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of Advection-Diffusion Problems

with Large Expected Drift
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Abstract. This contribution is concerned homogenization of linear advection-
diffusion problems with rapidly oscillating coefficient functions and large expected
drift. Even though the homogenization of this type of problems is generally well
known, there are several details that have not yet been treated explicitly or even
not been treated at all. Here, we will have a special look at uniqueness, regularity,
boundedness and equivalent formulations of the homogenized equation. In particu-
lar, we generalize results of Allaire and Raphael [C. R. Math. Acad. Sci. Paris 344
(2007)(8), 523 – 528] and Donato and Piatnitski [Multi Scale Problems and Asymp-
totic Analysis. Tokyo: Gakkōtosho 2006, pp. 153 – 165]. The results obtained in this
contribution are of special interest for the numerical analysis of multi-scale schemes
to approximate the analytic solutions.
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1. Introduction

This work concerning linear advection-diffusion problems with rapidly oscillat-
ing coefficient functions and a large expected drift, is devoted to the homoge-
nization of problems of the kind
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where the coefficients are assumed to be periodic in space. Here, ǫ denotes
a very small parameter that should be regarded as a measure for the degree
of fineness of the problem. Since all the results we achieve shall be used for
a later numerical handling of this problem, we are especially concerned with
questions of uniqueness, regularity, boundedness and equivalent formulations of
the homogenized problem.

Equations of type (1) have a variety of applications such as reservoir dis-
placement problems, the modeling of semi-conductor devices, polymer chem-
istry and especially the field dealing with models for transport of solutes in
groundwater and surface water, where the process takes place in a porous
medium.

The original interest behind equation (1) is the treatment of advection-
diffusion-reaction problems with rapidly oscillating coefficient functions of the
following type:
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ũǫ = 0 in R
d×(0, T )

ũǫ(0, ·) = ṽ0 in R
d.

(2)

Here the scaling corresponds to the standard ratio of Péclet and Damköhler
numbers, where the period has a linear influence on the Péclet number and
a quadratic influence on the Damköhler number (see for instance [6]). If the
coefficient functions are independent of t, Allaire and Raphael [2, 4] show that,
by means of so-called spectral cell problems, equation (2) can be transformed
to a simple advection-diffusion problem with a divergence-free velocity field b.
These types of equations are covered by problem (1). The transformation itself
can be determined easily by solving the first spectral cell problem:

−∇y·(A(y)∇y W1)+b(y)·∇y W1+c(y)W1 =λ1W1 in [0, 1]d, W1 is [0, 1]d-periodic.

Here λ1 denotes the common first eigenvalue of the problem. After a normal-
ization, the following relation between uǫ and ũǫ holds true:

uǫ(t, x) = eλ1tǫ−2 ũǫ(t, x)

W1(
x
ǫ
)
.

In this case, the additional coefficient function k is a result of the described
transformation, which can be stated easily in terms of the cell problem solution
W1 and the corresponding solution of the adjoint cell problem. Using this
important result, we directly draw our focus on the observation of problem (1),
since this also includes type (2) equations.

In general, the homogenization of such a problem is well known. The case
with c = 0, k = 1 and

∫

Y
b = 0 has been for instance observed by Majda and

Kramer in 1999 [10], whereas the more general case with nonlinear b has been
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treated by Marušić-Paloka and Piatnitski in 2005 [11] by means of a modified
version of the two-scale convergence. Donato and Piatnitski [7] and indepen-
dently Allaire and Raphael [2,4] (for porous media) were finally concerned with
the case of advection-diffusion-reaction problems, where neither the restriction
∫

Y
b = 0 nor ∇ · b = 0 was needed. To homogenize the equation, the cited

authors use a factorization principle and the method of two-scale convergence.
For a non-perforated medium, the very general case with all coefficient func-
tions being allowed to vary also on the macro-scale was treated by Allaire and
Orive in 2007 [3].

Besides all these mayor results, there are still several details about the case
covered by problem (1) which have not yet been treated explicitly. Neverthe-
less, these questions concerning regularity, boundedness, the properties of the
macro-problem and in particular uniqueness of the solutions in the homogenized
two-scale problem are important for the numerical analysis of discretization
schemes of such equations. Therefore, this contribution is engaged with the
homogenization of problem (1) including time-dependent coefficients and the
additional coefficient function k. For the homogenization we use the method of
two-scale convergence with drift, introduced in [11] and later on used by Allaire
and Raphael [4]. In this contribution we are in particular interested in the prop-
erties of the two-scale Cauchy problem, such as its structure and uniqueness of
its solution. Moreover, we are concerned with some minor problems, produced
by the occurrence of kǫ. With regard to a later numerical treatment, we prove
and state regularity and boundedness results for the solutions u0 and u1 of the
homogenized problem. On the basis of the two-scale equation we will be able
to state an alternative proof for the homogenized macro-problem, which is of
the type

∂tu0 −∇ · (Ā∇u0) = 0 in (0, T ) × R
d

u0(0, ·) = v0 in R
d.

Using this proof, we are able to obtain boundedness and especially coercivity
of Ā(t) in a straight forward way.

The article is structured into three parts. In Section 2 we introduce several
important assumptions and definitions. In Section 3 we state all the major
results. This includes the derivation of the two-scale homogenized equation of
problem (1), regularity and boundedness results, as well as the derivation of the
homogenized macro problem. Proofs of the major theorems are finally given in
Section 4.

2. General definitions and assumptions

Notation: Throughout the paper, we will sometimes use the notation
∫

Ω
f(·)

instead of
∫

Ω
f(x)dx. This is done for the sake of readability and to avoid that
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expressions become too long. Note that this is only done, if the integration
variable can be identified from the context.

For our analysis we introduce the following function spaces:

Definition 2.1 (Function spaces). For 0 ≤ m < ∞, 1 ≤ p < ∞ and for any

Y ′ =
d

Π
i=0

(ai, bi) ⊂ R
d with ai < bi, we define:

C0
♯ (Y ′) := {φ ∈ C0(Y ′)| φ is Y ′-periodic}

H
m,p
♯ (Y ′) := C0

♯ (Y ′)
‖·‖Hm,p(Y ′)

,

H̃1
♯ (Y ′) :=

{

v ∈ H
1,2
♯ (Y ′)

∣
∣
∣
∣

∫

Y ′

− v(y) dy = 0

}

.

For Y = (0, 1)d we furthermore define:

I := H1(Rd) × L2(Rd, H1
♯ (Y ))

I0 := H1(Rd) × L2(Rd, H̃1
♯ (Y ))

X0(0, T ) := L2(0, T ; H1(Rd)) × L2((0, T )×R
d, H̃1

♯ (Y ))

X1(0, T ) := H1(0, T ; H1(Rd)) × L2((0, T )×R
d, H̃1

♯ (Y )).

The semi-norm | · |L2(Ω,Hk(Y )) on the Bochner-space L2(Ω, Hk(Y )) is given by

|Φ|L2(Ω,Hk(Y )) :=
( ∫

Ω
|Φ(x, ·)|2

Hk(Y )

) 1
2
.

For the coefficient functions of the advection-diffusion problem (1) we pose
the following assumptions:

Assumption 2.2 (General analytical assumptions). To assure existence and
uniqueness of the solutions, we assume that A ∈

(
H1,∞(0, T ; L∞

♯ (Y )
)d×d

is an
uniformly coercive matrix with corresponding ellipticity constant α > 0, i.e.,

A(t, y)ξ · ξ ≥ α|ξ|2, ∀ ξ ∈ R
d and for almost every (t, y) ∈ (0, T ) × Y.

Furthermore, we assume for the velocity field b ∈
(
H1,∞(0, T ; H1,∞

♯ (Y )
)d

and
that b(t, ·) is divergence-free almost everywhere in (0, T ), i.e., ∇· b(·, t) = 0.

In problem (1) the first coefficient function k takes a specific role, as it is
the result of a transformation (see Introduction). Due to that transformation,
k has certain properties. Since we make use of these properties, we state the
following assumptions.

Assumption 2.3 (Assumptions on k). We assume k ∈ H1,∞(0, T ; L∞
♯ (Y )),

∫

Y

− k(t, ·) = 1 for almost every t ∈ (0, T ), (3)
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and that there exist constants m,M ∈ R such that

0 < m ≤ k(t, y) ≤ M < ∞, for almost every (t, y) ∈ (0, T ) × Y. (4)

Note that (3) is a normalization property and therefore not a strong as-
sumption. Any of the following results can be stated (with slight modifications)
without assumption (3).

In the following we use a generalized definition of the two-scale conver-
gence. Since we expect a large drift beside the typical fine-scale oscillations,
the test-functions in the original two-scale convergence are replaced by new
test-functions which are expected to be in resonance with uǫ. The following
formulation was initially introduced by Marušić-Paloka and Piatnitski [11]:

Definition 2.4 (Two-scale convergence with drift). Let B ∈ H1(0, T )d be a
given drift, (uǫ)ǫ>0 a sequence in L2((0, T )×R

d) and u0 ∈ L2((0, T )×R
d × Y ).

Then we say uǫ is two-scale convergent with drift B to u0, if

lim
ǫ→0

∫ T

0

∫

Rd

uǫ(t, x)Φ

(

t, x −
B(t)

ǫ
,
x

ǫ

)

dx dt =

∫ T

0

∫

Rd

∫

Y

u0(t, x, y)Φ(t, x, y) dy dx dt

for all functions Φ ∈ L2((0, T ) × R
d; C0

♯ (Y )).

This definition directly implies that the sequence uǫ
(
t, x + B(t)

ǫ

)
converges

to
∫

Y
u0(t, x, y) dy weakly in L2(Rd × (0, T )). This suggests to use

∫

Y
u0

(
t, x −

B(t)
ǫ

, y
)
dy as an approximation of uǫ. To see that even strong convergence can

be expected, we refer to [3,4,11] for corresponding statements and theorems. A
complete proof of an associated compactness result for the two-scale convergence
with drift can be found in [5].

3. Homogenization of advection-diffusion equations
with drift

In this section we state all major results of this contribution concerning the ho-
mogenization of advection-diffusion problems with drift. We start with the
derivation of a two-scale homogenized limit equation for sequences of solu-
tions uǫ of the Cauchy problem (1). We also show, that the limit equation
admits a unique solution (u0, u1) ∈ L2(0, T ; H1(Rd)) × L2((0, T ) × R

d; H̃1
♯ (Y )).

A first regularity result for the two-scale homogenized solution (u0, u1) is then
given in Proposition 3.3. By introducing suitable elliptic cell problems, we then
see that the two-scale homogenized equation is equivalent to solving these cell
problems in combination with a macro-scale equation for u0. Further regular-
ity results are derived from this equivalent formulation and properties of the
macro-scale equation are given.

The first main theorem gives the convergence of sequences of solutions uǫ of
the Cauchy problem (1) towards a two-scale homogenized equation with drift.
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Theorem 3.1 (Two-scale homogenized equation with drift). Let (uǫ)ǫ>0 be

the sequence of solutions of Problem (1) and B(t) :=
∫ t

0

∫

Y
b(y, s) dy ds the

corresponding drift velocity we refer to. Defining b(t) :=
∫

Y
− b(y, t) dy, there

exist functions u0 ∈ L2(0, T ; H1(Rd))∩
(
H

1
2 (0, T ; L2(Rd))+H1(0, T ; H−1(Rd))

)

and u1 ∈ L2((0, T ) × R
d; H̃1

♯ (Y ))
such that we have for a subsequence of uǫ:

uǫ → u0 two-scale with drift B(t) and

∇uǫ → ∇xu0 + ∇y u1 two-scale with drift B(t).

Moreover (u0, u1) ∈ L2(0, T ; H1(Rd)) × L2((0, T ) × R
d; H̃1

♯ (Y )) is the unique

solution of the following homogenized problem:

−

∫ T

0

(u0, ∂tΦ0)L2(Rd) +

∫ T

0

E(·)((u0, u1), (Φ0, φ1)) = (v0, Φ0(0, ·))L2(Rd), (5)

for all Φ0 ∈ H1(0, T ; H1(Rd) with Φ0(T, ·) = 0; φ1 ∈ L2
(
(0, T ) × R

d, H1
♯ (Y )

)
.

Here, the parameter-dependend bilinearform E ∈ C0,1([0, T ],L(I, I ′)) by

E(t) ((u0, u1), (Φ0, φ1)) :=

∫

Rd

b(t) · ∇xΦ0

(∫

Y

ku1

)

−

∫

Rd

∫

Y

(b(t, ·) · ∇xΦ0) u1

+

∫

Rd

∫

Y

A(t, ·) (∇xu0 + ∇y u1) · (∇xΦ0 + ∇y φ1)

−

∫

Rd

b(t) · ∇xu0

(∫

Y

kφ1

)

+

∫

Rd

∫

Y

b(t, ·) · (∇xu0 + ∇y u1) φ1,

where b(t) denotes the average of b over Y .

A detailed proof of Theorem 3.1 is given in Section 4. The proof is based
on a generalized compactness theorem of Marušić-Paloka and Piatnitski [11]
for sequences of bounded functions in L2(0, T ; H1(Rd)). The proof of the the-
orem also includes the uniqueness of solutions of the two-scale homogenized
equations. Here it is important to note, that the bilinear form E is Lipschitz-
continuous which follows from our assumptions A ∈

(
H1,∞(0, T ; L∞(Y ))

)d×d

and b ∈
(
H1,∞(0, T ; H1,∞(Y ))

)d
.

Remark 3.2 (Homogenization for general k). If there is no such restriction
as k(t, ·) having average 1, the drift-velocity B needs to be generalized to

B(t) :=

∫ t

0

∫

Y
b(s, y) dy

∫

Y
k(s, y) dy

ds.

Then a similar result to Theorem 3.1 can be derived.
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For completeness, we now state a general regularity results for solutions
(u0, u1) of the two-scale homogenized equation.

Proposition 3.3 (Regularity of the homogenized equation). If the initial val-

ue v0 belongs to the class H1(Rd), we have

u0 ∈ H1(0, T ; H1(Rd)) ∩ L2(0, T ; H2(Rd))

u1 ∈ L2
(
0, T ; H1(Rd, H̃1

♯ (Y ))
)

and we rewrite problem (5) to:

Find (u0, u1) ∈ H1(0, T ; H1(Rd)) × L2((0, T ) × R
d, H1

♯ (Y )), such that

∫ T

0

(∂tu0, Φ0)L2(Rd) +

∫ T

0

E(·) ((u0, u1), (Φ0, φ1)) = 0 (6)

for all (Φ0, φ1) ∈ L2(0, T ; H1(Rd)) × L2((0, T ) × R
d, H1

♯ (Y )) and u0(0, ·) = v0

in R
d.

If furthermore A ∈ H1,∞(0, T ; H1,∞
♯ (Y )) then we even have

u1 ∈ L2
(
0, T ; H1(Rd, H̃1

♯ (Y ))
)
∩ L2((0, T ) × R

d, H2(Y )).

Proof. To prove the time regularity, i.e., u0 ∈ H1(0, T ; H1(Rd)), one can proceed
(on the basis of Theorem 3.1) in analogy to the proofs of the regularity theorems
in [13], for the case of standard linear parabolic equations. The space regularity
is obtained in analogy to the well known elliptic case.

Next, we are concerned with the so called homogenized macro problem.
In comparison to the two-scale equation where the microscopic behaviour is
included by the fine-scale corrector u1, in the macro problem this special be-
haviour will be accounted by the homogenized coefficient function Ā. Ā will
be defined in terms of the solutions wi of a number of cell problems. These
cell problems will take the role of fine-scale corrections, which is why u1 can
be expressed in dependence of these solutions. Moreover, we comment on the
regularity of the wi since it enables us to conclude on the regularity of u1.

Definition 3.4 (Cell problems). For 1 ≤ i ≤ d, we call wi ∈ L2(0, T ; H̃1
♯ (Y ))

the solution of the i’th cell problem, if

∫

Y

A(t, y) (ei+∇y wi(t, y))·∇y φ(y) dy +

∫

Y

b(t, y)·(ei+∇y wi(t, y)) φ(y) dy

=

∫

Y

k(t, y)(b(t)·ei)φ(y) dy, for all φ ∈ H̃1
♯ (Y ).

(7)
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Remark 3.5. By means of the cell problems 3.4 we see that u1 can be expressed
as

u1(t, x, y) =
d∑

i=1

∂xi
u0(t, x)wi(t, y). (8)

Multiplying equation (7) with ∂xi
u0(t, x) and summing up afterwards, immedi-

ately yields this relation.

Remark 3.6. Since the cell problem (7) implies that wi solves a standard ellip-
tic problem on the whole R

d with regular coefficient functions, we immediately
have wi(t, ·) ∈ H2(Y ) and |wi|L2(0,T ;H2(Y )) ≤ C, where C only depends on the
coefficient functions. In particular this implies:

|u1|L2((0,T )×Rd,H2(Y )) ≤ C|u0|L2(0,T ;H1(Rd) ≤ C‖v0‖L2(Rd).

Since the solution of the cell problem (7) inherits the regularity of the coeffi-
cients, we even have wi ∈ C0,1([0, T ], H1(Y )). In particular we get

‖wi‖H1,∞(0,T ;H1(Y )) ≤ C,

where C only depends on A, b, k and its corresponding Lipschitz constants.

Corollary 3.7. If v0 ∈ H1(Rd), we have that u1 ∈ H1
(
0, T ; L2(Rd, H1(Y ))

)
.

Proof. If v0 ∈ H1(Rd), Proposition 3.3 implies u0 ∈ H1(0, T ; H1(Rd)). By
Remark 3.6 we have wi ∈ H1,∞([0, T ], H1(Y )). Using the identity (8) we finish
the proof.

Theorem 3.8 (Macro problem). Let the entries of the matrix Ā be defined by

Āij(t) :=

∫

Y

A(t, ·) (ei + ∇y wi(t, ·)) · (ej + ∇y wj(t, ·)) . (9)

Then we have that u0 is a weak solution of the following macro problem:

∂tu0 −∇ · (Ā∇u0) = 0 in (0, T ) × R
d

u0(0, ·) = v0 in R
d.

Moreover we have for Ā(t):

• coercivity uniformly in t:
∫

Rd

Ā(t)∇Φ(x) · ∇Φ(x) ≥ α|Φ|2H1(Rd) ∀ Φ ∈ H1(Rd),

• boundedness: Ā ∈ (H1,∞(0, T ))d×d and in particular

‖Ā‖H1,∞(0,T ) ≤ C, (10)

where C only depends on A, b, k and its corresponding Lipschitz constants.

The proof of this theorem is given at the end of Section 4.
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4. Proofs of Theorem 3.1 and Theorem 3.8

The existence of the homogenized two-scale equation is derived via the following
compactness result of Marušić-Paloka and Piatnitski [11] that guarantees two-
scale convergence with drift up to a subsequence:

Theorem 4.1 (Generalized compactness theorem). Let (uǫ)ǫ>0 be a sequence

in L2(0, T ; H1(Rd)). If there exists some C ≥ 0 independent of ǫ with

‖uǫ‖L2(0,T ;H1(Rd)) ≤ C,

then for any B ∈ H1(0, T )d, there exist functions u0 ∈ L2(0, T ; H1(Rd)) and

u1 ∈ L2((0, T ) × R
d; H1

♯ (Y )) such that, up to a subsequence

uǫ → u0 two-scale with drift B and

∇uǫ → ∇xu0 + ∇y u1 two-scale with drift B.

A detailed proof of the compactness result was given by Allaire (see [5]). In
order to apply this theorem, we need boundedness of uǫ. An associated result
is given in the next lemma.

Lemma 4.2 (Boundedness). There exists a constant C ≥ 0, independent of ǫ,

such that ‖uǫ‖L2(0,T ;H1(Rd)) ≤ C.

Remark 4.3. In general it is not possible to show the corresponding bounded-
ness of ∂tu

ǫ independent of ǫ. This is a natural consequence, since in non-trivial
cases a large drift is expected. Such drifts typically result in very large tempo-
ral gradients depending on 1

ǫ
. Therefore, the sequence ∂tu

ǫ will be unbounded
in L2.

Proof of Lemma 4.2. We have for all Φ ∈ H1(Rd)
∫

Rd

kǫ(t, ·)∂tu
ǫ(t, ·)Φ +

∫

Rd

Aǫ(t, ·)∇uǫ(t, ·) · ∇Φ +
1

ǫ

∫

Rd

bǫ(t, ·) · ∇uǫ(t, ·)Φ = 0

almost everywhere in t. Without loss of generality, we assume that uǫ is suffi-
ciently regular, i.e., uǫ ∈ C1([0, T ] , H1(Rd)). The general case is obtained by
density arguments. Testing with Φ = φuǫ, where the function φ ∈ C1[0, T ] with
φ ≥ 0 is given by φ(t) := e−ct, and c := 1

m
‖ d

dt
k‖L∞(0,T ;L∞(Y )), we get almost

everywhere in t

∫

Rd

kǫ(t, ·)∂tu
ǫ(t, ·)φ(t)uǫ(t, ·) +

∫

Rd

Aǫ(t, ·)∇uǫ(t, ·) · ∇ (φ(t)uǫ(t, ·))

+
1

ǫ

∫

Rd

bǫ(t, ·) · ∇uǫ(t, ·) (φ(t)uǫ(t, ·))

= 0.
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Since mintφ(t) = φ(T ), we furthermore have
∫

Rd

α|∇uǫ(t, ·)|2e−cT ≤

∫

Rd

Aǫ(t, ·)∇uǫ(t, ·) · ∇ (φ(t)uǫ(t, ·)) .

Moreover, since b is divergence-free (and therefore also bǫ), we get
∫

Rd

bǫ(t, ·) · ∇uǫ(t, ·)φ(t)uǫ(t, ·) =

∫

Rd

1

2
bǫ(t, ·) · ∇

(
uǫ(t, ·)2

)
φ(t)

= −
1

2

∫

Rd

divbǫ(t, ·)uǫ(t, ·)2φ(t)

= 0.

This yields
∫

Rd
1
2
kǫ(t, ·)φ(t) d

dt
(uǫ(t, ·)2) +

∫

Rdα|∇uǫ(t, ·)|2e−cT ≤ 0 and
∫

Rd

1

2

d

dt

(
kǫ(t, ·)φ(t)uǫ(t, ·)2

)
−

1

2

d

dt
(kǫ(t, ·)φ(t)) uǫ(t, ·)2+

∫

Rd

α|∇uǫ(t, ·)|2e−cT ≤0.

With the definition of φ we see that

d

dt
(kǫφ) =

(
d

dt
kǫ

)

φ + kǫφ′ ≤

∥
∥
∥
∥

d

dt
k

∥
∥
∥
∥

L∞(YT )

φ + mφ′ = 0.

Hence, we get 1
2

∫

Rd
d
dt

(

kǫ(t, ·)φ(t)
)

uǫ(t, ·)2 ≤ 0. All in all we obtain:

∫

Rd

1

2

d

dt

(

kǫ(t, ·)φ(t)uǫ(t, ·)2
)

+

∫

Rd

α|∇uǫ(t, ·)|2e−cT ≤ 0.

Let c1 be defined as c1 := αφ(T ). Then we have by integration for arbitrary
t ∈ [0, T ]

∫

Rd

1

2
kǫ(t, ·)φ(t)uǫ(t, ·)2 + c1

∫ t

0

|uǫ(s, ·)|2H1(Rd) ds ≤

∫

Rd

1

2
kǫ(0, ·)v0(·)

2. (11)

Since we have the inequality for all t, we get c1

∫ T

0
|uǫ(t, ·)|2

H1(Rd)
dt ≤

∫

Rd
1
2
kǫ(0, ·)v0(·)

2 and since both summands in (11) are positive, we obtain

∫ T

0

∫

Rd

1

2
kǫ(t, x)φ(t)uǫ(t, x)2 dt dx + c1

∫ T

0

|uǫ(t, ·)|2H1(Rd) dt

≤

∫

Rd

T + 1

2
kǫ(0, x)v0(x)2 dx.

With c2 := 1
2
mφ(T ), we finally have

c2

∫ T

0

‖uǫ(t, ·)‖L2(Rd) dt + c1

∫ T

0

|uǫ(t, ·)|2H1(Rd) dt ≤

∫

Rd

T + 1

2
kǫ(0, ·)v0(·)

2.

Since k is bounded, this ends the proof.
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In order to pass to the two-scale limit in the weak formulation of the
advection-diffusion equation (1), we need a result on the convergence of products
of sequences of oscillating functions. Note that this unproblematic. If vǫ denotes
a sequence of functions in L2((0, T ) × R

d), which fulfills vǫ → v two-scale with
drift B(t), then we have the following convergence for all g ∈ L∞(0, T ; L∞

♯ (Y ))

and for all Φ ∈ C∞
0

(
(0, T ) × R

d, C∞
♯ (Y )

)
:

lim
ǫ→0

∫ T

0

∫

Rd

vǫ(t, x)g
(

t,
x

ǫ

)

Φ

(

t, x −
B(t)

ǫ
,
x

ǫ

)

dt dx

=

∫ T

0

∫

Rd

∫

Y

v(t, x, y)g(t, y)Φ(t, x, y) dt dx dy.

(12)

See for instance [1] for similar results without drift.

We are now prepared to prove Theorem 3.1. In the proof, we use the
density of C∞

0 (Rd) in H1(Rd). Hence, we can work with test functions Φ ∈
C∞

0

(
(0, T ) × R

d, C∞
♯ (Y )

)
. Since the coefficient functions and their correspond-

ing derivatives belong to L∞(0, T ; L∞
♯ (Y )), we apply (12) to pass to the limit

in terms like

∫ T

0

∫

Rd

Aǫ(t, x)∇uǫ(t, x) · ∇Φ

(

t, x −
B(t)

ǫ
,
x

ǫ

)

dt dx.

In the following proof of Theorem 3.1, this will be done without mentioning.

Proof of Theorem 3.1. To prove the first part of theorem 3.1, i.e., existence
of the homogenized limit problem, we will proceed similar as in [11] (testing

with functions of the kind Φ0

(
t, x − B(t)

ǫ

)
+ ǫφ1

(
t, x − B(t)

ǫ
, x

ǫ

)
and forming the

corresponding limits).

Let (uǫ)ǫ>0 be the sequence of solutions of Problem (1). We assume that
uǫ ∈ L2(0, T ; H1(Rd)) ∩ H1(0, T,H−1(Rd)) since this is the natural space of
solutions. By means of Theorem 4.1, we are now able to extract a subsequence
of (uǫ)ǫ>0 such that

uǫ → u0 two-scale with drift (13)

∇uǫ → ∇xu0 + ∇y u1 two-scale with drift. (14)

Assume that the functions Φ0 and φ1 are smooth:

Φ0 ∈ C∞
0

(
(0, T ) × R

d
)

(15)

φ1 ∈ C∞
0

(
(0, T ) × R

d, C∞
♯ (Y )

)
. (16)
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Defining ΩT := (0, T ) × R
d and Φǫ(t, x) := Φ0

(
t, x − B(t)

ǫ

)
+ ǫφ1

(
t, x − B(t)

ǫ
, x

ǫ

)

we have
∫

ΩT

kǫ∂tu
ǫΦǫ

︸ ︷︷ ︸

=: I

+

∫

ΩT

Aǫ∇uǫ∇Φǫ

︸ ︷︷ ︸

=: II

+
1

ǫ

∫

ΩT

(bǫ · ∇uǫ) Φǫ

︸ ︷︷ ︸

=: III

= 0.

We start with I and split the term again:

I =

∫

ΩT

k
(

t,
x

ǫ

)

∂tu
ǫ(t, x)Φ0

(

t, x −
B(t)

ǫ

)

dt dx

︸ ︷︷ ︸

=: I1

+ ǫ

∫

ΩT

k
(

t,
x

ǫ

)

∂tu
ǫ(t, x)φ1

(

t, x −
B(t)

ǫ
,
x

ǫ

)

dt dx

︸ ︷︷ ︸

=: I2

.

Since Φ0 and φ1 have compact supports in (0, T ), we get

I1 = −

∫

ΩT

d

dt

(

k
(

t,
x

ǫ

)

− 1
)

uǫ(t, x)Φ0

(

t, x −
B(t)

ǫ

)

dt dx

−

∫

ΩT

(

k
(

t,
x

ǫ

)

− 1
)

uǫ(t, x)
d

dt
Φ0

(

t, x −
B(t)

ǫ

)

dt dx

−

∫

ΩT

uǫ(t, x)
d

dt
Φ0

(

t, x −
B(t)

ǫ

)

dt dx

and hence

I1 = −

∫

ΩT

∂tk
(

t,
x

ǫ

)

uǫ(t, x)Φ0

(

t, x −
B(t)

ǫ

)

dt dx

−

∫

ΩT

(

k
(

t,
x

ǫ

)

−1
)

uǫ(t, x)

×

(

∂tΦ0

(

t, x−
B(t)

ǫ

)

−
B′(t)

ǫ
·∇xΦ0

(

t, x−
B(t)

ǫ

))

dt dx

−

∫

ΩT

uǫ(t, x)

(

∂tΦ0

(

t, x −
B(t)

ǫ

)

−
B′(t)

ǫ
· ∇xΦ0

(

t, x −
B(t)

ǫ

))

dt dx.

Two of these terms need some further considerations since a possible conver-
gence is not trivial. These are

i1 :=

∫

ΩT

(

k
(

t,
x

ǫ

)

− 1
)

uǫ(t, x)

(
B′(t)

ǫ
· ∇xΦ0

(

t, x −
B(t)

ǫ

))

dt dx (17)
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and

i2 :=

∫

ΩT

uǫ(t, x)

(
B′(t)

ǫ
· ∇xΦ0

(

t, x −
B(t)

ǫ

))

dt dx. (18)

We will see that (17) converges, whereas (18) will neutralise a corresponding
term which is part of the summand II.

Defining k∗(t, y) := k(t, y)−1, we start with observing (17). Note that k∗ is
periodic and has zero average.Therefore, there exists some K∗∈L2(0, T ; H1

♯ (Y ))d

with

∇y · K∗(t, ·) = k∗(t, ·) := k(t, ·) − 1 and
∫

Y

K∗(t, ·) = 0. (19)

This implies that we have ∇ ·
(
K∗

(
t, x

ǫ

))
= 1

ǫ
k∗

(
t, x

ǫ

)
and therefore

i1 =

∫

ΩT

∇ ·
(

K∗
(

t,
x

ǫ

))

uǫ(t, x)

(

b(t) · ∇xΦ0

(

t, x −
B(t)

ǫ

))

dt dx

= −

∫

ΩT

(

K∗
(

t,
x

ǫ

)

· ∇uǫ(t, x)
)(

b(t) · ∇xΦ0

(

t, x −
B(t)

ǫ

))

dt dx

−

∫

ΩT

uǫ(t, x)K∗
(

t,
x

ǫ

)

· ∇

(

b(t) · ∇xΦ0

(

t, x −
B(t)

ǫ

))

dt dx.

Note that B′(t) = b(t). With (13) and (14) we see now that

i1 →−

∫

ΩT

∫

Y

K∗(t, y)·(∇xu0(t, x) + ∇y u1(t, x, y))
(
b(t)·∇xΦ0(t, x)

)
dt dx dy

−

∫

ΩT

∫

Y

u0(t, x)K∗(t, y) · ∇x

(
b(t) · ∇xΦ0(t, x)

)
dt dx dy

(19)
= −

∫

ΩT

∫

Y

K∗(t, y)·∇y u1(t, x, y)
(
b(t)·∇xΦ0(t, x)

)
dt dx dy

=

∫

ΩT

b(t)·∇xΦ0(t, x)

(∫

Y

∇y ·K
∗(t, y) u1

)

dt dx dy

=

∫

ΩT

b(t)·∇xΦ0(t, x)

(∫

Y

(k(t, y) − 1) u1(t, x, y)

)

dt dx dy.
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I2 is treated as follows:

ǫ

∫

ΩT

k
(

t,
x

ǫ

)

∂tu
ǫ(t, x)φ1

(

t, x −
B(t)

ǫ
,
x

ǫ

)

dt dx

=

∫

ΩT

k
(

t,
x

ǫ

)

uǫ(t, x)

(

b(t) · ∇xφ1

(

t, x −
B(t)

ǫ
,
x

ǫ

))

dt dx + O(ǫ)

→

∫

ΩT

∫

Y

k(t, y)u0(t, x)
(
b(t) · ∇xφ1(t, x, y)

)
dy dt dx

= −

∫

ΩT

(
b(t) · ∇xu0(t, x)

)
(∫

Y

k(t, y)φ1(t, x, y) dy

)

dt dx.

For II we directly obtain with Definition 2.4:

II →

∫

ΩT

∫

Y

A (∇xu0 + ∇y u1) · (∇xΦ0 + ∇y φ1) .

III can be separated by using the assumption that b is divergence-free:

III = −
1

ǫ

∫

ΩT

b
(

t,
x

ǫ

)

· ∇Φ0

(

t, x −
B(t)

ǫ

)

uǫ dt dx

︸ ︷︷ ︸

=: III1

+

∫

ΩT

b
(

t,
x

ǫ

)

· ∇uǫ(t, x)φ1

(

t, x −
B(t)

ǫ
,
x

ǫ

)

dt dx

︸ ︷︷ ︸

=: III2

.

III2 obviously converges:

∫

ΩT

b
(

t,
x

ǫ

)

· ∇uǫ(t, x)φ1

(

t, x −
B(t)

ǫ
,
x

ǫ

)

dt dx

→

∫

ΩT

∫

Y

b(t, y) · (∇xu0(t, x) + ∇y u1(t, x, y)) φ1(t, x, y) dt dx dy.

III1 is treated together with (18): For our purpose we define b∗(t, y) := b(t) −
b(t, y). With this definition, b∗(t, ·) has zero-average and for any component b∗i
of b∗, there exists some B∗

i ∈ L2(0, T ; H1
♯ (Y ))d with

∇y · B∗
i (t, ·) = b∗i (t, ·) and (20)

∫

Y

B∗
i (t, ·) = 0. (21)
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All in all we get:

III1+i2 =
1

ǫ

∫

ΩT

uǫ(t, x)b∗
(

t,
x

ǫ

)

· ∇Φ0

(

t, x −
B(t)

ǫ

)

dt dx

=
d∑

i=1

∫

ΩT

uǫ(t, x)∇
(

B∗
i

(

t,
x

ǫ

))

∂xi
Φ0

(

t, x −
B(t)

ǫ

)

dt dx

= −
d∑

i=1

∫

ΩT

(

∇uǫ(t, x) · B∗
i

(

t,
x

ǫ

))

∂xi
Φ0

(

t, x −
B(t)

ǫ

)

dt dx

−

d∑

i=1

∫

ΩT

uǫ(t, x)

(

B∗
i

(

t,
x

ǫ

)

· ∇

(

∂xi
Φ0

(

t, x −
B(t)

ǫ

)))

dt dx

→ −

d∑

i=1

∫

ΩT

∫

Y

(
(∇xu0(t, x)+∇y u1(t, x, y))·B∗

i (t, y)
)
∂xi

Φ0(t, x)dt dx dy

−
d∑

i=1

∫

ΩT

∫

Y

u0(t, x)
(
B∗

i (t, y) · ∇x (∂xi
Φ0(t, x))

)
dt dx dy

(21)
= −

d∑

i=1

∫

ΩT

∫

Y

(∇y u1(t, x, y) · B∗
i (t, y)) ∂xi

Φ0(t, x)dt dx dy

(20)
=

d∑

i=1

∫

ΩT

∫

Y

u1(t, x, y)b∗i (t, y)∂xi
Φ0(t, x)dt dx dy

=

∫

ΩT

∫

Y

u1(t, x, y)
(
(b(t) − b(t, y)) · ∇Φ0(t, x)

)
dt dx dy.

Combining the various terms yields

−

∫ T

0

(u0, ∂tΦ0)L2(Rd) +

∫ T

0

E(·)
(
(u0, u1), (Φ0, φ1)

)
= 0

for all Φ0 fulfilling (15) and any φ1 fulfilling (16). If we assume that

Φ0 ∈ C∞
(
[0, T ];

(
C∞(Rd) ∩ H1(Rd)

))
(22)

with Φ0(T, ·) = 0, we get some additional terms that can be treated analogously,
since they have trivial limits. In this case we obtain by density:

−

∫ T

0

(u0, ∂tΦ0)L2(Rd) +

∫ T

0

E(·)
(
(u0, u1), (Φ0, φ1)

)
= (v0, Φ0(0))L2(Rd), (23)

for all Φ0 ∈ H1(0, T ; H1(Rd)), with Φ0(T, ·) = 0, φ1 ∈ L2
(
(0, T ) × R

d, H1
♯ (Y )

)
.

By this construction we conclude that the partial differential equation (23) has
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at least one solution (u0, u1) ∈ L2(0, T ; H1(Rd))×L2((0, T )×R
d; H̃1

♯ (Y )). This
ends the proof of existence.

To show uniqueness we need to verify that Problem (23) with v0 = 0 has
only the trivial solution. Therefore, we take a sequence uk

0 ∈ C∞
0

(
0, T ; H1(Rd)

)

that converges strongly in L2(0, T ; H1(Rd)) to u0. We define Fk ∈ (X1(0, T ))
′

by

Fk(Φ0, φ1) :=−

∫ T

0

(uk
0, ∂tΦ0)L2(Rd) +

∫ T

0

E(·)
(
(uk

0, u1), (Φ0, φ1)
)

where (Φ0, φ1) ∈ X1(0, T ). Fk is in the dual space (X1(0, T ))
′
with respect to

the norm ‖ · ‖X1(0,T ), but since uk
0 has a compact support in (0, T ), we get

Fk(Φ0, φ1) =

∫ T

0

(∂tu
k
0, Φ0)L2(Rd) +

∫ T

0

E(·)
(
(uk

0, u1), (Φ0, φ1)
)
,

which implies, that Fk is also continuous with respect to the norm ‖ · ‖X0(0,T ).
So we conclude that Fk ∈ (X1(0, T )′, ‖·‖X0(0,T )) and therefore the Hahn-Banach
theorem applies. Since (uk

0, u1) converges strongly in X0(0, T ) to (u0, u1), which
fulfils (23), we have Fk(Φ0, φ1) → 0, for k → ∞. So Fk is weak-star convergent
to zero in X1(0, T )′. Since the Hahn-Banach theorem yields some extension
F̄k ∈ X0(0, T )′ of Fk, we also have for arbitrary (Φ0, φ1) ∈ X1(0, T ):

F̄k(Φ0, φ1) → 0, for k → ∞.

Since X1(0, T ) is a dense subset of X0(0, T ) with regard to the norm ‖ ·‖X0(0,T ),
F̄k is determined by these values and we conclude that F̄k is weak-star conver-
gent to zero in X0(0, T )′. Together with the strong convergence of (uk

0, u1) in
X0(0, T ), we obtain

F̄k(u
k
0, u1) → 0, for k → ∞. (24)

With this construction of F̄k and the regularity of uk
0, we have

F̄k(u
k
0, u1) =

∫ T

0

(∂tu
k
0, u

k
0)L2(Rd) +

∫ T

0

E(·)
(
(uk

0, u1), (u
k
0, u1)

)
.

With the definition of E(t) and using that

(∂tu
k
0(t, ·), u

k
0(t, ·))L2(Rd) =

1

2

d

dt
‖uk

0(t, ·)‖
2
L2(Rd),

we get
∫

ΩT

∫

Y

1

2
∂t(u

k
0)

2+A
(
∇xuk

0 + ∇y u1

)
·
(
∇xuk

0 + ∇y u1

)
+

1

2
b·∇y

(
(u1)

2
)
≤ |F̄k(u

k
0, u1)|.
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Using the coercivity of A, the orthogonality of ∇xuk
0 and ∇y u1 and the assump-

tion that b is divergence-free we finally have:

c0

∫

ΩT

∫

Y

|∇xuk
0|

2 + |∇y u1|
2 ≤ |F̄k(u

k
0, u1)|.

Passing to the limit with (24), we get
∫

ΩT

∫

Y
|∇xu0|

2 + |∇y u1|
2 ≤ 0. Since the

sole constant function in H1(Rd) is equal to zero, we deduce u0 ≡ 0. On the
other hand, u1 needs to be constant in y with zero average. This also yields
u1 ≡ 0 and the uniqueness is proved.

It remains to show that u0 ∈
(
H

1
2 (0, T ; L2(Rd)) + H1(0, T ; H−1(Rd))

)
.

Choose φ1 = 0 and fixing u1, we see that u0 solves the following problem:

−

∫ T

0

∫

Rd

u0∂tΦ0 +

∫ T

0

∫

Rd

Ā∇xu0 · ∇xΦ0 =

∫

Rd

v0Φ0(0, ·) + F (Φ0),

where F ∈ L2(0, T,H−1(Rd)) is given by

F (Φ0) := −

∫ T

0

∫

Rd

b · ∇xΦ0

(∫

Y

ku1

)

+

∫ T

0

∫

Rd

∫

Y

(b · ∇xΦ0) ku1 −

∫ T

0

∫

Rd

∫

Y

A∇y u1 · ∇xΦ0

and Ā the average of A in y: Ā(t) :=
∫

Y
A(t, y) dy. Using that Ā ∈ H1,∞(0, T ),

standard existence results for linear parabolic Cauchy problems (see for instance
[12]) yield that such a type of equation has a unique solution in the space

L2(0, T ; H1(Rd)) ∩
(
H

1
2 (0, T ; L2(Rd)) + H1(0, T ; H−1(Rd))

)
.

Remark 4.4 (Uniqueness for general k). The general case with k not having
average 1 yields the term

∫

ΩT

∫

Y
k∂tu0Φ0 instead of

∫

ΩT
∂tu0Φ0. Therefore, the

proof of uniqueness is not completely analogous. In this case we proceed as in
Lemma 4.2 by defining φ(t) := e−ct, where c := 1

m

∥
∥ d

dt
k
∥
∥

L∞(0,T ;L∞(Y ))
and m

given by (4). Testing with Φ0 = uk
0φ and φ1 = u1φ will proof uniqueness.

Finally, it remains to prove Theorem 3.8.

Proof of Theorem 3.8. We define the matrix Ã = Ã(t) by

Ã :=

∫

Y

(
A + A(Dyw)⊤ + Wb

)
,

where Dyw denotes the Jacobian matrix of w = (w1, ..., wd) and Wb is given by

Wb :=






(kb̄1 − b1)w1 ... (kb̄1 − b1)wd

...
...

(kb̄d − bd)w1 ... (kb̄d − bd)wd




 .
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Later we will define Ā := 1
2
(Ã + ÃT ) to prove the theorem. First, we show the

claims of Theorem 3.8 for Ã instead of Ā, i.e., u0 is a weak solution of the macro
problem

∂tu0 −∇ · (Ã∇u0) = 0 in (0, T ) × R
d

u0(0, ·) = v0 in R
d

(25)

and Ã is uniformly coercive and an element of (H1,∞(0, T ))d×d. To prove this,
we are using equation (6) with φ1 = 0 to obtain:

∫

Rd

∂tu0Φ0 +

∫

Rd

b · ∇xΦ0

(∫

Y

ku1

)

−

∫

Rd

∫

Y

(b · ∇xΦ0) u1 +

∫

Rd

∫

Y

A (∇xu0 + ∇y u1) · ∇xΦ0

= 0.

Remark 3.5 implies that ∇y u1 = (Dyw)⊤∇xu0, where (Dyw)⊤ denotes the trans-
posed of the Jacobian matrix of w = (w1, ..., wd). Further calculations yield

∫

Y

(kb̄ − b)u1 =

∫

Y






(kb̄1 − b1)w1 ... (kb̄1 − b1)wd

...
...

(kb̄d − bd)w1 ... (kb̄d − bd)wd




∇xu0.

All in all we obtain that

E(t)((u0, u1), (Φ, 0)) =

∫

Rd

Ã∇u0∇Φ (26)

for all Φ ∈ H1(Rd). This proves that u0 solves the macro problem (25).

The assertion Ã ∈ (H1,∞(0, T ))d×d and the boundedness by the data is
a direct result of Remark 3.6. To prove the coercivity we take an arbitrary
Φ0 ∈ H1(Rd) and define the operator K by

K(Φ0)(t, x, y) :=
d∑

i=1

∂xi
Φ0(t, x)wi(t, y). (27)

In analogy to (26) we get
∫

Rd

Ã∇Φ0 · ∇Φ0 = E(t)((Φ0, K(Φ0)), (Φ0, 0)). (28)

Since wi is the solution of the i’th cell problem (7), we obtain by multiplication
with ∂xi

Φ0, summation afterwards and testing with K(Φ0):
∫

Rd

∫

Y

A (∇xΦ0 + ∇y K(Φ0)) · ∇y K(Φ0)

+

∫

Rd

∫

Y

b · ∇xΦ0K(Φ0) −

∫

Rd

b · ∇xΦ0

(∫

Y

kK(Φ0)

)

= 0.

(29)
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Here we used
∫

Y
(b · ∇y K(Φ0))K(Φ0) = 0. Adding (29) to (28) we get:

∫

Rd

Ã∇Φ0 · ∇Φ0 = E(t)((Φ0, φ1), (Φ0, 0))

= E(t)
(
(Φ0, φ1), (Φ0, K(Φ0))

)

=

∫

Rd

A (∇xΦ0 + ∇y K(Φ0)) · (∇xΦ0 + ∇y K(Φ0))

≥ α

(∫

Rd

|∇xΦ0|
2 +

∫

Rd

|∇xK(Φ0)|
2

)

≥ α

∫

Rd

|∇xΦ0|
2.

This proves the claims for Ã. Since Ã is not symmetric, we define the matrix
Ā := 1

2

(
Ã + Ã⊤

)
. Ā is still coercive since transposing a matrix does not change

this quality. The boundedness in H1,∞ and in particular assertion (10) are
immediately inherited from Ã. Since Ã is independent of x, we use

∫

Rd

Ã∇v · ∇Ψ =

∫

Rd

Ã⊤∇v · ∇Ψ ∀ v, Ψ ∈ H1(Rd)

to conclude that Ã can be replaced by Ā in (25). It remains to show that
Ā is given by (9). To do so we use the definition (27), to get for arbitrary
Φ, Ψ ∈ H1(Rd):

∫

Rd

Ã∇Φ∇Ψ = E(t)
(
(Φ, K(Φ)), (Ψ, K(Ψ))

)

and
∫

Rd

Ã⊤∇Φ · ∇Ψ =

∫

Rd

∇Φ · Ã∇Ψ = E(t)
(
(Ψ, K(Ψ)), (Φ, K(Φ))

)
.

This implies
∫

Rd

Ā∇Φ·∇Ψ =
1

2

(
E(t)

(
(Φ, K(Φ)), (Ψ, K(Ψ))

)
+ E(t)

(
(Ψ, K(Ψ)), (Φ, K(Φ))

))

=

∫

Rd

∫

Y

A (∇xΦ+∇y K(Φ))·(∇xΨ + ∇y K(Ψ)) ,

which ends the proof.

5. Conclusion and outlook

In this contribution we gave a survey of the homogenization of advection-
diffusion problems with time-dependent coefficient functions. Several known
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results were restated, partially generalized and proved. Particularly, we treated
the properties of the homogenized two-scale problem and the homogenized
macro problem. Moreover we observed the regularity of the homogenized so-
lutions as well as its boundedness. All the results stated in this work, were
especially given for a future numerical treatment of the problem. In particular,
in [9] we formulate a heterogeneous multiscale finite elements method (HMM)
for parabolic problems with large expected drift and we see that it is equivalent
to a discretization of the two-scale equation (6) by means of a Discontinuous
Galerkin Time Stepping Method with quadrature. Using the proved regularity
of the solutions and corresponding upper bounds, we are able to determine a-
priori and a-posteriori error estimates for this newly introduced version of the
HMM (see [8, 9]).
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