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Multiplicity Results for Classes of

Infinite Positone Problems

Eunkyung Ko, Eun Kyoung Lee and R. Shivaji

Abstract. We study positive solutions to the singular boundary value problem







−∆pu = λ
f(u)

uβ
in Ω

u = 0 on ∂Ω,

where ∆pu = div (|∇u|p−2∇u), p > 1, λ > 0, β ∈ (0, 1) and Ω is a bounded domain
in RN , N ≥ 1. Here f : [0,∞) → (0,∞) is a continuous nondecreasing function such
that limu→∞

f(u)
uβ+p−1 = 0. We establish the existence of multiple positive solutions for

certain range of λ when f satisfies certain additional assumptions. A simple model
that will satisfy our hypotheses is f(u) = e

αu
α+u for α ≫ 1. We also extend our results

to classes of systems when the nonlinearities satisfy a combined sublinear condition
at infinity. We prove our results by the method of sub-supersolutions.
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1. Introduction

We first consider the boundary value problem






−∆pu = λ
f(u)

uβ
in Ω

u = 0 on ∂Ω,
(1)
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where ∆pu = div(|∇u|p−2∇u) is the p−Laplacian of u, p > 1, β ∈ (0, 1), λ
is a positive parameter and Ω is a bounded domain with a smooth boundary
in RN , N ≥ 1. We assume that f is a C([0,∞))-function satisfying the following
assumptions:

(H1) f(u) > 0 for all u ≥ 0,

(H2) limu→∞
f(u)

uβ+p−1 = 0.

We note that limu→0
f(u)
uβ = ∞, and hence (1) is a singular boundary value

problem which we call here as an infinite positone problem. Our results in this
paper are motivated by the problem:







−∆pu = λ
exp[ αu

α+u
]

uβ
in Ω

u = 0 on ∂Ω.
(2)

When β = 0 for every α > 0 and λ > 0 it is known that there exist a positive
solution and when α ≫ 1 there exists a range of λ for which there exist at
least three positive solutions [8]. In this paper, we extend this study to the
singular case when 0 < β < 1. In particular, we establish the existence of a
positive solution for all α > 0 and for all λ > 0 and a multiplicity result for
certain range of λ when α ≫ 1. However, our multiplicity result is restricted
two positive solutions. In [1], the author studied this singular problem (2) when
p = 2 by treating it as a limit problem of the class of non-singular problems

defined by −∆uǫ = λ e
αu

α+u

(u+ǫ)β in Ω and uǫ = 0 on ∂Ω. Here we establish the our

results for all p > 1 directly by method of sub- and supersolutions associated
with such singular problems. Also our proofs easily extend to classes of system
where the nonlinearities satisfy a combined sublinear condition at infinity.

By a subsolution of (1) we mean a function ψ : Ω → R such that ψ ∈
W 1,p(Ω)

⋂

C(Ω) and satisfies:

−∆pψ ≤ λ
f(ψ)

ψβ
in Ω

ψ > 0 in Ω

ψ = 0 on ∂Ω

and by a supersolution of (1) we mean a function φ : Ω → R such that φ ∈
W 1,p(Ω)

⋂

C(Ω) and satisfies:

−∆pφ ≥ λ
f(φ)

φβ
in Ω

φ > 0 in Ω

φ = 0 on ∂Ω.

Then we have the following lemma:
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Lemma 1.1 (See [2, 5, 9]). If there exist a subsolution ψ and a supersolu-

tion φ of (1) such that ψ ≤ φ on Ω, then (1) has at least one solution u ∈
W 1,p(Ω)

⋂

C(Ω) satisfying ψ ≤ u ≤ φ on Ω.

We first establish:

Theorem 1.2. Assume (H1) – (H2). Then (1) has a positive solution for all

λ > 0.

We refer to [7] for a more general existence result for (1). However, for
certain classes of f we can get at least two positive solutions for certain range
of λ. To state this multiplicity result, for any 0 < a < d we define

Q(a, d) :=
aβ+p−1

f(a)

f(d)

dβ+p−1
.

Further, let

A :=

(

(N + p− 1)N+p−1

NN

)
1

p−1

.

Throughout this paper, w ∈W 1,p(Ω)
⋂

C(Ω̄) (see [4, Lemma 3.1]) is the unique
solution of







−∆pw =
1

wβ
in Ω

w = 0 on ∂Ω.
(3)

We now assume that f further satisfies:

(H3) f(u) is nondecreasing for all u ≥ 0

(H4) There exist a and b such that 0 < a < p

A
b and f(u)

uβ is nondecreasing on
(a, b).

We establish:

Theorem 1.3. Assume (H1) – (H4). Further assume that there exists d such

that

a < d <
p

A
b and Q(a, d) >

Ap−1N‖w‖β+p−1
∞

(p− 1)p−1Rp
:= C(β,N,Ω),

where R is the radius of the largest inscribed ball BR in Ω. Then (1) has at least

two positive solutions for λ∗ < λ < λ∗, where

λ∗ =
dβ+p−1

f(d)

Ap−1N

(p− 1)p−1Rp
and

λ∗ = min

{

dβ

f(d)

N

Rp

(

p

p− 1

)p−1

bp−1,
aβ+p−1

f(a)

1

‖w‖β+p−1
∞

}

.
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Figure 1: Graph of the function f(u)
uβ

Remark 1.4. Since d < p

A
b, we have dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp < dβ

f(d)
N
Rp ( p

p−1
)p−1bp−1

and since Q(a, d) > Ap−1N‖w‖β+p−1
∞

(p−1)p−1Rp , we obtain dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp <
aβ+p−1

f(a)
1

‖w‖β+p−1
∞

.

Therefore, (λ∗, λ
∗) is not empty.

Remark 1.5. A simple example satisfying the hypotheses of Theorem 1.2 and
Theorem 1.3 is







−∆pu = λ
e

αu
α+u

uβ
in Ω

u = 0 on ∂Ω.

Clearly, f(u) := e
αu

α+u satisfies hypotheses (H1) – (H3). Choosing a = 1, d = α

and b = α2

2
, we can easily show that f(u)

uβ is nondecreasing on (a, b) for α ≫ 1.

Further Q(a, d) = aβ+p−1

f(a)
f(d)

dβ+p−1 = [ 1
α
]β+p−1 exp[α

2
− α

α+1
] and hence, for any given

Ω, we have a < d < p

A
b and Q(1, α) > C(β,N,Ω) for α large.

Next we note that the method of sub- and supersolutions discussed in
Lemma 1.1 extends to the system:























−∆pu = λ
f(v)

uβ
in Ω

−∆pv = λ
g(u)

vβ
in Ω

u = v = 0 on ∂Ω.

(4)

This follows by using the result in [5]. For the system (4) by a subsolu-
tion we mean a pair of functions (ψ, ψ̄) : Ω → R × R such that (ψ, ψ̄) ∈
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(

W 1,p(Ω) ∩ C(Ω)
)

×
(

W 1,p(Ω) ∩ C(Ω)
)

and satisfy

−∆pψ ≤ λ
f(ψ̄)

ψβ
in Ω

−∆pψ̄ ≤ λ
g(ψ)

ψ̄β
in Ω

ψ > 0, ψ̄ > 0 in Ω

ψ = ψ̄ = 0 on ∂Ω.

By a supersolution we mean a pair of functions (φ, φ̄) : Ω → R × R such that
(φ, φ̄) ∈ (W 1,p(Ω) ∩ C(Ω)) × (W 1,p(Ω) ∩ C(Ω)) and satisfy

−∆pφ ≥ λ
f(φ̄)

φβ
in Ω

−∆pφ̄ ≥ λ
g(φ)

φ̄β
in Ω

φ > 0, φ̄ > 0 in Ω

φ = φ̄ = 0 on ∂Ω.

We now assume that f and g are C([0,∞)) functions satisfying the following
assumptions:

(G1) f and g are nondecreasing and f(0) > 0 and g(0) > 0

(G2) limx→∞
f(Mg(x))
xβ+p−1 = 0 for all M > 0 (a combined sublinear condition at

infinity).

We establish:

Theorem 1.6. Assume (G1) – (G2). Then (4) has a positive solution for all

λ > 0.

Next, under certain combined nonlinear effects of x
β+p−1

f(x)
and xβ+p−1

g(x)
we study

the existence of multiple positive solutions to (4). To state the multiplicity
result, for any 0 < a < d we define

Q1(a, d) :=
aβ+p−1

g(a)

f(d)

dβ+p−1
.

We also assume:

(G3) f(u) ≤ g(u) for all u ≥ 0

(G4) There exist a and b with 0 < a < b such that a < p

A
b and f(u)

uβ is nonde-
creasing on (a, b).

We establish:
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Theorem 1.7. Assume (G1) – (G4). Further assume there exists d such that

a < d < p

A
b and Q1(a, d) > C(β,N,Ω), where C(β,N,Ω) is as defined in

Theorem 1.3. Then (4) has at least two positive solutions for λ∗ < λ < λ∗,

where

λ∗ =
dβ+p−1

f(d)

Ap−1N

(p− 1)p−1Rp
and

λ∗ = min

{

dβ

f(d)

N

Rp

(

p

p− 1

)p−1

bp−1,
aβ+p−1

g(a)

1

‖w‖β+p−1
∞

}

.

Remark 1.8. Since d < p

A
b, we have dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp < dβ

f(d)
N
Rp ( p

p−1
)p−1bp−1

and since Q1(a, d) >
Ap−1N‖w‖β+p−1

∞

(p−1)p−1Rp , we obtain dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp <
aβ+p−1

g(a)
1

‖w‖β+p−1
∞ .

Therefore, (λ∗, λ
∗) is not empty.

Remark 1.9. A simple example satisfying the hypotheses of Theorem 1.6 and
Theorem 1.7 is

−∆pu = λ
e

αv
α+v

uβ
in Ω

−∆pv = λ
uq +M

vβ
in Ω

u = 0 = v on ∂Ω,

where q > 0 and M ≫ 1 so that (G3) is satisfied. Clearly, f(u) := e
αu

α+u and

g(u) := uq + M satisfy hypotheses (G1) – (G3). Choosing a = 1, d = α and

b = α2

2
, we can easily show that f(u)

uβ is nondecreasing on (a, b) for α ≫ 1.

Further Q1(a, d) = aβ+p−1

g(a)
f(d)

dβ+p−1 =
(

1
1+M

) (

1
α

)β+p−1
exp[α

2
] and hence, for any

given Ω we have a < d < p

A
b and Q1(1, α) > C(β,N,Ω) for α large.

We will prove Theorems 1.2 and 1.3 in the Section 2 and the Theorem 1.6
and 1.7 in Section 3.

2. Proof of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. We construct a positive supersolution φ1 of (1).

Let f ∗(u) = max0≤x≤u f(x). Then f ∗(u) is nondecreasing and f∗(u)
uβ+p−1 → 0

as u→ ∞, since f(u)
uβ+p−1 → 0 as u→ ∞. So there exists Mλ ≫ 1 such that

f ∗(Mλ‖w‖∞)

(Mλ‖w‖∞)β+p−1
≤

1

λ‖w‖β+p−1
∞

.

Let φ1 = Mλw, where w is defined in (3). We have

−∆pφ1 =
M

p−1
λ

wβ
≥ λ

f ∗(Mλ‖w‖∞)

(Mλw)β
≥ λ

f ∗(Mλw)

(Mλw)β
≥ λ

f(Mλw)

(Mλw)β
= λ

f(φ1)

φ
β
1

,
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showing that φ1 is a positive supersolution of (1).

Now we construct a positive subsolution ψ1. Let λ1 be the first eigenvalue
of −∆p with Dirichlet boundary condition and e > 0 be a corresponding eigen-
function. Hence e and λ1 satisfy:

{

−∆pe = λ1e
p−1 in Ω

e = 0 on ∂Ω.

Since f(u)
uβ → ∞ as u→ 0, there exists a sufficiently small mλ such that

λ1(mλe)
p−1 ≤ λ

f(mλe)

(mλe)β
for all λ > 0.

Let ψ1 = mλe. We have −∆pψ1 = λ1(mλe)
p−1 ≤ λ

f(mλe)
(mλe)β = λ

f(ψ1)

ψ
β
1

. Thus ψ1 is

subsolution of (1), and if mλ is chosen sufficiently small, then ψ1 ≤ φ1. Hence,

Theorem 1.2 is proven.

Proof of Theorem 1.3. Here we construct a second positive supersolution φ2

of (1) with ‖φ2‖∞ = a when λ ≤ aβ+p−1

f(a)
1

‖w‖β+p−1
∞

. Let φ2 = a w
‖w‖∞

, where w is

defined in (3). Since λ ≤ aβ+p−1

f(a)
1

‖w‖β+p−1
∞

,

−∆pφ2 =
ap−1

‖w‖∞

1

wβ
=

‖w‖β∞
aβwβ

aβ+p−1

‖w‖β+p−1
∞

≥ λ
f(a)

φ
β
2

≥ λ
f
(

a w
‖w‖∞

)

φ
β
2

= λ
f(φ2)

φ
β
2

.

Next we construct a second positive subsolution ψ2 of (1) when

dβ+p−1

f(d)

Ap−1N

(p− 1)p−1Rp
< λ <

dβ

f(d)

N

Rp

(

p

p− 1

)p−1

bp−1.

Let a∗ ∈ (0, a] be such that f(a∗) = min0<x≤a f(x) and define h ∈ C([0,∞))
such that

h(u) =















f(a∗)

(a∗)β
, u ≤ a∗

f(u)

uβ
, u ≥ a,

so that h is nondecreasing on (0, a] and h(u) ≤ f(u)
uβ for all u ≥ 0 (See Figure 2).

Consider the following nonsingular problem:

{

−∆pu = λh(u) in Ω

u = 0 on ∂Ω.
(5)
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h(u)

a* a b

Figure 2: Graph of the function h(u) below f(u)
uβ

Let R be the radius of the largest inscribed ball BR of Ω. For 0 < ǫ < R, and
δ, µ > 1, define ρ(r) : [0, R] → [0, 1] by

ρ(r) =











1, 0 ≤ r ≤ ǫ

1 −

(

1 −
(R− r

R− ǫ

)µ
)δ

, ǫ < r ≤ R.

Then

ρ′(r) =











0, 0 ≤ r ≤ ǫ

−
δµ

R− ǫ

(

1 −
(R− r

R− ǫ

)µ
)δ−1

(R− r

R− ǫ

)µ−1

, ǫ < r ≤ R.

Let v(r) = dρ(r). Here note that |v′(r)| ≤ dδµ

R−ǫ
since | ρ′(r) |≤ δµ

R−ǫ
.

Define ψ as the radially symmetric solution of

{

−∆pψ(x) = λh(v(|x|)) in B(0, R)

ψ = 0 on ∂B(0, R).

Then ψ satisfies
{

−(rN−1G(ψ′(r)))′ = λrN−1h(v(r))

ψ′(0) = 0, ψ(R) = 0,

where G(t) = |t|p−2t for all t ∈ R. Integrating once, for 0 < r < R, we get

−G(ψ′(r)) =
λ

rN−1

∫ r

0

sN−1h(v(s)) ds. (6)

Since G is monotone, G−1 is also continuous and monotone. Hence, we have

−ψ′(r) = G−1

(

λ

rN−1

∫ r

0

sN−1h(v(s)) ds

)

. (7)
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We claim that
ψ(r) ≥ v(r), ∀ 0 ≤ r ≤ R (8)

and
‖ψ‖∞ ≤ b, (9)

when dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp < λ < dβ

f(d)
N
Rp ( p

p−1
)p−1bp−1. If our claim is true, ψ is a

positive subsolution of the nonsingular problem (5) since −∆pψ = λh(v) ≤

λh(ψ). In order to show (8), since ψ(R) = v(R) = 0, it is enough to show that

ψ′(r) ≤ v′(r), ∀ 0 ≤ r ≤ R. (10)

Note that for 0 ≤ r ≤ ǫ, clearly ψ′(r) ≤ 0 = v′(r). Now for r > ǫ, from (6)

−G(ψ′(r)) =
λ

rN−1

∫ r

0

sN−1h(v(s)) ds

>
λ

RN−1

∫ ǫ

0

sN−1h(v(s)) ds

=
λ

RN−1
h(d)

ǫN

N

=
λ

RN−1

f(d)

dβ
ǫN

N
.

So, we have −ψ′(r) > G−1
(

λ
RN−1

f(d)
dβ

ǫN

N

)

. Thus, (10) will hold for all ǫ ≥ r ≥ R,

if G−1
(

λ
RN−1

f(d)
dβ

ǫN

N

)

≥ δµ

R−ǫ
d, which is same as

λ

RN−1

f(d)

dβ
ǫN

N
≥ G

(

δµ

R− ǫ
d

)

=

(

δµ

R− ǫ
d

)p−1

.

Thus, if λ ≥ dβ+p−1

f(d)
NRN−1(δµ)p−1

ǫN (R−ǫ)p−1 , inequality (10) will hold for all ǫ ≤ r ≤ R.

Note that

inf
dβ+p−1

f(d)

NRN−1(δµ)p−1

ǫN(R− ǫ)p−1
=
dβ+p−1

f(d)

Ap−1N

(p− 1)p−1Rp
(δµ)p−1

and is achieved at ǫ = NR
N+p−1

. Hence, if λ > dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp , then in the

definition of the function ρ we can choose ǫ = NR
N+p−1

and values for δ(> 1)

and µ(> 1) so that λ ≥ dβ+p−1

f(d)
NRN−1(δµ)p−1

ǫN (R−ǫ)p−1 and hence (10) will hold for all

ǫ ≤ r ≤ R.

In order to obtain (9), integrating (7) from t to R, we have

∫ R

t

−ψ′(r)dr =

∫ R

t

G−1

(

λ

rN−1

(
∫ r

0

sN−1h(v(s)) ds

))

dr
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for 0 ≤ t ≤ R. Hence

ψ(t) =

∫ R

t

G−1

(

λ

rN−1

(
∫ r

0

sN−1h(v(s)) ds

))

dr

≤

∫ R

t

G−1

(

λ

rN−1
h(d)

rN

N

)

dr

=

∫ R

t

(

λ

N
h(d)

)
1

p−1

r
1

p−1 dr

≤

(

λ

N
h(d)

)
1

p−1
∫ R

0

r
1

p−1 dr

=
p− 1

p

(

λRp

N

f(d)

dβ

)
1

p−1

.

from which we have ‖ψ‖∞ ≤ p−1
p

(

λRp

N

f(d)
dβ

)
1

p−1

. Since λ < dβ

f(d)
N
Rp

(

p

p−1

)p−1

bp−1,

we obtain ‖ψ‖∞ ≤ b. Thus ψ satisfies
{

−∆pψ ≤ λh(ψ) in B(0, R)

ψ = 0 on ∂B(0, R)

and d ≤ ‖ψ‖∞ ≤ b.

Now, let z(x) = ψ(x), if x ∈ BR and z(x) = 0, if x ∈ Ω − BR. Then
z ∈ W 1,p(Ω)

⋂

C(Ω̄) and z = 0 on ∂Ω, which is subsolution of the nonsigular
problem (5) in Ω. However, z is not strictly positive in Ω. To obtain a strictly
positive subsolution of (5) in Ω we iterate this subsolution z once in a suitable
manner. By the properties of h, there exists σλ > 0 such that λh(z) + σλG(z)
is increasing for all z ≥ 0. Define ψ2 to be the solution of

{

−∆pψ2 + σλG(ψ2) = h̃(z) in Ω

ψ2 = 0 on ∂Ω

with h̃(z) = λh(z) + σλG(z). Then since the operator −∆p + σλG satisfies the
weak comparison principle (see [3]), we can have z ≤ ψ2 (see [6]). Further we
get ψ2(x) > 0 for all x ∈ Ω since h̃(0) > 0. Hence by the monotonicity of h̃ we
have

−∆pψ2 + σλG(ψ2) = h̃(z) ≤ h̃(ψ2) = λh(ψ2) + σλG(ψ2),

which implies that ψ2 is a subsolution of the nonsingular problem (5) such that

ψ2 > 0 in Ω. Since h(u) ≤ f(u)
uβ for all u ≥ 0, we have −∆pψ2 ≤ λh(ψ2) ≤ λ

f(ψ2)

ψ
β
2

,

showing that ψ2 is a positive subsolution of our singular problem (1). Therefore,
for

d1+β

f(d)

Ap−1N

(p− 1)p−1Rp
< λ < min

{

dβ

f(d)

N

Rp

(

p

p− 1

)p−1

bp−1,
aβ+p−1

f(a)

1

‖w‖β+p−1
∞

}
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we obtain a positive subsolution ψ2 and a positive supersolution φ2 be such that
ψ2 � φ2.

From the proof of Theorem 1.2 we note that we have a sufficiently small
positive subsolution ψ1 such that ψ1 ≤ φ2 and a sufficiently large positive super-
solution φ1 such that ψ2 ≤ φ1. Hence, there exist a positive solution u1 of (1)
such that ψ1 ≤ u1 ≤ φ2 and a positive solution u2 of (1) such that ψ2 ≤ u2 ≤ φ1.

Since ψ2 � φ2, we have u1 6= u2. Therefore, there exist at least two positive
solutions of (1) for λ ∈ (λ∗, λ

∗) and Theorem 1.3 is proven.

3. Proof of Theorem 1.6 and Theorem 1.7

Proof of Theorem 1.6. We construct a positive supersolution (φ1, φ̄1) of (4).
If both f and g are bounded, let (φ1, φ̄1) = (λMλw, λMλw) and choose Mλ

so large that Mp−1
λ ≥ 1

λp−2 max{‖f‖∞, ‖g‖∞}. Then for Mλ ≫ 1 we have

−∆pφ1 = λp−1M
p−1
λ

1

wβ
≥ λ

‖f‖∞
wβ

≥ λ
f(λMλw)

(λMλw)β
= λ

f(φ̄1)

φ1
β

and

−∆pφ̄1 = λp−1M
p−1
λ

1

wβ
≥ λ

‖g‖∞
wβ

≥ λ
g(λMλw)

(λMλw)β
= λ

g(φ1)

φ̄1
β
,

showing that (φ1, φ̄1) is a positive supersolution of (4). Suppose that g(x) → ∞

as x→ ∞, let (φ1, φ̄1) =
(

Mλw, λ
1

β+p−1 g(Mλ‖w‖∞)
1

β+p−1w
)

. Then by (G2), we

can choose Mλ large so that

f
(

λ
1

β+p−1‖w‖∞g(Mλ‖w‖∞)
1

β+p−1

)

(Mλ‖w‖∞)β+p−1
≤

1

λ‖w‖β+p−1
∞

.

Then we have

−∆pφ1 =
M

p−1
λ

wβ

≥ λ
f

(

λ
1

β+p−1‖w‖∞g(Mλ‖w‖∞)
1

β+p−1

)

(Mλw)β

≥ λ
f

(

λ
1

β+p−1 g(Mλ‖w‖∞)
1

β+p−1w
)

(Mλw)β

= λ
f(φ̄1)

φ1
β
.
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We also have

−∆pφ̄1 = λ
p−1

β+p−1 g(Mλ‖w‖∞)
p−1

β+p−1
1

wβ

= λ
g(Mλ‖w‖∞)

λ
β

β+p−1 g(Mλ‖w‖∞)
β

β+p−1wβ

≥ λ
g(Mλw)

(

λ
1

β+p−1 g(Mλ‖w‖∞)
1

β+p−1w
)β

= λ
g(φ1)

φ̄1
β
,

showing that (φ1, φ̄1) is a supersolution of (4). (If g is bounded and f(x) → ∞

as x → ∞, then limx→∞
g(Mf(x))
xβ+p−1 = 0 for all M > 0 and we can prove that

(φ1, φ̄1) =
(

λ
1

β+p−1f(Mλ‖w‖∞)
1

β+p−1w,Mλw
)

is a supersolution of (4)).

Now, we construct a positive subsolution (ψ1, ψ̄1) of (4). Let e and λ1 be as

in the proof of Theorem 1.2. Since limx→0
f(0)
xβ = ∞ = limx→0

g(0)
xβ , there exist

sufficiently small mλ and m′
λ such that

λ1(mλe)
p−1 ≤ λ

f(0)

(mλe)β
and λ1(m

′
λe)

p−1 ≤ λ
g(0)

(m′
λe)

β
.

Let (ψ1, ψ̄1) = (mλe,m
′
λe). Since f and g are nondecreasing, we have

−∆pψ1 = λ1(mλe)
p−1 ≤ λ

f(0)

(mλe)β
≤ λ

f(m′
λe)

(mλe)β
= λ

f(ψ̄1)

ψ
β
1

and

−∆pψ̄1 = λ1(m
′
λe)

p−1 ≤ λ
g(0)

(m′
λe)

β
≤ λ

g(mλe)

(m′
λe)

β
= λ

g(ψ1)

ψ̄1
β
.

Thus (ψ1, ψ̄1) is a positive subsolution of (4), and if mλ and m′
λ are sufficiently

small then (ψ1, ψ̄1) ≤ (φ1, φ̄1). Hence Theorem 1.6 is proven.

Proof of Theorem 1.7. We construct a second positive supersolution (φ2, φ̄2)

of (4) when λ ≤ aβ+p−1

g(a)
1

‖w‖β+p−1
∞

. Let (φ2, φ̄2) =
(

a w
‖w‖∞

, a w
‖w‖∞

)

. Since λ ≤

1

‖w‖β+p−1
∞

aβ+p−1

g(a)
and g(x) ≥ f(x) for all x ≥ 0, we have

−∆pφ2 =
ap−1

‖w‖p−1
∞

1

wβ
≥ λ

g(a)
(

a w
‖w‖∞

)β
≥ λ

f
(

a w
‖w‖∞

)

(

a w
‖w‖∞

)β
= λ

f(φ̄2)

φ
β
2
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and

−∆pφ̄2 =
ap−1

‖w‖p−1
∞

1

wβ
≥ λ

g(a)
(

a w
‖w‖∞

)β
≥ λ

g
(

a w
‖w‖∞

)

(

a w
‖w‖∞

)β
= λ

g(φ2)

φ̄2
β
.

Hence, (φ2, φ̄2) is a positive supersolution of (4) with ‖φ2‖∞ = a and ‖φ̄2‖∞ = a

when λ ≤ aβ+p−1

g(a)
1

‖w‖β+p−1
∞

.

Now, when dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp < λ < dβ

f(d)
N
Rp

(

p

p−1

)p−1

bp−1, we construct a

second positive subsolution (ψ2, ψ̄2) of (4). Let h, ρ, v, ψ, z and consequently ψ2

be as defined in the proof of Theorem 1.3. We note that ψ2 > 0 in Ω and for

this range of λ it satisfies






−∆pψ2 ≤ λ
f(ψ2)

ψ
β
2

in Ω

ψ2 = 0 on ∂Ω.

Now choosing ψ̄2 = ψ2, we have

−∆pψ2 ≤ λ
f(ψ2)

ψ
β
2

= λ
f(ψ̄2)

ψ
β
2

and

−∆pψ̄2 ≤ λ
f(ψ̄2)

ψ̄2
β

≤ λ
g(ψ2)

ψ̄2
β

since f(u) ≤ g(u) for all u ≥ 0. Hence, (ψ2, ψ̄2) is a positive subsolution of

(4), when dβ+p−1

f(d)
Ap−1N

(p−1)p−1Rp < λ < dβ

f(d)
N
Rp

(

p

p−1

)p−1

bp−1. Therefore, we obtain a

positive supersolution (φ2, φ̄2) and a positive subsolution (ψ2, ψ̄2) such that for

dβ+p−1

f(d)

Ap−1N

(p− 1)p−1Rp
< λ < min

{

dβ

f(d)

N

Rp
(

p

p− 1
)p−1bp−1,

1

‖w‖β+p−1
∞

aβ+p−1

g(a)

}

,

(ψ2, ψ̄2) � (φ2, φ̄2).
From the proof of Theorem 1.6 we note that we have a sufficiently small

positive subsolution (ψ1, ψ̄1) such that (ψ1, ψ̄1) ≤ (φ2, φ̄2) and a sufficiently large
positive supersolution (φ1, φ̄1) such that (ψ2, ψ̄2) ≤ (φ1, φ̄1). Hence, there exist
a positive solution (u1, ū1) of (4) such that (ψ1, ψ̄1) ≤ (u1, ū1) ≤ (φ2, φ̄2) and a
positive solution (u2, ū2) of (4) such that (ψ2, ψ̄2) ≤ (u2, ū2) ≤ (φ1, φ̄1). Since
(ψ2, ψ̄2) � (φ2, φ̄2), we have (u1, ū1) 6= (u2, ū2). Therefore, there exist at least
two positive solutions of (4) for λ ∈ (λ∗, λ

∗) and Theorem 1.7 is proven.
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