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Global Non-Small Data Existence of
Spherically Symmetric Solutions to
Nonlinear Viscoelasticity in a Ball

Jerzy A. Gawinecki and Wojciech M. Zajgczkowski

Abstract. We consider some initial-boundary value problems for non-linear equations
of the three dimensional viscoelasticity. We examine the Dirichlet and the Neumann
boundary conditions. We assume that the stress tensor is a nonlinear tensor valued
function depending on the strain tensor fulfilling the rules of the continuum mechanics.
We consider the initial-boundary value problems in a ball Br with radius R. Since,
we are interested in proving global existence the spherically symmetric solutions are
considered. Therefore we have to examine the spherically symmetric viscoelasticity
system in spherical coordinates. Applying the energy method implies estimates in
weighted anisotropic Sobolev spaces, where the weight is a power function of radius.
Hence the origin of coordinates becomes a singular point. First the existence of weak
solutions is proved. Next having appropriate estimates the weak solutions appear
bounded and continuous. We have to emphasize that non-small data problem is
considered.
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1. Introduction

Before starting to present our results, we recall some most important facts
from the nonlinear theory of viscoelasticity. Among the papers devoted to
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nonlinear viscoelasticity we mention below some of them. The global solution
(in time) for sufficiently small and smooth data are proved by Ponce (cf. [16]),
Kawashima and Shibata (cf. [9]) for quasilinear hyperbolic system of 2-nd order
with viscosity. The one-dimensional viscoelasticity was considered by Andrews
(see [1]).

In paper [10], Kobayashi, Pecher and Shibata proved global in time solution
to a nonlinear wave equation with viscoelasticity under the special assumption
about nonlinearity. In paper [15], Pawlow and Zajaczkowski showed the ex-
istence, uniqueness of global in time, regular solutions to the Cahn-Hilliard
system coupled with viscoelasticity.

In our paper we consider more general nonlinear system of viscoelasticity
with the boundary and initial conditions because the stress tensor is a general
nonlinear function depending on a strain. We assume that the stress tensor is
a function of a strain at a given instant of time ¢, but it does not depend on
strains at time ¢’ < ¢. It is worth to emphasize that our constitutive relation for
the stress tensor and another constitutive relation satisfy the rules of continuum
mechanics.

In order to prove the global (in time) solution for non-small data for nonlin-
ear system of viscoelasticity (cf. formulae (1.1)-(1.3)) we consider the spherically
symmetric case and use anisotropic Sobolev spaces with weights.

Speaking precisely more, we consider the motion of viscoelastic medium
described by the following system of equations (cf. [3-5, 7, 8, 14])

ouy = dive + of, (1.1)

where u = u(z,t) = (uy(x,t), us(z,t),us3(x,t)) € R? is the displacement vec-
tor, * = (z1,79,73) € R3 is a given system of Cartesian coordinates, ¢ €
R, U {0}, ¢ is the mass density, 0 = o(z,t) € R? the stress tensor, f =
(fi(z,t), fa(z,t), f3(x,t)) € R? the external force field.

We examine system (1.1) in a bounded domain 2 C R? with the boundary
conditions

either n-0|s=0 or wulsg=0, (1.2)

where S = 02, n is the unit outward normal to S vector.
Moreover we add the initial conditions

Uf‘t——U Ug, U,t’t_—o Uy. (13)
We shall assume that
o g)+ £ X
9 Ho by

where ¢ = $(Vu + (Vu)”) is the linearized strain tensor, F = F(e) is some
function which will be specified later and pg is a positive constant.
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Our aim is to prove the global existence of solutions to problem (1.1)—(1.4)
for non-small data.

Since we do not know how to show the existence in a general case we restrict
our considerations to the spherically symmetric case. We assume that {2 is a ball
Bpr with radius R centered at the origin of the introduced Cartesian coordinates.
We introduce the spherical coordinates r, ¢, v by the relations

r1 =rcosesint, xy=rsinpsind, x3=rcosv.
With these coordinates we connect the orthonormal vectors
e, = (cos psint, sin p sin ¥, cos ),
ey = (cos pcos ¥, sin p cos ¥, — sinv}),
e, = (—sinp, cos ¢, 0).

Then we define u, = u-€,, uy = U - €y, Up = U~ €y, Erp = &+ € - € = Upy,
oo = & 99 = 2. Since the spherically symmetric case is considered we have
P o C90 - p y sy
Uy = Uy, = 0.
To simplify the notation we introduce

W = U (1.5)

Assuming ¢ = 1 and transforming equations (1.1) to the spherical coordinates
we obtain

1 1
W = ﬁ(gr’r’rg),r - ;(0-1919 + O-WP) + fT‘7 (16)
where
oF n oF n oF n (1.7)
Opr = Errty Oy = —— 9oty  Opp = Evpit- :
D HoErrt 99 Dzvg HoE9v ¢ oo aew HOE pip,t
Let us introduce the quantity
F(e) = ¢(w,,n) (1.8)
where n = . Then (1.6) takes the form
1 81b 2 1 31& W ¢
= — , ——| = — 1.9
W it r2[(8w7r+'u0w’ t)T]T 7“(377—’_'“0 , (1.9)

and in view of (1.3) we have the initial conditions
W= = wo, Wyli=o = wr, (1.10)

and in view of (1.2), (1.7) the boundary condition

0
(aru/ibm =+ /’LOw,rt)

=0, (1.11)
SR
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where Sgp = 0Bp.
In this paper we also consider the Dirichlet boundary condition

wls, = 0. (1.12)

To formulate the main results of this paper we need

Assumptions. Let us introduce the notation 0 = w,, n = *.
L (d,m) = ¥i(9) + a2(n)
2. There exist positive constants oy, oo, (31, B2 such that
2 2
Py P ’% 0

it} < Zre
8192 = Qq, 8772 - _61|79’7 ‘an

< Baln.

3. wo € H2,(0,R), w € H2, (0,R), iy € (1,1 +5)
4. wy € Ly, (0, R), wo € H) (0, R), 2 € (0,2)
5. wy € Ly, (0,R), wo € H), (0,R), us € (0, 3).
Main Theorem. Let Assumptions 1-3 hold. Let Assumption 4 for ps = p1 —1

be satisfied. Then there exists a solution to problem (1.9), (1.10), (1.12) such
that

wy € B(0,T; Ly, (0,R)), w, € B(0,T;H,, (0,R)), w, € B(0,T;H: (0,R))
wy € Ly(0,T;H, (0,R)), wy € Ly(0,T5H), _1(0,R)).

Let Assumption b be additionally satisfied. Then

we Lo ((0,R) x (0,7)), we B(o,T;O%—%(o, R)),

we Ly (O,T; C%(O,T)) Be (1 ) w, € Ly (O,T; C%’%(O,R))

, 2/13 +1

Our paper is organized as follows. In the introduction the formulation
of the considered problem and the main results were presented. In Section 2
the notation is introduced. Mainly, we define anisotropic Sobolev spaces with
weights. Section 3 is devoted to the proof of energy type estimates to solutions
of problem (1.9), (1.10), (1.12).

In Section 4 the existence of the global solution for non-small data of the
problem (1.9), (1.10), (1.12) is proved. Finally Section 5 contains some con-
cluding remarks.

2. Notation and auxiliary results

By ¢ we denote the generic constant which changes from formula to formula.
By ¢(0), o > 0, we denote a generic function which is always positive and
increasing.
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We replace forms right-hand side (left-hand side) by the abbreviation r.h.s.
(Lh.s.). We mark w; = Qw, w, = 0,w and so on. By B(I) we denote the space
of bounded functions on the interval I. By HE(0,R), p € R, k € NU {0} we
denote a weighted Sobolev space with the finite norm

[ullz0.8) = (Z/‘aa |2p2u—klal) g )

By C*(I), a € (0,1) we denote the Holder space with the finite norm

u(r’) = u(r")|

|7_/ _ 7-//|oc

|lullcory = sup |u(7)| + sup
Tel ' el

Next we recall the Hardy inequality (see [2, Chapter 1, Section 2.15])

o0 o0

P
/Tp(“_l)]ﬂpdr < /rp”\f7r|pd7", (2.1)
0

0

1
17_“

where % + ]% =1, € Rand p # z%' The inequality holds also for functions
with compact support. Assuming that suppf C [0, R] we introduce F(x) =
f:o f(y)dy and repeat the proof from [2, Chapter 1, Section 2.15]. From [12,
Chapter 2, Section 3] we have the imbedding

iz, 0.0) < e(lullmorizaomy + sliao o) — (22)

where Il) + % > %
Finally we consider the problem
Ut — Uypr = f7
ul1=0 = o, (2.3)
ulr:R =0.

To examine nonstationary problems (2.3) we need anisotropic weighted Sobolev
spaces V.21((0, R) x (0,T)), p € (1,00), v € R, of functions with the finite norm

T R 1
[T ( 3 //\aaaau‘prpy 2 tatoa) g )
a+2a<20 0

Spaces V;fy((), R) appropriate for elliptic problems were introduced in [13]. The
following result is valid.
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Lemma 2.1. Let us assume that f € L,,((0,R) x (0,T)), uy € ‘/},2,;;(0, R).
Then there exists a solution to problem (2.3) such that u € V.'((0, R) x (0,T))
and

lullvza 0.8)x0,1)) <C<||f||L,,V ((0,R)x (0,1 + ||| Q(OR)>. (2.4)

pl/

In the case of elliptic equations such result was proved in [11] for p = 2 and in
[13] for any p € (1,00). The weighted Sobolev spaces with fractional derivatives
are introduced in [13]. In the nonstationary case, Lemma 2.1 follows from [19]
in the case p = 2. For the general p, Lemma 2.1 results from considerations in
[17-19].

Finally, we introduce spaces used in this paper. We shall define them by
introducing finite norms:

1. Besov space Bl (Bg),l € Ry, p € (1,00), v € R,

lullsy ) = lull g )+ Nl

where [I] is the integer part of [,

[ [t =t N
0 0

where a € (0, 1) and

||U||Vp’fy(BR) = (Z/Wu |prpu k+o¢)dr>

a<k

2. B(Bgr x (0,T)) is the space of bounded functions.
3. C*(Bg), C“*(Bg x [0,T]), a, B € (0,1), are the Holder spaces with the
finite norms

[u(ry) — u(ry)|

||U||Ca(BR) = HUHB(BR) + sup

r1,r2€BR |T1 - 7“2|O‘
ulry t) —u TQ’t
lullgeos (Brxi0.my = HUHB(BRx[oﬂ)ﬂL sup  sup [u(ry,?) (a )|
t€[0,7] r1,r2€BR ’7’1 - 7“2‘
t _ 2(/_//
+ sup  sup [u(r, /) Z/f(g’ )|
reBg t' " €[0,T) |t/ — "]

4. By LL(0,T;WF(Bg)), I,k € NU{0}, p,q € [1, 00] we denote a space with
finite norm H3£U||Lq(o,T;W;(BR))~
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Let B ={r € R: r < R} and BL, = Br x (0,T). We use the Sobolev-
Slobodetski spaces W;i’ (BL), 1 € Ry, p € (1,00) with the finite norm

N~

ollyos = | 32 [ or0purara
a+2a< [Z]BT

|8f‘,6f araﬁaa | / /
+ > // P dr'dr’ dt

a+2a=[l] Br Br

[ 10008 — oeogulr
Py // et dt'dt" dr

/
a+2a= Z]B ’t

In the case of [, % integer the last two terms in the above norm disappear.
Moreover, B}, ((Br) = B.(Bg). Similarly as B(Bg) we define the space
B(0,T) introducing the finite norm

|8t, t,,u(t”) P
lelsgoy = lelhygio ) + // O

For noninteger [ we have

HUHW},(BR) = HUHB;,(BR), HUHW},(O,T) = HUHB;,(O,T)-

Similar equivalence we have for the weighted spaces.

3. Estimates

First, we have
Lemma 3.1. Let us assume that

1
/ {5111% + w(wom, %)] ridr = ¢ < 00 (3.1)

R

Then, solutions to problems (1.9)—(1.11) and (1.9), (1.10), (1.12) satisfy

1, w 2 w3\
w3+ Y|l w,,— | |r'dr+ wrt—l—— redrdt’
12 T 72

Br Bt

1 Wo
:/ _5“’% + (wﬂ,r; 7)}7’2@“ = 0(2).

(3.2)
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Proof. Multiplying (1.9) by w,r? and integrating over By yields

1d o 5 "
2dt / w?tr2dr " / (&jfr * Mow’”) werdr + / (a—:f + Ho—t)wtrdr =0,

Br Br Br

where the boundary condition either (1.11) or (1.12) were used. Hence

d 1 w w?
7 [ w’ +w(wr,?)]r2dr+uo/(wrt—l—r—) rdr = 0. (3.3)

Br Br
Integrating (3.3) with respect to time and using the initial condition (1.10)
implies (3.2). This concludes the proof. O

In the proof of Lemma 3.1 the crucial step is integration by parts which can
be performed under both boundary conditions (1.11) and (1.12).

Problems (1.9)-(1.11) and (1.9), (1.10), (1.12) are considered in ball Bg,
so the energy estimate (3.2) suggests that weighted Sobolev spaces are natu-
ral to treat them. This is connected with the fact that the transformation of
the original problems (1.1)—(1.3) to the spherically symmetric cases generates
the weight 72 which is the Jacobian of the mapping from the Cartesian to the
spherical coordinates. This also suggests an existence of some singularity of
solutions at the origin of coordinates. Therefore we shall use weighted Sobolev
spaces to control the behaviour of solutions to problems (1.9)—(1.11) and (1.9),
(1.10), (1.12) at the origin of coordinates. We shall restrict our considerations
to the Lo-approach because energy type estimates are very natural for prob-
lems (1.9)—(1.11) and (1.9), (1.10), (1.12). First we shall derive an analogue of
Lemma 3.1 in the case of weighted Sobolev spaces.

Lemma 3.2. Let us assume that ¥ = w,, n =
constants. Assume

Y(0,m) = 0i(0) +da(n), i(0) =, a(n) = aan?, (3.4)

0 0
Sl <mion |52 < s 35

Yy aq, ao, [, (o are positive

r’

3
wy € Ly, (0,R), wo € Hy(0,R), pe (0, 5) : (3.6)

Then, for solutions to problems (1.9)—(1.11) and (1.9), (1.10), (1.12), the fol-
lowing estimate holds

t R t R

R

1
/(§wi+a1wi+a2w2r_2> r2“d7“+%//wi,tr%drdt'+//w?tr2“_2drdt'
0 00 00

" (3.7)
(R, p,t /( w1+a1w0T+a2w§T Q)TQ“dr =c
0
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where | € (0, %)

Proof. Multiplying (1.9) by wr* and integrating over Bp we obtain

R R

1
/w,ttw,tT%dT +/(g:§+/iow rt) r2(r* 2w, pdr +/(;g—§§+uowt) wyr?dr =0.
0 0 0

Performing calculations imply

g F R
1
§d_/ Q“d / 79,5 2“d7’—|—/—mr2"d7’
0 0
—l—uo/wyrtrz“dr—l—uo/wirz“er (3.8)
0 0

R

R
—(2u—2)p /g—zﬁw,ﬂju Yar — (2 — Q)uo/wwtw,ﬂg“_ld?“.
0

0

In view of assumption (3.4) we have

R R R
0 d 0 d
/aig rPtdr = 5/%(19)7"2“6[7“, /—alsn,trm‘dr = E/wz(n)ﬁ“dr.
0 0 0 0

Moreover, the first integral on the r.h.s. of (3.8) can be estimated by

R R
2122
1241 — 2|ﬁl/|w | Jw¢|r?*dr < %/w%rqudr—l— 20 = w5y /wir“dr
9 61 b
0

0

and the second equals

—(n— 1)#0/8rw§7"2“_1d?"

R
=—(u—1) uo/ﬁ 2r2t) dr+(u—1)(2,u—l)po/wiTQ"_ZdrEh.
0

The first integral in I equals

(1 — ) po [w?t(R)RM*l — lliI(l) w?t(r)’r’m“l} (3.9)
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and the second must be absorbed by the last term on the Lh.s. of (3.8). For
this purpose we need

1 3—v9 -4 3++v9—4

In view of the above considerations we obtain from (3.8) the inequality

R R
% [ [3et 40+ iam]r ”drwo/ ¥
0
R
—l—uo[l—%sl—(u 2u—1]/w 202 e (3.11)
0

LAmnS B 151 /w Jrdr + (1—p) po [w? (R)R* 1 — lim w? (r)r?# 1.
61041 r—0 ’

For 1 < %, the coefficient near the last integral on the Lh.s. of (3.11) equals
po[1 — 31+ (1 — p)(1 — 2p)], so it is positive for e; sufficiently small without
other restrictions on p.

For 1 < 1 and because w?(r)r?~" is positive for any r > 0 we can omit the
last term in the second expression on the r.h.s. of (3.11).

For p > 1, the first term in the second expression on the r.h.s. of (3.11) can
be omitted. In this case equality (3.2) implies that w, behaves as r~= for € < 3
for small . Then lim,_, w?t(r)rm“l < lim,_gr~ 2721 = 0 because p > 1.

Finally for &1 close to 0 restriction (3.10) implies

3
O<p< 7 (3.12)

Integrating (3.11) with respect to time and using assumptions (3.5) we obtain

R
1
/<§wi+a1w?r+a2w2r_2) r2tdr
0
t R t R
+ ,uo//witﬂ“drdt’%— ul//w?tr%_erdt' (3.13)
00 00

¢ R
1
<c(t) {/wi(R)Rz“_ldt’—k/(iwi(O)—i—alw’ZT(O)—l—ang(O)r_Z) r2“dr} ,
0 0



Global Non-Small Data Existence 397

where y = po [1 — 3e1 + (1 — p)(2u — 1)]. We estimate the first integral on
the r.h.s. of (3.13) by

/1t (R)dt’ <//R(€2w”+c< ) )drdt’<c //<€2wrt+c( ) i)?j“drdt’.

0 0 R
2

Hence for g9 sufficiently small we obtain from (3.13) the inequality

R
/( w —l—oqw + apw?r 2>r2“dr
0

t t

R R
+ %//w?rtrzudrdt’—l—ul//wir%2d’rdt’
00 00

R
/ w’ r*drdt’
0

1
<§w2t(0) + oqw’(0) + ang(O)r_Q) r2dr,

(3.14)

+ c(t)

o\:o O\“

Finally, applying the Gronwall inequality we obtain from (3.14) estimate (3.7).
This concludes the proof. [l

Next we have:

Lemma 3.3. Let us assume that

P P

33@/)2
02 = v B3 > (o,

Py
03

1

W Sﬁh

< Co (315)

=~ Cy,

N,V € L3%M((O, R) x (0,7)), w4(0)=w; € Ly, 1(0, R),
W, (0) =wi, € Ly ,(0,R), wyu(0) € Ly, (0,R) and

2 2o 2)-2)

Then solutions to (1.9), (1.10) and either (1.11) or (1.12) satisfy the inequalities:

(3.16)
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For € (0,%),
t R

R
/ (i + w?, + wir =) rdr + po / / w? rdrdt!
00

0
t R t R
+uo//witr2“2drdt/ < c(t)[// ([94>r%" + [naPr) drdt’ (3.17)
00 00
R
40)+ 03, 0) + 0 )

+
o\
&

t R
e ey e

0 O

St~

t R

[ /|q9t|3+|nt| V2t drd’ (3.18)
0

R

0/

+ )+ w?tr(O) + wi(O)r‘z)TQ“dr] )

Proof. Differentiating (1.9) with respect to ¢, multiplying the result by w ;r?",
integrating over B and using boundary conditions either (1.11) or (1.12) we ob-

tain 5 fo ttTZ#dr""fo (gﬂ% et pow e )7 (P, tt) dr""foR g%??,m,tﬂ”dw

Lo fo w,r**~2dr = 0. Performing calculations it follows

0v?

N | —
Sl
D\:u

R
82
w?ttrm‘dr + / —wﬂt (ﬂ,ttrm‘ + (2p — 2)w7ttr2“’1)dr
0

(w?mrz“ + (2 — 2)w7rttw7tt7“2“_1)dr

+
5
O\:u

R
5 47, 4t7 “dr+u0/ ttTQ”“ 2dr
0

+
o\:u
Q;‘ Q
<ol
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Continuing, we have

R
0% O O 0
/ tt’l“Qud?"—i— /W& QMd + = /a 5 atﬁtTQMdT
0

0 0

DN | —
Q.lgl

R
+#O/ rttr dT+N0/ Mﬂu *dr
0

0
R
251 0% 2u—1
= —(2u—2)uo /wmttw,ttr = dr — (2 — 2) / Ww’,,tw,ttr = dr.
0 0

Continuing, we get

R
1d a%l ? by 5\ o
5@ (U) t + == 8192 + 87]2 T]’t)?" Hdr

R
+ Lo mr Hdr + po / ttTQ" 2dr

(3.19)

[en]
= O\m

— aagglﬁirm‘dr /8 Vs 3 r2hdy

o

B R
92
— (21 = 2) 1o / W rpw ™ dr — (2p — 2) _a:;; W w2,
0 0

Now we estimate the particular terms from the r.h.s. of (3.19). The third term
on the r.h.s. of (3.19) equals

—(n—1) uo/ ttr2“ Ydr

R
:__1/
0

where the first integral equals

—(p— 1) o < L (R)R* 1 hmwtt(r)rz“’l) = 1.

r—0

Q>|Q_)

R
ttrQ“ Ddr + (u—1)(2u — 1) Mo/ ttr2” 2dr,
0

For 1 < 1 we have
I < (1= ppowi(R) R~ = I,
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but for u > 1 it follows that
I < (= Dpro lim 'y (r)r =1 = I

Looking for such solutions to problems (1.9), (1.10) with either (1.11) or (1.12)
that the last integral on the Lh.s. of (3.19) is finite we obtain that I3 = 0.

Applying the Holder and the Young inequalities to the last term on the
r.hs. of (3.19) we see that it is bounded by

R

R

_ w? [ 0% |?

51/w,2tt7‘2“ 2dr+ /‘ 50
0

0

2p
Ttr dr.

Hence, in view of (3.15), the second integral is estimated by 2% e L 52 ORwQTtrQMdﬁ

In view of (3.15) and in the case p < 1, from (3.19), we obtain the inequality

R

1d
2dt (w?tt + ¢1’§§wir + ¢2,nn77i)7“2“d7“ + to / w?rttTQMdr
’ 0
R
+ o1+ (1 —p)(2p —1) — &y / ttTQM 2dr (3.20)

R
</|19 *r 2“dr+/|77 °r 2“dr> + cw’y (R, t) + /w?ﬁrQ“dr.
0

To guarantee that the coefficient near the last integral on the L.h.s. is positive
we need 1+ (1 — u)(2u — 1) — g1 > 0 which implies that

3—\/9—881 3+\/9—8€1

1 ChET

Since &1 can be chosen arbitrary small we see that (3.21) holds for p € (0, 2).

Let us consider the case ¢ > 1. Then condition (3.21) is too restrictive.

To relax the condition we consider the last two terms on the Lh.s. of (3.19)
together. Applying the Hardy inequality (see Notation)

N R R
(u - 5) /u2r2“_2dr < /uirz“dr
0 0

for functions vanishing for » > R, we estimate the last two terms on the 1.h.s. of
(3.19) from below by po[1+ (1 — p)(2u—1) + (5 — )2 —&1] fOR wir?2dr. To
get any estimate from (3.19) we need

(3.21)

1 2 ) 1
I+(1—p)(2u—1)+ 5 H —e1>0 = pu —2u+51—£—1<0,
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SO

2+ /5 — 4e; <2+¢3
2 2

Then from (3.19) we obtain the inequality for g > 1 and the Dirichlet problem

l<p< (3.22)

R

R R
1d
5%/ (W 1,00W 5+ P )7+ g / w?,rdr+ o / wir*tdr
0 0

0 . (3.23)

R
< c(/h? Prefdr+ [ |ng’r 2“dr) +c rt'rQ“dr
0 0

In the case of the Neumann problem (1.9)—(1.11) we apply the extension theo-
rem to estimate the last but one term on the r.h.s. of (3.20) by

R

R R R
/wmdr +c < > /witdr < e9¢e(R / Tttr%dr +c ( ) / ttﬂudr
€9
R 0
2

0

vl

Then for sufficiently small e5 we obtain from (3.20) the inequality

R
1d
- / (tht + 77017191911)2” + ¢2,7m’f]2t)7’2ud7“
2 dt ’ ’ )
0
R R
+ uo/ whr®dr + po(1+ (1= 1) (20 — 1) — & / St dr (3.24)
0 0

R

<C</|19 ’3 2“d7“+/\77t|3 2ud7~> +c(R / tt7’2“dr+0/w,2rt7"2“dr.
0

0

Integrating (3.23) and (3.24) with respect to time and applying the Gronwall
lemma we obtain (3.17) and (3.18). This concludes the proof. O

To estimate the first integral on the r.h.s. of (3.17) and (3.18) we use the
Pego transformation

r

p(ﬁ t) = /wt(r/a Zf)T'/2d7“/, Q(ra t) = HoW r (7’, t)rz - p(h t) (325)
0

Next we have
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Lemma 3.4. Assume w s sufficiently reqular. Assume that w, w, vanish at
r = 0. Then functions p and q are solutions to the problems

0 0
Dt — HoDrr = —1/}7“2 — / (—w + ,uo—) rdr — 2uow 4r (3.26)
0

ow, on
Pli=o = /wl(T)T2dT = Do (3.27)
0
R
PR = [wilrtdr, p(R.D)] < Ric (3.28)
0
p,rlr:R - w,t(R7 t)R2 (329)
and
o, [ (0w
0= =5 +/r(an + Ho~ )dr (3.30)
qli=0 = Mowo,r?”2 — /wl(r)r2dr = qo. (3.31)

0

Proof. First we find an equation for p. We calculate

T

Pt — HoPrr = /w7tt7“2d7” — Ho ( / w tr2d7”)
0
[/ o
B /{7’_2 {(8 ”)T < No_t)}rsz —Mo(w,tTQ),r
0

/<— +Mo—)7“d7” — oW 7 — 21w 4T
r=0
0

+:u0w rtr
r=0

Now we examine the behaviour of the first two terms from the r.h.s. First we

examine the second term. From (3.7) we have

_ o,

= r
ow,

R

3
/witrm‘dr <oo foraa.te(0,7) and pe€ (O, 5)
0

Hence w4 ~ r® with v > — (% + ,u). Then we see that w,rtr2|r:0 =0.



Global Non-Small Data Existence 403

In view of the assumptions of the lemma we have a ’ = 0. Then the
equation for p takes the form (3.26). From (3.25) and (1 10) we have (3.27).
Finally, from (3.25) it follows p(R,t) = fOR w (7, t)ridr, so

R

R 1
/ (r,t)|r?dr < R/ |w(r, t)r|dr < < R: </wir2dr> < Ricl.
0

0

Ol

Hence (3.28) is proved.

It seems that the Neumann boundary condition for the parabolic equation
(3.26) is more convenient than the Dirichlet boundary condition (3.28). There-
fore, we formulate it in the form (3.29).

From the definition of ¢ and the assumptions of the lemma we have

T

2 2 2
Gt = oW T~ — Pt = LW peT~ — / wrdr
0

T a r a
= How 1 —/ v + powgy 77| dr+ /r 44 + ,uo% dr
awm . 877 r
0 ’ 0

. (3.32)
0 = 0
= — ¢ ’[“2 -+ ,U,OwJ«tTZ + /T<—¢ + M0ﬂ>d7’
8w7T r=0 r=0 a,r/
0
oY r2 oY Wy
= - - d
“ow, " / T(an s '
Finally we calculate
qli=0 = Mowo,rT2 — Pli=o = ,uowo,r?“2 - /wl(r)rzdr = qo- (3.33)

0

From (3.32) and (3.33) we obtain (3.30) and (3.31), respectively. This concludes
the proof. [l

Lemma 3.5. Let the assumptions of Lemma 3.2 be satisfied. Let v < % + %
o>1,0 >0 but arbitrary small,

BR,RO = {’f‘ €Bg: Ry< T‘}.
Then solutions to problem (3.26), (3.27), (3.29) satisfy

2
Il gy < cllwsrlln, g + con + clellB;-é B

1 (3.34)
)+C -~ Hw,tHLz(BgRO)

+ €1Hw,tHW1+5,g+g(BT
o R,Rg
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and solutions to problem (3.30), (3.31) are bounded by
laellz, _n) < C”wﬂ“rang,fu(Bg) + cc, (3.35)

where ¢y is introduced in (3.7).

Proof. For solutions to problem (3.26), (3.27), (3.29) we have (see Lemma 2.1)

Wbz, gy < (Il oy | [Cholstudyar]
0 Lo-v(BR) (3.36)

el gyl g, HloR t)!\w;;gm).

o,—

The first norm on the r.h.s. of (3.36) equals
(/ |w7r|"r(2_”)"drdt) B (3.37)
Bf

By the Hoélder inequality the second integral on the r.h.s. of (3.36) is estimated

by
([IGf) (oo
BY, 0 0

where the last inequality holds in virtue of Lemma 3.2 and under assumption
v F+rv< % + %, where v, can be chosen arbitrary small.
We express the third integral on the r.h.s. of (3.36) in the form

1
(/]w,tl"r(l_”)"drdt> = Ji.
B

Assuming v < 1, setting 1 — v = p > 0 and recalling the imbedding (2.2) and
Lemma 3.2 we obtain

1
o

r‘”’drdt) <eccp,  (3.38)

g

NI

T

J1 < csup/ | (wrt) o) *dr + c//]V(wir“)Fdrdt <cc,
t
Br

0 Bgr

where o < 6.
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Using (3.27) the last but one term on the r.h.s. of (3.36) equals

120l -2

v
2

H/w1 2d’r
B. %(Br)
- 1
— </‘/w1(r’)rl2dr’ r””dr)
0

(/R }rl 7 V' 2dr’ — 1570y, Jo 2 wi(r r’2dr"a

2

drq d?"g)

|7”1
=L+ I,

where o > 2. First we examine

[ [ lwn(r)rd™ = wi(ra)rd | :

B wi(ry)ry” " —wi(ra)ry 7|7 ’

[2—<// |7“1—7’2"771 d’l"ld’l"g)
0 0

R R 1

i (1)1 — wy (ra)r |7 -
S (// ”[“1 —7"2|‘7*1 dTldTQ

0

0
[ [ 2)
W1 7"2 7‘2 —7135)7
* (// |7“1—T’2|” ! drldr2>
0 0

< |lun

Q=

1 + cllw
3 5y w1z, (Br)-

B,

By the Holder inequality we have

R T
[1§(/[(/ (2+V0‘ ) (/|"LU1 1uadr)
0 0
< C”leLa,_V(BR)(/T(2+”)‘7 +1,’,_—O'Vd,r) = I{,
0

where 0’ = %5 Performing calculations, we have I < c|lwi ||z, _,(Bg) for o > 1.
By the inverse trace theorem the last term on the r.h.s. of (3.36) is estimated
by

q
al=

] r_"”dr)

[w (Rl

1_
Wz 22(0,T)

1
st + (3] Il 39

< ellw
L = H ;tHW;-&-é .
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where > 0 but arbitrary small and Br g, = {r € Bg: Ry < r < R}. Using
the above estimates in the r.h.s. of (3.36) implies (3.34). Finally we calculate

LU,V(B§)>

so the r.h.s. is bounded by expressions from (3.37) and (3.38). This implies
(3.35) and concludes the proof. O

lacll, om < c(uw,w?nLa,V(Bg) ; H [+ uelyin
0

Corollary 3.6. Let the assumptions of Lemma 3.5 be satisfied. Then (3.25)
and (3.34), (3.35) imply

lwir e, iop) < clladle, g + Ipelz,, mm)
< elwsr®lle, g +elwell isgeg g (3.40)
o R,Rg .

1
+c (g) Hw,t”Lz(BgRo) + ccs,

B

where c3 = ¢ + |lwi]| ;2 . Employing (3.7) to the last but one term on the
o7 (Br
r.h.s. of (3.40) yields

1
va’“tTQHLU,_V(B@ < CHw:’“r2‘|La,—v(B§)+81”w’tHWj”’%*%(BgRO)+C<g_1) cg, (3.41)

1,1
whereu<2+o.

Remark 3.7. In the case of the Dirichlet boundary condition (1.12), the terms
with 1 in (3.41) vanish. Hence, in this case, (3.41) is replaced by

lwrr® e, gy < cllwer®le, ) + ccs. (3.42)

Now we estimate the first integral on the r.h.s. of (3.18). Let 1y be such
that 2u = 3vy. Then the integral equals

t R
w
] (e
T
0 O

where the Hardy inequality was used.
We estimate (3.43) by using (3.42) with 0 = 3, v =2 — 1. Since v < 2 we
have that 1o > £ and p = 315 > . Therefore from (3.18), (3.42), (3.43) and in

5 t R
)7’3”°d7"dt < c// [w | r*0drdt, (3.43)
00
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the case of the Dirichlet condition (1.12) we obtain the inequality for u > LZL
R t R
/(wit + Wi, + wir?)rPtdr + g / /(w?rtt + wir ) drdt’

0
t R

R
c// |w . [Pr#drdt + cc3 + /(wit(O) +w, (0) + wi(0)r~2)r*dr - (3.44)
0 0

0

t R
c//|wyr|3r2“drdt—l—cc4.
0

0

IN

From now we are going to obtain such inequalities that the first integral on
the r.h.s. of (3.44) could be absorbed. Then we obtain an estimate. For this
purpose we need to prove a series of lemmas.

Lemma 3.8. Let the assumptions of Lemma 3.2 be satisfied for u = v,
v e (0, %) Assume that

3
W € Lay((0, R)x(0,7)), wy € H;(O,R), w=1l+v, ve (0, 5). (3.45)

Then the following inequality holds
R

t R
// ttTZ'LLd’f’dt/ 20/ rt"‘wt’f’ 2#d7‘
0

0
t R

R
1
< 51//wrttr2“drdt Jrc(8 ) c + % (w?4(0) + w3 (0)r—?)r*dr (3.46)
1
0 0

t R .
551//wrttr2“d7"dt +C(5 )cg,
1
0

where p=1+v, v e (0,2) and g, € (0,1).
Proof. Multiplying (1.9) by w4 r?* and integrating over By yields

R R
0
/thtTQ“dr +/ v —— T oW mﬁ“dr
0v
0
i 0
+(2u —2) /( + pow Tt)wttrQ“ Ldr +/ ( ¢—|—,u0£)wtt7”2“d7“
r\ On T
0 0

(3.47)

= 0.
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Using that ‘619‘ < clw,|,

we obtain from (3.47) the inequality
R ; R R
/w?ttrz“dr%— %%/w?ﬁrmdr%— % t/wztrm‘_zdr
0 0 0
R

R
1
<é /w?rttTQIth + C(;)/ rPdr + €5
1
0 0

Q.l&

2p
ttr dr

O\:u

R R . R
( )/ (W} +w?, 2“_2dT+53/w2tt7“2“d7"+0(—>/ e
’ g T
0 0 9
Choosing e, and €3 sufficiently small we get
R p R
/wttTQ”dT + B (w2, + wir=?)rdr
2 dt ’ ’

" (3.48)

R

R R ,
1 w
S 81/’(1) ,,.ttTZNdT' + C(g )/w?TTZMdT + C/ (w?rt + w?r + r_z) 7,2;172617,.
1
0 0

0

Integrating (3.48) with respect to time, assuming that p = 14+ v, v € (0, %)

and using (3.7) for 1 = v we obtain (3.46). This concludes the proof. O
Lemma 3.9. Let the assumptions of Lemma 3.2 be satisfied. Let us assume
that N

o >« ¢ < c|n|

99> = |0 ’

W 1y € LQ}M((O, R) (O,T)), Wo,rr € LQ,#(O, R), (349)

3
u=v+1, ve (0,5)

Then the following inequality for solutions to problem (1.9), (1.10), (1.12) is

valid
/t

0

R
w?, i drdt’ + % / w?, P dr

0

T Ot~

IN

R
c/ wir*tdrdt’ + ot + %/ yr#dr (3.50)

0
t

R
22 / 2
c//wﬁr Fdrdt" + ccg,
0

0

R
0

where p=v+1, v € (0,3) and ¢; is the constant from (3.7).
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Proof. Multiplying (1.9) by w,..7* and integrating over Br we obtain

R R R
1 1
/w,ttw,rrr2“d7‘ :/ Kgi{; +How rt) 7“2} w,rﬂ2“dr—/(r g:[; +u0&) MTQ“dr.
0 0 2 0

Continuing, we have

Y, 2
/(8’[92 T + HoW rrtW 7"(‘) r 'udr

0

R R R
:/w,ttw,rTT2MdT +/< g:g + HoWw rt) 7'7'7’2“71d7’ +/<g_7;z; + ,uw,t> w,rrrfj'uildr.
0

0 0

Using that 2% > oy, ‘8—” < c|¥|, ! ‘ < c|n| we get

8192

o

R
d
2 p2u g Ho @ r2d
W, rrar + 5 d/ r
0

<&

O\ZU O\:U

R R
w?, P dr + c( ) / Sridr + c/(w?r + Wk, + wh + w2 dr,
0

Integrating the result with respect to time, assuming that ¢, is sufficiently small,
using that u = 1+ v, v € (0, 2) and employing (3.7) with © = v we obtain

(3.50). This concludes the proof. O
From (3.46) and (3.50) we derive the inequality
R
//wtt—irw T 2“drdt+'[;0/(wrt+ww,~l—wtr )2 dy
0 (3.51)

// Tttrmdrdt +c( )07,

where 1 = 14+ v, v € (0,2) and ¢; = ¢5 + ¢6. From (3.18) and (3.51) for
sufficiently small £, we obtain
R

t
/(wit+ w?ﬁ—i— w?ﬂ—i— w?tr_2)r2“dr —l—//(witt—l— w?r,,+ witr_2)r2“drdt’

0 00
. (3.52)

/ (9.5 + eyt drdt + cc2,
0
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where = 1+v, v € (0,3) and & = 2+ [ (w},(0) +w, (0) +w} (0)r=2)r*dr.

Now we estimate the integral on the r.h.s. of (3.52). By the Hardy inequality
we have

t

T R R
//|w’t]3r2“_3d7“dt’ < c//|w,rt|3r2“drdt'.
00 00

Hence the integral on the r.h.s. of (3.52) is bounded by c [; fOR w4 [3r2#drdt.
Inequality (3.41) in the case of the Dirichlet problem implies

t R t R

//\w}rt|3r6_3”drdt' < c//|wvr|37"6_3”drdt'—l—cc§, (3.53)
0 0 00

where v < 2. Since w,(r,t) = fot W (1, t)dt +w,(r,0), from (3.53) we obtain
the inequality

t t/

t R R
//]w,rt/|3r63”drdt' < c///] v () PA O drdt + ccg(t),  (3.54)
0 0 0 0

where ¢y(t) is an increasing function of . Hence the Gronwall inequality implies

t R
// [w o |r® ¥ drdt’ < ccjy(t), (3.55)
00

where ¢19(t) is an increasing function of . Summarizing the above considera-
tions yields

Lemma 3.10. Let us assume that

0%y 01y

3¢1
BYE 2> g, B3 > Qo,

V(0,m) = 1 (9)+12(n),

< Buld). ‘8%

< Balnl,

where ay, ag, B1, (2 are positive constants, wy € H.(0,R), wy € H:(0,R),
p€ (1,1+2). Then, for solutions of the Dirichlet problem (1.9), (1.10), (1.12),
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the following a priori estimate holds

2 2 2 2 -2\ 2
(w,tt T Wt W, WL Jrtdr

O\DU

t R

+ // Wy +ww +wtt7" r2#drdt!
) (3.56)

< c(nwon%@mﬂ) T T Y
R

+ / (w3 (0) + w?,(0) + w?t(O)M)rQMdr> :

0
where | € (1, 1+ %)

Now we derive some local properties of solutions to problem (1.9), (1.10),
(1.12).

Lemma 3.11. Let the assumptions of Lemma 3.2 be satisfied. Then the follow-
ing estimates hold

O [ vy (% (3.57)
w(r ——c — .
=T K 5 )0
sow € B(Bgr x (0,T)).
1
1wl o e t=rrp,y) = €C10 nel05). (358
1
10l -2y < 61 ue (0,§>, (3.59)
[Jwll < 1< f<t e (0,2 (3.60)
w - cC — 1. .
LB(O,R;C%(O,T)) = 2u+1’ # 2
Proof. From (3.7) we have |w(r,t)| = | [pw,(r,t)dr| = | [pr Fw,rtdr| <
1

1 1
(fOR r_2“dr)2(f0R 2“dr)2 < \/Lcl, wE (0 3). Hence (3.57) holds.
Next we calculate w(1',t) —w,(r",t) = |, w,trdr. Hence

,r,/

1
1—2u

1
lw(r' 1) —w (r" )] < ‘(r’)l_Q“ — (r”)l_Q"‘ 2 w?rtrg”dr
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From the above inequality it follows

7'/

2 . 2n
/w’rtr dr|.

T/l

w4 (r',t) — w7t(r”,t)|2 < 1
|7”’ _ Tl/|1—2u - (1 _ 2:“)2

Taking supremum with respect to 7', r” € [0, R| and integrating the result with
respect to time yields
T

T
wa(r',t) — wa(r”, t)! 1

/dt sup T — dt tr2“dr < ﬁcf.

S warelon = (1 2u (1 —2p)

Since w(r,t) = [ w,(r, t)dr we obtain

RI-21\ 3 i 3
= (1 2 ) (/w?’"ﬁ“do ’
Iu 0

Taking the Ly norm with respect to time yields

.
lw(r,t)| = ’/T‘“w,rtr“dr
R

T T R

Hence (3.58) is proved.
To show (3.60) we consider

% ¢
lw(r, t")—w(r, t")| = ‘/w,tdt‘— ‘ /r‘“w,tr”dt’ < ]t’—t”|é
t” t//

t/ 1
B2
/|r‘“w,tr“\52dt'
t//

where [5% + 5—12 =1, By < 2. Taking the Lg, (0, R) norm of the above inequality
yields

L R
(/|w7"t rt”)|52dr> §|t'—t”\611(/dr
0
Continuing,
R 1
(/ lw(r,t") — t”)]ﬂ2 )ﬁz
@ dr
, t/l|ﬁ1
i B2
2
/|T_“w’tr“|’32dr>
0

1 R L

T
0/
T R % B3
</dt</d7‘r #6271) (/dr|w7t7““|’8272> > 7
0 0 0

t/ 1
B2
/ ]r“w,tr“][bdtD
t//

sup
t " €[0,T]
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where 711 + i = 1. We set [Bavo = 2 and we need that pfsy; < 1. Therefore
72:% and 71— . Hence pifs52 5 < land 1 < (B < and p € (0,%).
By (3.7) estimate (3 60) follows.

Finally, we show (3.59). Since w(r',t) —w(r",t) = f:/: w,dr we obtain

R
/ _ "
|w(r 7t) U}(T 7t)’ < /’U) 7“2“617" < 01’

|7“/ _ 7,//’172u

< 2
2pu+1

where 0 < p < £ and the last inequality follows from (3.7). Therefore (3.59) is
shown and Lemma 3.11 is proved. This concludes the proof. O

Finally, we derive some properties of the Pego functions p, ¢ (see (3.25)).

Remark 3.12. From (3.25) it follows that %3 = w,. Then (3.7) implies

t

R T R
sup/p?rrz(“_z)dr < ccy, //p?ﬂzm_mdr < ¢y, (3.61)
0 0 0

where p € (0,3).

Since p(0,t) = 0 we have

r
</
0

Setting v = 2—y and using the Hardy inequality [ p*r?=3dr < ¢ [ p2r2t=2dr
and (3.7) it follows

p(r)

8.2
TV

T 1
3
dr <r2 </(p?rr_2” +p27‘_2”_2)dr>
0

< ccy.

Remark 3.13. We have to emphasize that the final Lemma 3.10 does not hold
for solutions to the Neumann initial boundary value problem (1.9)-(1.11). This
follows from the fact that the regularity described by the Lh.s. of (3.56) is not
enough to absorb the first norm on the r.h.s. of (3.39). To absorb the norm we

need an estimate for
T R
2 21
//wm,,tr drdt.
0 0

This, however, needs many additional estimates.
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4. Existence

We prove the existence of solutions to problem (1.9), (1.10), (1.12) by the Fae-
do-Galerkin method (cf. [6, 12]).

We take the basis {¢x(r)} in W, (Bg), such that ¢,(R) = 0. We assume
additionally that (¢r, ¥1)r.(Bg) = Ok, Where (-, )1, (B, is the scalar product in
Ls(Bpg) and 6y is the Kronecker delta. Moreover, we assume that there exist
constants ¢ < oo, k € NU {0} such that

ok, k|l oo(Br) < Ch-

We are looking for the approximate solution w” (r,¢) in the form

N

wh(r,t) =) o (t)ex(r).

Then ¢} (t) are solutions to the following system of ordinary differential equa-
tions

/wﬁcpkﬁdr + /[al(r, wh, w];/) + uow%]gok,rﬁdr

Br Br
U}N
+ / {az(h w", w]qY)JrMo—’t} prrdr (4.1)
’ T
Br
—0,

where we introduced the notation

a1 =Ya,, a3 =1P,.

Repeating the proof of Lemma 3.2 we obtain the following estimate for the
approximate solution

t
1 N wh
[ gt (w2 )| far | [\w%r%'—’t
’ ’ T ’ r
B 0 Br

R

2
]rQ“dr <cf (4.2)
In view of the growth condition (3.15) estimate (4.2) implies
1 wN |?
/ §|w];]|2 + cl|wf¥|2 + co|—| | r**dr
Br
y (4.3)

+ ug/dt’/[lw%%% + [wh [Pr2# 2] dr

0 Bg

2
<c]

Y
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where p € (0,32). From (4.3) we have
wNe L1 (0,T;Ls,,(Br))NLoo(0,T:H,,(Bg))NLy(0, T;:H ) (Bg)) = M(Q"). (4.4)
In view of (4.4) we have that w" weakly-star converges in L (0,T; Lo ,(Bg)) N
Lo(0,T; H),(Br)) and weakly in Lj(0,T; H)(Bg)) to some w € M(QT).

To prove the existence of weak solutions to problem (1.9)—(1.11) we recall
that the Faedo-Galerkin approximations satisfy the following integral identities

/dt/wt gottTQ“dr+/wt o2 |dr|i=E

Br
dt a Tw w )+ w' 2R dr
/ / 1 Hatt i (4.5)
BoR
T N
w
+/d/|:G2TU} w )+uo—}<ptr2“dr
0 Bp

which holds for any function ¢ € Py, where Py = {¢: ¢ = Ek L de(t)pr(r)}.
Hence w” € Py.
We assume additionally that

as(r,w,w,) = ay(r,w)w, + ay(r,w). (4.6)
Since
d 2 2
E ¢<T7w7w,r)r Hdr = [al(r7w7w,7")w,7‘t + CLQ(Taw)w,T’)wt]r “dr
Br Bgr

we have that
a1:¢wr, wﬂ .

To pass to the limit in the integral identity (4 5) we assume the monotonicity
condition

/ fan(ry w0, ) —ar (ry w0, )] (w0, — )P drdi+f (o™ =gl sary) =0, (4.7)

T
BR

where f(7) is a continuous function for 7 > 0 and satisfying lim. o' f(eT) = 0
for any 7 > 0. The condition (4.7) is called the monotonicity condition.
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Condition (4.7) is a restriction on the considered viscoelasticity system be-
cause a; = 1, and 1) determines function F' (see (1.8)) which partially gener-
ate the stress tensor o (see (1.4)). Condition (4.7) can be satisfied in the case of
linear function a; with respect to the last argument and sufficiently nonlinear
function f. Moreover, we have to emphasize that the L., norms in M(Q7) can
be replaced by the norm sup in view of estimate (4.3). We hope that condition
(4.7) holds for more general a;.

We need the monotonicity condition because passing to the limit in (4.5)
for any function ¢ € Py we obtain in view of (4.4) the identity

T
—/dt/wtgottr tdr +/wtg0tfr dr]
0
T

Br Br
T (4.8)
—I—/dt/A—kumurt Ttr dr+/dt/( T, W, W, )—’—[LO—)SQtr”d’T‘
0 Bg

where we used (4.6) and A = limy_,o a1 (r, w?, wN ). Replacing ¢ by a sequence

o' € Py we can pass with N/ — oo, so we obtain that (4.8) holds for any
Y2 - UZOZI Pk

To show that A = a;(r,w,w,) we use the monotonicity condition. Express-
ing (4.5) with ¢ = w" —n, n € Py, yields

N 2.2 N 2 N, .2 t=T
/\w Mdr]t 0 —i—/wi nur Pdrdt — /wi 47 “dT’t:o

BE Br
+ /[al(r wh, wN) + uow’]ft](wﬁ — n,Tt)TQ“drdt
B (4.9)
wN
—i—/ (ag(r w™, wh) —i—ug—’;) (wh —n)r**drdt
/’a bl
B
=0.

N
,rt

Eliminating the term [, a1 (r, w™, w?)(wh, —n,)r*drdt in (4.7) by employing
R
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(4.9) we obtain (4.7) in the form

—/a1 (r, w™, n,r)(wfxt — )2 drdt —/|wff]2r2“dr\§zg
Br

Bj
—/wfn,ttrwdrdt +/wyn7tr2’*dr|€g — uo/wft(wyt — N )T drdt
BT B BT (4.10)

wN
—/ [ag(r, wh, w],Y) + Mor_’;} (w];[ —n4)r*tdrdt + f(||wN — 7]||M(QT))

Since w® weak-star converges in M(QT) to w € M(QT) we can pass to the
limit in (4.10). Hence we get

—/al(r, w, 1) (W, — nvrt)rQ”“det —/|w’t]2r2"d7“|§_0T —/wﬂgn’ttr%dr
Br

BT BT
+/w7tn7tr2#dr‘iig - /’LO/w,Tt (w,rt — 777”)7“2‘ud7’dt
Br BT, (4.11)

w
+/ {%(7”; w,w,) + MOT—;] (wy — e )rdrdt + f(||w - 77HM(QT))
Bg

> 0.

Replacing, in (4.8), ¢ by w—n with the help of explanation from [12, Chapter 5,
Section 6 between formulas (6.60) and (6.61)] and comparing the result with
(4.11) yields

/(A(r, t) — ag(r, w, w,)) (W — 1) drdt + f(Hw — 77HM(QT)) >0. (4.12)

T
BR

Setting n = w — e((r,t), where ((r,t) is a smooth function and repeating the
considerations from [12, Chapter 5, Section 6 and between formulas (6.61) and
(6.62)] we obtain that

A(r,t) = as(r,w,w,).

Hence, we have proved the result
Lemma 4.1. Let us assume that wy € Ly ,(Br), wy € Hﬁ(BR). Then there

exists a weak solution to problem (1.1), (1.10), (1.12) in the space described by
(4.4) satisfying estimate (3.7).
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Proof of the Main Theorem. Let w be a weak solution to problem (1.9), (1.10),
(1.12). We show a higher regularity of the weak solution by deriving better
estimates.

Hence using the classical techniques of increasing regularity of weak solu-
tions and repeating the considerations from the proof of Lemma 3.11 we con-
clude the proof. O

5. Concluding remarks

Using the method presented in this paper, we can extend our considerations to
the initial boundary value problem for non-linear symmetric thermoviscoelas-
ticity in the domain g, which is the ball with radius R > 0. It will be done in
our future paper.
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