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Global Non-Small Data Existence of

Spherically Symmetric Solutions to

Nonlinear Viscoelasticity in a Ball

Jerzy A. Gawinecki and Wojciech M. Zaja̧czkowski

Abstract. We consider some initial-boundary value problems for non-linear equations
of the three dimensional viscoelasticity. We examine the Dirichlet and the Neumann
boundary conditions. We assume that the stress tensor is a nonlinear tensor valued
function depending on the strain tensor fulfilling the rules of the continuum mechanics.
We consider the initial-boundary value problems in a ball BR with radius R. Since,
we are interested in proving global existence the spherically symmetric solutions are
considered. Therefore we have to examine the spherically symmetric viscoelasticity
system in spherical coordinates. Applying the energy method implies estimates in
weighted anisotropic Sobolev spaces, where the weight is a power function of radius.
Hence the origin of coordinates becomes a singular point. First the existence of weak
solutions is proved. Next having appropriate estimates the weak solutions appear
bounded and continuous. We have to emphasize that non-small data problem is
considered.
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1. Introduction

Before starting to present our results, we recall some most important facts
from the nonlinear theory of viscoelasticity. Among the papers devoted to
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nonlinear viscoelasticity we mention below some of them. The global solution
(in time) for sufficiently small and smooth data are proved by Ponce (cf. [16]),
Kawashima and Shibata (cf. [9]) for quasilinear hyperbolic system of 2-nd order
with viscosity. The one-dimensional viscoelasticity was considered by Andrews
(see [1]).

In paper [10], Kobayashi, Pecher and Shibata proved global in time solution
to a nonlinear wave equation with viscoelasticity under the special assumption
about nonlinearity. In paper [15], Paw low and Zaja̧czkowski showed the ex-
istence, uniqueness of global in time, regular solutions to the Cahn-Hilliard
system coupled with viscoelasticity.

In our paper we consider more general nonlinear system of viscoelasticity
with the boundary and initial conditions because the stress tensor is a general
nonlinear function depending on a strain. We assume that the stress tensor is
a function of a strain at a given instant of time t, but it does not depend on
strains at time t′ < t. It is worth to emphasize that our constitutive relation for
the stress tensor and another constitutive relation satisfy the rules of continuum
mechanics.

In order to prove the global (in time) solution for non-small data for nonlin-
ear system of viscoelasticity (cf. formulae (1.1)–(1.3)) we consider the spherically
symmetric case and use anisotropic Sobolev spaces with weights.

Speaking precisely more, we consider the motion of viscoelastic medium
described by the following system of equations (cf. [3–5, 7, 8, 14])

̺u,tt = divσ + ̺f, (1.1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R
3 is the displacement vec-

tor, x = (x1, x2, x3) ∈ R
3 is a given system of Cartesian coordinates, t ∈

R+ ∪ {0}, ̺ is the mass density, σ = σ(x, t) ∈ R
9 the stress tensor, f =

(f1(x, t), f2(x, t), f3(x, t)) ∈ R
3 the external force field.

We examine system (1.1) in a bounded domain Ω ⊂ R
3 with the boundary

conditions

either n̄ · σ|S = 0 or u|S = 0, (1.2)

where S = ∂Ω, n̄ is the unit outward normal to S vector.
Moreover we add the initial conditions

u|t=0 = u0, u,t|t=0 = u1. (1.3)

We shall assume that

σ =
∂F

∂ε
(ε) + µ0ε,t, (1.4)

where ε = 1
2
(∇u + (∇u)T ) is the linearized strain tensor, F = F (ε) is some

function which will be specified later and µ0 is a positive constant.
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Our aim is to prove the global existence of solutions to problem (1.1)–(1.4)
for non-small data.

Since we do not know how to show the existence in a general case we restrict
our considerations to the spherically symmetric case. We assume that Ω is a ball
BR with radius R centered at the origin of the introduced Cartesian coordinates.
We introduce the spherical coordinates r, ϕ, ϑ by the relations

x1 = r cosϕ sinϑ, x2 = r sinϕ sinϑ, x3 = r cosϑ.

With these coordinates we connect the orthonormal vectors

ēr = (cosϕ sinϑ, sinϕ sinϑ, cosϑ),

ēϑ = (cosϕ cosϑ, sinϕ cosϑ,− sinϑ),

ēϕ = (− sinϕ, cosϕ, 0).

Then we define ur = u · ēr, uϑ = u · ēϑ, uϕ = u · ēϕ, εrr = ēr · ε · ēr = ur,r,
εϕϕ = ur

r
, εϑϑ = ur

r
. Since the spherically symmetric case is considered we have

uϑ = uϕ = 0.
To simplify the notation we introduce

w = ur. (1.5)

Assuming ̺ = 1 and transforming equations (1.1) to the spherical coordinates
we obtain

w,tt =
1

r2
(σrrr

2),r −
1

r
(σϑϑ + σϕϕ) + fr, (1.6)

where

σrr =
∂F

∂εrr
+ µ0εrr,t, σϑϑ =

∂F

∂εϑϑ
+ µ0εϑϑ,t, σϕϕ =

∂F

∂εϕϕ
+ µ0εϕϕ,t. (1.7)

Let us introduce the quantity

F (ε) = ψ(w,r, η) (1.8)

where η = w
r
. Then (1.6) takes the form

w,tt =
1

r2

[(

∂ψ

∂w,r
+ µ0w,rt

)

r2

]

,r

− 1

r

(

∂ψ

∂η
+ µ0

w,t

r

)

(1.9)

and in view of (1.3) we have the initial conditions

w|t=0 = w0, w,t|t=0 = w1, (1.10)

and in view of (1.2), (1.7) the boundary condition
(

∂ψ

∂w,r
+ µ0w,rt

)∣

∣

∣

∣

SR

= 0, (1.11)
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where SR = ∂BR.
In this paper we also consider the Dirichlet boundary condition

w|SR
= 0. (1.12)

To formulate the main results of this paper we need

Assumptions. Let us introduce the notation ϑ = w,r, η = w
r
.

1. ψ(ϑ, η) = ψ1(ϑ) + ψ2(η)

2. There exist positive constants α1, α2, β1, β2 such that

∂2ψ1

∂ϑ2
≥ α1,

∂2ψ2

∂η2
≥ α2,

∣

∣

∣

∣

∂ψ1

∂ϑ

∣

∣

∣

∣

≤ β1|ϑ|,
∣

∣

∣

∣

∂ψ2

∂η

∣

∣

∣

∣

≤ β2|η|.

3. w0 ∈ H2
µ1

(0, R), w1 ∈ H2
µ1

(0, R), µ1 ∈
(

7
4
, 1 +

√
5

2

)

4. w1 ∈ L2,µ2(0, R), w0 ∈ H1
µ2

(0, R), µ2 ∈
(

0, 3
2

)

5. w1 ∈ L2,µ3(0, R), w0 ∈ H1
µ3

(0, R), µ3 ∈
(

0, 1
2

)

.

Main Theorem. Let Assumptions 1–3 hold. Let Assumption 4 for µ2 = µ1−1
be satisfied. Then there exists a solution to problem (1.9), (1.10), (1.12) such

that

w,tt ∈ B
(

0, T ;L2,µ1(0, R)
)

, w,t ∈ B
(

0, T ;H1
µ1

(0, R)
)

, w,r ∈ B
(

0, T ;H2
µ1

(0, R)
)

w,tt ∈ L2

(

0, T ;H1
µ1

(0, R)
)

, w,t ∈ L2

(

0, T ;H1
µ1−1(0, R)

)

.

Let Assumption 5 be additionally satisfied. Then

w ∈ L∞
(

(0, R) × (0, T )
)

, w ∈ B
(

0, T ;C
1
2
−µ3

2 (0, R)
)

,

w ∈ Lβ

(

0, T ;C
β−1

β (0, T )
)

, β ∈
(

1,
2

2µ3 + 1

)

, w,t ∈ L2

(

0, T ;C
1
2
−µ3

2 (0, R)
)

.

Our paper is organized as follows. In the introduction the formulation
of the considered problem and the main results were presented. In Section 2
the notation is introduced. Mainly, we define anisotropic Sobolev spaces with
weights. Section 3 is devoted to the proof of energy type estimates to solutions
of problem (1.9), (1.10), (1.12).

In Section 4 the existence of the global solution for non-small data of the
problem (1.9), (1.10), (1.12) is proved. Finally Section 5 contains some con-
cluding remarks.

2. Notation and auxiliary results

By c we denote the generic constant which changes from formula to formula.
By c(σ), σ > 0, we denote a generic function which is always positive and
increasing.
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We replace forms right-hand side (left-hand side) by the abbreviation r.h.s.
(l.h.s.). We mark w,t = ∂tw, w,r = ∂rw and so on. By B(I) we denote the space
of bounded functions on the interval I. By Hk

µ(0, R), µ ∈ R, k ∈ N ∪ {0} we
denote a weighted Sobolev space with the finite norm

‖u‖Hk
µ(0,R) =

(

k
∑

α=0

R
∫

0

|∂αr u|2r2(µ−k+|α|)dr

) 1
2

By Cα(I), α ∈ (0, 1) we denote the Hölder space with the finite norm

‖u‖Cα(I) = sup
τ∈I

|u(τ)| + sup
τ ′,τ ′′∈I

|u(τ ′) − u(τ ′′)|
|τ ′ − τ ′′|α .

Next we recall the Hardy inequality (see [2, Chapter 1, Section 2.15])

∣

∣

∣

∣

1

p′
− µ

∣

∣

∣

∣

p
∞
∫

0

rp(µ−1)|f |pdr ≤
∞
∫

0

rpµ|f,r|pdr, (2.1)

where 1
p

+ 1
p′

= 1, µ ∈ R and µ 6= 1
p′

. The inequality holds also for functions
with compact support. Assuming that suppf ⊂ [0, R] we introduce F (x) =
∫∞
x
f(y)dy and repeat the proof from [2, Chapter 1, Section 2.15]. From [12,

Chapter 2, Section 3] we have the imbedding

‖u‖Lq(0,T ;Lp(0,R)) ≤ c
(

‖u‖L∞(0,T ;L2(0,R)) + ‖u,r‖L2(0,T ;L2(0,R))

)

(2.2)

where 1
p

+ 2
q
≥ 1

2
.

Finally we consider the problem

u,t − u,rr = f,

u|t=0 = u0,

u|r=R = 0.

(2.3)

To examine nonstationary problems (2.3) we need anisotropic weighted Sobolev
spaces V 2,1

p,ν ((0, R)× (0, T )), p ∈ (1,∞), ν ∈ R, of functions with the finite norm

‖u‖V 2,1
p,ν ((0,R)×(0,T )) =

(

∑

α+2a≤2

T
∫

0

R
∫

0

|∂αr ∂at u|prp(ν−2+α+2a)dr

) 1
p

.

Spaces V 2
p,ν(0, R) appropriate for elliptic problems were introduced in [13]. The

following result is valid.
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Lemma 2.1. Let us assume that f ∈ Lp,ν((0, R) × (0, T )), u0 ∈ V
2− 2

p
p,ν (0, R).

Then there exists a solution to problem (2.3) such that u ∈ V 2,1
p,ν ((0, R)× (0, T ))

and

‖u‖V 2,1
p,ν ((0,R)×(0,T )) ≤ c

(

‖f‖Lp,ν((0,R)×(0,T )) + ‖u0‖
V

2− 2
p

p,ν (0,R)

)

. (2.4)

In the case of elliptic equations such result was proved in [11] for p = 2 and in
[13] for any p ∈ (1,∞). The weighted Sobolev spaces with fractional derivatives
are introduced in [13]. In the nonstationary case, Lemma 2.1 follows from [19]
in the case p = 2. For the general p, Lemma 2.1 results from considerations in
[17–19].

Finally, we introduce spaces used in this paper. We shall define them by
introducing finite norms:

1. Besov space Bl
p,ν(BR), l ∈ R+, p ∈ (1,∞), ν ∈ R,

‖u‖Bl
p,ν(BR) = ‖u‖ •

B
l−[l]
p,ν (BR)

+ ‖u‖
V

[l]
p,ν(BR)

where [l] is the integer part of l,

‖u‖ •

B α
p,ν(BR)

=

( R
∫

0

R
∫

0

|u(r1)r
ν
1 − u(r2)r

ν
2 |p

|r1 − r2|1+pα
dr1dr2

) 1
p

,

where α ∈ (0, 1) and

‖u‖V k
p,ν(BR) =

(

∑

α≤k

R
∫

0

|∂αr u|prp(ν−k+α)dr

) 1
p

.

2. B(BR × (0, T )) is the space of bounded functions.

3. Cα(B̄R), Cα,β(B̄R × [0, T ]), α, β ∈ (0, 1), are the Hölder spaces with the
finite norms

‖u‖Cα(B̄R) = ‖u‖B(B̄R) + sup
r1,r2∈B̄R

|u(r1) − u(r2)|
|r1 − r2|α

‖u‖Cα,β(B̄R×[0,T ]) = ‖u‖B(B̄R×[0,T ]) + sup
t∈[0,T ]

sup
r1,r2∈B̄R

|u(r1, t) − u(r2, t)|
|r1 − r2|α

+ sup
r∈B̄R

sup
t′,t′′∈[0,T ]

|u(r, t′) − u(r, t′′)|
|t′ − t′′|β .

4. By Llq(0, T ;W k
p (BR)), l, k ∈ N∪ {0}, p, q ∈ [1,∞] we denote a space with

finite norm ‖∂ltu‖Lq(0,T ;Wk
p (BR)).
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Let BR = {r ∈ R : r < R} and BT
R = BR × (0, T ). We use the Sobolev-

Slobodetski spaces W
l, l

2
p (BT

R), l ∈ R+, p ∈ (1,∞) with the finite norm

‖u‖
W

l, l
2

p (BT
R)

=







∑

α+2a≤[l]

∫

BT
R

|∂αr ∂at u|pdrdt

+
∑

α+2a=[l]

T
∫

0

∫

BR

∫

BR

|∂αr′∂at u− ∂αr′′∂
a
t u|p

|r′ − r′′|1+p(l−[l])
dr′dr′dt

+
∑

α+2a=[l]

∫

BR

T
∫

0

T
∫

0

|∂αr ∂at′u− ∂αr ∂
a
t′′u|p

|t′ − t′|1+p( l
2
−[ l

2 ])
dt′dt′′dr





1
p

.

In the case of l, l
2

integer the last two terms in the above norm disappear.
Moreover, Bl

p,0(BR) = Bl
p(BR). Similarly as Bl

p(BR) we define the space
Bl
p(0, T ) introducing the finite norm

‖u‖Bl
p(0,T ) = ‖u‖

W
[l]
p (0,T )

+





T
∫

0

T
∫

0

|∂[l]
t′ u(t′) − ∂

[l]
t′′u(t′′)|p

|t′ − t′′|1+p(l−[l])
dt′dt′′





1
p

.

For noninteger l we have

‖u‖W l
p(BR) = ‖u‖Bl

p(BR), ‖u‖W l
p(0,T ) = ‖u‖Bl

p(0,T ).

Similar equivalence we have for the weighted spaces.

3. Estimates

First, we have

Lemma 3.1. Let us assume that
∫

BR

[

1

2
w2

1 + ψ

(

w0,r,
w0

r

)]

r2dr ≡ c20 <∞ (3.1)

Then, solutions to problems (1.9)–(1.11) and (1.9), (1.10), (1.12) satisfy

∫

BR

[

1

2
w2
,t + ψ

(

w,r,
w

r

)]

r2dr +

∫

Bt
R

(

w2
,rt +

w2
,t

r2

)

r2drdt′

=

∫

BR

[

1

2
w2

1 + ψ

(

w0,r,
w0

r

)]

r2dr = c20.

(3.2)
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Proof. Multiplying (1.9) by w,tr
2 and integrating over BR yields

1

2

d

dt

∫

BR

w2
,tr

2dr +

∫

BR

(

∂ψ

∂w,r
+ µ0w,rt

)

w,rtr
2dr +

∫

BR

(

∂ψ

∂η
+ µ0

w,t

r

)

w,trdr = 0,

where the boundary condition either (1.11) or (1.12) were used. Hence

d

dt

∫

BR

[

1

2
w2
,t + ψ

(

w,r,
w

r

)]

r2dr + µ0

∫

BR

(

w2
,rt +

w2
,t

r2

)

r2dr = 0. (3.3)

Integrating (3.3) with respect to time and using the initial condition (1.10)
implies (3.2). This concludes the proof.

In the proof of Lemma 3.1 the crucial step is integration by parts which can
be performed under both boundary conditions (1.11) and (1.12).

Problems (1.9)–(1.11) and (1.9), (1.10), (1.12) are considered in ball BR,
so the energy estimate (3.2) suggests that weighted Sobolev spaces are natu-
ral to treat them. This is connected with the fact that the transformation of
the original problems (1.1)–(1.3) to the spherically symmetric cases generates
the weight r2 which is the Jacobian of the mapping from the Cartesian to the
spherical coordinates. This also suggests an existence of some singularity of
solutions at the origin of coordinates. Therefore we shall use weighted Sobolev
spaces to control the behaviour of solutions to problems (1.9)–(1.11) and (1.9),
(1.10), (1.12) at the origin of coordinates. We shall restrict our considerations
to the L2-approach because energy type estimates are very natural for prob-
lems (1.9)–(1.11) and (1.9), (1.10), (1.12). First we shall derive an analogue of
Lemma 3.1 in the case of weighted Sobolev spaces.

Lemma 3.2. Let us assume that ϑ = w,r, η = w
r
; α1, α2, β1, β2 are positive

constants. Assume

ψ(ϑ, η) = ψ1(ϑ) + ψ2(η), ψ1(ϑ) ≥ α1ϑ
2, ψ2(η) ≥ α2η

2, (3.4)
∣

∣

∣

∣

∂ψ1

∂ϑ

∣

∣

∣

∣

≤ β1|ϑ|,
∣

∣

∣

∣

∂ψ2

∂η

∣

∣

∣

∣

≤ β2|η|, (3.5)

w1 ∈ L2,µ(0, R), w0 ∈ H1
µ(0, R), µ ∈

(

0,
3

2

)

. (3.6)

Then, for solutions to problems (1.9)–(1.11) and (1.9), (1.10), (1.12), the fol-

lowing estimate holds

R
∫

0

(

1

2
w2
,t+α1w

2
,r+α2w

2r−2

)

r2µdr+
µ0

2

t
∫

0

R
∫

0

w2
,rtr

2µdrdt′+

t
∫

0

R
∫

0

w2
,tr

2µ−2drdt′

≤ c(R, µ, t)

R
∫

0

(

1

2
w2

1+α1w
2
0,r+α2w

2
0r

−2

)

r2µdr ≡ c21

(3.7)
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where µ ∈
(

0, 3
2

)

.

Proof. Multiplying (1.9) by w,tr
2µ and integrating over BR we obtain

R
∫

0

w,ttw,tr
2µdr+

R
∫

0

(

∂ψ

∂ϑ
+µ0w,rt

)

r2(r2µ−2w,t),rdr+

R
∫

0

(

1

r

∂ψ

∂η
+µ0

w,t

r2

)

w,tr
2µdr=0.

Performing calculations imply

1

2

d

dt

R
∫

0

w2
,tr

2µdr +

R
∫

0

∂ψ

∂ϑ
ϑ,tr

2µdr +

R
∫

0

∂ψ

∂η
η,tr

2µdr

+ µ0

R
∫

0

w2
,rtr

2µdr + µ0

R
∫

0

w2
,tr

2µ−2dr

= − (2µ− 2)µ0

R
∫

0

∂ψ

∂ϑ
w,tr

2µ−1dr − (2µ− 2)µ0

R
∫

0

w,rtw,tr
2µ−1dr.

(3.8)

In view of assumption (3.4) we have

R
∫

0

∂ψ

∂ϑ
ϑ,tr

2µdr =
d

dt

R
∫

0

ψ1(ϑ)r2µdr,

R
∫

0

∂ψ

∂η
η,tr

2µdr =
d

dt

R
∫

0

ψ2(η)r2µdr.

Moreover, the first integral on the r.h.s. of (3.8) can be estimated by

|2µ− 2|β1

R
∫

0

|w,r| |w,t|r2µ−1dr ≤ ε1

2

R
∫

0

w2
,tr

2µ−2dr +
2(1 − µ)2β2

1

ε1

R
∫

0

w2
,rr

2µdr

and the second equals

− (µ− 1)µ0

R
∫

0

∂rw
2
,tr

2µ−1dr

= − (µ− 1)µ0

R
∫

0

∂r(w
2
,tr

2µ−1)dr + (µ− 1)(2µ− 1)µ0

R
∫

0

w2
,tr

2µ−2dr ≡ I1.

The first integral in I1 equals

(1 − µ)µ0

[

w2
,t(R)R2µ−1 − lim

r→0
w2
,t(r)r

2µ−1
]

(3.9)
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and the second must be absorbed by the last term on the l.h.s. of (3.8). For
this purpose we need

(µ− 1)(2µ− 1) < 1 − 1

2
ε1, so

3 −
√

9 − 4ε1

4
< µ <

3 +
√

9 − 4ε1

4
(3.10)

In view of the above considerations we obtain from (3.8) the inequality

d

dt

R
∫

0

[

1

2
w2
,t + ψ1(ϑ) + ψ2(η)

]

r2µdr + µ0

R
∫

0

w2
,rtr

2µdr

+ µ0

[

1 − 1

2
ε1 − (µ− 1)(2µ− 1)

]

R
∫

0

w2
,tr

2µ−2dr

≤2(1−µ)2β2
1

ε1α
2
1

R
∫

0

ψ1(ϑ)r2µdr + (1−µ)µ0

[

w2
,t(R)R2µ−1− lim

r→0
w2
,t(r)r

2µ−1
]

.

(3.11)

For µ ≤ 1
2
, the coefficient near the last integral on the l.h.s. of (3.11) equals

µ0

[

1 − 1
2
ε1 + (1 − µ)(1 − 2µ)

]

, so it is positive for ε1 sufficiently small without
other restrictions on µ.

For µ < 1 and because w2
,t(r)r

2µ−1 is positive for any r > 0 we can omit the
last term in the second expression on the r.h.s. of (3.11).

For µ > 1, the first term in the second expression on the r.h.s. of (3.11) can
be omitted. In this case equality (3.2) implies that w,t behaves as r−ε for ε < 1

2

for small r. Then limr→0w
2
,t(r)r

2µ−1 ≤ limr→0 r
−2ε+2µ−1 = 0 because µ > 1.

Finally for ε1 close to 0 restriction (3.10) implies

0 < µ <
3

2
. (3.12)

Integrating (3.11) with respect to time and using assumptions (3.5) we obtain

R
∫

0

(

1

2
w2
,t+α1w

2
,r+α2w

2r−2

)

r2µdr

+ µ0

t
∫

0

R
∫

0

w2
,rtr

2µdrdt′+ µ1

t
∫

0

R
∫

0

w2
,tr

2µ−2drdt′

≤ c(t)

[

t
∫

0

w2
,t(R)R2µ−1dt′+

R
∫

0

(

1

2
w2
,t(0)+α1w

2
,r(0)+α2w

2(0)r−2

)

r2µdr

]

,

(3.13)
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where µ1 = µ0

[

1 − 1
2
ε1 + (1 − µ)(2µ− 1)

]

. We estimate the first integral on
the r.h.s. of (3.13) by

t
∫

0

w2
,t(R)dt′≤

t
∫

0

R
∫

R
2

(

ε2w
2
,rt+c

(

1

ε2

)

w2
,t

)

drdt′≤c(R)

t
∫

0

R
∫

0

(

ε2w
2
,rt+c

(

1

ε2

)

w2
,t

)

r2µdrdt′.

Hence for ε2 sufficiently small we obtain from (3.13) the inequality

R
∫

0

(

1

2
w2
,t + α1w

2
,r + α2w

2r−2

)

r2µdr

+
µ0

2

t
∫

0

R
∫

0

w2
,rtr

2µdrdt′ + µ1

t
∫

0

R
∫

0

w2
,tr

2µ−2drdt′

≤ c(t, R)

t
∫

0

R
∫

0

w2
,tr

2µdrdt′

+ c(t)

R
∫

0

(

1

2
w2
,t(0) + α1w

2
,r(0) + α2w

2(0)r−2

)

r2µdr.

(3.14)

Finally, applying the Gronwall inequality we obtain from (3.14) estimate (3.7).
This concludes the proof.

Next we have:

Lemma 3.3. Let us assume that

∂2ψ1

∂ϑ2
≥ α1,

∂2ψ2

∂η2
≥ α2,

∣

∣

∣

∣

∂2ψ1

∂ϑ2

∣

∣

∣

∣

≤ β1,

∣

∣

∣

∣

∂3ψ1

∂ϑ3

∣

∣

∣

∣

≤ c1,

∣

∣

∣

∣

∂3ψ2

∂η3

∣

∣

∣

∣

≤ c2 (3.15)

η,t, ϑ,t ∈ L3, 2
3
µ((0, R) × (0, T )), w,t(0) = w1 ∈ L2,µ−1(0, R),

w,rt(0) = w1,r ∈ L2,µ(0, R), w,tt(0) ∈ L2,µ(0, R) and

w,tt(0) =
1

r2

[(

∂ψ

∂ϑ

(

w0,r,
w0

r

)

+ µ0w1,r

)

r2

]

,r

− 1

r

(

∂ψ

∂η

(

w0,r,
w0

r

)

+
w1

r

)

.

(3.16)

Then solutions to (1.9), (1.10) and either (1.11) or (1.12) satisfy the inequalities:
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For µ ∈
(

0, 3
2

)

,

R
∫

0

(

w2
,tt + w2

,tr + w2
,tr

−2
)

r2µdr + µ0

t
∫

0

R
∫

0

w2
,rttr

2µdrdt′

+ µ0

t
∫

0

R
∫

0

w2
,ttr

2µ−2drdt′ ≤ c(t)

[

t
∫

0

R
∫

0

(

|ϑ,t|3r2µ + |η,t|3r2µ
)

drdt′

+

R
∫

0

(

w2
,tt(0) + w2

,tr(0) + w2
,t(0)r−2

)

r2µdr

]

;

(3.17)

for µ ∈
(

1, 2+
√

5
2

)

,

R
∫

0

(

w2
,tt + w2

,tr + w2
,tr

−2
)

r2µdr + µ0

t
∫

0

R
∫

0

(

w2
,rtt + w2

,ttr
−2
)

r2µdrdt′

≤ c(t)

[

t
∫

0

R
∫

0

(

|ϑ,t|3 + |η,t|3
)

r2µdrdt′

+

R
∫

0

(

w2
,tt(0) + w2

,tr(0) + w2
,t(0)r−2

)

r2µdr

]

.

(3.18)

Proof. Differentiating (1.9) with respect to t, multiplying the result by w,ttr
2µ,

integrating over BR and using boundary conditions either (1.11) or (1.12) we ob-

tain 1
2
d
dt

∫ R

0
w2
,ttr

2µdr+
∫ R

0

(

∂2ψ

∂ϑ2 ϑ,t+µ0w,rtt
)

r2
(

r2µ−2w,tt
)

,r
dr+

∫ R

0
∂2ψ

∂η2 η,tη,ttr
2µdr+

µ0

∫ R

0
w2
,ttr

2µ−2dr = 0. Performing calculations it follows

1

2

d

dt

R
∫

0

w2
,ttr

2µdr +

R
∫

0

∂2ψ

∂ϑ2
ϑ,t
(

ϑ,ttr
2µ + (2µ− 2)w,ttr

2µ−1
)

dr

+ µ0

R
∫

0

(

w2
,rttr

2µ + (2µ− 2)w,rttw,ttr
2µ−1

)

dr

+

R
∫

0

∂2ψ

∂η2
η,tη,ttr

2µdr + µ0

R
∫

0

w2
,ttr

2µ−2dr

= 0.
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Continuing, we have

1

2

d

dt

R
∫

0

w2
,ttr

2µdr +
1

2

R
∫

0

∂2ψ

∂ϑ2

∂

∂t
w2
,trr

2µdr +
1

2

R
∫

0

∂2ψ

∂η2

∂

∂t
η2
,tr

2µdr

+ µ0

R
∫

0

w2
,rttr

2µdr + µ0

R
∫

0

w2
,ttr

2µ−2dr

= − (2µ− 2)µ0

R
∫

0

w,rttw,ttr
2µ−1dr − (2µ− 2)

R
∫

0

∂2ψ

∂ϑ2
w,rtw,ttr

2µ−1dr.

Continuing, we get

1

2

d

dt

R
∫

0

(

w2
,tt +

∂2ψ1

∂ϑ2
w2
,tr +

∂2ψ2

∂η2
η2
,t

)

r2µdr

+ µ0

R
∫

0

w2
,rttr

2µdr + µ0

R
∫

0

w2
,ttr

2µ−2dr

= − 1

2

R
∫

0

∂3ψ1

∂ϑ3
ϑ3
,tr

2µdr − 1

2

R
∫

0

∂3ψ2

∂η3
η3
,tr

2µdr

− (2µ− 2)µ0

R
∫

0

w,rttw,ttr
2µ−1dr − (2µ− 2)

R
∫

0

∂2ψ1

∂ϑ2
w,rtw,ttr

2µ−1dr.

(3.19)

Now we estimate the particular terms from the r.h.s. of (3.19). The third term
on the r.h.s. of (3.19) equals

− (µ− 1)µ0

R
∫

0

∂

∂r
w2
,ttr

2µ−1dr

= − (µ− 1)µ0

R
∫

0

∂

∂r
(w2

,ttr
2µ−1)dr + (µ− 1)(2µ− 1)µ0

R
∫

0

w2
,ttr

2µ−2dr,

where the first integral equals

−(µ− 1)µ0

(

w2
,tt(R)R2µ−1 − lim

r→0
w2
,tt(r)r

2µ−1
)

≡ I1.

For µ < 1 we have

I1 ≤ (1 − µ)µ0w
2
,tt(R)R2µ−1 ≡ I2,
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but for µ > 1 it follows that

I1 ≤ (µ− 1)µ0 lim
r→0

w2
,tt(r)r

2µ−1 ≡ I3.

Looking for such solutions to problems (1.9), (1.10) with either (1.11) or (1.12)
that the last integral on the l.h.s. of (3.19) is finite we obtain that I3 = 0.

Applying the Hölder and the Young inequalities to the last term on the
r.h.s. of (3.19) we see that it is bounded by

ε1

R
∫

0

w2
,ttr

2µ−2dr +
4(1 − µ)2

ε1

R
∫

0

∣

∣

∣

∣

∂2ψ1

∂ϑ2

∣

∣

∣

∣

2

w2
,rtr

2µdr.

Hence, in view of (3.15), the second integral is estimated by 4(1−µ)2

ε1
β2

1

∫ R

0
w2
,rtr

2µdr.

In view of (3.15) and in the case µ < 1, from (3.19), we obtain the inequality

1

2

d

dt

R
∫

0

(

w2
,tt + ψ1,ϑϑw

2
,tr + ψ2,ηηη

2
,t

)

r2µdr + µ0

R
∫

0

w2
,rttr

2µdr

+ µ0(1 + (1 − µ)(2µ− 1) − ε1)

R
∫

0

w2
,ttr

2µ−2dr

≤ c

(

R
∫

0

|ϑ,t|3r2µdr +

R
∫

0

|η,t|3r2µdr

)

+ cw2
,tt(R, t) + c

R
∫

0

w2
,rtr

2µdr.

(3.20)

To guarantee that the coefficient near the last integral on the l.h.s. is positive
we need 1 + (1 − µ)(2µ− 1) − ε1 > 0 which implies that

3 −
√

9 − 8ε1

4
< µ <

3 +
√

9 − 8ε1

4
(3.21)

Since ε1 can be chosen arbitrary small we see that (3.21) holds for µ ∈
(

0, 3
2

)

.
Let us consider the case µ > 1. Then condition (3.21) is too restrictive.

To relax the condition we consider the last two terms on the l.h.s. of (3.19)
together. Applying the Hardy inequality (see Notation)

(

µ− 1

2

)2
R
∫

0

u2r2µ−2dr ≤
R
∫

0

u2
,rr

2µdr

for functions vanishing for r > R, we estimate the last two terms on the l.h.s. of

(3.19) from below by µ0

[

1 + (1− µ)(2µ− 1) +
(

1
2
− µ
)2 − ε1

] ∫ R

0
w2
,ttr

2µ−2dr. To
get any estimate from (3.19) we need

1 + (1 − µ)(2µ− 1) +

(

1

2
− µ

)2

− ε1 > 0 ⇒ µ2 − 2µ+ ε1 −
1

4
< 0,
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so

1 < µ <
2 +

√
5 − 4ε1

2
<

2 +
√

5

2
. (3.22)

Then from (3.19) we obtain the inequality for µ > 1 and the Dirichlet problem

1

2

d

dt

R
∫

0

(

w2
,tt+ψ1,ϑϑw

2
,rt+ψ2,ηηη

2
,t

)

r2µdr+µ0

R
∫

0

w2
,rttr

2µdr+µ0

R
∫

0

w2
,ttr

2µdr

≤ c

(

R
∫

0

|ϑ,t|3r2µdr+

R
∫

0

|η,t|3r2µdr

)

+c

R
∫

0

w2
,rtr

2µdr.

(3.23)

In the case of the Neumann problem (1.9)–(1.11) we apply the extension theo-
rem to estimate the last but one term on the r.h.s. of (3.20) by

ε2

R
∫

R
2

w2
,rttdr + c

(

1

ε2

)

R
∫

R
2

w2
,ttdr ≤ ε2c(R)

R
∫

0

w2
,rttr

2µdr + c

(

1

ε2

, R

)

R
∫

0

w2
,ttr

2µdr.

Then for sufficiently small ε2 we obtain from (3.20) the inequality

1

2

d

dt

R
∫

0

(

w2
,tt + ψ1,ϑϑw

2
,tr + ψ2,ηηη

2
,t

)

r2µdr

+ µ0

R
∫

0

w2
,rttr

2µdr + µ0

(

1 + (1 − µ)(2µ− 1) − ε1

)

R
∫

0

w2
,ttr

2µ−2dr

≤ c

(

R
∫

0

|ϑ,t|3r2µdr +

R
∫

0

|η,t|3r2µdr

)

+ c(R)

R
∫

0

w2
,ttr

2µdr + c

R
∫

0

w2
,rtr

2µdr.

(3.24)

Integrating (3.23) and (3.24) with respect to time and applying the Gronwall
lemma we obtain (3.17) and (3.18). This concludes the proof.

To estimate the first integral on the r.h.s. of (3.17) and (3.18) we use the
Pego transformation

p(r, t) =

r
∫

0

wt(r
′, t)r

′2dr′, q(r, t) = µ0w,r(r, t)r
2 − p(r, t). (3.25)

Next we have
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Lemma 3.4. Assume w is sufficiently regular. Assume that w, w,r vanish at

r = 0. Then functions p and q are solutions to the problems

p,t − µ0p,rr =
∂ψ

∂w,r
r2 −

r
∫

0

(

∂ψ

∂η
+ µ0

w,t

r

)

rdr − 2µ0w,tr (3.26)

p|t=0 =

r
∫

0

w1(r)r
2dr ≡ p0 (3.27)

p(R, t) =

R
∫

0

w,t(r, t)r
2dr, |p(R, t)| ≤ R

3
2 c

1
2
0 (3.28)

p,r|r=R = w,t(R, t)R
2 (3.29)

and

q,t = − ∂ψ

∂w,r
r2 +

r
∫

0

r

(

∂ψ

∂η
+ µ0

w,t

r

)

dr (3.30)

q|t=0 = µ0w0,rr
2 −

r
∫

0

w1(r)r
2dr ≡ q0. (3.31)

Proof. First we find an equation for p. We calculate

p,t − µ0p,rr =

r
∫

0

w,ttr
2dr − µ0

(

r
∫

0

w,tr
2dr

)

,rr

=

r
∫

0

{

1

r2

[(

∂ψ

∂w,r
+µ0w,rt

)

r2

]

,r

− 1

r

(

∂ψ

∂η
+µ0

w,t

r

)}

r2dr −µ0(w,tr
2),r

=
∂ψ

∂w,r
r2

∣

∣

∣

∣

r=r

r=0

+µ0w,rtr
2

∣

∣

∣

∣

r=r

r=0

−
r
∫

0

(

∂ψ

∂η
+µ0

w,t

r

)

rdr −µ0w,rtr
2−2µ0w,tr.

Now we examine the behaviour of the first two terms from the r.h.s. First we
examine the second term. From (3.7) we have

R
∫

0

w2
,rtr

2µdr <∞ for a.a. t ∈ (0, T ) and µ ∈
(

0,
3

2

)

.

Hence w,rt ∼ rα with α > −
(

1
2

+ µ
)

. Then we see that w,rtr
2|r=0 = 0.



Global Non-Small Data Existence 403

In view of the assumptions of the lemma we have ∂ψ

∂w,r
r2
∣

∣

r=0
= 0. Then the

equation for p takes the form (3.26). From (3.25) and (1.10) we have (3.27).

Finally, from (3.25) it follows p(R, t) =
∫ R

0
w,t(r, t)r

2dr, so

|p(R, t)| ≤
R
∫

0

|w,t(r, t)|r2dr ≤ R

R
∫

0

|w,t(r, t)r|dr ≤ R
3
2

(

R
∫

0

w2
,tr

2dr

) 1
2

≤ R
3
2 c

1
2
0 .

Hence (3.28) is proved.
It seems that the Neumann boundary condition for the parabolic equation

(3.26) is more convenient than the Dirichlet boundary condition (3.28). There-
fore, we formulate it in the form (3.29).

From the definition of q and the assumptions of the lemma we have

q,t = µ0w,rtr
2 − p,t = µ0w,rtr

2 −
r
∫

0

w,ttr
2dr

= µ0w,rtr
2 −

r
∫

0

[(

∂ψ

∂w,r
+ µ0w,rt

)

r2

]

,r

dr +

r
∫

0

r

(

∂ψ

∂η
+ µ0

w,t

r

)

dr

= − ∂ψ

∂w,r
r2

∣

∣

∣

∣

r=r

r=0

+ µ0w,rtr
2

∣

∣

∣

∣

r=0

+

r
∫

0

r

(

∂ψ

∂η
+ µ0

w,t

r

)

dr

= − ∂ψ

∂w,r
r2 +

r
∫

0

r

(

∂ψ

∂η
+ µ0

w,t

r

)

dr.

(3.32)

Finally we calculate

q|t=0 = µ0w0,rr
2 − p|t=0 = µ0w0,rr

2 −
r
∫

0

w1(r)r
2dr ≡ q0. (3.33)

From (3.32) and (3.33) we obtain (3.30) and (3.31), respectively. This concludes
the proof.

Lemma 3.5. Let the assumptions of Lemma 3.2 be satisfied. Let ν < 1
σ

+ 1
2
,

σ > 1, δ > 0 but arbitrary small,

BR,R0 = {r ∈ BR : R0 < r}.

Then solutions to problem (3.26), (3.27), (3.29) satisfy

‖p‖V 2,1
σ,−ν(BT

R) ≤ c‖w,rr2‖Lσ,−ν(BT
R) + cc1 + c‖w1‖

B
1− 2

σ
σ,−ν (BR)

+ ε1‖w,t‖
W

1+δ, 12+ δ
2

σ (BT
R,R0

)
+ c

(

1

ε1

)

‖w,t‖L2(BT
R,R0

)

(3.34)
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and solutions to problem (3.30), (3.31) are bounded by

‖q,t‖Lσ,−ν(BT
R) ≤ c‖w,rr2‖Lσ,−ν(BT

R) + cc1, (3.35)

where c1 is introduced in (3.7).

Proof. For solutions to problem (3.26), (3.27), (3.29) we have (see Lemma 2.1)

‖p‖V 2,1
σ,−ν(BT

R)≤ c

(

‖w,rr2‖Lσ,−ν(BT
R)+

∥

∥

∥

∥

r
∫

0

(|w|+|w,t|)dr
∥

∥

∥

∥

Lσ,−ν(BT
R)

+‖w,tr‖Lσ,−ν(BT
R)+‖p0‖

W
2− 2

σ
σ,−ν (BR)

+‖w,t(R, t)‖
W

1
2−

1
2σ

σ (0,T )

)

.

(3.36)

The first norm on the r.h.s. of (3.36) equals

( ∫

BT
R

|w,r|σr(2−ν)σdrdt

) 1
σ

. (3.37)

By the Hölder inequality the second integral on the r.h.s. of (3.36) is estimated
by

( ∫

BT
R

∣

∣

∣

∣

(

r
∫

0

r−2ν1dr

) 1
2
(

r
∫

0

(w2 + w2
,t)r

2ν1dr

) 1
2
∣

∣

∣

∣

σ

r−σνdrdt

) 1
σ

≤ cc1, (3.38)

where the last inequality holds in virtue of Lemma 3.2 and under assumption
ν1 + ν < 1

σ
+ 1

2
, where ν1 can be chosen arbitrary small.

We express the third integral on the r.h.s. of (3.36) in the form

( ∫

BT
R

|w,t|σr(1−ν)σdrdt

) 1
σ

≡ J1.

Assuming ν < 1, setting 1 − ν = µ > 0 and recalling the imbedding (2.2) and
Lemma 3.2 we obtain

J1 ≤ c sup
t

∫

BR

|(wrµ),t|2dr + c

T
∫

0

∫

BR

|∇(w,tr
µ)|2drdt ≤ cc21,

where σ ≤ 6.
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Using (3.27) the last but one term on the r.h.s. of (3.36) equals

‖p0‖
W

2− 2
σ

σ,−ν (BR)

=

∥

∥

∥

∥

r
∫

0

w1(r
′)r

′2dr′
∥

∥

∥

∥

B
2− 2

σ
σ,−ν (BR)

=

(

R
∫

0

∣

∣

∣

∣

r
∫

0

w1(r
′)r

′2dr′
∣

∣

∣

∣

σ

r−σνdr

) 1
σ

+

(

R
∫

0

R
∫

0

∣

∣r−ν1 ∂r1
∫ r1

0
w1(r

′)r
′2dr′ − r−ν2 ∂r2

∫ r2

0
w1(r

′)r
′2dr′

∣

∣

σ

|r1 − r2|1+σ(1− 2
σ

)
dr1dr2

)1
σ

≡ I1 + I2,

where σ > 2. First we examine

I2 =

(

R
∫

0

R
∫

0

|w1(r1)r
2−ν
1 − w1(r2)r

2−ν
2 |σ

|r1 − r2|σ−1
dr1dr2

) 1
σ

≤
(

R
∫

0

R
∫

0

|w1(r1)r
−ν
1 − w1(r2)r

−ν
2 |σ

|r1 − r2|σ−1
dr1dr2

) 1
σ

+

(

R
∫

0

R
∫

0

|w1(r2)r
−ν
2 (r2

1 − r2
2)|σ

|r1 − r2|σ−1
dr1dr2

) 1
σ

≤ ‖w1‖ •

B
1− 1

σ
σ,−ν(BR)

+ c‖w1‖Lσ,−ν(BR).

By the Hölder inequality we have

I1 ≤
( R
∫

0

[

(

r
∫

0

r′(2+ν)σ
′

dr′
) 1

σ′

(

r
∫

0

|w1(r
′)r′(1−ν)|σdr′

) 1
σ

]σ

r−σνdr

) 1
σ

≤ c‖w1‖Lσ,−ν(BR)

(

R
∫

0

r(2+ν)σ′+1r−σνdr

) 1
σ

≡ I ′1,

where σ′ = σ
σ−1

. Performing calculations, we have I ′1 ≤ c‖w1‖Lσ,−ν(BR) for σ > 1.
By the inverse trace theorem the last term on the r.h.s. of (3.36) is estimated
by

‖w,t(R, ·)‖
W

1
2−

1
2σ

σ (0,T )
≤ ε‖w,t‖

W
1+δ, 12+ δ

2
σ (BT

R,R0
)
+ c

(

1

ε

)

‖w,t‖L2(BR
R,R0

), (3.39)
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where δ > 0 but arbitrary small and BR,R0 = {r ∈ BR : R0 < r < R}. Using
the above estimates in the r.h.s. of (3.36) implies (3.34). Finally we calculate

‖q,t‖Lσ,−ν(BT
R) ≤ c

(

‖w,rr2‖Lσ,−ν(BT
R) +

∥

∥

∥

∥

r
∫

0

(|w| + |w,t|)dr
∥

∥

∥

∥

Lσ,−ν(BT
R)

)

so the r.h.s. is bounded by expressions from (3.37) and (3.38). This implies
(3.35) and concludes the proof.

Corollary 3.6. Let the assumptions of Lemma 3.5 be satisfied. Then (3.25)
and (3.34), (3.35) imply

‖w,rtr2‖Lσ,−ν(BT
R) ≤ c

(

‖q,t‖Lσ,−ν(BT
R) + ‖p,t‖Lσ,−ν(BT

R)

)

≤ c‖w,rr2‖Lσ,−ν(BT
R) + ε1‖w,t‖

W
1+δ, 12+ δ

2
σ (BT

R,R0
)

+ c

(

1

ε1

)

‖w,t‖L2(BT
R,R0

) + cc3,

(3.40)

where c3 = c1 + ‖w1‖
B

1− 2
σ

σ,−ν (BR)
. Employing (3.7) to the last but one term on the

r.h.s. of (3.40) yields

‖w,rtr2‖Lσ,−ν(BT
R)≤c‖w,rr2‖Lσ,−ν(BT

R)+ε1‖w,t‖
W

1+δ, 12+ δ
2

σ (BT
R,R0

)
+c

(

1

ε1

)

c3, (3.41)

where ν < 1
2

+ 1
σ
.

Remark 3.7. In the case of the Dirichlet boundary condition (1.12), the terms
with ε1 in (3.41) vanish. Hence, in this case, (3.41) is replaced by

‖w,rtr2‖Lσ,−ν(BT
R) ≤ c‖w,rr2‖Lσ,−ν(BT

R) + cc3. (3.42)

Now we estimate the first integral on the r.h.s. of (3.18). Let ν0 be such
that 2µ = 3ν0. Then the integral equals

t
∫

0

R
∫

0

(

|w,rt|3 +

∣

∣

∣

∣

w,t

r

∣

∣

∣

∣

3)

r3ν0drdt ≤ c

t
∫

0

R
∫

0

|w,rt|3r3ν0drdt, (3.43)

where the Hardy inequality was used.

We estimate (3.43) by using (3.42) with σ = 3, ν = 2 − ν0. Since ν < 5
6

we
have that ν0 >

7
6

and µ = 3
2
ν0 >

7
4
. Therefore from (3.18), (3.42), (3.43) and in
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the case of the Dirichlet condition (1.12) we obtain the inequality for µ > 7
4

R
∫

0

(w2
,tt + w2

,tr + w2
,tr

−2)r2µdr + µ0

t
∫

0

R
∫

0

(w2
,rtt + w2

,ttr
−2)r2µdrdt′

≤ c

t
∫

0

R
∫

0

|w,r|3r2µdrdt+ cc3 +

R
∫

0

(w2
,tt(0) + w2

,tr(0) + w2
,t(0)r−2)r2µdr

≡ c

t
∫

0

R
∫

0

|w,r|3r2µdrdt+ cc4.

(3.44)

From now we are going to obtain such inequalities that the first integral on
the r.h.s. of (3.44) could be absorbed. Then we obtain an estimate. For this
purpose we need to prove a series of lemmas.

Lemma 3.8. Let the assumptions of Lemma 3.2 be satisfied for µ = ν,

ν ∈
(

0, 3
2

)

. Assume that

w,rtt ∈ L2,µ((0, R)×(0, T )), w1 ∈ H1
µ(0, R), µ = 1+ν, ν ∈

(

0,
3

2

)

. (3.45)

Then the following inequality holds

t
∫

0

R
∫

0

w2
,ttr

2µdrdt′ +
µ0

2

R
∫

0

(w2
,rt + w2

,tr
−2)r2µdr

≤ ε1

t
∫

0

R
∫

0

w2
,rttr

2µdrdt′ + c

(

1

ε1

)

c21 +
µ0

2

R
∫

0

(w2
,rt(0) + w2

,t(0)r−2)r2µdr

≡ ε1

t
∫

0

R
∫

0

w2
,rttr

2µdrdt′ + c

(

1

ε1

)

c25,

(3.46)

where µ = 1 + ν, ν ∈
(

0, 3
2

)

and ε1 ∈ (0, 1).

Proof. Multiplying (1.9) by w,ttr
2µ and integrating over BR yields

R
∫

0

w2
,ttr

2µdr +

R
∫

0

(

∂ψ

∂ϑ
+µ0w,rt

)

w,rttr
2µdr

+(2µ− 2)

R
∫

0

(

∂ψ

∂ϑ
+µ0w,rt

)

w,ttr
2µ−1dr +

R
∫

0

1

r

(

∂ψ

∂η
+µ0

wt

r

)

w,ttr
2µdr

= 0.

(3.47)
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Using that
∣

∣

∂ψ

∂ϑ

∣

∣ ≤ c|w,r|,
∣

∣

∣

∂ψ

∂η

∣

∣

∣ ≤ c|η| we obtain from (3.47) the inequality

R
∫

0

w2
,ttr

2µdr +
µ0

2

d

dt

R
∫

0

w2
,rtr

2µdr +
µ0

2

d

dt

R
∫

0

w2
,tr

2µ−2dr

≤ ε1

R
∫

0

w2
,rttr

2µdr + c

(

1

ε1

)

R
∫

0

w2
,rr

2µdr + ε2

R
∫

0

w2
,ttr

2µdr

+ c

(

1

ε2

)

R
∫

0

(w2
,r + w2

,rt)r
2µ−2dr + ε3

R
∫

0

w2
,ttr

2µdr + c

(

1

ε3

)

R
∫

0

∣

∣

∣

∣

w

r

∣

∣

∣

∣

2

r2µ−2dr.

Choosing ε2 and ε3 sufficiently small we get
R
∫

0

w2
,ttr

2µdr +
µ0

2

d

dt

R
∫

0

(w2
,rt + w2

,tr
−2)r2µdr

≤ ε1

R
∫

0

w2
,rttr

2µdr + c

(

1

ε1

)

R
∫

0

w2
,rr

2µdr + c

R
∫

0

(

w2
,rt + w2

,r +
w2

r2

)

r2µ−2dr.

(3.48)

Integrating (3.48) with respect to time, assuming that µ = 1 + ν, ν ∈
(

0, 3
2

)

and using (3.7) for µ = ν we obtain (3.46). This concludes the proof.

Lemma 3.9. Let the assumptions of Lemma 3.2 be satisfied. Let us assume

that
∂2ψ

∂ϑ2
≥ α1,

∣

∣

∣

∣

∂ψ

∂ϑ

∣

∣

∣

∣

≤ c|ϑ|,
∣

∣

∣

∣

∂ψ

∂η

∣

∣

∣

∣

≤ c|η|,

w,tt ∈ L2,µ((0, R) × (0, T )), w0,rr ∈ L2,µ(0, R),

µ = ν + 1, ν ∈
(

0,
3

2

)

.

(3.49)

Then the following inequality for solutions to problem (1.9), (1.10), (1.12) is

valid
t
∫

0

R
∫

0

w2
,rrr

2µdrdt′ +
µ0

2

R
∫

0

w2
,rrr

2µdr

≤ c

t
∫

0

R
∫

0

w2
,ttr

2µdrdt′ + cc21 +
µ0

2

R
∫

0

w2
,rr(0)r2µdr

≡ c

t
∫

0

R
∫

0

w2
,ttr

2µdrdt′ + cc26,

(3.50)

where µ = ν + 1, ν ∈
(

0, 3
2

)

and c1 is the constant from (3.7).
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Proof. Multiplying (1.9) by w,rrr
2µ and integrating over BR we obtain

R
∫

0

w,ttw,rrr
2µdr =

R
∫

0

1

r2

[(

∂ψ

∂ϑ
+µ0w,rt

)

r2

]

,r

w,rrr
2µdr−

R
∫

0

(

1

r

∂ψ

∂η
+µ0

w,t

r

)

w,rrr
2µdr.

Continuing, we have

R
∫

0

(

∂2ψ

∂ϑ2
w2
,rr + µ0w,rrtw,rr

)

r2µdr

=

R
∫

0

w,ttw,rrr
2µdr +

R
∫

0

(

∂ψ

∂ϑ
+ µ0w,rt

)

w,rrr
2µ−1dr +

R
∫

0

(

∂ψ

∂η
+ µw,t

)

w,rrr
2µ−1dr.

Using that ∂2ψ

∂ϑ2 ≥ α1,
∣

∣

∂ψ

∂ϑ

∣

∣ ≤ c|ϑ|,
∣

∣

∂ψ

∂η

∣

∣ ≤ c|η| we get

α1

R
∫

0

w2
,rrr

2µdr +
µ0

2

d

dt

R
∫

0

w2
,rrr

2µdr

≤ε1

R
∫

0

w2
,rrr

2µdr + c

(

1

ε1

)

R
∫

0

w2
,ttr

2µdr + c

R
∫

0

(w2
,r + w2

,rt + w2
,t + w2r−2)r2µ−2dr.

Integrating the result with respect to time, assuming that ε1 is sufficiently small,
using that µ = 1 + ν, ν ∈

(

0, 3
2

)

and employing (3.7) with µ = ν we obtain
(3.50). This concludes the proof.

From (3.46) and (3.50) we derive the inequality

t
∫

0

R
∫

0

(w2
,tt + w2

,rr)r
2µdrdt′ +

µ0

2

R
∫

0

(w2
,rt + w2

,rr + w2
,tr

−2)r2µdr

≤ ε1

t
∫

0

R
∫

0

w2
,rttr

2µdrdt′ + c

(

1

ε1

)

c27,

(3.51)

where µ = 1 + ν, ν ∈
(

0, 3
2

)

and c7 = c5 + c6. From (3.18) and (3.51) for
sufficiently small ε1 we obtain

R
∫

0

(w2
,tt+ w2

,rt+ w2
,rr+ w2

,tr
−2)r2µdr +

t
∫

0

R
∫

0

(w2
,rtt+ w2

,rr+ w2
,ttr

−2)r2µdrdt′

≤ c(t)

t
∫

0

R
∫

0

(|ϑ,t|3+ |η,t|3)r2µdrdt′+ cc28,

(3.52)
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where µ = 1 + ν, ν ∈
(

0, 3
2

)

and c28 = c27 +
∫ R

0
(w2

,tt(0) +w2
,tr(0) +w2

,t(0)r−2)r2µdr.

Now we estimate the integral on the r.h.s. of (3.52). By the Hardy inequality
we have

T
∫

0

R
∫

0

|w,t|3r2µ−3drdt′ ≤ c

t
∫

0

R
∫

0

|w,rt|3r2µdrdt′.

Hence the integral on the r.h.s. of (3.52) is bounded by c
∫ t

0

∫ R

0
|w,rt|3r2µdrdt′.

Inequality (3.41) in the case of the Dirichlet problem implies

t
∫

0

R
∫

0

|w,rt|3r6−3νdrdt′ ≤ c

t
∫

0

R
∫

0

|w,r|3r6−3νdrdt′ + cc33, (3.53)

where ν < 5
6
. Since w,r(r, t) =

∫ t

0
w,rt′(r, t

′)dt′ +w,r(r, 0), from (3.53) we obtain
the inequality

t
∫

0

R
∫

0

|w,rt′|3r6−3νdrdt′ ≤ c

t
∫

0

R
∫

0

t′
∫

0

|w,rt′′(t′′)|3dt′′r6−3νdrdt′ + cc39(t), (3.54)

where c0(t) is an increasing function of t. Hence the Gronwall inequality implies

t
∫

0

R
∫

0

|w,rt′ |3r6−3νdrdt′ ≤ cc310(t), (3.55)

where c10(t) is an increasing function of t. Summarizing the above considera-
tions yields

Lemma 3.10. Let us assume that

ψ(ϑ, η) = ψ1(ϑ)+ψ2(η),
∂2ψ1

∂ϑ2
≥ α1,

∂2ψ2

∂η2
≥ α2,

∣

∣

∣

∣

∂ψ1

∂ϑ

∣

∣

∣

∣

≤ β1|ϑ|,
∣

∣

∣

∣

∂ψ2

∂η

∣

∣

∣

∣

≤ β2|η|,

where α1, α2, β1, β2 are positive constants, w0 ∈ H2
µ(0, R), w1 ∈ H2

µ(0, R),

µ ∈
(

1, 1 + 5
6

)

. Then, for solutions of the Dirichlet problem (1.9), (1.10), (1.12),
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the following a priori estimate holds

R
∫

0

(w2
,tt + w2

,rt+ w2
,rr + w2

,tr
−2)r2µdr

+

t
∫

0

R
∫

0

(w2
,rtt + w2

,rr + w2
,ttr

−2)r2µdrdt′

≤ c

(

‖w0‖2
H1

µ(0,R) + ‖w0,rr‖2
L2,µ(0,R) + ‖w1‖2

L2,µ(0,R)

+

R
∫

0

(w2
,tt(0) + w2

,rt(0) + w2
,t(0)r−2)r2µdr

)

,

(3.56)

where µ ∈
(

1, 1 + 5
6

)

.

Now we derive some local properties of solutions to problem (1.9), (1.10),
(1.12).

Lemma 3.11. Let the assumptions of Lemma 3.2 be satisfied. Then the follow-

ing estimates hold

|w(r, t)| ≤ R
1
2
−µ

√
1 − 2µ

c1, µ ∈
(

0,
1

2

)

, (3.57)

so w ∈ B(BR × (0, T )).

‖w,t‖
L2(0,T ;C

1
2−µ/2(BR))

≤ cc1, µ ∈
(

0,
1

2

)

, (3.58)

‖w‖
B(0,T ;C

1
2−µ/2(BR))

≤ cc1, µ ∈
(

0,
1

2

)

, (3.59)

‖w‖
Lβ(0,R;C

β−1
β (0,T ))

≤ cc1, 1 < β <
2

2µ+ 1
, µ ∈

(

0,
1

2

)

. (3.60)

Proof. From (3.7) we have |w(r, t)| =
∣

∣

∫ r

R
w,r(r, t)dr

∣

∣ =
∣

∣

∫ r

R
r−µw,rr

µdr
∣

∣ ≤
( ∫ R

0
r−2µdr

) 1
2
( ∫ R

0
w2
,rr

2µdr
) 1

2 ≤ R
1
2−µ

√
1−2µ

c1, µ ∈ (0, 1
2
). Hence (3.57) holds.

Next we calculate w,t(r
′, t) − w,t(r

′′, t) =
∫ r′

r′′
w,trdr. Hence

|w,t(r′, t) − w,t(r
′′, t)| ≤ 1

1 − 2µ

∣

∣(r′)1−2µ − (r′′)1−2µ
∣

∣

1
2

∣

∣

∣

∣

r′
∫

r′′

w2
,rtr

2µdr

∣

∣

∣

∣

1
2

.
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From the above inequality it follows

|w,t(r′, t) − w,t(r
′′, t)|2

|r′ − r′′|1−2µ
≤ 1

(1 − 2µ)2

∣

∣

∣

∣

r′
∫

r′′

w2
,rtr

2µdr

∣

∣

∣

∣

.

Taking supremum with respect to r′, r′′ ∈ [0, R] and integrating the result with
respect to time yields

T
∫

0

dt sup
r′,r′′∈[0,R]

|w,t(r′, t) − w,t(r
′′, t)|2

|r′ − r′′|1−2µ
≤ 1

(1 − 2µ)2

T
∫

0

dt

R
∫

0

w2
,rtr

2µdr ≤ 1

(1 − 2µ)2
c21.

Since w,t(r, t) =
∫ r

R
w,rt(r, t)dr we obtain

|w,t(r, t)| =

∣

∣

∣

∣

r
∫

R

r−µw,rtr
µdr

∣

∣

∣

∣

≤
(

R1−2µ

1 − 2µ

) 1
2
(

R
∫

0

w2
,rtr

2µdr

) 1
2

.

Taking the L2 norm with respect to time yields

T
∫

0

w2
,t(r, t)dt ≤

R1−2µ

1 − 2µ

T
∫

0

dt

R
∫

0

w2
,rtr

2µdr ≤ R1−2µ

1 − 2µ
c21.

Hence (3.58) is proved.
To show (3.60) we consider

|w(r, t′)−w(r, t′′)| =

∣

∣

∣

∣

t′
∫

t′′

w,tdt

∣

∣

∣

∣

=

∣

∣

∣

∣

t′
∫

t′′

r−µw,tr
µdt

∣

∣

∣

∣

≤ |t′−t′′|
1

β1

∣

∣

∣

∣

t′
∫

t′′

|r−µw,trµ|β2dt

∣

∣

∣

∣

1
β2

,

where 1
β1

+ 1
β2

= 1, β2 < 2. Taking the Lβ2(0, R) norm of the above inequality
yields

(

R
∫

0

|w(r, t′) − w(r, t′′)|β2dr

) 1
β2

≤ |t′ − t′′|
1

β1

(

R
∫

0

dr

∣

∣

∣

∣

t′
∫

t′′

|r−µw,trµ|β2dt

∣

∣

∣

∣

) 1
β2

Continuing,

sup
t′,t′′∈[0,T ]

(

R
∫

0

|w(r, t′) − w(r, t′′)|β2

|t′ − t′′|
β2
β1

dr

) 1
β2

≤
(

T
∫

0

dt

R
∫

0

|r−µw,trµ|β2dr

) 1
β2

≤
( T
∫

0

dt

(

R
∫

0

drr−µβ2γ1

) 1
γ1

(

R
∫

0

dr|w,trµ|β2γ2

) 1
γ2

) 1
β2

,
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where 1
γ1

+ 1
γ2

= 1. We set β2γ2 = 2 and we need that µβ2γ1 < 1. Therefore

γ2 = 2
β2

and γ1 = 2
2−β2

. Hence µβ2
2

2−β2
< 1 and 1 < β2 <

2
2µ+1

and µ ∈
(

0, 1
2

)

.

By (3.7) estimate (3.60) follows.

Finally, we show (3.59). Since w(r′, t) − w(r′′, t) =
∫ r′

r′′
wrdr we obtain

|w(r′, t) − w(r′′, t)|2
|r′ − r′′|1−2µ

≤
R
∫

0

w2
,rr

2µdr ≤ c21,

where 0 < µ < 1
2

and the last inequality follows from (3.7). Therefore (3.59) is
shown and Lemma 3.11 is proved. This concludes the proof.

Finally, we derive some properties of the Pego functions p, q (see (3.25)).

Remark 3.12. From (3.25) it follows that p,r

r2
= w,t. Then (3.7) implies

sup
t

R
∫

0

p2
,rr

2(µ−2)dr ≤ cc1,

T
∫

0

R
∫

0

p2
,rr

2(µ−3)dr ≤ cc1, (3.61)

where µ ∈ (0, 3
2
).

Since p(0, t) = 0 we have

∣

∣

∣

∣

p(r)

rν

∣

∣

∣

∣

≤
r
∫

0

∣

∣

∣

∣

∂r
p

rν

∣

∣

∣

∣

dr ≤ r
1
2

(

r
∫

0

(p2
,rr

−2ν + p2r−2ν−2)dr

) 1
2

Setting ν = 2−µ and using the Hardy inequality
∫

p2r2(µ−3)dr ≤ c
∫

p2
,rr

2(µ−2)dr

and (3.7) it follows
|p(r, t)|
r

5
2
−µ ≤ cc1.

Remark 3.13. We have to emphasize that the final Lemma 3.10 does not hold
for solutions to the Neumann initial boundary value problem (1.9)–(1.11). This
follows from the fact that the regularity described by the l.h.s. of (3.56) is not
enough to absorb the first norm on the r.h.s. of (3.39). To absorb the norm we
need an estimate for

T
∫

0

R
∫

0

w2
,rrtr

2µdrdt.

This, however, needs many additional estimates.
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4. Existence

We prove the existence of solutions to problem (1.9), (1.10), (1.12) by the Fae-
do-Galerkin method (cf. [6, 12]).

We take the basis {ϕk(r)} in W 1
2 (BR), such that ϕk(R) = 0. We assume

additionally that (ϕk, ϕl)L2(BR) = δlk, where (·, ·)L2(BR) is the scalar product in
L2(BR) and δlk is the Kronecker delta. Moreover, we assume that there exist
constants ck <∞, k ∈ N ∪ {0} such that

‖ϕk, ϕk,r‖L∞(BR) ≤ ck.

We are looking for the approximate solution wN(r, t) in the form

wN(r, t) =
N
∑

k=1

cNk (t)ϕk(r).

Then cNk (t) are solutions to the following system of ordinary differential equa-
tions

∫

BR

wN,ttϕkr
2dr +

∫

BR

[a1(r, w
N, wN,r ) + µ0w

N
,rt]ϕk,rr

2dr

+

∫

BR

[

a2(r, w
N, wN,r ) + µ0

wN,t

r

]

ϕkrdr

= 0,

(4.1)

where we introduced the notation

a1 = ψ,w,r , a2 = ψ,η.

Repeating the proof of Lemma 3.2 we obtain the following estimate for the
approximate solution

∫

BR

[

1

2
|wN,t |2+ψ

(

wN,r ,
wN

r

)]

r2µdr+µ0

t
∫

0

dt′
∫

BR

[

|wN,rt|2+

∣

∣

∣

∣

wN,t

r

∣

∣

∣

∣

2
]

r2µdr ≤ c21. (4.2)

In view of the growth condition (3.15) estimate (4.2) implies

∫

BR

[

1

2
|wN,t |2 + c1|wN,r |2 + c2

∣

∣

∣

∣

wN

r

∣

∣

∣

∣

2
]

r2µdr

+ µ0

t
∫

0

dt′
∫

BR

[

|wN,rt|2r2µ + |wN,t |2r2µ−2
]

dr

≤ c21,

(4.3)
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where µ ∈
(

0, 3
2

)

. From (4.3) we have

wN∈L1
∞(0, T ;L2,µ(BR))∩L∞(0, T ;H1

µ(BR))∩L1
2(0, T ;H1

µ(BR))≡M(ΩT ). (4.4)

In view of (4.4) we have that wN weakly-star converges in L1
∞(0, T ;L2,µ(BR))∩

L∞(0, T ;H1
µ(BR)) and weakly in L1

2(0, T ;H1
µ(BR)) to some w ∈ M(ΩT ).

To prove the existence of weak solutions to problem (1.9)–(1.11) we recall
that the Faedo-Galerkin approximations satisfy the following integral identities

−
T
∫

0

dt

∫

BR

wNt ϕttr
2µdr +

∫

BR

wNt ϕtr
2µ|dr|t=Tt=0

+

T
∫

0

dt

∫

B0R

[a1(r, w
N, wN,r ) + µ0w

N
,rt]ϕ,rtr

2µdr

+

T
∫

0

dt

∫

BR

[

a2(r, w
N, wN,r ) + µ0

wN,t

r2

]

ϕ,tr
2µdr

= 0,

(4.5)

which holds for any function ϕ ∈ PN , where PN = {ϕ : ϕ =
∑N

k=1 dk(t)ϕk(r)}.
Hence wN ∈ PN .

We assume additionally that

a2(r, w, w,r) = a′2(r, w)w,r + a′′2(r, w). (4.6)

Since

d

dt

∫

BR

ψ(r, w, w,r)r
2µdr =

∫

BR

[a1(r, w, w,r)w,rt + a2(r, w, w,r)wt]r
2µdr

we have that

a1 = ψ,w,r , a2 = ψ,w
r
.

To pass to the limit in the integral identity (4.5) we assume the monotonicity
condition
∫

BT
R

[a1(r, w
N, wN,r )−a1(r, w

N, η,r)](w
N
,rt−η,rt)r2µdrdt+f

(

‖wN−η‖M(ΩT )

)

≥0, (4.7)

where f(τ) is a continuous function for τ ≥ 0 and satisfying limε→0 ε
−1f(ετ) = 0

for any τ > 0. The condition (4.7) is called the monotonicity condition.
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Condition (4.7) is a restriction on the considered viscoelasticity system be-
cause a1 = ψ,w,r and ψ determines function F (see (1.8)) which partially gener-
ate the stress tensor σ (see (1.4)). Condition (4.7) can be satisfied in the case of
linear function a1 with respect to the last argument and sufficiently nonlinear
function f . Moreover, we have to emphasize that the L∞ norms in M(ΩT ) can
be replaced by the norm sup in view of estimate (4.3). We hope that condition
(4.7) holds for more general a1.

We need the monotonicity condition because passing to the limit in (4.5)
for any function ϕ ∈ PN we obtain in view of (4.4) the identity

−
T
∫

0

dt

∫

BR

w,tϕ,ttr
2µdr +

∫

BR

w,tϕ,tr
2µdr|t=Tt=0

+

T
∫

0

dt

∫

BR

(A+ µ0w,rt)ϕ,rtr
2µdr +

T
∫

0

dt

∫

BR

(

a2(r, w, w,r) + µ0
w,t

r2

)

ϕ,tr
2µdr

= 0,

(4.8)

where we used (4.6) and A = limN→∞ a1(r, w
N, wN,r ). Replacing ϕ by a sequence

ϕN
′ ∈ PN ′ we can pass with N ′ → ∞, so we obtain that (4.8) holds for any

ϕ ∈
⋃∞
k=1 Pk.

To show that A = a1(r, w, w,r) we use the monotonicity condition. Express-
ing (4.5) with ϕ = wN − η, η ∈ PN , yields

∫

BR

|wN,t |2r2µdr|t=Tt=0 +

∫

BT
R

wN,t η,ttr
2µdrdt−

∫

BR

wN,t η,tr
2µdr|t=Tt=0

+

∫

BT
R

[a1(r, w
N, wN,r ) + µ0w

N
,rt](w

N
,rt − η,rt)r

2µdrdt

+

∫

BT
R

(

a2(r, w
N, wN,r ) + µ0

wN,t

r2

)

(wN,t − η,t)r
2µdrdt

= 0.

(4.9)

Eliminating the term
∫

BT
R
a1(r, w

N, wN,r )(wN,rt−η,rt)r2µdrdt in (4.7) by employing
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(4.9) we obtain (4.7) in the form

−
∫

BT
R

a1(r, w
N, η,r)(w

N
,rt − η,rt)r

2µdrdt−
∫

BR

|wN,t |2r2µdr|t=Tt=0

−
∫

BT
R

wN,t η,ttr
2µdrdt+

∫

BR

wN,t η,tr
2µdr|t=Tt=0 − µ0

∫

BT
R

wN,rt(w
N
,rt − η,rt)r

2µdrdt

−
∫

BT
R

[

a2(r, w
N, wN,r ) + µ0

wN,t

r2

]

(wN,t − η,t)r
2µdrdt+ f

(

‖wN − η‖M(ΩT )

)

≥ 0.

(4.10)

Since wN weak-star converges in M(ΩT ) to w ∈ M(ΩT ) we can pass to the
limit in (4.10). Hence we get

−
∫

BT
R

a1(r, w, η,r)(w,rt − η,rt)r
2µdrdt−

∫

BR

|w,t|2r2µdr|t=Tt=0 −
∫

BT
R

w,tη,ttr
2µdr

+

∫

BR

w,tη,tr
2µdr|t=Tt=0 − µ0

∫

BT
R

w,rt(w,rt − η,rt)r
2µdrdt

+

∫

BT
R

[

a2(r, w, w,r) + µ0
w,t

r2

]

(w,t − η,t)r
2µdrdt+ f

(

‖w − η‖M(ΩT )

)

≥ 0.

(4.11)

Replacing, in (4.8), ϕ by w−η with the help of explanation from [12, Chapter 5,
Section 6 between formulas (6.60) and (6.61)] and comparing the result with
(4.11) yields

∫

BT
R

(A(r, t) − a2(r, w, w,r))(w,rt − η,rt)r
2µdrdt+ f

(

‖w − η‖M(ΩT )

)

≥ 0. (4.12)

Setting η = w − εζ(r, t), where ζ(r, t) is a smooth function and repeating the
considerations from [12, Chapter 5, Section 6 and between formulas (6.61) and
(6.62)] we obtain that

A(r, t) = a2(r, w, w,r).

Hence, we have proved the result

Lemma 4.1. Let us assume that w1 ∈ L2,µ(BR), w0 ∈ H1
µ(BR). Then there

exists a weak solution to problem (1.1), (1.10), (1.12) in the space described by

(4.4) satisfying estimate (3.7).
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Proof of the Main Theorem. Let w be a weak solution to problem (1.9), (1.10),
(1.12). We show a higher regularity of the weak solution by deriving better
estimates.

Hence using the classical techniques of increasing regularity of weak solu-
tions and repeating the considerations from the proof of Lemma 3.11 we con-
clude the proof.

5. Concluding remarks

Using the method presented in this paper, we can extend our considerations to
the initial boundary value problem for non-linear symmetric thermoviscoelas-
ticity in the domain ΩR, which is the ball with radius R > 0. It will be done in
our future paper.

References

[1] Andrews, G., On the existence of solutions to the equation: utt = uxxt+σ(ux)x.
J. Diff. Equ. 35 (1980), 200 – 230.

[2] Besov, O. V., Il’in, V. P. and Nikolski, S. M., Integral Representation of Func-

tions and Theorems of Imbedding (in Russian). Moscow: Nauka 1975.

[3] Christensen, R. M., Theory of Viscoelasticity. New York: Academic Press 1971.

[4] Eringen, A. C., Continuum Physics. New York: Academic Press 1978.
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