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Duals of Optimal Spaces for the
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Abstract. The Hardy averaging operator Af(x) := 1
x

∫ x

0 f(t) dt is known to map
boundedly the ‘source’ space Sp of functions on (0, 1) with finite integral

∫ 1

0
ess sup
t∈(x,1)

1

t

∫ t

0
|f |pdx

into the ‘target’ space T p of functions on (0, 1) with finite integral

∫ 1

0
ess sup
t∈(x,1)

|f(t)|pdx

whenever 1 < p < ∞. Moreover, the spaces Sp and T p are optimal within the fairly
general context of all Banach lattices. We prove a duality relation between such
spaces. We in fact work with certain (more general) weighted modifications of these
spaces. We prove optimality results for the action of A on such spaces and point out
some applications to the variable-exponent spaces. Our method of proof of the main
duality result is based on certain discretization technique which leads to a discretized
characterization of the optimal spaces.
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1. Introduction

We consider the Hardy averaging operator A given at a function f ∈ L1
loc(0, 1)

and x ∈ (0, 1) by

Af(x) =
1

x

∫ x

0

f(t)dt

and the one-dimensional Hardy-Littlewood maximal operator

Mf(x) = sup
a<x<b

1

b − a

∫ b

a

|f(t)|dt.

The operators M and A are bounded on Lp(0, 1) whenever 1 < p ≤ ∞, and this
result cannot be essentially improved within the context of Lebesgue spaces.
However, an improvement is possible if we are willing to settle for other, more
general function spaces and classes. In [9], the spaces Sp and T p were con-
structed for 1 < p < ∞, as the collections of all functions on (0, 1) having finite
norms

‖f‖Sp
=

(∫ 1

0

ess sup
t∈(x,1)

(1

t

∫ t

0

|f(s)|ds
)p

dx

) 1
p

and

‖f‖Tp
=
(∫ 1

0

ess sup
t∈(x,1)

|f(t)|pdx
) 1

p

,

respectively. These spaces satisfy T p →֒ Lp →֒ Sp and A : Sp → T p (here,
as usual, →֒ denotes a continuous embedding and → a boundedness of an op-
erator). Moreover, Sp and T p are optimal in the following sense; if X,Y are
Banach function spaces such that X $ T p and Sp $ Y then A is no longer
bounded from Sp to X of from Y to T p.

Thus, the spaces of type Sp or T p have interesting applications, while, at
the same time, they are relatively new (although it should be noted that spaces
similar to T p were considered in connection with different matters by Grosse-
Erdmann in [6], where, among other results, also their discrete versions were
introduced). It is therefore desired to study their intrinsic properties.

In this paper, we focus, among other things, on the duality relationship
between spaces of type Sp and T p. We will in fact work in a more gen-
eral context, studying certain weighted versions of these spaces and also their
variable-exponent likes. In our main result we characterize associate spaces of
the weighted versions of the optimal target and source spaces for the operator A.
Interestingly, we shall see that the two types of spaces are linked together by
a certain duality relation. The proof is based on an elementary discretization
method which leads to several other characterizations of the spaces in ques-
tion. We also consider applications to variable-exponent spaces which have
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been recently extensively studied because of the wide range of their application
in mathematical physics.

We also note that the duality relation can be used in quite an obvious way
to obtain corresponding optimality results for the associate operator A′g(t) :=∫ 1

t

g(s)
s

ds. We omit the details.

The paper is organized as follows. Section 2 contains background material.
In Section 3 we introduce weighted and variable-exponent versions of the spaces
Sp and T p; we also study the action of the operator A on these spaces and show
their optimality. In Section 4 we carry out a discretization procedure that will
be needed later in the proof of the main duality results. By doing that, we obtain
an alternative characterization of the optimal spaces. Finally, in Section 5, we
characterize the associate spaces of the optimal spaces and point out the link
between them.

2. Preliminaries

Let M(0, 1) denote the class of all Lebesgue-measurable functions on (0, 1).
Denote by |E| the Lebesgue measure of any measurable subset E of (0, 1) and
by χE the characteristic function of E.

We recall the definition of Banach function spaces from [1]. We note that
the terminology is not unique in the literature. In particular, we shall assume
the so-called Fatou property, given below as the axiom (P3).

Definition 2.1. We say that a normed linear space (X, ‖ · ‖X) is a Banach

function space (BFS for short) if the following five conditions are satisfied:

(P1) the norm ‖f‖X is defined for all f ∈ M(0, 1) and f ∈ X if and only if
‖f‖X < ∞

(P2) ‖f‖X = ‖ |f | ‖X for every f ∈ M(0, 1)

(P3) if 0 ≤ fn ր f a.e. in (0, 1), then ‖fn‖X ր ‖f‖X

(P4) χ(0,1) ∈ X

(P5) for every set E ⊂ (0, 1), there exists a positive constant CE such that∫
E
|f(x)|dx ≤ CE‖f‖X .

Note that the condition (P3) immediately yields the following property:

(P6) if 0 ≤ f ≤ g, then ‖f‖X ≤ ‖g‖X .

If(X, ‖.‖X) is a BFS, then its associate space X ′ is defined as the collection
of all functions in M(0, 1) having finite the norm

‖f‖X′ = sup

{∫ 1

0

f(x)g(x)dx; ‖g‖X ≤ 1

}
.
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Then X ′′ = X, and the Hölder inequality

∫ 1

0

|f(x)g(x)| dx ≤ ‖f‖X‖g‖X′

holds.

Let X,Y be two Banach spaces (not necessarily Banach function spaces).
We say that X is (continuously) embedded into Y , written X →֒ Y , if there
is a positive constant C > 0 such that ‖f‖Y ≤ C‖f‖X for all f ∈ X. It is
known ( [1, Theorem 1.8]) that, for a pair of if Banach function spaces X and
Y , the set-inclusion X ⊂ Y already implies (and therefore is equivalent to) the
embedding X →֒ Y .

We denote by B the set of all functions p(·) ∈ M(0, 1) defined on (0, 1) such
that 1 < ess inf p(x) ≤ ess sup p(x) < ∞. For p(·) ∈ B, we define its conjugate

function p′(·) by p′(x) = p(x)
p(x)−1

.

Definition 2.2. Given a function p(·) ∈ B and α ∈ R, we define the functional

mp(·),α(f) =

∫ 1

0

|f(x)|p(x)xαdx,

the corresponding Luxemburg norm

‖f‖
L

p(·)
α

= inf

{
λ > 0; mp(·),α

(
f(x)

λ

)
≤ 1

}
, f ∈ M(0, 1),

and the corresponding weighted variable-exponent Lebesgue space

Lp(x)
α = {f ∈ M(0, 1); ‖f‖

L
p(·)
α

< ∞}.

Under our assumptions on p(·), mp(·) is a convex modular, and L
p(·)
α is

a Banach space under the Luxemburg norm. We write Lp(x) instead of L
p(x)
0 .

By a standard technique, one can show that, for a given p(·) ∈ B, one has

‖f‖
L

p(·)
α

< ∞ ⇐⇒

∫ 1

0

|f(x)|p(x)xαdx < ∞.

We also recall that the Hölder inequality for Lp(·) spaces reads as follows
(see [8, Theorem 2.1]). Let p(·) ∈ B, then there exists a positive constant rp(·)

such that ∫ 1

0

|f(x)g(x)|dx ≤ rp(·)‖f‖Lp(·)‖g‖Lp′(·) .
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3. The action of the operator A on function spaces

In the theory of variable-exponent Lebesgue spaces, the following notion is of
great importance.

Definition 3.1. Let p(·) : [0, 1] → R. We say that p(·) is weak-Lipschitz if
there is a C > 0 such that

|p(x) − p(y)| ≤
C

log
(

e2

|x−y|

) (3.1)

for all x, y ∈ [0, 1], 0 < |x − y| < 1.
We say that p(·) is weak-Lipschitz at zero if there exist constants δ ∈ (0, 1)

and C > 0 such that

|p(x) − p(0)| ≤
C

log
(

e2

x

) (3.2)

for all x ∈ (0, δ).

It has been known for several years that the condition (3.1) plays a crucial
role in connection with the action of integral operators on Lp(·) (see [10] for ex-
ample). In this paper we introduce a weighted version of the maximal operator,
defined for β ∈ R at a function f ∈ M(0, 1) by

Mβf(x) := xβ sup
r>0

1

2r

∫

(x−r,x+r)∩(0,1)

y−β|f(y)|dy, x ∈ (0, 1).

We have the following result due to Kokilashvili and Samko ( [7, Theorem A]):
whenever p(·) ∈ B is weak-Lipschitz and β ∈ R, then

Mβ : Lp(x) → Lp(x) if and only if −
1

p(0)
< β <

1

p′(0)
. (3.3)

We write Mf instead of M0f .
Our aim is to to characterize those spaces L

p(x)
α on which the maximal

operator is bounded. To this end, we shall first prove a key lemma of a technical
nature.

Lemma 3.2. Let p(x), q(x) ∈ B. Assume that there exist constants 0 < δ < 1
e

and C > 0 such that for all x ∈ (0, δ)

|p(x) − q(x)| ≤
C

log
(

e2

x

) . (3.4)

Then there is a positive constant D such that, for every x ∈ (0, 1),

D−1x
1

q(x) ≤ x
1

p(x) ≤ Dx
1

q(x) .
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Proof. By symmetry, it suffices to prove just x
1

p(x) ≤ Dx
1

q(x) . Since p(·), q(·) ∈ B,

there is a B ≥ 1 such that B−1 ≤ (e2)
1

p(x)
− 1

q(x) ≤ B, x ∈ [0, 1]. Writing

x
1

p(x)
− 1

q(x) = (e2)
1

p(x)
− 1

q(x)

( x

e2

) 1
p(x)

− 1
q(x)

≤ Be(
1

p(x)
− 1

q(x)) log( x

e2
)

and denoting

L(x) := B

(
e(q(x)−p(x))

(
−log
(

e2

x

))) 1
p(xq(x)

,

we get L(x) ≤ B when q(x)−p(x) ≥ 0 (since then (q(x)−p(x))
(
−log

(
e2

x

))
≤ 0),

while, when q(x) − p(x) < 0, by (3.4) we have

L(x) = B

(
e(p(x)−q(x)) log

(
e2

x

)) 1
p(xq(x)

≤ B
(
eC
) 1

p(xq(x) ≤ BeC := D,

proving the claim.

Theorem 3.3. Let p(·) ∈ B be weak-Lipschitz. Then M : L
p(x)
α → L

p(x)
α if and

only if −1 < α < p(0) − 1.

Proof. Let f ∈ L
p(x)
α (0, 1). Since
∣∣∣∣1 −

p(0)

p(x)

∣∣∣∣ = p(0)

∣∣∣∣
1

p(0)
−

1

p(x)

∣∣∣∣ ≤ C
p(0)

log
(

e2

x

) ,

it follows from Lemma 3.2 that xα is comparable to x
αp(x)
p(0) , whence

∫ 1

0

|f(x)|p(x)x
αp(x)
p(0) dx < ∞,

in other words,
∫ 1

0
|x

α
p(0) f(x)|p(x)dx < ∞. Denoting g(x) = x

α
p(0) f(x), we have

g ∈ Lp(x)(0, 1). Our assumption −1 < α < p(0) − 1 is equivalent to − 1
p(0)

<
α

p(0)
< 1

p′(0)
, which, by (3.3), in turn implies M

α
p(0) g ∈ Lp(x)(0, 1), or

∫ 1

0

Mf(x)p(x)x
αp(x)
p(0) dx < ∞.

By the above observation, this is equivalent to
∫ 1

0
Mf(x)p(x)xαdx < ∞, as

desired. This establishes the “if” part of the theorem. The “only if” part can
be proved along the same line of argument (in the opposite direction).

We will now introduce a new function space which will turn out to be
the optimal range for the average operator. Given a function f(x) on (0, 1), set

f̃(x) = ess sup
t∈(x,1)

|f(t)|.
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Definition 3.4. Let f ∈ M(0, 1), p(·) ∈ B and α ∈ R. We define the functional

m
T

p(·)
α

(f) =

∫ 1

0

(f̃(x))p(x)xαdx =

∫ 1

0

(
ess sup
t∈(x,1)

|f(t)|
)p(x)

xαdx,

the norm

‖f‖
T

p(·)
α

= inf

{
λ > 0; m

T
p(·)
α

(
f

λ

)
≤ 1

}
,

and the corresponding space

T p(·)
α = {f ∈ M(0, 1); ‖f‖

T
p(·)
α

< ∞}.

In cases when p(·) ≡ p for some constant p ∈ (1,∞), we write T p
α instead

of T
p(·)
α .

By a routine technique one proves that the functional m
T

p(·)
α

is a convex

modular and T
p(·)
α is a Banach space with respect to the norm ‖ · ‖

T
p(·)
α

.

Lemma 3.5. Let p(·) ∈ B be weak-Lipschitz at zero. Assume α < p(0) − 1.

Then L
p(·)
α →֒ L1.

Proof. Let f ∈ L
p(·)
α . Using the Hölder inequality, we obtain

∫ 1

0

|f(x)|dx =

∫ 1

0

∣∣f(x)x
α

p(x) x− α
p(x)
∣∣dx ≤ rp(·)

∥∥f(x)x
α

p(x)
∥∥

Lp(·)

∥∥x− α
p(x)
∥∥

Lp′(·) .

Since
∫ 1

0

∣∣f(x)x
α

p(x)
∣∣p(x)

dx=
∫ 1

0
|f(x)|p(x)xαdx< ∞, we have

∥∥f(x)x
α

p(x)
∥∥

Lp(·) < ∞.
Furthermore, thanks to our assumption α < p(0) − 1,

∫ 1

0

x− α
p(0)−1 dx < ∞. (3.5)

As p(·) is weak-Lipschitz at zero, one has

∣∣∣ α

p(x) − 1
−

α

p(0) − 1

∣∣∣ ≤ α
|p(x) − p(0)|

(p(x) − 1)(p(0) − 1)
≤

C

log
(

e2

x

) .

Now, Lemma 3.2 and (3.5) yield
∫ 1

0

(
x− α

p(x)
)p′(x)

dx =
∫ 1

0
x− α

p(x)−1 dx < ∞, hence

also
∥∥x− α

p(x)
∥∥

Lp′(·) < ∞, and the assertion follows.

Remark 3.6. When p(·) ∈ B is weak-Lipschitz at zero and −1 < α < p(0)− 1,

then, actually, T
p(·)
α is a BFS.

Indeed, we already noticed that T
p(·)
α always satisfies the conditions (P1) and

(P2). By a standard technique, one can prove (P3), which in turn implies (P6).

Since
∫ 1

0
xαdx < ∞, (P4) holds. Finally, since |f | ≤ f̃ , we get T

p(·)
α →֒ L

p(·)
α ,

hence (P5) follows from Lemma 3.5.
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Theorem 3.7. Let p(·), q(·) ∈ B be weak-Lipschitz at zero, p(0) = q(0) := p.

Assume −1 < α < p − 1. Then the norms in T
p(·)
α and T

q(·)
α are equivalent.

Proof. Assume that f ≥ 0 and
∫ 1

0
(f̃(x))p(x)xαdx < ∞. By Lemma 3.5, we

know that
∫ 1

0
f̃(x)dx < ∞. Since f̃ is non-increasing on (0, 1), we have xf̃(x) ≤∫ 1

0
f̃(x)dx =: K < ∞, which gives

f̃(x) ≤
K

x
, x ∈ (0, 1). (3.6)

Set A1 = {x ∈ [0, 1]; q(x) < p(x)}, A2 = {x ∈ [0, 1]; q(x) ≥ p(x)}, then

∫ 1

0

f̃(x)q(x)xαdx =

∫

A1

f̃(x)q(x)xαdx +

∫

A2

f̃(x)q(x)xαdx =: A1 + A2,

say. Clearly, A1 ≤
∫

A1
(1 + f̃(x))q(x)xαdx ≤

∫
A1

(1 + f̃(x))p(x)xαdx < ∞. It
remains to estimate A2. By (3.6), we have

A2 =

∫

A2

f̃(x)p(x)xαf̃(x)q(x)−p(x)dx

≤

∫

A2

f̃(x)p(x)xα

(
K

x

)q(x)−p(x)

dx

≤ C

∫

A2

f̃(x)p(x)xα

(
1

x

)q(x)−p(x)

dx.

Since p(0) = q(0), we have |p(x) − q(x)| ≤ |p(x) − p(0)| + |q(x) − q(0)|. This,
together with the weak-Lipschitz property at zero of p and q, yields (3.4) for x
sufficiently close to zero. This enables us to use Lemma 3.2, and we arrive at

(1

x

)q(x)−p(x)

= xp(x)−q(x) =
(
x

1
q(x)

− 1
p(x)

)p(x)q(x)

≤ Dp(x)q(x) ≤ D̃,

in other words, A2 ≤ CD̃
∫

A2
f̃(x)p(x)xαdx < ∞. Complemented with the fact

that T
p(·)
α and T

q(·)
α are Banach function spaces by Remark 3.6, this finishes the

proof.

An important consequence of the preceding theorem is the relation between
spaces of type T and L.

Corollary 3.8. Let p(·) be weak-Lipschitz at zero. Set p = p(0) and assume

−1 < α < p − 1. Then T p
α →֒ L

p(·)
α .

Proof. The assertion is readily seen from T p
α →֒ T

p(·)
α →֒ L

p(·)
α , in which the

former embedding follows from Theorem 3.7 while the latter and the latter was
observed in Remark 3.6.
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We shall now investigate the role of T
p(·)
α as the target space for the averaging

operator.

Lemma 3.9. Assume that p(·) ∈ B is weak-Lipschitz and that −1 < α <

p(0) − 1. Then A : L
p(·)
α → T

p(·)
α .

Proof. Let f be defined on (0, 1). When appropriate, we consider its extension

by zero outside (0, 1). Set g(x) = Ã|f |(x). In [9, (5.1)], the inequality

g(x) ≤ 4M(A|f |)(x)

was noted. By Theorem 3.3, M is bounded on L
p(·)
α , and, since |Af | ≤ A|f | ≤

Mf , so is A. Let f ∈ L
p(·)
α . Then A|f | ∈ L

p(·)
α and, by continuity of M

on L
p(·)
α , also M(A|f |) ∈ L

p(·)
α . Altogether, g ∈ L

p(·)
α , as desired. (We have

shown of course only that f ∈ L
p(·)
α implies Af ∈ T

p(·)
α , but one can obtain the

corresponding boundedness of A just the same way as it is done for the identity

operator, e.g., in [1, Theorem 1.8]).

Theorem 3.10. Let p(·) ∈ B be weak-Lipschitz at zero and set p := p(0).

Assume −1 < α < p − 1. Then A : L
p(·)
α → T p

α.

Proof. Let C and δ be the constants from (3.2). Set d := ess inf p(x), D :=
(d − p) log δ

e2
and

q(x) = max

(
d, p −

max(C,D)

log
(

e2

x

)
)

.

Since p(·) ∈ B, we have d > 1, and so q(·) ∈ B.
We claim that q(x) ≤ p(x). Assume first D ≥ C. Then

q(x) = max

(
d, p −

D

log
(

e2

x

)
)

(3.7)

and q(δ) = d. Since the function x 7→ p− D

log
(

e2

x

) is nonincreasing in x, we have

q(x) =

(
p −

D

log
(

e2

x

)
)

χ(0,δ)(x) + dχ(δ,1)(x)

≤

(
p −

C

log
(

e2

x

)
)

χ(0,δ)(x) + dχ(δ,1)(x)

≤ p(x)χ(0,δ)(x) + p(x)χ(δ,1)(x) = p(x),

where we used the estimate p − C

log
(

e2

x

) ≤ p(x), x ∈ (0, δ), which follows from

the weak-Lipschitz property at zero.
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Now assume 0 < D < C (note that then d > p). Denote λ := e2 e
C

d−p , then

p − C

log
(

e2

λ

) = d. Thus, q(λ) = d. Since δ = e2 e
D

d−p , we have λ < δ, whence

q(x) =

(
p−

C

log
(

e2

x

)
)

χ(0,λ)(x)+d χ(λ,1)(x) ≤ p(x)χ(0,λ)(x)+p(x)χ(λ,1)(x) = p(x),

proving our claim. Therefore, L
p(·)
α →֒ L

q(·)
α .

The case D = 0 or, equivalently, d = p, is analogous. Thus, assuming

f ≥ 0 and
∫ 1

0
f(x)p(x)xαdx < ∞, we also have

∫ 1

0
f(x)q(x)xαdx < ∞. Observe

that, by [9, Lemmas 5.4 and 5.3], q(·) is weak-Lipschitz. This fact enables us

to apply Lemma 3.9, and we get
∫ 1

0
Ãf(x)q(x)xαdx < ∞. Finally, we obtain,

by Theorem 3.7, applied to p(x) ≡ p,
∫ 1

0
Ãf(x)pxαdx < ∞, which finishes the

proof.

We shall now introduce another new space, S
p(·)
α , and study its basic func-

tional properties. This space is in a counterpart of the space S
p(·)
α in the sense

that it serves as an optimal source space for the average operator A.

Definition 3.11. Let f ∈ M(0, 1), p(·) ∈ B and α ∈ R. We define the
functional

m
S

p(·)
α

(f) =

∫ 1

0

Ã|f |(x)p(x)xαdx =

∫ 1

0

(
ess sup
t∈(x,1)

1

t

∫ t

0

|f(s)|ds
)p(x)

xαdx,

the norm
‖f‖

S
p(·)
α

= ‖A|f | ‖
T

p(·)
α

,

and the corresponding space

Sp(·)
α = {f ∈ M(0, 1); ‖f‖

S
p(·)
α

< ∞}.

Then, again, m
S

p(·)
α

is a convex modular and S
p(·)
α is a Banach space with

respect to the norm ‖ · ‖
S

p(·)
α

.

Theorem 3.12. Let p(·) ∈ B be weak-Lipschitz at zero. Set p = p(0) and

assume −1 < α < p − 1. Then L
p(·)
α →֒ S

p(·)
α →֒ L1.

Proof. Let us first show that L
p(·)
α →֒ S

p(·)
α . Let 0 ≤ f ∈ L

p(·)
α . By Theorems

3.10 and 3.7, we have Af ∈ T
p(·)
α , i.e.,

∫ 1

0
Ãf(x)pxαdx < ∞, whence f ∈ S

p(·)
α .

Now, we will prove S
p(·)
α →֒ L1. Assume that f ≥ 0 and f /∈ L1, i.e.,∫ 1

0
f(t)dt = ∞. Then, for every 0 < x < 1,

Ãf(x) = ess sup
y∈(x,1)

1

y

∫ y

0

f(t)dt ≥ lim
y→1−

1

y

∫ y

0

f(t)dt = ∞,

whence f /∈ S
p(·)
α , and the assertion follows.
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Lemma 3.13. Let p(·) be weak-Lipschitz at zero. Set p = p(0) and assume

−1 < α < p − 1. Then S
p(·)
α is a Banach function space.

Proof. It is not difficult to see that S
p(·)
α satisfies the conditions (P1) and (P2).

(P3), and so, (P6). Since
∫ 1

0
xαdx < ∞, (P4) holds. Finally, Theorem 3.12

yields (P5).

We shall now concentrate on the sharpness of the embeddings L
p(·)
α →֒ S

p(·)
α

and T p
α →֒ L

p(·)
α . Indeed, given p(·), take q(·) from (3.7). Then q(·) is weak-

Lipschitz at zero and q(x) ≤ p(x), just as in the proof of Theorem 3.10. Set

r(x) = max

(
q(x) −

C

log
(

e2

x

) , ess inf
x∈(0,1)

q(x)

)
.

Clearly, r(x) ≤ q(x). Moreover, r(x) < q(x) on an interval (0, a) for some a > 0.
Hence,

Lp(·)
α →֒ Lq(·)

α
→֒
6= Lr(·)

α →֒ Sp(·)
α .

The sharpness of the embedding T p
α →֒ L

p(·)
α can be shown in an analogous

manner.

Remark 3.14. For every 1 < p and −1 < α < p−1, we have T p
α →֒ Sp

α. Indeed,
by Corollary 3.8 and Theorem 3.12 (applied to the constant function p(·) ≡ p),
we have T p

α →֒ Lp
α →֒ Sp

α.

So far we only know that the operator A is bounded on Lp
α as long as

p ∈ (1,∞) and −1 < α < p − 1. We shall now obtain a tighter result.

Theorem 3.15. Let α ∈ R and 1 < p < ∞.

(i) We have A : Sp
α → T p

α.

(ii) If r(·), s(·) ∈ B are weak-Lipschitz at zero, r(0) = s(0) =: p and −1 <

α < p − 1, then A : L
r(·)
α → L

s(·)
α .

(iii) If −1 < α < p − 1, then

A : Sp
α → Sp

α (3.8)

A : T p
α → T p

α. (3.9)

Proof. The assertion (i) is an immediate consequence of the definitions of the
spaces Sp

α and T p
α, (ii) follows from (i), Corollary 3.8 and Theorem 3.12, and,

finally, (iii) is an easy consequence of Remark 3.14 and (i).

We shall now prove that the spaces Sp
α and T p

α that appear in the embeddings
(3.8) and (3.9) are sharp in a fairly general sense.

Theorem 3.16. Let 1 < p and −1 < α < p − 1. Assume that Z is a BFS and

Z & T p
α. Then A : T p

α 9 Z.
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Proof. Take 0 ≤ g ∈ T p
α \ Z and set h(x) = g̃(t). Then h is non-increasing,

h ≥ g and h ∈ T p
α. Since Z is a BFS, we have h /∈ Z. So, h ∈ T p

α \ Z. The
monotonicity of h implies Ah ≥ h, whence Ah /∈ Z. By Theorem 3.15 (ii), we
obtain Ah ∈ T p

α and, consequently, A : T p
α 6→ Z.

Now we turn our attention to the optimality of Sp
α in (3.8).

Theorem 3.17. Let 1 < p and −1 < α < p− 1. Assume that Z be a BFS such

that Sp
α & Z. Then A : Z 6→ Sp

α.

Proof. Take 0 ≤ f ∈ Z \ Sp
α. Since Z is a BFS, we have f ∈ L1. Then

K := ess sup
z∈( 1

e
,1)

(
1

z

∫ z

0

f

)p

≤

(
e

∫ 1

0

f

)p

< ∞.

By the Fubini theorem,

L : =

∫ 1

0

(
Ã(Af)(x)

)p
xαdx

=

∫ 1

0

ess sup
y∈(x,1)

(
1

y

∫ y

0

f(s) log
y

s
ds

)p

xαdx

≥

∫ 1

0

ess sup
y∈(x,1)

(
1

y

∫ y

e

0

f(s) log
y

s
ds

)p

xαdx

≥

∫ 1

0

ess sup
y∈(x,1)

(
1

y

∫ y

e

0

f(s)ds

)p

xαdx

= e−p

∫ 1

0

ess sup
y∈(x,1)

(
e

y

∫ y

e

0

f(s)ds

)p

xαdx

= e−p

∫ 1

0

ess sup
z∈(x

e
, 1
e
)

(
1

z

∫ z

0

f(s)ds

)p

xαdx.

Fix x ∈ (0, 1). Denote a := ess supz∈(x
e
, 1
e
)

(
1
z

∫ z

0
f(s)ds

)p
. As a ≥ max(a,K)−K,

we have

ess sup
z∈(x

e
, 1
e
)

(
1

z

∫ z

0

f(s)ds

)p

≥max

(
ess sup
z∈(x

e
, 1
e
)

(
1

z

∫ z

0

f(s)ds

)p

, ess sup
z∈( 1

e
,1)

(
1

z

∫ z

0

f

)p
)
−K

= ess sup
z∈(x

e
,1)

(
1

z

∫ z

0

f(s)ds

)p

−K

≥ ess sup
z∈(x,1)

(
1

z

∫ z

0

f(s)ds

)p

−K.
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Finally, since f /∈ Sp
α

L ≥ e−p

∫ 1

0

ess sup
z∈(x,1)

(
1

z

∫ z

0

f(s)ds

)p

dx − e−pK = ∞.

This gives Af /∈ Sp
α which finishes the proof.

4. Equivalent norms in T p
α and Sp

α

We introduce in this section a family of norms equivalent either to the norm
in T p

α or to the norm in Sp
α. We shall now summarize definitions of all spaces

considered in what follows.

Definition 4.1. Let p ≥ 1, α ∈ R. We define the space Xp
α by

‖f‖X
p
α

:=

( ∞∑

n=0

2−n(α+1) ess sup
2−n−1≤t≤2−n

|f(t)|p
) 1

p

,

and the space (Y )p
α by

‖f‖Y
p
α

:=

(
∞∑

n=0

2n(p−α−1)

(∫ 2−n

2−n−1

|f(t)|dt

)p
) 1

p

.

Next, consider an f ∈ M(0, 1), extended by zero elsewhere on R if necessary.
We define the norm

‖f‖S
p
α

:=

(∫ 1

0

(∫ 2x

x
2

t−1|f(t)|dt

)p

xαdx

) 1
p

,

and the corresponding space Sp
α. Finally, we define the norm

‖f‖S̃
p
α

=

(∫ 1

0

(∫ 1

x

t−1|f(t)|dt

)p

xαdx

) 1
p

and denote by S̃p
α the corresponding space.

We are going to use discretization and anti-discretization methods in the
spirit of [4, 6]. We will need three auxiliary lemmas, the first of which is just
a special case of [4, Lemma 3.1 (i)], apparently first proved in [5].

Lemma 4.2. Let a > 1, 1 ≤ p < ∞. Then there is a C > 0 such that the

inequality
∞∑

n=0

an

( ∞∑

k=n

bk

)p

≤ C
∞∑

n=0

anbp
n

holds for any sequence bk ≥ 0.
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Using the duality between ℓp and ℓp′ spaces we obtain a dual version of this
inequality.

Lemma 4.3. Let a > 1, 1 ≤ p < ∞. Then there is a D > 0 such that the

inequality
∞∑

n=0

a−n

( n∑

k=0

ck

)p

≤ D

∞∑

n=0

a−ncp
n

holds for any sequence ck ≥ 0.

The following assertion is a particular case of [4, Lemma 3.2 (ii)]. It also
follows from Lemma 4.3 with D = 1

1−β
.

Lemma 4.4. Let 0 < β < 1 and an ≥ 0, n ∈ N. Then

∞∑

n=1

βn max
0≤k≤n

ak ≤
1

1 − β

∞∑

n=1

βnan.

Observe that, denoting, for α > 0, Bα := 2α+1−1
(α+1)2α+1 , we have

2n(α+1)

∫ 2−n

2−n−1

xαdx = Bα.

Proposition 4.5. Let −1 < α < p− 1 . Then Xp
α = T p

α with equivalent norms.

Proof. We will first establish the inequality ‖f‖T
p
α

≤ C‖f‖X
p
α
. Set

an := ess sup2−n−1≤t≤2−n |f(t)|. By Lemma 4.4,

‖f‖p

T
p
α
=

∫ 1

0

(
f̃(x)

)p
xαdx=

∫ 1

0

(
ess sup

x≤t≤1
|f(t)|

)p

xαdx=
∞∑

n=0

∫ 2−n

2−n−1

ess sup
x≤t≤1

|f(t)|pxαdx

and hence

‖f‖p

T
p
α
≤

∞∑

n=0

ess sup
2−n−1≤t≤1

|f(t)|p
∫ 2−n

2−n−1

xαdx

=
∞∑

n=0

max
0≤k≤n

ess sup
2−k−1≤t≤2−k

|f(t)|p
∫ 2−n

2−n−1

xαdx

= Bα

∞∑

n=0

2−n(α+1) max
0≤k≤n

ap
k

≤
Bα

1 − 2−(1+α)

∞∑

n=0

2−n(α+1)ap
n

=
1

1 + α

∞∑

n=0

2−n(α+1) ess sup
2−n−1≤t≤2−n

|f(t)|p

=
1

1 + α
‖f‖p

X
p
α
.
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The converse inequality ‖f‖X
p
α
≤ C‖f‖T

p
α

follows from

‖f‖p

X
p
α

=
∞∑

n=0

2−n(α+1) ess sup
2−n−1≤t≤2−n

|f(t)|p

= 2α+1B−1
α

∞∑

n=0

∫ 2−n−1

2−n−2

ess sup
2−n−1≤t≤2−n

|f(t)|pxαdx

≤ 2α+1B−1
α

∞∑

n=0

∫ 2−n−1

2−n−2

ess sup
x≤t≤1

|f(t)|pxαdx

≤ 2α+1B−1
α

∫ 1

0

ess sup
x≤t≤1

|f(t)|pxαdx

= 2α+1B−1
α ‖f‖p

T
p
α
.

Lemma 4.6. Let p > 1 and −1 < α < p − 1. Then Sp
α →֒ L1.

Proof. Let f ≥ 0. Then we have, by Lemma 4.2 applied to bk =
∫ 2−k

2−k−1 f(x)dx,

‖f‖p

L1 =

(∫ 1

0

f(t)dt

)p

≤

∞∑

n=0

2n(p−α−1)

(∫ 2−n

0

f(t)dt

)p

=
∞∑

n=0

2n(p−α−1)

( ∞∑

k=n

∫ 2−k

2−k−1

f(t)dt

)p

≤ C
∞∑

n=0

2−n(α+1)

(
2n

∫ 2−n

2−n−1

f(t)dt

)p

≤ C

∞∑

n=0

2−n(α+1)

(∫ 2−n

2−n−1

t−1f(t)dt

)p

= C
2α+1(α + 1)

2α+1 − 1

∞∑

n=0

∫ 2−n

2−n−1

(∫ 2−n

2−n−1

t−1f(t)dt

)p

xαdx

≤ C̃

∫ 1

0

(∫ 2x

x
2

t−1f(t) dt

)p

xαdx

= C̃‖f‖p

S
p
α
.

Lemma 4.7. Assume p > 1 and −1 < α < p − 1. Then Sp
α is a BFS.

Proof. It is not difficult to verify properties (P1), (P2) and (P3) from Defini-

tion 2.1. Due to Lemma 4.6 it suffices to verify that f ≡ 1 ∈ Sp
α. This follows

from
∫ 1

0

( ∫ 2x
x
2

t−1dt
)p

xαdx =
∫ 1

0
(log 4)pxαdx < ∞.
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Lemma 4.8. Assume 1 < p and −1 < α < p − 1. Then the spaces Sp
α and Sp

α

coincide and their norms are equivalent.

Proof. Let us prove first the embedding Sp
α →֒ Sp

α. We have, for f ≥ 0,

‖f‖p

S
p
α

=

∫ 1

0

ess sup
x<t<1

(
1

t

∫ t

0

f(s)ds

)p

xαdx

=
∞∑

n=0

∫ 2−n

2−n−1

ess sup
x<t<1

(
1

t

∫ t

0

f(s)ds

)p

xαdx

≤
∞∑

n=0

∫ 2−n

2−n−1

ess sup
2−n−1<t<1

(
1

t

∫ t

0

f(s)ds

)p

xαdx.

Denote ak = ess sup2−k−1<t<2−k
1
t

∫ t

0
f(s)ds. Then, by Lemma 4.4

‖f‖p

S
p
α
≤

∞∑

n=0

(
max
0≤k≤n

ap
k

)∫ 2−n

2−n−1

xαdx

=
2α+1 − 1

2α+1(α + 1)

∞∑

n=0

2−n(α+1) max
0≤k≤n

ap
k

≤
2α+1 − 1

2α+1(α + 1)

1

1 − 2−(α+1)

∞∑

n=0

2−n(α+1)ap
n

=
1

α + 1

∞∑

n=0

2−n(α+1)

(
ess sup

2−n−1<t<2−n

1

t

∫ t

0

f(s)ds

)p

≤
2p

α + 1

∞∑

n=0

2n(p−α−1)

(
ess sup

2−n−1<t<2−n

∫ t

0

f(s)ds

)p

≤
2p

α + 1

∞∑

n=0

2n(p−α−1)

(∫ 2−n

0

f(s)ds

)p

=
2p

α + 1

∞∑

n=0

2n(p−α−1)

( ∞∑

k=n

∫ 2−k

2−k−1

f(s)ds

)p

.

Denote bn =
∫ 2−n

2−n−1 f(s)ds. Then, by Lemma 4.2,

‖f‖p

S
p
α
≤

2p

α + 1

∞∑

n=0

2n(p−α−1)

( ∞∑

k=n

bk

)p

≤
2p

α + 1
C

∞∑

n=0

2n(p−α−1)bp
n

≤
2p

α + 1
C

∞∑

n=0

2−n(α+1)

(∫ 2−n

2−n−1

s−1f(s)ds

)p
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=
2p+α+1

α + 1
C

α + 1

2α+1 − 1

∞∑

n=0

∫ 2−n

2−n−1

(∫ 2−n

2−n−1

s−1f(s)ds

)p

xαdx

=
2p+α+1

2α+1 − 1
C

∞∑

n=0

∫ 2−n

2−n−1

(∫ 2−n

2−n−1

s−1+ α
p f(s)ds

)p

dx

≤ C̃

∫ 1

0

(∫ 2x

x
2

s−1f(s)ds

)p

xαdx

= C̃‖f‖p

S
p
α
.

We shall now prove the converse embedding Sp
α →֒ Sp

α. Set cn =∫ 2−n

2−n−1 s−1f(s)ds. Note that, formally, c−1 = 0, whence,

‖f‖p

S
p
α

=

∫ 1

0

(∫ 2x

x
2

s−1f(s)ds

)p

xαdx

=
∞∑

n=0

∫ 2−n

2−n−1

(∫ 2x

x
2

s−1f(s)ds

)p

xαdx

≤

∞∑

n=0

∫ 2−n

2−n−1

(∫ 2−n+1

2−n−2

s−1f(s)ds

)p

xαdx

= Bα

∞∑

n=0

2−n(α+1)(cn+1 + cn + cn−1)
p

≤ Bα3p−1

( ∞∑

n=0

2−n(α+1)cp
n+1 +

∞∑

n=0

2−n(α+1)cp
n +

∞∑

n=0

2−n(α+1)cp
n−1

)

= Cα

∞∑

n=0

2−n(α+1)cp
n,

where Cα := Bα3p−1(2α+1 + 1 + 2−α−1). Thus,

‖f‖p

S
p
α
≤ Cα

∞∑

n=0

2−n(α+1)

(∫ 2−n

2−n−1

s−1f(s)ds

)p

≤ Cα

∞∑

n=0

2−n(α+1)

(
2n+1

∫ 2−n

2−n−1

f(s)ds

)p

≤ 2pCα

∞∑

n=0

2−n(α+1)

(
ess sup
2−n<t<1

1

t

∫ t

0

f(s)ds

)p

= 2p Cα

Bα

∞∑

n=0

∫ 2−n

2−n−1

(
ess sup
2−n<t<1

1

t

∫ t

0

f(s)ds

)p

xαdx
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and

‖f‖p

S
p
α
≤ 2p Cα

Bα

∞∑

n=0

∫ 2−n

2−n−1

(
ess sup

x<t<1

1

t

∫ t

0

f(s)ds

)p

xαdx

= 2p Cα

Bα

∫ 1

0

(
ess sup

x<t<1

1

t

∫ t

0

f(s)ds

)p

xαdx

= 2p Cα

Bα

‖f‖p

S
p
α
.

Proposition 4.9. Let −1 < α < p−1. The spaces Y p
α and Sp

α coincide and the

norms are equivalent.

Proof. If x ∈ (2−n−1, 2−n) then (x
2
, 2x) ⊃ (2−n−1, 2−n). Thus, for any f ,

‖f‖p

S
p
α

=

∫ 1

0

(∫ 2x

x
2

t−1|f(t)|dt

)p

xαdx

=
∞∑

n=0

∫ 2−n

2−n−1

(∫ 2x

x
2

t−1|f(t)|dt

)p

xαdx

≥

∞∑

n=0

∫ 2−n

2−n−1

(∫ 2−n

2−n−1

t−1|f(t)|dt

)p

xαdx

≥ Bα

∞∑

n=0

2n(p−α−1)

(∫ 2−n

2−n−1

|f(t)|dt

)p

= Bα‖f‖
p

Y
p
α
.

As for the converse inequality, we have

‖f‖p

S
p
α
≤

∞∑

n=0

∫ 2−n

2−n−1

(∫ 2−n+1

2−n−2

t−1|f(t)|dt

)p

xαdx

≤ 22pBα

∞∑

n=0

2n(p−α−1)

(∫ 2−n+1

2−n−2

|f(t)|dt

)p

.

Writing
∫ 2−n+1

2−n−2 . . . =
∫ 2−n−1

2−n−2 . . . +
∫ 2−n

2−n−1 . . . +
∫ 2−n+1

2−n . . . , we get

‖f‖p

S
p
α
≤ 3p−122pBα

[
∞∑

n=0

2n(p−α−1)

(∫ 2−n−1

2−n−2

|f(t)|dt

)p

+
∞∑

n=0

2n(p−α−1)

(∫ 2−n

2−n−1

|f(t)|dt

)p

+
∞∑

n=0

2n(p−α−1)

(∫ 2−n+1

2−n

|f(t)|dt

)p
]

=: 3p−122pBα

[
D1 + D2 + D3

]
,
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say. Now, D2 is exactly ‖f‖p

Y
p
α
, while

D1 =
∞∑

n=0

2n(p−α−1)

(∫ 2−n−1

2−n−2

|f(t)|dt

)p

= 2−(p−α−1)

∞∑

n=1

2n(p−α−1)

(∫ 2−n

2−n−1

|f(t)|dt

)p

≤ 2−(p−α−1)

∞∑

n=0

2n(p−α−1)

(∫ 2−n

2−n−1

|f(t)|dt

)p

= 2−(p−α−1)D2,

and one can show in an analogous manner that D3 = 2p−α−1D2. Altogether,
this proves the claim.

Theorem 4.10. Let 1 < p and −1 < α < p − 1. Then the spaces S̃p
α and Y p

α

coincide and their norms are equivalent.

Proof. Let us prove first Y p
α →֒ S̃p

α. For a given function f, set ck =
∫ 2−n

2−n−1

|f(s)|
s

ds.
We can easily write

‖f‖p

S̃
p
α

=

∫ 1

0

(∫ 1

x

|f(s)|

s
ds

)p

xαdx

=
∞∑

n=0

∫ 2−n

2−n−1

(∫ 1

x

|f(s)|

s
ds

)p

xαdx

≤

∞∑

n=0

∫ 2−n

2−n−1

(∫ 1

2−n−1

|f(s)|

s
ds

)p

xαdx

= Bα

∞∑

n=0

2−n(α+1)

( n∑

k=0

∫ 2−k

2−k−1

|f(s)|

s
ds

)p

= Bα

∞∑

n=0

2−n(α+1)

( n∑

k=0

ck

)p

.

By Lemma 4.3, we obtain

‖f‖p

S̃
p
α

≤ Bα

∞∑

n=0

2−n(α+1)

( n∑

k=0

ck

)p

≤ BαD

∞∑

n=0

2−n(α+1)cp
n

≤ 2pBαD
∞∑

n=0

2n(p−α−1)

(∫ 2−n

2−n−1

|f(s)|ds

)p

= 2pBαD‖f‖p

Y
p
α
.
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As for the converse embedding, we have

‖f‖p

Y
p
α

=
∞∑

n=0

2−n(α+1)

(
2n

∫ 2−n

2−n−1

|f(s)|ds

)p

≤

∞∑

n=0

2−n(α+1)

(∫ 2−n

2−n−1

|f(s)|

s
ds

)p

=
2α+1

Bα

∞∑

n=0

∫ 2−n−1

2−n−2

(∫ 2−n

2−n−1

|f(s)|

s
ds

)p

xαdx

≤
2α+1

Bα

∞∑

n=0

∫ 2−n−1

2−n−2

(∫ 1

x

|f(s)|

s
ds

)p

xαdx

≤
2α+1

Bα

∫ 1

0

(∫ 1

x

|f(s)|

s
ds

)p

xαdx

=
2α+1

Bα

‖f‖S̃
p
α
,

proving the claim of the theorem.

5. Duality of the optimal spaces

We shall now characterize the associate spaces of T p
α and Sp

α.

Theorem 5.1. Let p > 1 and −1 < α < p − 1. Then (Xp
α)′ = Y p′

−α(p′−1) with

equivalent norms.

Proof. By the Hölder inequality for series, we get

∫ 1

0

|f(x)g(x)|dx

=
∞∑

n=0

∫ 2−n

2−n−1

|f(x)g(x)|dx

≤
∞∑

n=0

(
2

−n(α+1)
p ess sup

2−n−1≤x≤2−n

|f(x)|

)(
2

n(α+1)
p

∫ 2−n

2−n−1

|g(x)|dx

)

≤

(
∞∑

n=0

2−n(α+1) ess sup
2−n−1≤x≤2−n

|f(x)|p

) 1
p
(

∞∑

n=0

2
n(α+1)

p−1

(∫ 2−n

2−n−1

|g(x)|dx

)p′
) 1

p′

= ‖f‖X
p
α
‖g‖

Y
p′

−α(p′−1)

,

from which we get ‖g‖(Xp
α)′ ≤ ‖g‖

Y
p′

−α(p′−1)

.
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For the converse inequality, take an arbitrary g, ‖g‖
Y

p′

−α(p′−1)

= 1. We set

f0(x) =
∑∞

n=0

(
2n(α+1)

∫ 2−n

2−n−1 |g(t)|dt
) p′

p χ(2−n−1,2−n)(x) and bn :=
∫ 2−n

2−n−1 |g(t)|dt.

Then

∫ 1

0

|f0(x)g(x)|dx =

∫ 1

0

∞∑

n=0

(
2n(α+1)bn

) p′

p

χ(2−n−1,2−n)(x)|g(x)|dx

=
∞∑

n=0

2n(α+1) p′

p b
p′

p
n

∫ 2−n

2−n−1

|g(x)|dx

=
∞∑

n=0

2n(α+1) p′

p b
1+ p′

p
n

=
∞∑

n=0

2n(α+1) p′

p

(∫ 2−n

2−n−1

|g(t)|dt

)p′

= ‖g‖p′

Y
p′

−α(p′−1)

Moreover,

‖f0‖
p

X
p
α

=
∞∑

n=0

2−n(α+1)
(

ess sup
2−n−1≤t≤2−n

|f(t)|
)p

=
∞∑

n=0

2−n(α+1)
(

ess sup
2−n−1≤t≤2−n

(2n(α+1)bn)
p′

p

)p

=
∞∑

n=0

2−n(α+1)2np′(α+1)bp′

n

=
∞∑

n=0

2n(α+1)(p′−1)

(∫ 2−n

2−n−1

|g(t)|dt

)p′

= ‖g‖p′

Y
p′

−α(p′−1)

Thus, ‖g‖(Xp
α)′ = sup‖f‖

X
p
α
≤1

∫ 1

0
|f(x)g(x)| dx ≥

∫ 1

0
|f0(x)g(x)| dx = ‖g‖

Y
p′

−α(p′−1)

,

and the assertion follows.

We can thus formulate the following result.

Theorem 5.2. Let −1 < α < p−1, 1 < p. Then the spaces
(
T p

α

)′
and Sp′

−α(p′−1)

coincide, and their norms are equivalent. Consequently, the spaces (Sp
α)′ and

T p′

−α(p′−1) coincide, and their norms are equivalent.
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Remark 5.3. The statement of Theorem 5.2 is equivalent to the inequality
∫ 1

0

|g(x)h(x)| dx ≤ Ch

(∫ 1

0

[
ess sup

x≤t≤1
|g(x)|

]p

xα dx

) 1
p

,

in which Ch ≈
( ∫ 1

0

(
ess supx≤t≤1

1
t

∫ t

0
|h(y)| dy

)p′
x−α(p′−1) dx

) 1
p′. This is a weigh-

ted reverse inequality for the supremum operator. We note that, for integral
operators, such inequalities are studied, e.g., in [3]. Application of ideas de-
veloped there to supremum operators would give alternative proofs of duality
results in the spirit of our Theorem 5.2.
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