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Abstract. In this paper, we give an approximation result in some anisotropic Sobolev
space. We also describe the action of some distributions in the dual and we men-
tion two applications to some strongly nonlinear anisotropic elliptic boundary value
problems.
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1. Introduction

In this paper, we use Hedberg-type’s approximation to prove existence of dis-
tributional solutions in an appropriate function space for some nonlinear aniso-
tropic elliptic equations. A prototype example is
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+g(x, u) = f in Ω,

where Ω is an open subset of R
N and the exponents pi ≥ 1 for i = 0, . . . , N . The

nonlinear function g : Ω × R → R is assumed to be Carathéodory, measurable
in x ∈ Ω for all σ ∈ R and continuous in σ ∈ R for a.e. x ∈ Ω. Furthermore,

g(x, σ)σ ≥ 0, for all σ ∈ R and a.e. x ∈ R
N .
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Let p0 ≥ 1, we will use the following anisotropic Sobolev space

W 1,~p(Ω) =

{

u ∈ Lp0(Ω),
∂u

∂xi

∈ Lpi(Ω), i = 1, 2, . . . , N

}

.

Later to prove existence results, we use Hedberg-type’s approximation in aniso-
tropic spaces W 1,~p(Ω) and another of type W 1,~p,ε(Ω) with 0 < ε < 1 small
enough (see the definition of W 1,~p,ε(Ω) introduced in Subsection 5.2). We ap-
proximate our function u ∈ W 1,~p(Ω) by a sequence of functions un which belong
to W 1,~p(Ω) ∩ L∞(Ω) with compact support in Ω, dominated by u and has the
same sign as u almost everywhere in Ω (see, e.g., [3,5,8,9] for more details). This
approximation was used before for nonlinear elliptic equations (see, e.g., [5,16]).
It characterizes also the action of some distributions in the dual (see, e.g., [5]).

Hedberg-type’s approximation was introduced first by Brézis and Brow-
der [5] in the context of classical isotropic Sobolev space (in W 1,p(Ω)). Next it
was used by Benkirane and Gossez [2] in Orlicz-Sobolev space with the help of
the Riesz potential theory (see [13] for more details).

In our case, without referring to this theory, we simply construct this ap-
proximation in the generalized space W 1,~p(Ω).

The remaining part of this paper is organized as follows: In Section 2,
we introduce some notations, functional spaces and a technical lemma. We
construct in Section 3 Hedberg-type’s approximation in the anisotropic space
W 1,~p(Ω). Section 4 is devoted to the description of the action of some distri-
butions in the dual, with a regularity condition on Ω, namely, we impose the
segment property on the domain. The results in Sections 3 and 4 generalize
the work of H. Brézis and F. Browder [5] to the anisotropic space W 1,~p(Ω).
As application, we use Hedberg-type’s approximation to prove the existence of
solutions for some strongly nonlinear boundary value problems of the form:

Au+ g(x, u) = f in Ω,

where the operator A is strongly nonlinear satisfying appropriate growth, coer-
civeness and monotonicity conditions. The nonlinear term g is of Carathéodory
and has to fulfil essentially the sign condition g(x, σ)σ ≥ 0, but we do not
assume any growth conditions with respect to |u|.

2. Anisotropic Sobolev spaces and a technical lemma

We start by recalling the notion of anisotropic Sobolev spaces. These spaces
were introduced and studied by Nikolskĭı [11], Slobodeckĭı [12], and Troisi [14],
and later by Trudinger [15] in the framework of Orlicz spaces.
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Let Ω be an open domain in R
N with boundary ∂Ω. Let p0, p1, . . . , pN be

N + 1 real numbers with pi ≥ 1, i = 0, 1, . . . , N . We denote

~p = {pi, i = 0, 1, 2, . . . , N}, D0u = u

p = min{pi, i = 0, 1, 2, . . . , N}, Diu =
∂u

∂xi

(i = 1, . . . , N).

With a slight abuse of the notation, we introduce the anisotropic Sobolev space

W 1,~p(Ω) = {u ∈ Lp0(Ω), Diu ∈ Lpi(Ω), i = 1, 2, . . . , N},

under the norm

‖u‖1,~p =
N

∑

i=0

‖Diu‖Lpi (Ω). (1)

We define also W
1,~p
0 (Ω) as the closure of C∞

c (Ω) in W 1,~p(Ω) with respect to

the norm (1). The dual of W 1,~p
0 (Ω) is denoted by W−1,~p′(Ω), where ~p′ = {p′i,

i = 0, 1, 2, . . . , N}, p′i = pi

pi−1
and pi > 1.

Remark 2.1. Arguing as Adams [1], it can be easily seen that W 1,~p(Ω) is a
separable Banach space and reflexive if 1 < pi <∞ for all i = 0, 1, 2, . . . , N .

We will use later the following Sobolev embedding.

Lemma 2.2. Let Ω be a bounded open set in R
N . Then the following embeddings

are compact:

if p < N then W
1,~p
0 (Ω) → Lq(Ω), ∀q ∈ [p, p∗[, where 1

p∗
= 1

p
− 1

N
;

if p = N then W
1,~p
0 (Ω) → Lq(Ω), ∀q ∈ [p,+∞[;

if p > N then W
1,~p
0 (Ω) → L∞(Ω) ∩ Ck(Ω), where k = E

(

1 − N
p

)

.

Herein, E(x) = n for x ∈ [n, n+1), n ∈ N. The proof of this lemma follows
from the fact that W 1,~p(Ω) ⊂ W 1,p(Ω) and the classical embedding theorems of
Sobolev spaces.

3. Approximation theorem

In this section, we construct Hedberg-type’s approximation in the anisotropic
Sobolev space W 1,~p(RN).

Definition 3.1. The vector ~p = {pi, i = 0, 1, 2 . . . , N} is admissible if the
following condition is satisfied:

p0 = sup{pi, i = 0, 1, . . . , N}.
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Theorem 3.2. If ~p is an admissible vector and u ∈ W 1,~p(RN), then there exists

a sequence un such that

i) un ∈ W 1,~p(RN) ∩ L∞(RN) has a compact support in R
N for all n

ii) |un(x)| ≤ |u(x)| and un(x)u(x) ≥ 0 for almost every x ∈ R
N

iii) un → u strongly in W 1,~p(RN) as n→ +∞.

Proof. Case p > N . Let ξ, ξn ∈ D(RN) such that 0 ≤ ξ ≤ 1, ξ = 1 in the
neighbourhood of 0 with supp(ξ) ⊂ B(0, 1), and ξn(x) = ξ(x

n
). Herein, B(0, ρ)

is the ball with centre 0 and radius ρ. Observe that from the definition of ξ we
deduce that supp(ξn) ⊂ B(0, n). Next, we let un = ξn u. It is easy to see that

|un(x)| ≤ |u(x)| and un(x)u(x) ≥ 0 for almost every x ∈ R
N .

From Lemma 2.2, we deduce that un ∈ W 1,~p(Bn) ⊂ L∞(Bn), where Bn =
supp(u) ∩B(0, n). By Leibniz formula, we get

Diun(x) = Diξn(x)u(x) + ξn(x)Diu(x) =
1

n
Diξ(

x

n
)u(x) + ξn(x)Diu(x) .

This implies that as n→ +∞

Diun(x) → Diu(x) a.e. in Bn, |Diun(x)| ≤ c(|u(x)| + |Diu(x)|),

for some constant c > 0. From the definition of ~p (recall that ~p is an admissible
vector), we obtain u ∈ Lp0(Bn) ⊂ Lpi(Bn) and Diu ∈ Lpi(Bn). Finally, using
the Lebesgue dominated convergence theorem, we deduce un → u strongly in
W 1,~p(RN) as n→ +∞.

Case p ≤ N . Let un = ξn u as in the case p > N . We will use the following
function

{

F ∈ D(R) , F = 1 in the neighbourhood of 0
with supp(F ) ⊂] − 1, 1[ and 0 ≤ F ≤ 1.

We define the function un,k by un,k = F
(

un

k

)

un. Observe that |un,k| ≤ k and
un,k ∈ L∞(RN). Moreover, |un,k| < |u| and un,ku ≥ 0 almost everywhere in R

N ,

and supp(un,k) is bounded in R
N . Applying Leibniz formula, we get

Diun,k = DiF
(un

k

)

un + F
(un

k

)

Diun =
1

k
F ′

(un

k

)

Diun un + F
(un

k

)

Diun

It follows that

Diun,k → Diun a.e. in Bn as k → +∞, |Diun,k| ≤ c|Diun|,

for some constant c > 0. This implies that un,k → un strongly in W 1,~p(RN) as
k → +∞. Using this and since un → u strongly in W 1,~p(RN) as n→ +∞, then
there exists a subsequence of un,k that converges to u strongly in W 1,~p(RN).
This concludes the proof of theorem.

Remark 3.3. Note that in the isotropic case (pi = p for i = 0, 1, . . . , N), we
find the result obtained by Brézis and Browder [5] in the classical Sobolev space
W 1,p(RN).
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4. Action of some distributions in the dual

In this section we assume that Ω is an open set of R
N . We let the function

J ∈ C∞
c (RN) that satisfies

(i) J ≥ 0, J = 0 if |x| ≥ 1

(ii)
∫

RN J(x) dx = 1.

For ε > 0, define the mollifier Jε (see, e.g., [1]) by Jε(x) = ε−NJ
(

x
ε

)

. Clearly,
we have

(i) Jε ≥ 0, and Jε = 0 if |x| ≥ ε

(ii)
∫

RN Jε(x) dx =
∫

RN J(x) dx = 1.

So Jε approximates the Dirac mass δ0. We therefore expect the convolution

(Jε ∗ u)(x) =

∫

RN

Jε(x− y)u(y) dy

to approximate functions u ∈ W 1,~p(Ω). We start with the following classical
result, we refer to [1] for the proof in the isotropic case.

Lemma 4.1. Let u ∈ W 1,~p(Ω) and Ω′ an open set such that Ω′ ⊂⊂ Ω. Then

limε→0+ Jε ∗ u = u in W 1,~p(Ω′).

We have the following theorem.

Theorem 4.2. Let ~p an admissible vector, T ∈ W−1,~p′(RN) ∩ L1
loc(R

N) and

u ∈ W 1,~p(RN). Assume there exists h ∈ L1(RN) such that T (x)u(x) ≥ h(x) for

almost every x ∈ R
N . Then

T u ∈ L1(RN) and 〈T, u〉 =

∫

RN

T (x)u(x) dx.

Proof. From Theorem 3.2 we know that there exists a sequence un such that






un ∈W 1,~p(RN) ∩ L∞(RN) has a compact support in R
N for all n,

|un(x)| ≤ |u(x)| and un(x)u(x) ≥ 0 for almost every x ∈ R
N ,

un → u strongly in W 1,~p(RN) as n→ +∞.

Observe that from the definition of Jε, we obtain
∫

RN T Jε ∗un dx = 〈T, Jε ∗un〉
and

〈T, Jε ∗ un〉 → 〈T, un〉 as ε→ 0. (2)

Moreover
{

T Jε ∗ un → T un a.e. in R
N ,

|T Jε ∗ un| ≤ |T un| ∈ L1(RN).

By Lebesgue theorem, we get
∫

RN

T Jε ∗ un dx→

∫

RN

T un dx as ε→ 0. (3)
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From (2) and (3), we deduce

〈T, un〉 =

∫

RN

T un dx. (4)

Using T un → T u a.e. in R
N and Tun ≥ −|h|, then from Fatou’s lemma, we

deduce that
∫

RN

T u dx ≤ lim
n→+∞

∫

RN

T un dx = lim
n→+∞

〈T, un〉 = 〈T, u〉 < +∞. (5)

This proves that T u ∈ L1(RN). Observe that

〈T, un〉 → 〈T, u〉 as n→ +∞, (6)

and by the construction of un, we have

{

T un → T u almost everywhere in R
N ,

|T un| ≤ |T u| ∈ L1(RN).

By Lebesgue theorem, it follows

∫

RN

T un dx→

∫

RN

T u dx as n→ +∞.

Finally, in view of (4), (5) and (6), we obtain 〈T, u〉 =
∫

RN T u dx.

Remark 4.3. Note that in the isotropic case (pi = p for i = 0, 1, . . . , N), we
find the result obtained by Brézis and Browder [5] in the classical Sobolev space
W 1,p(RN).

To extend our result in Theorem 4.2 to an open subset Ω of R
N , we need

to assume an additional condition about the regularity on Ω (see, e.g., [2,3,5]).
Recall that an open subset Ω of R

N is said to have the segment property if,
given any x ∈ ∂Ω, there exists an open set Gx in R

N with x ∈ Gx and yx of
R

N\{0} such that, if z ∈ Ω ∩Gx and t ∈]0, 1[, then z + tyx ∈ Ω. This property
allows us by a translation to push the support of a function u in Ω.

We have the following lemma.

Lemma 4.4. Let Ω be an open subset of R
N satisfying the segment property, ~p

be an admissible vector and u ∈ W
1,~p
0 (Ω). Then, there exists a sequence uk of

D(Ω) such that:

– uk → u strongly in W
1,~p
0 (Ω).

– There exists a compact Z of Ω such that supp(uk) ⊂ Z for all k.

– If u ∈ L∞(Ω), there exists a constant C > 0 such that |uk| ≤ C for all k.
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Proof. Using the admissibility condition of the vector ~p, we can prove this
lemma by adapting the same technique in the proof of [1, Theorem 3.18], see
also [2, 3] in the setting of Sobolev-Orlicz spaces.

Indeed, by Theorem 3.1, we can suppose that u has a bounded support, it
follows that the set K = {x ∈ Ω : u(x) 6= 0} is bounded, and K is a compact
subset of Ω.

Observe that F = K \ (∪x∈∂ΩUx) is a compact subset of Ω, where ∪x∈∂ΩUx

are open sets determined by the segment property. Moreover, there exists an
open set U0 of R

N such that F ⊂⊂ U0 ⊂⊂ Ω. Since K is compact, and using the
fact that Ω satisfies the segment property, there exists a finite number of open
sets Ux denoted by U1, U2, . . . , Uk such that K ⊂ U0 ∪ U1 ∪ · · · ∪ Uk. Note that
there exist also open sets Ũ1, Ũ2, . . . , Ũk such that Ũj ⊂⊂ Uj for j = 0, 1, . . . , k,
with K ⊂ Ũ0 ∪ Ũ1 ∪ · · · ∪ Ũk. Let ψ = (ψj)0≤j≤k a partition of the unity which
correspond to (Uj)0≤j≤k (supp(ψj) ⊂ Ũj ⊂⊂ Ω). Next, set

uj = ψju for j = 1, . . . , k. (7)

Clearly uj ∈ W 1,~p(Ω). Now, let 1 ≤ i ≤ N , then there exist constants Cm
i , C > 0

such that

Diuj(x) =
∑

0≤m≤i

Cm
i D

mψj(x)D
i−mu(x),

and
∫

Ω

|Diuj(x)|
pi dx ≤ C

∑

0≤m≤i

‖Dmψj‖
pi
r ‖D

i−mu‖pi
pi−m

,

with r =
(

1
pi
− 1

pi−m

)−1
. This implies that uj ∈W 1,~p(Ω) since ~p is an admissible

vector.
In the last step we let ε > 0 and we propose to find φj ∈ C∞

c (RN) such that

‖uj − φj‖1,~p <
ε

k + 1
. (8)

Therefore, by setting v =
∑j=k

j=0 φj, we deduce ‖u− v‖1,~p < ε from (7) and (8).

Indeed, since supp(u0) ⊂ Ũ0 ⊂⊂ Ω, then in view of Lemma 4.1, we deduce

the function φ0. For 1 ≤ j ≤ k, we extend uj by zero out of Ω, then uj ∈

W 1,~p(RN\Γ), with Γ = Ũj ∩ ∂Ω.
Now let y be the associated vector to Uj (segment property), and for t small

enough put Γt = Γ + ty and uj,t(x) = uj(x − ty). We then have Γt ⊂ Ũj and
Γt ∩ Ω = ∅. Moreover, we easily have uj,t → uj strongly in W 1,~p(Ω) as t → 0.
Finally, from Lemma 4.1 and the fact that Ω ∩ Uj ⊂⊂ R

N − Γt, we may define
for δ small enough: φj = Jδ ∗ uj,t.

The next theorem is an extension of Theorem 4.2 to an open subset Ω of R
N .
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Theorem 4.5. Let Ω be an open subset of R
N satisfying the segment property, ~p

be an admissible vector, T ∈ W−1,~p′(Ω) ∩ L1
loc(Ω) and u ∈ W

1,~p
0 (Ω). Assume

there exists a function h ∈ L1(Ω) such that T (x)u(x) ≥ h(x) almost everywhere

in Ω. Then

T u ∈ L1(Ω) and 〈T, u〉 =

∫

Ω

T (x)u(x) dx.

Proof. From Theorem 3.2 (in the cases p < N and p ≥ N), there exists a
sequence un with bounded support (not necessary compact) such that







un ∈ W 1,~p(Ω) ∩ L∞(Ω) with bounded support for all n,
|un(x)| ≤ |u(x)| and un(x)u(x) ≥ 0 for almost every x ∈ Ω,
un → u strongly in W 1,~p(Ω) as n→ +∞.

We deduce from Lemma 4.4 that for un there exists a sequence (un,k)k of
C∞

c (Ω) such that






un,k → un strongly in W 1,~p
0 (Ω),

there exists a compact Z of Ω such that supp(un,k) ⊂ Z for all k,
there exists a constant C > 0 such that |un,k| ≤ C for all k.

Now we can write 〈T, un〉 =
∫

Ω
T un dx. Proceeding as the proof of Theo-

rem 4.2, we conclude that 〈T, u〉 =
∫

Ω
T u dx. This completes the proof of the

theorem.

5. Applications

This section is devoted to the application of Theorem 4.5 to the study of two
anisotropic elliptic equations.

5.1. Nonlinear anisotropic elliptic equation with the data in the dual.

Let A be a nonlinear operator from W
1,~p
0 (Ω) into the dual W−1,~p′(Ω). For the

study of the problem
Au+ g(x, u) = f, x ∈ Ω, (9)

we will impose the following conditions:






A is bounded, pseudo-monotone and coercive, i.e.,

lim
‖u‖1,~p →+∞

〈Au, u〉

‖u‖1,~p

= +∞, with pi > 1 for all i = 0, 1, . . . , N.
(10)

The nonlinear function g : Ω×R → R is assumed to be a Carathéodory function
satisfying:











There exists hs ∈ L1(Ω) such that

sup|u|≤s |g(x, u)| ≤ hs(x) for all s > 0 and for a.e. x ∈ Ω,

g(x, σ)σ ≥ 0 for all σ ∈ R and for a.e. x ∈ Ω.

(11)
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We have the following result.

Theorem 5.1. Let Ω be an open subset of R
N satisfying the segment property.

Assume that the conditions (10) and (11) hold and ~p is an admissible vector.

Then for all f ∈W−1,~p′(Ω) there exists u ∈ W
1,~p
0 (Ω) such that







g(x, u) ∈ L1(Ω) and g(x, u)u ∈ L1(Ω),

〈Au, v〉 +

∫

Ω

g(x, u)v dx = 〈f, v〉 ∀v ∈W
1,~p
0 (Ω) ∩ L∞(Ω) and v = u.

Proof. The proof of Theorem 5.1 is based on approximation problem. We prove
first existence of solutions to the approximate problem of (9), deriving a pri-
ori estimates, and then passing to the limit in the approximate solutions us-
ing monotonicity and compactness arguments. Having proved existence to the
approximate problem of (9), the goal is to send the regularization parameter
to +∞ in sequences of such solutions and use Theorem 4.2 to fabricate weak
solutions of the original equation (9). We proceed by steps:

Existence of the approximate problem. For a.e. x ∈ Ω set

gk(x, u) = Tkg(x, u), bk(u, v) =

∫

Ω

gk(x, u)v dx for all u, v ∈W
1,~p
0 (Ω),

where Tk is the usual truncation given by

Tkξ =

{

ξ if |ξ| ≤ k
kξ

|ξ|
if |ξ| > k.

Define the following operator

Gku : W 1,~p
0 (Ω) → R; v 7→

∫

Ω

gk(x, u)v dx.

It is easy to see that Gk : W 1,~p
0 (Ω) → W−1,~p′(Ω) is well defined. Next, we show

that A + Gk is pseudo-monotone. Indeed, let uj → u weakly in W
1,~p
0 (Ω) such

that

(A+Gk)uj → y weakly in W−1,~p′(Ω) and lim
j→+∞

〈(A+Gk)uj, uj − u〉 ≤ 0.

Then, there exists a subsequence still denoted by uj such that uj → u a.e. in Ω.
Hence

{

gk(x, uj) → gk(x, u) a.e. in Ω,

|gk(x, uj)| ≤ k.

By dominated convergence Lebesgue theorem, we get gk(x, uj) → gk(x, u) in
Lp′

0(Ω). Since uj → u weakly in Lp0(Ω), it follows that
∫

Ω

gk(x, uj)(uj − u) dx→ 0.
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Therefore, we obtain

Auj → y −Gku weakly in W−1,~p′(Ω) and lim
j→+∞

〈Auj, uj − u〉 ≤ 0.

Since A is pseudo-monotone, we deduce y = Au + Gku, which implies that
A+Gk is pseudo-monotone. On the other hand, from (10) and (11), we easily
deduce that A+Gk is bounded and coercive. The operator A+Gk satisfies then
Lerray-Lions classical conditions [10], so there exists uk ∈ W

1,~p
0 (Ω) solution of

the problem Auk + gk(x, uk) = f, or variationally

〈Auk, v〉 +

∫

Ω

gk(x, uk)v dx = 〈f, v〉 for all v ∈ W
1,~p
0 (Ω). (12)

Existence of solution to the original problem. Proceeding as in the proof of
[4, Theorem 3.2], one obtains

uk → u weakly in W 1,~p
0 (Ω), Auk → χ weakly in W−1,~p′(Ω).

Moreover, we have

g(x, u)u ∈ L1(Ω) and gk(x, uk) → g(x, u) strongly in L1(Ω),

as k → +∞. By passing to limit in (12), we obtain

〈χ, v〉 +

∫

Ω

g(x, u)v dx = 〈f, v〉 for all v ∈W
1,~p
0 (Ω) ∩ L∞(Ω).

It remains to prove that χ = Au. Indeed, on one hand, letting v = uk in
(12). In view of Fatou’s lemma, we deduce that

lim sup
k→+∞

〈Auk, uk〉 ≤ 〈f, u〉 −

∫

Ω

g(x, u)u dx.

On the other hand, we have T = g(x, u) = f − χ ∈ W−1,~p′(Ω) ∩ L1
loc(Ω).

Now, by applying Hedberg-type’s approximation as in Theorem 4.2, we obtain
∫

Ω
g(x, u)u dx = 〈f − χ, u〉. Therefore lim supk→+∞〈Auk, uk〉 ≤ 〈χ, u〉. Since A

is pseudo-monotone, then χ = Au.

5.2. Nonlinear anisotropic elliptic equation with data close to L1(Ω).
In this subsection, we will use the following anisotropic space

W 1,~p,ε(Ω) =

{

u ∈ W 1,1+ 1

ε (Ω),
∂u

∂xi

∈ Lpi , i = 1, . . . , N

}

,

under the norm

‖u‖1,~p,ε = ‖u‖
L1+1

ε (Ω)
+

N
∑

i=1

‖Diu‖Lpi (Ω).
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The space W 1,~p,ε
0 (Ω) is defined as the closure of C∞

c (Ω) in W 1,~p,ε(Ω) with respect

to its norm, i.e., W 1,~p,ε
0 (Ω) = C∞

c (Ω)
W 1,~p,ε(Ω)

. The dual of W 1,~p,ε
0 (Ω) is denoted

by W−1,~p′,,ε(Ω), where ~p′ = {p′i, i = 0, 1, . . . , N}, p′i = pi

pi−1
, p0 = 1 + 1

ε
, and

pi > 1 for i = 1, . . . , N . Herein, ε is a positive number satisfying 0 < ε < 1.

Remark 5.2. By taking p0 = 1 + 1
ε
, note that for 0 < ε < 1 small enough, ~p is

an admissible vector.

We prove existence and regularity of distributional solutions in an appro-
priate function space for the nonlinear elliptic equation

{

u ∈W
1,~p,ε
0 (Ω),

Au+ g(x, u) = f in Ω,
(13)

where f ∈ L1+ε(Ω). Herein, the operator A and the function g satisfy (10) and
(11) respectively.

Theorem 5.3. Let Ω be an open subset of R
N satisfying the segment property.

Assume (10) and (11) hold. Then for all f ∈ L1+ε(Ω), the problem (13) has at

least one solution, i.e., there exists u ∈W
1,~p,ε
0 (Ω) such that







g(x, u) ∈ L1(Ω) and g(x, u)u ∈ L1(Ω),

〈Au, v〉 +

∫

Ω

g(x, u)v dx = 〈f, v〉 ∀v ∈W
1,~p,ε
0 (Ω) ∩ L∞(Ω) and v = u.

Remark 5.4. Note that the term 〈f, v〉 is well defined since v is in W
1,~p,ε
0 (Ω)

and f ∈ L1+ε(Ω).

Proof. Proceeding exactly as the proof of the first step of Theorem 5.1, we
obtain for all fn ∈ L∞(Ω), there exists un ∈W

1,~p,ε
0 (Ω) such that







g(x, un) ∈ L1(Ω) and g(x, un)un ∈ L1(Ω),

〈Aun, v〉+

∫

Ω

g(x, un)v dx = 〈fn, v〉 ∀v∈W 1,~p,ε
0 (Ω)∩L∞(Ω) and v = un,

(14)

where |fn| ≤ |f | a.e. in Ω, fn ∈ L∞(Ω) and fn → f strongly in L1+ε(Ω) and
a.e. in Ω.

Observe that W 1,~p,ε
0 (Ω) is reflexive (recall that pi > 1 for all i = 0, 1, . . . , N)

and repeating the same steps in the proof of [4, Theorem 3.2], we have

un → u weakly in W 1,~p,ε
0 (Ω)

Aun → χ weakly in W−1,~p′,ε(Ω)

g(x, un) → g(x, u) strongly in L1(Ω)
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as n→ +∞. Therefore, we obtain

〈χ, v〉 +

∫

Ω

g(x, u)v dx = 〈f, v〉 ∀ v ∈W
1,~p,ε
0 (Ω) ∩ L∞(Ω).

Moreover, we have T = g(x, u) = f − χ ∈ W−1,~p′,ε(Ω) ∩ L1
loc(Ω). Hence, us-

ing Hedberg-type’s approximation (Theorem 4.2), we have
∫

Ω
g(x, u)u dx =

〈f − χ, u〉. Now, substituting v = un in (14), we get from Fatou’s lemma
lim supn→+∞〈Aun, un〉 ≤ 〈χ, u〉. Consequently χ = Au since A is pseudo-
monotone operator. This completes the proof of Theorem 5.2.

Remark 5.5. Note that
(

L1+ 1

ε (Ω)
)′

= L1+ε(Ω). So that, f is considered in a
dual space close to L1(Ω).

Observe also that when ε→ 0, we deal with a problem with L1-data and u
will belong to L∞(Ω) which is true by regarding the definition of our aniso-
tropic space. Note that in this direction, the classical anisotropic case requires
the condition p > N in order to get u ∈ L∞(Ω).

Remark 5.6. Remark that in the case where p > N, the existence results
stated in Theorem 5.1 and 5.2 can be proved without assuming the segment
property of Ω nor the admissibility condition of the vector ~p. Let us point out
that a work in this direction can be found in [4], where the authors have studied
the existence of solutions for a general class of nonlinear elliptic equations of
order m with mp > N.
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