} \frac{\epsilon^N}{N}.
$$

So, we have $-\psi'(r) > G^{-1}\left(\frac{\lambda}{R^{N-1}}\frac{f(d)}{d^{\beta}}\right)$ $\frac{d}{d\beta} \frac{\epsilon^N}{N}$ $\left(\frac{\epsilon^N}{N}\right)$. Thus, (10) will hold for all $\epsilon \ge r \ge R$, if $G^{-1}\left(\frac{\lambda}{R^{N-1}}\frac{f(d)}{d^{\beta}}\right)$ $\frac{f(d)}{d^{\beta}} \frac{\epsilon^N}{N}$ $\frac{\varepsilon^N}{N}\Big)\geq\frac{\delta\mu}{R-1}$ $\frac{\delta \mu}{R-\epsilon}d$, which is same as

$$
\frac{\lambda}{R^{N-1}} \frac{f(d)}{d^{\beta}} \frac{\epsilon^N}{N} \ge G\left(\frac{\delta \mu}{R - \epsilon} d\right) = \left(\frac{\delta \mu}{R - \epsilon} d\right)^{p-1}.
$$

Thus, if $\lambda \geq \frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $NR^{N-1}(\delta\mu)^{p-1}$ $\frac{R^{N-2}(\partial\mu)^{p-1}}{\epsilon^N(R-\epsilon)^{p-1}},$ inequality (10) will hold for all $\epsilon \leq r \leq R$. Note that

$$
\inf \frac{d^{\beta+p-1} N R^{N-1} (\delta \mu)^{p-1}}{f(d)} = \frac{d^{\beta+p-1} M}{(d)^{p-1} (p-1)^{p-1} R^p} (\delta \mu)^{p-1}
$$

and is achieved at $\epsilon = \frac{NR}{N+n}$ $\frac{NR}{N+p-1}$. Hence, if $\lambda > \frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p}$, then in the definition of the function ρ we can choose $\epsilon = \frac{NR}{N+n}$ $\frac{NR}{N+p-1}$ and values for $\delta(>1)$ and μ (> 1) so that $\lambda \geq \frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $NR^{N-1}(\delta\mu)^{p-1}$ $\frac{R^{N-1}(\delta\mu)^{p-1}}{\epsilon^N(R-\epsilon)^{p-1}}$ and hence (10) will hold for all $\epsilon \leq r \leq R$.

In order to obtain (9) , integrating (7) from t to R, we have

$$
\int_t^R -\psi'(r)dr = \int_t^R G^{-1}\left(\frac{\lambda}{r^{N-1}}\left(\int_0^r s^{N-1}h(v(s))\,ds\right)\right)dr
$$

for $0 \le t \le R$. Hence

$$
\psi(t) = \int_{t}^{R} G^{-1} \left(\frac{\lambda}{r^{N-1}} \left(\int_{0}^{r} s^{N-1} h(v(s)) ds \right) \right) dr
$$

\n
$$
\leq \int_{t}^{R} G^{-1} \left(\frac{\lambda}{r^{N-1}} h(d) \frac{r^{N}}{N} \right) dr
$$

\n
$$
= \int_{t}^{R} \left(\frac{\lambda}{N} h(d) \right)^{\frac{1}{p-1}} r^{\frac{1}{p-1}} dr
$$

\n
$$
\leq \left(\frac{\lambda}{N} h(d) \right)^{\frac{1}{p-1}} \int_{0}^{R} r^{\frac{1}{p-1}} dr
$$

\n
$$
= \frac{p-1}{p} \left(\frac{\lambda R^{p}}{N} \frac{f(d)}{d^{\beta}} \right)^{\frac{1}{p-1}}.
$$

from which we have $\|\psi\|_{\infty} \leq \frac{p-1}{p}$ $\frac{-1}{p}$ $\left(\frac{\lambda R^p}{N}\right)$ N $f(d)$ $\left(\frac{d}{d^{\beta}}\right)^{\frac{1}{p-1}}$. Since $\lambda < \frac{d^{\beta}}{f(d)}$ $f(d)$ N $\frac{N}{R^p}\left(\frac{p}{p-1}\right)$ $\left(\frac{p}{p-1}\right)^{p-1}b^{p-1},$ we obtain $\|\psi\|_{\infty} \leq b$. Thus ψ satisfies

$$
\begin{cases}\n-\Delta_p \psi \le \lambda h(\psi) & \text{in } B(0, R) \\
\psi = 0 & \text{on } \partial B(0, R)\n\end{cases}
$$

and $d \leq ||\psi||_{\infty} \leq b$.

Now, let $z(x) = \psi(x)$, if $x \in B_R$ and $z(x) = 0$, if $x \in \Omega - B_R$. Then $z \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ and $z = 0$ on $\partial\Omega$, which is subsolution of the nonsigular problem (5) in Ω . However, z is not strictly positive in Ω . To obtain a strictly positive subsolution of (5) in Ω we iterate this subsolution z once in a suitable manner. By the properties of h, there exists $\sigma_{\lambda} > 0$ such that $\lambda h(z) + \sigma_{\lambda} G(z)$ is increasing for all $z \geq 0$. Define ψ_2 to be the solution of

$$
\begin{cases}\n-\Delta_p \psi_2 + \sigma_\lambda G(\psi_2) = \tilde{h}(z) & \text{in } \Omega \\
\psi_2 = 0 & \text{on } \partial\Omega\n\end{cases}
$$

with $\tilde{h}(z) = \lambda h(z) + \sigma_{\lambda} G(z)$. Then since the operator $-\Delta_p + \sigma_{\lambda} G$ satisfies the weak comparison principle (see [3]), we can have $z \leq \psi_2$ (see [6]). Further we get $\psi_2(x) > 0$ for all $x \in \Omega$ since $h(0) > 0$. Hence by the monotonicity of h we have

$$
-\Delta_p \psi_2 + \sigma_\lambda G(\psi_2) = \tilde{h}(z) \le \tilde{h}(\psi_2) = \lambda h(\psi_2) + \sigma_\lambda G(\psi_2),
$$

which implies that ψ_2 is a subsolution of the nonsingular problem (5) such that $\psi_2 > 0$ in Ω . Since $h(u) \leq \frac{f(u)}{u^{\beta}}$ for all $u \geq 0$, we have $-\Delta_p \psi_2 \leq \lambda h(\psi_2) \leq \lambda \frac{f(\psi_2)}{\psi_2^{\beta}}$ $\frac{\psi_2}{\psi_2^{\beta}}$, showing that ψ_2 is a positive subsolution of our singular problem (1). Therefore, for

$$
\frac{d^{1+\beta}}{f(d)} \frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \lambda < \min\left\{\frac{d^\beta}{f(d)} \frac{N}{R^p} \left(\frac{p}{p-1}\right)^{p-1}, \frac{a^{\beta+p-1}}{f(a)} \frac{1}{\|w\|_{\infty}^{\beta+p-1}}\right\}
$$

we obtain a positive subsolution ψ_2 and a positive supersolution ϕ_2 be such that $\psi_2 \nleq \phi_2.$

From the proof of Theorem 1.2 we note that we have a sufficiently small positive subsolution ψ_1 such that $\psi_1 \leq \phi_2$ and a sufficiently large positive supersolution ϕ_1 such that $\psi_2 \leq \phi_1$. Hence, there exist a positive solution u_1 of (1) such that $\psi_1 \leq u_1 \leq \phi_2$ and a positive solution u_2 of (1) such that $\psi_2 \leq u_2 \leq \phi_1$. Since $\psi_2 \nleq \phi_2$, we have $u_1 \neq u_2$. Therefore, there exist at least two positive solutions of (1) for $\lambda \in (\lambda_*, \lambda^*)$ and Theorem 1.3 is proven. \Box

3. Proof of Theorem 1.6 and Theorem 1.7

Proof of Theorem 1.6. We construct a positive supersolution $(\phi_1, \bar{\phi_1})$ of (4).

If both f and g are bounded, let $(\phi_1, \bar{\phi_1}) = (\lambda M_\lambda w, \lambda M_\lambda w)$ and choose M_λ so large that $M_{\lambda}^{p-1} \geq \frac{1}{\lambda^{p-2}} \max\{\|f\|_{\infty}, \|g\|_{\infty}\}.$ Then for $M_{\lambda} \gg 1$ we have

$$
-\Delta_p \phi_1 = \lambda^{p-1} M_{\lambda}^{p-1} \frac{1}{w^{\beta}} \ge \lambda \frac{\|f\|_{\infty}}{w^{\beta}} \ge \lambda \frac{f(\lambda M_{\lambda} w)}{(\lambda M_{\lambda} w)^{\beta}} = \lambda \frac{f(\bar{\phi_1})}{\phi_1^{\beta}}
$$

and

$$
-\Delta_p \bar{\phi}_1 = \lambda^{p-1} M_{\lambda}^{p-1} \frac{1}{w^{\beta}} \ge \lambda \frac{\|g\|_{\infty}}{w^{\beta}} \ge \lambda \frac{g(\lambda M_{\lambda} w)}{(\lambda M_{\lambda} w)^{\beta}} = \lambda \frac{g(\phi_1)}{\bar{\phi_1}^{\beta}},
$$

showing that $(\phi_1, \bar{\phi_1})$ is a positive supersolution of (4). Suppose that $g(x) \to \infty$ as $x \to \infty$, let $(\phi_1, \bar{\phi_1}) = \left(M_\lambda w, \lambda^{\frac{1}{\beta+p-1}} g(M_\lambda ||w||_\infty)^{\frac{1}{\beta+p-1}} w \right)$. Then by (G2), we can choose M_{λ} large so that

$$
\frac{f\left(\lambda^{\frac{1}{\beta+p-1}}\|w\|_{\infty}g(M_{\lambda}\|w\|_{\infty})^{\frac{1}{\beta+p-1}}\right)}{(M_{\lambda}\|w\|_{\infty})^{\beta+p-1}}\leq \frac{1}{\lambda\|w\|_{\infty}^{\beta+p-1}}.
$$

Then we have

$$
-\Delta_p \phi_1 = \frac{M_{\lambda}^{p-1}}{w^{\beta}}
$$

\n
$$
\geq \lambda \frac{f\left(\lambda^{\frac{1}{\beta+p-1}} \|w\|_{\infty} g(M_{\lambda} \|w\|_{\infty})^{\frac{1}{\beta+p-1}}\right)}{(M_{\lambda}w)^{\beta}}
$$

\n
$$
\geq \lambda \frac{f\left(\lambda^{\frac{1}{\beta+p-1}} g(M_{\lambda} \|w\|_{\infty})^{\frac{1}{\beta+p-1}} w\right)}{(M_{\lambda}w)^{\beta}}
$$

\n
$$
= \lambda \frac{f(\bar{\phi}_1)}{\phi_1^{\beta}}.
$$

We also have

$$
-\Delta_p \bar{\phi}_1 = \lambda^{\frac{p-1}{\beta+p-1}} g(M_\lambda \|w\|_\infty)^{\frac{p-1}{\beta+p-1}} \frac{1}{w^\beta}
$$

$$
= \lambda \frac{g(M_\lambda \|w\|_\infty)}{\lambda^{\frac{\beta}{\beta+p-1}} g(M_\lambda \|w\|_\infty)^{\frac{\beta}{\beta+p-1}} w^\beta}
$$

$$
\geq \lambda \frac{g(M_\lambda w)}{\left(\lambda^{\frac{1}{\beta+p-1}} g(M_\lambda \|w\|_\infty)^{\frac{1}{\beta+p-1}} w\right)^\beta}
$$

$$
= \lambda \frac{g(\phi_1)}{\bar{\phi}_1^\beta},
$$

showing that $(\phi_1, \bar{\phi_1})$ is a supersolution of (4). (If g is bounded and $f(x) \to \infty$ as $x \to \infty$, then $\lim_{x \to \infty} \frac{g(Mf(x))}{x^{\beta+p-1}} = 0$ for all $M > 0$ and we can prove that $(\phi_1, \bar{\phi_1}) = \left(\lambda^{\frac{1}{\beta+p-1}} f(M_\lambda \|w\|_\infty)^{\frac{1}{\beta+p-1}} w, M_\lambda w\right)$ is a supersolution of (4)).

Now, we construct a positive subsolution $(\psi_1, \bar{\psi}_1)$ of (4). Let e and λ_1 be as in the proof of Theorem 1.2. Since $\lim_{x\to 0} \frac{f(0)}{x^{\beta}} = \infty = \lim_{x\to 0} \frac{g(0)}{x^{\beta}}$, there exist sufficiently small m_{λ} and m'_{λ} such that

$$
\lambda_1(m_\lambda e)^{p-1} \le \lambda \frac{f(0)}{(m_\lambda e)^\beta} \quad \text{and} \quad \lambda_1(m_\lambda' e)^{p-1} \le \lambda \frac{g(0)}{(m_\lambda' e)^\beta}.
$$

Let $(\psi_1, \bar{\psi_1}) = (m_{\lambda}e, m'_{\lambda}e)$. Since f and g are nondecreasing, we have

$$
-\Delta_p \psi_1 = \lambda_1(m_\lambda e)^{p-1} \le \lambda \frac{f(0)}{(m_\lambda e)^\beta} \le \lambda \frac{f(m'_\lambda e)}{(m_\lambda e)^\beta} = \lambda \frac{f(\bar{\psi}_1)}{\psi_1^\beta}
$$

and

$$
-\Delta_p \bar{\psi}_1 = \lambda_1 (m'_\lambda e)^{p-1} \leq \lambda \frac{g(0)}{(m'_\lambda e)^\beta} \leq \lambda \frac{g(m_\lambda e)}{(m'_\lambda e)^\beta} = \lambda \frac{g(\psi_1)}{\bar{\psi}_1}.
$$

Thus $(\psi_1, \bar{\psi}_1)$ is a positive subsolution of (4), and if m_λ and m'_λ are sufficiently small then $(\psi_1, \bar{\psi}_1) \leq (\phi_1, \bar{\phi_1})$. Hence Theorem 1.6 is proven. \Box

Proof of Theorem 1.7. We construct a second positive supersolution $(\phi_2, \bar{\phi_2})$ of (4) when $\lambda \leq \frac{a^{\beta+p-1}}{a(a)}$ $g(a)$ 1 $\frac{1}{\|w\|_{\infty}^{\beta+p-1}}$. Let $(\phi_2, \bar{\phi_2}) = \left(a \frac{w}{\|w\|}\right)$ $\frac{w}{\|w\|_{\infty}},a\frac{w}{\|w\|_{\infty}}\Big)$. Since $\lambda \leq$ 1 $\frac{1}{\|w\|_{\infty}^{\beta+p-1}} \frac{a^{\beta+p-1}}{g(a)}$ $\frac{g_{\tau}^{(x)}(x)}{g(a)}$ and $g(x) \ge f(x)$ for all $x \ge 0$, we have

$$
-\Delta_p \phi_2 = \frac{a^{p-1}}{\|w\|_{\infty}^{p-1}} \frac{1}{w^{\beta}} \ge \lambda \frac{g(a)}{\left(a\frac{w}{\|w\|_{\infty}}\right)^{\beta}} \ge \lambda \frac{f\left(a\frac{w}{\|w\|_{\infty}}\right)}{\left(a\frac{w}{\|w\|_{\infty}}\right)^{\beta}} = \lambda \frac{f(\bar{\phi}_2)}{\phi_2^{\beta}}
$$

and

$$
-\Delta_p \bar{\phi}_2 = \frac{a^{p-1}}{\|w\|_{\infty}^{p-1}} \frac{1}{w^{\beta}} \ge \lambda \frac{g(a)}{\left(a\frac{w}{\|w\|_{\infty}}\right)^{\beta}} \ge \lambda \frac{g\left(a\frac{w}{\|w\|_{\infty}}\right)}{\left(a\frac{w}{\|w\|_{\infty}}\right)^{\beta}} = \lambda \frac{g(\phi_2)}{\bar{\phi_2}^{\beta}}.
$$

Hence, $(\phi_2, \bar{\phi_2})$ is a positive supersolution of (4) with $\|\phi_2\|_{\infty} = a$ and $\|\bar{\phi_2}\|_{\infty} = a$ when $\lambda \leq \frac{a^{\beta+p-1}}{a(a)}$ $g(a)$ 1 $\frac{1}{\|w\|_{\infty}^{\beta+p-1}}.$

Now, when $\frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \lambda < \frac{d^{\beta}}{f(d)}$ $f(d)$ N $\frac{N}{R^p}\left(\frac{p}{p-1}\right)$ $\left(\frac{p}{p-1}\right)^{p-1}b^{p-1}$, we construct a second positive subsolution $(\psi_2, \bar{\psi}_2)$ of (4). Let h, ρ, v, ψ, z and consequently ψ_2 be as defined in the proof of Theorem 1.3. We note that $\psi_2 > 0$ in Ω and for this range of λ it satisfies

$$
\begin{cases}\n-\Delta_p \psi_2 \leq \lambda \frac{f(\psi_2)}{\psi_2^{\beta}} & \text{in } \Omega \\
\psi_2 = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

Now choosing $\bar{\psi}_2 = \psi_2$, we have

$$
-\Delta_p \psi_2 \le \lambda \frac{f(\psi_2)}{\psi_2^{\beta}} = \lambda \frac{f(\bar{\psi}_2)}{\psi_2^{\beta}}
$$

and

$$
-\Delta_p\bar{\psi}_2\leq \lambda \frac{f(\bar{\psi}_2)}{\bar{\psi_2}^\beta}\leq \lambda \frac{g(\psi_2)}{\bar{\psi_2}^\beta}
$$

since $f(u) \leq g(u)$ for all $u \geq 0$. Hence, $(\psi_2, \bar{\psi}_2)$ is a positive subsolution of (4), when $\frac{d^{\beta+p-1}}{f(d)}$ $f(d)$ $\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \lambda < \frac{d^{\beta}}{f(d)}$ $f(d)$ N $\frac{N}{R^p}\left(\frac{p}{p-1}\right)$ $\left(\frac{p}{p-1}\right)^{p-1}b^{p-1}$. Therefore, we obtain a positive supersolution $(\phi_2, \bar{\phi_2})$ and a positive subsolution $(\psi_2, \bar{\psi_2})$ such that for

$$
\frac{d^{\beta+p-1}}{f(d)}\frac{A^{p-1}N}{(p-1)^{p-1}R^p} < \lambda < \min\left\{\frac{d^{\beta}}{f(d)}\frac{N}{R^p}(\frac{p}{p-1})^{p-1}b^{p-1}, \ \frac{1}{\|w\|_{\infty}^{\beta+p-1}}\frac{a^{\beta+p-1}}{g(a)}\right\},\
$$

 $(\psi_2, \bar{\psi_2}) \nleq (\phi_2, \bar{\phi_2}).$

From the proof of Theorem 1.6 we note that we have a sufficiently small positive subsolution $(\psi_1, \bar{\psi_1})$ such that $(\psi_1, \bar{\psi_1}) \le (\phi_2, \bar{\phi_2})$ and a sufficiently large positive supersolution $(\phi_1, \bar{\phi_1})$ such that $(\psi_2, \bar{\psi_2}) \leq (\phi_1, \bar{\phi_1})$. Hence, there exist a positive solution (u_1, \bar{u}_1) of (4) such that $(\psi_1, \bar{\psi}_1) \leq (u_1, \bar{u}_1) \leq (\phi_2, \bar{\phi}_2)$ and a positive solution (u_2, \bar{u}_2) of (4) such that $(\psi_2, \bar{\psi}_2) \leq (u_2, \bar{u}_2) \leq (\phi_1, \bar{\phi_1})$. Since $(\psi_2, \bar{\psi}_2) \nleq (\phi_2, \bar{\phi}_2)$, we have $(u_1, \bar{u}_1) \neq (u_2, \bar{u}_2)$. Therefore, there exist at least two positive solutions of (4) for $\lambda \in (\lambda_*, \lambda^*)$ and Theorem 1.7 is proven. \Box

Acknowledgement. Eun Kyoung Lee was supported by the National Research Foundation of Korea Grant funded by the Korean Government [NRF-2009-353- C00042] .

References

- [1] Chhetri, M. and Robinson, S. B., Existence and multiplicity of positive solutions for classes of singular elliptic PDEs. J. Math. Anal. Appl. 357 (2009), 176 – 182.
- [2] Cui, S., Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems. Nonlinear Anal. 41 (2001), $149 - 176$.
- [3] Drábek, P., Krejčí, P. and Takáč, P., Nonlinear Differential Equations. Research Notes Math. 404. Boca Raton, FL: Chapman & Hall 1999.
- [4] Giacomoni, J., Schindler, I. and Takáč, P., Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 117 – 158.
- [5] Lee, E. K., Shivaji, R. and Ye, J., Classes of infinite semipositone systems. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 853 – 865.
- [6] Leon, M. C., Existence results for quasilinear problem via ordered sub- and supersolutions. Ann. Fac. Sci. Toulouse Math. (6) 6 (1997), 591 – 608.
- [7] Perera, K. and Silva, E. A. B., On singular p-laplacian problems. Diff. Int. Equ. 20 (2007) , $105 - 120$.
- [8] Ramaswamy, M. and Shivaji, R., Multiple positive solutions for classes of plaplacian equations. Diff. Int. Equ. 17 (2004), $1255 - 1261$.
- [9] Zhang, Z., On a Dirichlet problem with a singular nonlinearity. J. Math. Anal. Appl. 194 (1995), $103 - 113$.

Received January 16, 2010; revised June 20, 2010