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Concentration-Compactness Principle

for Generalized Trudinger Inequalities
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Abstract. Let Ω ⊂ R
n, n ≥ 2, be a bounded domain and let α < n−1. We prove the

Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space

W 1
0 Ln logα L(Ω) into the Orlicz space with the Young function exp

(

t
n

n−1−α

)

− 1.
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1. Introduction

Throughout the paper Ω denotes a bounded domain in R
n, n ≥ 2. It is well-

known that the Sobolev space W 1,p
0 (Ω), 1 ≤ p < n, is continuously embedded

into L
pn

n−p (Ω). For p > n we know that each function from W
1,p
0 (Ω) is bounded,

i.e., it belongs to L∞(Ω), but this is not true for the limiting case p = n. For
p = n there is a famous result by Trudinger [18] (see also Yudovič [21]) which
implies that the first-order Sobolev space W 1,n

0 (Ω) is continuously embedded
to the Orlicz space LΦ(Ω) with the Young function of the exponential type
Φ(t) = exp

(

t
n

n−1

)

− 1, t > 0.
It is a general fact that embeddings are usually not compact in the limiting

cases. For example embedding of the Sobolev space W 1,p
0 (Ω) into L

pn

n−p (Ω) for
1 ≤ p < n or into LΦ(Ω) for p = n are not compact. However there is the
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amazing Concentration-Compactness Principle (see [19] and references given
there for history and applications) that some substitute for compactness is still
available for many embeddings. This principle is usually telling us that from
each bounded sequence we can either select a subsequence that converges in the
target space or we can select a subsequence that has very special behavior. For
example it concentrates around one point and in some sense converges to the
Dirac mass at this point or after suitable translations it concentrates around
one point. This observation is very useful and can be used in many problems
connected with the Calculus of Variations (see, e.g., [9, 10,14,19]).

The aim of this paper is to prove the Concentration-Compactness Principle
for embeddings that generalize the Trudinger embedding. For α < n− 1 set

γ =
n

n− 1 − α
, B = 1 −

α

n− 1
and Kn,α = B

1

Bnω
γ

n

n−1,

here ωn−1 denotes the surface area of the unit sphere. The spaceW0L
n logα L(Ω)

of the Sobolev type (see Preliminaries for the definition) is continuously embed-
ded into the Orlicz space with the Young function exp(tγ)−1. These results are
due to Fusco, Lions, Sbordone [11] for α < 0 and Edmunds, Gurka, Opic [6, 7]
in general. In [6] the space WLn logα L is modeled as a set of functions with
Bessel potential in the generalized Lorentz Zygmund space and the results are
much more general than those we mention here.

In this paper we consider differentiable Young functions Φ such that

lim
t→∞

Φ(t)

tn logα(t)
= 1 (1)

with α < n− 1. In the critical case K = Kn,α we usually also require existence
of tΦ > 1 and a ∈ (0,min(1, 1

γ
)) such that

Φ(t) ≥ tn logα(t)
(

1 + log−a(t)
)

for t ≥ tΦ. (2)

The main result of this paper is the following theorem saying:
Suppose that we have a normalized sequence {uk}

∞
k=1 of functions from the

Orlicz-Sobolev space W0L
Φ(Ω) := W 1

0L
Φ(Ω). Then we can select a weakly

convergent subsequence (satisfying (3)) so that, either this subsequence con-
centrates around one point x0 ∈ Ω̄ and we can find its subsequence {uki

}∞i=1

such that exp(K|uki
|γ) − 1 converges to a multiple of the Dirac mass at x0

(see (i)), or exp(K|uk|
γ) are uniformly bounded in L1+δ(Ω) and, by the reflex-

ivity of L1+δ(Ω), these exponentials converge in L1(Ω) (see (ii)).

Theorem 1.1. Let n ≥ 2, α < n−1 and let Φ be a Young function satisfying (1)
and (2). Let {uk}

∞
k=1 ⊂ W0L

Φ(Ω) satisfy ‖Φ(|∇uk|)‖L1(Ω) ≤ 1. Further suppose
that

uk ⇀ u in W0L
Φ(Ω), uk → u a.e. in Ω and Φ(|∇uk|)

∗
⇀ µ in M(Ω̄). (3)
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(i) If u=0 and µ=δx0
for some x0∈ Ω̄, then the sequence {exp(Kn,α|uk|

γ)}∞k=1

is relatively compact with respect to the weak∗ convergence in M(Ω̄) and
the limits of convergent subsequences belong to {Ln|Ω + cδx0

: c ≥ 0}.

(ii) Otherwise there is δ > 0 such that exp(Kn,α(1 + δ)|uk|
γ) is bounded in

L1(Ω) and

exp(Kn,α|uk|
γ)

k→∞
→ exp(Kn,α|u|

γ) in L1(Ω).

Notice that this result cannot be valid with a constant K > Kn,α because
similarly to Moser’s result [15] the integral from exp(K|u|γ) can be made arbi-
trarily large if K > Kn,α (see remarks after Theorem 2.3 and [13]). In the case
K < Kn,α the situation is much simpler and we have just the compactness as
an easy corollary of the Moser-type result.

Corollary 1.2. Let n ≥ 2, α < n−1, K < Kn,α and let Φ be a Young function
satisfying (1). Let {uk}

∞
k=1 ⊂ W0L

Φ(Ω) satisfy ‖Φ(|∇uk|)‖L1(Ω) ≤ 1. Further
suppose that uk → u a.e. in Ω. Then

exp(K|uk|
γ)

k→∞
→ exp(K|u|γ) in L1(Ω).

For the proof of our main theorem we use the method inspired by Li-
ons [14] and Carleson, Chang [2] but we have to include several new ideas.
We need to use the results and techniques from [13] to show the boundedness
of exp(Kn,α|u|

γ). Moreover we extend these estimates to show that the critical
sequence of functions converges to 0 (see Lemma 3.6).

At the end let us mention some possible applications of our results and
open problems. First it was shown by Carleson and Chang [2] (see also [10])
that the extremal constant in Moser’s inequality is actually attained by some
function. Using our Concentration-Compactness result it is not difficult to prove
the following version of such a result for functional with the sub-critical growth:

Theorem 1.3. Let n ≥ 2, α < n − 1 and let Φ be a Young function satisfy-
ing (1). Suppose that the function F : R 7→ R is even and continuous. Further
suppose that either

lim
t→∞

F (t)

exp(K|t|γ)
= 0 for some K < Kn,α (4)

or Φ satisfies the additional condition (2) and

lim
t→∞

F (t)

exp(Kn,α|t|γ)
= 0. (5)

Then the functional ΛF (u) =
∫

Ω
F (u(x)) dx attains its maximum on the set

{u ∈ W0L
Φ(Ω) : ‖Φ(|∇u|)‖L1(Ω) ≤ 1}.
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We would like to know if it is possible to obtain the generalization of Theo-
rem 1.3 also for functionals with the critical growth, i.e., if the limit in (5) is not
zero but one. To obtain this result it would be necessary to have a version of
some technical estimates from [2] also for the generalized Trudinger inequalities.

Another application of the Concentration-Compactness Alternative for Tru-
dinger inequalities in dimension two can be found in de Figueiredo, Miyagaki,
Ruf [9] (see also [16] for the higher dimensional version). It is shown there that
the functional ΓF (u) =

∫

Ω

(

|∇u(x)|2 − F (x, u(x))
)

dx has a non-zero critical
point and thus there is a nontrivial solution of the equation

−∆u = f(x, u) in Ω, u = 0 on ∂Ω.

Here F is a primitive of f , these functions satisfy some additional technical
conditions and f(x, u) behaves like eKu2

for u big. By [4] it is possible to
obtain an analogue of above result showing that there are non-zero critical
points of the functional ΓF,Φ =

∫

Ω

(

Φ(|∇u(x)|)−F (u(x))
)

dx. Here Φ satisfies (1)
and F (u) behaves like eKuγ

for u big. Let us note that the proof in [4] uses
a different version of the Concentration-Compactness Principle (see [4, proof of
Lemma 5.2]).

2. Preliminaries

The n-dimensional Lebesgue measure is denoted by Ln. Further, Ln|Ω is its
restriction to Ω, i.e., Ln|Ω(A) = Ln(A ∩ Ω) for every measurable set A ⊂ R

n.
If u is a measurable function on Ω, then by u = 0 (or u 6= 0) we mean that u is
equal (or not equal) to the zero function a.e. on Ω. Sometimes we abbreaviate
the integral with respect to the Lebesgue measure

∫

f(x) dx to
∫

f if there is
no danger of confusion to the reader.

By M(A) we denote the set of all Radon measures on a compact set A.

We write that µj
∗
⇀ µ in M(A) if

∫

A
ψ dµj →

∫

A
ψ dµ for every ψ ∈ C(A).

It is well known that each sequence bounded in L1(A) contains a subsequence
converging weakly* in M(A).

By B(x0, R) we denote an open Euclidean ball in R
n centered at x0 with

the radius R > 0. If x0 = 0 we simply write B(R).

By C we denote a generic positive constant which may depend on n, α,
Ln(Ω) and Φ. This constant may vary from expression to expression as usual.

Young functions and Orlicz spaces. A function Φ : R
+ → R

+ is a Young
function if Φ is increasing, convex, Φ(0) = 0 and limt→∞

Φ(t)
t

= ∞.

Denote by LΦ(A, dµ) the Orlicz space corresponding to a Young function Φ
on a set A with a measure µ. If µ = Ln we simply write LΦ(A). The space



Concentration-Compactness Principle 359

LΦ(A, dµ) is equipped with the norm

||f ||LΦ(A,dµ) = inf

{

λ > 0 :

∫

A

Φ
( |f(x)|

λ

)

dµ(x) ≤ Φ(1)

}

. (6)

This is slightly different from the usual Luxemburg definition where we have
∫

A
Φ

( |f(x)|
λ

)

dµ(x) ≤ 1. We use (6) to have the Hölder’s inequality (7) with a
sharp constant.

Given a differentiable Young function Φ we can define the generalized in-
verse function to φ(u) = Φ′(u) by

ψ(s) = inf{u : φ(u) > s} for s > 0

and further we define the associated Young function Ψ by

Ψ(t) =

∫ t

0

ψ(s)ds for t ≥ 0.

The dual space to LΦ(A, dµ) can be identified as the Orlicz space LΨ(A, dµ).
If we have Φ(1) + Ψ(1) = 1 then the following generalization of Hölder’s

inequality is valid (see [17, p. 58] for the proof)
∫

A

|f(y)g(y)| dµ(y) ≤ ||f ||LΦ(A,dµ)||g||LΨ(A,dµ). (7)

We use this inequality for a measurable set A ⊂ R and the measure dµ(y) =
ωn−1y

n−1dy.
If our Young function Φ satisfies (2), in a standard way we can prove that

there is a Young function Φ1 : R
+ → R

+ such that

• Φ′
1 is continuous and increasing on (0,∞),

• Φ1(t) =
1

n
tn for t ∈ [0, 1],

• there is a G > tΦ such that for every t ≥ G we have

Φ1(t) =
1

n
tn logα(t)

(

1 + log−a(t)
)

≤
1

n
Φ(t).

(8)

Denote by Ψ the Young function associated to the function Φ1. Clearly
Ψ(t) = n−1

n
t

n
n−1 for t ∈ [0, 1]. Hence Φ1(1) + Ψ(1) = 1. Therefore (Φ1,Ψ) is a

normalized complementary Young pair and we can use inequality (7).
We need the following estimate from [13, Lemma 4.4].

Lemma 2.1. Assume that the Young function Φ satisfies (2). Then there are
t0 ∈ (0, 1) and b ∈ (a,min{1, 1

γ
}) such that for 0 < t ≤ t0 we have

∣

∣

∣

∣

∣

∣

1

yn−1

∣

∣

∣

∣

∣

∣

LΨ((t,R),ωn−1yn−1dy)
≤

(ωn−1

B

)
n−1

n

log
1

γ

(1

t

)(

1 − log−b
(1

t

))

. (9)

For an introduction to Orlicz spaces see, e.g., [17].
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∆2-condition. We say that the Young function Φ satisfies the ∆2-condition, if
there are t∆ ≥ 0 and C∆ > 1 such that Φ(2t) ≤ C∆Φ(t) whenever t ≥ t∆. It
is easy to see that if Φ satisfies the ∆2-condition for one fixed t∆ > 0 then it
satisfies this condition with arbitrary t̃∆ > 0 with a different constant C̃∆ > 1.
From the ∆2-condition it is not difficult to deduce that for any η > 0 we can
find ε > 0 so that

Φ((1 + ε)t) ≤ (1 + η)Φ(t), t ≥ t∆. (10)

It is not difficult to check the ∆2-condition for our Young functions satis-
fying (1). Therefore one easily proves

||f ||LΦ(A,dµ) < 1 ⇐⇒

∫

A

Φ(|f |) dµ(x) < Φ(1), (11)

and

||fj||LΦ(A,dµ)
j→∞
→ 0 ⇐⇒

∫

A

Φ(|fj|) dµ(x)
j→∞
→ 0. (12)

Orlicz-Sobolev spaces. Let A be a nonempty open set in R
n and let Φ be

a Young function. In this subsection we consider Orlicz spaces only with the
Lebesgue measure. We define the Orlicz-Sobolev space WLΦ(A) as the set

WLΦ(A) := {u : u, |∇u| ∈ LΦ(A)}

equipped with the norm ‖u‖WLΦ(A) := ‖u‖LΦ(A) + ‖∇u‖LΦ(A), where ∇u is the
gradient of u and we use its Euclidean norm in R

n.
We put W0L

Φ(A) for the closure of C∞
0 (A) in WLΦ(A). For this space we

prefer to use throughout the paper the equivalent norm (see [12, Corollary 5.8])
‖u‖W0LΦ(A) := ‖∇u‖LΦ(A). The space W0L

Φ(A) is a reflexive Banach space and
it is compactly embedded into LΦ(A) (see [8]).

We write that fk ⇀ f in W0L
Φ(A), if

∫

A

∂fk

∂xi

g dx→

∫

A

∂f

∂xi

g dx for every g ∈ LΨ(A) and i ∈ {1, . . . , n}.

Non-increasing rearrangement. The non-increasing rearrangement f ∗ of a
measurable function f on Ω is

f ∗(t) = inf
{

s > 0 : Ln({x ∈ Ω : |f(x)| > s}) ≤ t
}

, t > 0.

We also define the non-increasing radially symmetric rearrangement f# by

f#(x) = f ∗
(ωn−1

n
|x|n

)

for x ∈ B(R), Ln(B(R)) = Ln(Ω).



Concentration-Compactness Principle 361

For an introduction to these rearrangements see , e.g., [18]. We need the fact
that for every Young function Φ and for every measurable function f : Ω → R

we have
∫

Ω

Φ(|f(x)|) dx =

∫

B(R)

Φ(|f#(x)|) dx =

∫ Ln(Ω)

0

Φ(|f ∗(y)|) dy.

We also use the Polya-Szegö principle (see, e.g., Talenti [18] for the proof).

Theorem 2.2. Let Ω be an open bounded set and let R > 0 be such that
Ln(B(R)) = Ln(Ω). Let Φ be a Young function. Suppose that the function
f : Ω → R is Lipschitz continuous and supported in Ω. Then f ∗ is locally
absolutely continuous and

∫

Ω

Φ(|∇f(x)|) dx ≥

∫

B(R)

Φ(|∇f#(x)|) dx.

On embeddings into exponential spaces. The following theorem from [13]
generalizes the famous result of Moser [15].

Theorem 2.3. Let α < n− 1 and let Φ be a Young function that satisfies (1).
Suppose that f ∈W0L

Φ(Ω) and ‖Φ(|∇f |)‖L1(Ω) ≤ 1.

(i) If K < Kn,α, then ‖ exp(K|f(x)|γ)‖L1(Ω) ≤ CK.

(ii) If K = Kn,α and (2) is satisfied, then ‖ exp(K|f(x)|γ)‖L1(Ω) ≤ CK.

The constant CK always depends on n, α,Ln(Ω), K and Φ only.

Analogously to Moser’s result the norm in the exponential space can be
made arbitrary large if K > Kn,α. For detailed discussion about the limiting
case K = Kn,α see [13].

In the proof of Theorem 1.1 we apply Theorem 2.3 to handle {uk}
∞
k=k0+1,

where k0 ∈ N is sufficiently large. For dealing with {uk}
k0

k=1 we need the following
lemma from [6, Remarks 3.11(iv)].

Lemma 2.4. Let n ≥ 2, α < n − 1, K ≥ 0 and let f ∈ W0L
Φ(Ω). Then

exp
(

K|f(x)|γ
)

∈ L1(Ω).

Tools from Measure Theory. We have

Lemma 2.5. Let {uk}
∞
k=1 be a sequence of measurable functions and let uk → u

a.e. in Ω. Suppose that there are α, β, τ, C1>0 such that ‖exp(α(1+β)|uk|
τ )‖L1(Ω)

< C1 for all k ∈ N. Let F be an even continuous function such that

sup
t∈(t0,∞)

|F (t)|

exp(α|t|τ )
<∞ for some t0 > 0 .

Then F (uk)
k→∞
→ F (u), in particular, exp(α|uk|

τ )
k→∞
→ exp(α|u|τ ) in the L1(Ω)-

norm.
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Proof. As exp(α|t|τ ) ≥ 1 on R, from the assumptions on F we obtain L > 0
such that

|F (t)| ≤ L exp(α|t|τ ) for every t ∈ R. (13)

By Fatou’s lemma we have exp(α|u|τ ) ∈ L1(Ω), and thus for every ε > 0 there
is δ > 0 so that

∫

A

exp(α|u|τ ) <
ε

L
provided Ln(A) < δ. (14)

Next since u ∈ L1(Ω) we find M1 > 0 such that

Ln({x ∈ Ω : |u(x)| > M1}) < δ. (15)

Fix M ≥M1 large enough so that C1

exp(αβMτ )
< ε

L
. We have by (13) – (15)

∫

{|u|≥M}

|F (u)| ≤ L

∫

{|u|≥M}

exp(α|u|τ ) < L
ε

L
= ε

and similarly we use the integrability of exp(α(1 + β)|uk|
τ )

∫

{|uk|≥M}

|F (uk)| ≤ L

∫

{|uk|≥M}

exp(α|uk|
τ )

= L

∫

{|uk|≥M}

exp(α(1 + β)|uk|
τ )

exp(αβ|uk|τ )

≤ L
C1

exp(αβM τ )

< ε.

Finally, the assumption uk → u a.e. in Ω and the continuity of F imply

gk := F (uk)χ{|uk|<M} − F (u)χ{|u|<M}
k→∞
→ 0 a.e. in Ω. Moreover

|gk(x)| ≤ L exp(α|uk|
τ )χ{|uk|<M} + L exp(α|u|τ )χ{|u|<M} ≤ 2L exp(αM τ )

where the last term is a L1(Ω)-function. Hence, for k ∈ N large enough, the
Lebesgue Dominated Convergence Theorem gives

∫

Ω

|F (uk) − F (u)| ≤

∫

{|uk|≥M}

|F (uk)| +

∫

{|u|≥M}

|F (u)| +

∫

Ω

|gk| < 3ε

and the result follows.

3. Concentration-Compactness

Proof of Corollary 1.2. Since K < Kn,α, we can find δ > 0 such that K̃ :=
(1 + δ)K < Kn,α. Now, assumptions of Lemma 2.5 are satisfied with α = K,
β = δ, τ = γ and C1 = CK̃ , where CK̃ < ∞ comes from Theorem 2.3(i).
Therefore we can use Lemma 2.5 to conclude the proof.

In the proof of Theorem 1.1 we distinguish three cases. These cases are
studied separately in Propositions 3.3 – 3.5 bellow.
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Case 1. In this subsection we prove the Compactness in the case u = 0 and
µ 6= δx0

.

Lemma 3.1. Let n ≥ 2, α < n−1 and let Φ be a Young function satisfying (1).
Let {uk}

∞
k=1 ⊂ W0L

Φ(Ω) satisfy ‖Φ(|∇uk|)‖L1(Ω) ≤ 1. Suppose that

uk ⇀ 0 in W0L
Φ(Ω) and Φ(|∇uk|)

∗
⇀ µ in M(Ω̄).

Let F,N ⊂ Ω̄ be compact sets such that F ∩N = ∅ and µ(N) > 0. Then there
is δ > 0 such that

‖ exp(Kn,α(1 + δ)|uk|
γ)‖L1(F ) is bounded. (16)

Proof. First let us briefly outline the idea of the proof. Since µ(N) > 0 we
obtain that

∫

N
Φ(|∇uk|) cannot be small for k big enough and thus we can find

δ > 0 such that ‖Φ((1+2δ)|∇uk|)‖L1(F ) ≤ 1. Then, using Theorem 2.3 for some
modification of the function (1 + 2δ)uk we obtain (16).

We use Φ(|∇uk|)
∗
⇀ µ in M(Ω̄) for a test function ψ ≡ 1 to obtain

1 ≥

∫

Ω̄

Φ(|∇uk|) =

∫

Ω̄

ψΦ(|∇uk|)
k→∞
→

∫

Ω̄

ψ dµ = µ(Ω̄). (17)

Set σ = 1
5
µ(N) and recall that C∆, t∆ are the constants from the ∆2-condition

(i.e. Φ(2t) ≤ C∆Φ(t), t ≥ t∆). For τ >0 denote Gτ ={x ∈ R
n : dist(x, F )>τ}.

Clearly, we can find 0 < a < b < dist(F,N) such that

µ(Ga \Gb) ≤
σ

2C2
∆

and Ln(Ga \Gb) <
σ

C2
∆Φ(t∆)

. (18)

Set M1 = Ω̄\Ga and M2 = Ω̄\Gb. We observe F ⊂M1 ⊂M2 and M2∩N = ∅.
If ψ ∈ C(Ω̄) is such that 0 ≤ ψ ≤ 1, ψ ≡ 0 on N and ψ ≡ 1 on M2 then

∫

M2

Φ(|∇uk|) ≤

∫

Ω̄

ψΦ(|∇uk|)
k→∞
→

∫

Ω̄

ψ dµ ≤ 1 − µ(N) = 1 − 5σ.

Hence there is k1 ∈ N such that
∫

M2

Φ(|∇uk|) ≤ 1 − 4σ for k > k1. (19)

Using (18) the same way as above we can find k2 > k1 such that
∫

M2\M1

Φ(|∇uk|) ≤
σ

C2
∆

for k > k2. (20)

We claim that there is δ ∈ (0, 1
2
) such that

∫

M2

Φ((1 + 2δ)|∇uk|) ≤ 1 − 3σ for k > k1. (21)
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Indeed, we can find t∆ > 0 so that Φ(2t∆) ≤ σ
2Ln(M2)

and set η =
1−(3+ 1

2
)σ

1−4σ
.

Then there is ε ∈ (0, 1) so that (10) holds on [t∆,∞) (see Preliminaries). Thus
setting δ = ε

2
we can use (19) to obtain

∫

M2

Φ((1 + 2δ)|∇uk|) =

∫

M2∩{|∇uk|≥t∆}

Φ((1 + ε)|∇uk|) +

∫

M2∩{|∇uk|<t∆}

Φ((1 + ε)t∆)

≤ 1 −
(

3 +
1

2

)

σ +
1

2
σ

= 1 − 3σ

and (21) is proved.
Now we can define vk. Take ψ ∈ C1(Ω̄) such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on

M1 and ψ ≡ 0 on Ω̄ \ Int(M2). Set vk = (1 + 2δ)ψuk. Our aim is to apply
Theorem 2.3 to vk, thus we need to prove that there is k3 > k2 such that

I :=

∫

Ω

Φ(|∇vk|) ≤ 1 for k > k3. (22)

We have I = I1 + I2 + I3, where

I1 =

∫

M1

Φ(|∇vk|) =

∫

M1

Φ((1 + 2δ)|∇uk|) ≤ 1 − 3σ for k > k1 by (21),

I2 =

∫

Ω\M2

Φ(|∇vk|) =

∫

Ω\M2

Φ(0) = 0,

I3 =

∫

M2\M1

Φ(|∇vk|).

Set P = maxx∈Ω̄ |∇ψ(x)|. From δ ∈ (0, 1
2
) we have on M2 \M1

Φ(|∇vk|) ≤ Φ((1 + 2δ)ψ|∇uk| + (1 + 2δ)|uk||∇ψ|) ≤ Φ(2|∇uk| + 2P |uk|) . (23)

It is convenient for us to decompose M2 \M1 into three sets

A1
k = {x ∈M2 \M1 : t∆ ≥ |∇uk(x)|, t∆ ≥ P |uk(x)|},

A2
k = {x ∈M2 \M1 : |∇uk(x)| ≥ t∆, |∇uk(x)| ≥ P |uk(x)|},

A3
k = {x ∈M2 \M1 : P |uk(x)| ≥ t∆, P |uk(x)| ≥ |∇uk(x)|}.

As M2 \M1 = A1
k ∪ A

2
k ∪ A

3
k, we have

I3 =

∫

M2\M1

Φ(|∇vk|) ≤

∫

A1
k

. . . +

∫

A2
k

. . . +

∫

A3
k

. . . .

First, by (18) and (23) we have
∫

A1
k

Φ(|∇vk|)≤

∫

A1
k

Φ(4t∆)≤ C2
∆Φ(t∆)Ln(Ga\Gb)≤C

2
∆Φ(t∆)

σ

C2
∆Φ(t∆)

= σ. (24)
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Second, (20) and (23) imply

∫

A2
k

Φ(|∇vk|) ≤

∫

A2
k

Φ(4|∇uk|) ≤ C2
∆

∫

M2\M1

Φ(|∇uk|) ≤ C2
∆

σ

C2
∆

= σ. (25)

Third, by the compact embedding of W0L
Φ(Ω) into LΦ(Ω) we see, that the weak

convergence uk ⇀ 0 in W0L
Φ(Ω) implies uk → 0 in LΦ(Ω). Then, using (12),

we find k3 > k2 such that for k > k3 we have
∫

A3
k

Φ(|∇vk|) ≤

∫

A3
k

Φ(4P |uk|) < σ. (26)

Estimates (24), (25) and (26) imply I3 < 3σ and (22) follows.
Therefore vk ∈ W0L

Φ(Ω) and ‖Φ(|∇vk|)‖L1(Ω) ≤ 1. Thus using Theo-
rem 2.3(i) with K = ( 1+δ

1+2δ
)γKn,α and the fact that vk = (1 + 2δ)uk on F we

obtain for k > k3

‖ exp(Kn,α(1 + δ)γ|uk|
γ)‖L1(F ) = ‖ exp(K(1 + 2δ)γ|uk|

γ)‖L1(F )

≤ ‖ exp(K|vk|
γ)‖L1(Ω)

≤ CK .

Moreover, for every fixed k<k3 there is Ck such that ‖exp(Kn,α(1+δ)γ|uk|
γ)‖L1(F)

≤ Ck by Lemma 2.4. Hence we obtain (16) for δ̃ = (1 + δ)γ − 1 with the bound
max(C1, . . . , Ck3

, CK).

Remark 3.2. It can be easily seen that if we have µ(Ω̄) < 1, then there is a
simplified version of the above proof giving us δ > 0 such that the following
norm ‖ exp(Kn,α(1 + δ)|uk|

γ)‖L1(Ω) is bounded.

Proposition 3.3. Let n ≥ 2, α < n− 1 and let Φ be a Young function satisfy-
ing (1). Let {uk}

∞
k=1 ⊂ W0L

Φ(Ω) satisfy ‖Φ(|∇uk|)‖L1(Ω) ≤ 1. Further suppose
that

uk ⇀ 0 in W0L
Φ(Ω), uk → 0 a.e. in Ω and Φ(|∇uk|)

∗
⇀ µ in M(Ω̄),

where µ is not a Dirac mass at one point. Then there is δ > 0 such that

exp(Kn,α(1 + δ)|uk|
γ) is bounded in L1(Ω)

and
exp(Kn,α|uk|

γ)
k→∞
→ exp(Kn,α|u|

γ) in L1(Ω).

Proof. As µ(Ω̄) ≤ 1 (see (17)), we distinguish two cases. If µ(Ω̄) < 1, then the
first assertion follows from Remark 3.2. Now, let µ(Ω) = 1. As µ is not a Dirac
mass at one point, there is N1 ⊂ Ω̄ compact such that µ(N1) ∈ (0, 1). We denote
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G = R
n \ N1 and Gτ = {x ∈ R

n : dist(x,N1) > τ} for τ > 0. Considering µ
as a Radon measure on R

n supported in Ω̄ we obtain limτ→0+
µ(Gτ ) = µ(G) =

1− µ(N1) ∈ (0, 1). Therefore there is τ > 0 such that 0 < µ(G2τ ) ≤ µ(Gτ ) < 1.
Set F1 = Ω̄ \ Gτ , F2 = Ω̄ ∩ Ḡτ and N2 = Ω̄ ∩ Ḡ2τ . Clearly F1, F2, N1, N2 are
compact sets, F1 ∪ F2 = Ω̄. Moreover µ(N2) ≥ µ(G2τ ) > 0, N2 ∩ F1 = ∅ and
N1 ∩ F2 = ∅.

Applying Lemma 3.1 to F = F1 and N = N2 we obtain that there is δ1 > 0
such that ‖ exp(Kn,α(1 + δ1)|uk|

γ)‖L1(F1) is bounded. If F = F2 and N = N1

then Lemma 3.1 gives us δ2 > 0 such that ‖ exp(Kn,α(1 + δ2)|uk|
γ)‖L1(F2) is

bounded. From F1 ∪ F2 = Ω̄ we conclude that ‖ exp(Kn,α(1 + δ)|uk|
γ)‖L1(Ω) is

bounded for δ = min(δ1, δ2).
Finally, we apply Lemma 2.5 to prove the last assertion.

Case 2. In this subsection we prove the concentration in the case u = 0 and
µ = δx0

.

Proposition 3.4. Let n ≥ 2, α < n− 1 and let Φ be a Young function satisfy-
ing (1). Let {uk}

∞
k=1 ⊂ W0L

Φ(Ω) satisfy ‖Φ(|∇uk|)‖L1(Ω) ≤ 1. Further suppose
that

uk ⇀ 0 in W0L
Φ(Ω), uk → 0 a.e. in Ω and Φ(|∇uk|)

∗
⇀ δx0

in M(Ω̄),

where x0 ∈ Ω̄.

(i) If
∫

Ω
(exp(Kn,α|uk|

γ) − 1)
k→∞
→ c ∈ [0,∞), then exp(Kn,α|uk|

γ) − 1
∗
⇀ cδx0

in M(Ω̄).

(ii) Moreover, if Φ satisfies (2), then the sequence {exp(Kn,α|uk|
γ)− 1}∞k=1 is

relatively compact with respect to the weak∗ convergence in M(Ω̄) and the
limits of convergent subsequences belong to {cδx0

: c ∈ [0, CK − Ln(Ω)]}
(CK ≥ Ln(Ω) comes from Theorem 2.3 (ii)).

Proof. Let us prove (i). First, we claim that

η > 0 =⇒

∫

Ω\B(x0,η)

exp(Kn,α|uk|
γ) − 1

k→∞
→ 0. (27)

From Lemma 3.1 forN = B(x0,
η

2
) we obtain that

∫

Ω\B(x0,η)
exp(Kn,α(1+δ)|uk|

γ)

is bounded for some δ > 0 and thus we may use Lemma 2.5 to obtain (27).
Further we observe that (27) and assumption

∫

Ω
exp(Kn,α|uk|

γ) − 1 → c

imply

η > 0 =⇒

∫

B(x0,η)

exp(Kn,α|uk|
γ) − 1

k→∞
→ c. (28)

Fix arbitrary test function ψ ∈ C(Ω̄) and let ε > 0. Then there is η > 0 such
that

|ψ(x) − ψ(x0)| <
ε

2 max(c, 1)
whenever |x− x0| < η. (29)



Concentration-Compactness Principle 367

We have

I : =

∣

∣

∣

∣

∫

Ω̄

ψ d(cδx0
) −

∫

Ω

ψ
(

exp(Kn,α|uk|
γ) − 1

)

∣

∣

∣

∣

=

∣

∣

∣

∣

cψ(x0) −

∫

Ω

ψ
(

exp(Kn,α|uk|
γ) − 1

)

∣

∣

∣

∣

≤

∫

Ω\B(x0,η)

|ψ|
(

exp(Kn,α|uk|
γ) − 1

)

+

∫

B(x0,η)

|ψ − ψ(x0)|
(

exp(Kn,α|uk|
γ) − 1

)

+ |ψ(x0)| ·

∣

∣

∣

∣

c−

∫

B(x0,η)

(

exp(Kn,α|uk|
γ) − 1

)

∣

∣

∣

∣

= I1 + I2 + I3.

By (27) and supΩ |ψ| < ∞ we see that there is k1 ∈ N such that I1 < ε for
k > k1. Further, using (28) and (29) we obtain

I2 =

∫

B(x0,η)

|ψ − ψ(x0)|(exp(Kn,α|uk|
γ) − 1)

≤
ε

2 max(c, 1)

∫

B(x0,η)

exp(Kn,α|uk|
γ) − 1

k→∞
→

ε

2

c

max(c, 1)
.

Therefore we can find k2 > k1 such that I2 < ε for k > k2. Finally, from (28)
and |ψ(x0)| <∞ we obtain k3 > k2 such that I3 < ε for k > k3. Hence we have
I < 3ε for k large and the first assertion is proved.

Let us prove the second assertion. We apply Theorem 2.3 to obtain

‖ exp(Kn,α|uk|
γ) − 1‖L1(Ω) ≤ CK − Ln(Ω). (30)

Now, we use the fact that every set bounded in the L1(Ω)-norm is relatively
compact in M(Ω̄) with respect to the weak∗-convergence. Further, suppose

that {vk}
∞
k=1 ⊂ {uk}

∞
k=1 is such that exp(Kn,α|vk|

γ)−1
∗
→ ν in M(Ω̄). Choosing

the test function ψ ≡ 1 we obtain
∫

Ω

(

exp(Kn,α|vk|
γ) − 1

)

=

∫

Ω̄

ψ
(

exp(Kn,α|vk|
γ) − 1

) k→∞
→

∫

Ω̄

ψ dν = ν(Ω̄).

Thus the sequence {vk}
∞
k=1 satisfies the assumptions of the first part of our

proposition with c = ν(Ω̄) ∈ [0, CK − Ln(Ω)] (for the upper estimate of c we
use (30)), thus the first assertion concludes the proof.

Case 3. In this subsection we prove the compactness for u 6= 0.

Proposition 3.5. Let n ≥ 2, α < n− 1 and let Φ be a Young function satisfy-
ing (1) and (2). Assume that {uk}

∞
k=1 ⊂ W0L

Φ(Ω) are such that

‖Φ(|∇uk|)‖L1(Ω) ≤ 1, uk ⇀ u in W0L
Φ(Ω) and u 6= 0.
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Then there is δ > 0 such that

‖ exp(Kn,α(1 + δ)|uk|
γ)‖L1(Ω) is bounded

and
exp(Kn,α|uk|

γ) → exp(Kn,α|u|
γ) in L1(Ω).

The key ingredient of the proof of Proposition 3.5 is the following lemma
telling us that if the sequence {uk}

∞
k=1 satisfies condition (31) (which is what

we do not want in Proposition 3.5), then we actually have u = 0.

Lemma 3.6. Let n ≥ 2, α < n−1 and let Φ be a Young function satisfying (1)
and (2). Let R > 0 and let {gk}

∞
k=1 be non-increasing locally absolutely continu-

ous functions on [0, R] satisfying gk(R) = 0. Set uk(x) = gk(|x|), for x ∈ B(R),
k ∈ N and assume that ||Φ(|∇uk|)||L1(B(R)) ≤ 1. If

lim
k→∞

|| exp(Kn,α(1 + δ)|uk|
γ||L1(B(R)) = ∞ for every δ > 0, (31)

then uk
k→∞
→ 0 uniformly on B(R) \B(r) for every r ∈ (0, R).

Proof. First let us prove
∫

B(R)\B(r)

Φ(|∇uk|)
k→∞
→ 0 for every r ∈ (0, R). (32)

If (32) is not true then passing to a subsequence we can find τ > 0 and r0 ∈
(0, R) such that

∫

B(R)\B(r0)
Φ(|∇uk|) ≥ τ for all k ∈ N and thus

∫

B(r0)

Φ(|∇uk|) ≤ 1 − τ for all k ∈ N. (33)

Put dµ(y) = ωn−1y
n−1dy and let Φ1 be the Young function from (8). Fix

t ∈ (0, r0) and for every k ∈ N set

Ak = {y ∈ (t, r0) : |g′k(y)| > G}, Ãk = {y ∈ (r0, R) : |g′k(y)| > G}

(recall that the constant G comes from (8)). From (8) and (33) we obtain
∫

Ak

Φ1(|g
′
k(y)|)ωn−1y

n−1 dy ≤
ωn−1

n

∫

Ak

Φ(|g′k(y)|)y
n−1dy

≤
ωn−1

n

∫ r0

0

Φ(|g′k(y)|)y
n−1dy

=
1

n

∫

B(r0)

Φ(|∇uk(x)|) dx

≤
1

n
(1 − τ)

= (1 − τ)Φ1(1).

(34)
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Thus (11) gives τ̃ > 0 such that

||g′k(y)||LΦ1 (Ak,dµ) ≤ 1 − 2τ̃ , k ∈ N. (35)

The same way we obtain from ||Φ(|∇uk|)||L1(B(R)) ≤ 1 that

||g′k(y)||LΦ1 (Ãk,dµ) ≤ 1, k ∈ N. (36)

Hence Hölder’s inequality gives

gk(t) ≤

∫ R

t

|g′k(y)|dy

=

∫

(r0,R)\Ãk

. . . +

∫

Ãk

. . . +

∫

(t,r0)\Ak

. . . +

∫

Ak

. . .

≤ GR +

∫

Ãk

|g′k(y)|
1

ωn−1yn−1
dµ(y) +Gr0 +

∫

Ak

|g′k(y)|
1

ωn−1yn−1
dµ(y)

≤ C +
1

ωn−1

||g′k(y)||LΦ1 (Ãk,dµ)

∣

∣

∣

∣

∣

∣

1

yn−1

∣

∣

∣

∣

∣

∣

LΨ((r0,R),dµ)

+
1

ωn−1

||g′k(y)||LΦ1 (Ak,dµ)

∣

∣

∣

∣

∣

∣

1

yn−1

∣

∣

∣

∣

∣

∣

LΨ((t,R),dµ)
.

Therefore Lemma 2.1, (35), (36) and || 1
yn−1 ||LΨ((r0,R),dµ) ≤ C

(

1
yn−1 is bounded

on [r0, R]
)

imply

gk(t)≤C+
1

ωn−1

(1− 2τ̃)
(ωn−1

B

)
n−1

n

log
1

γ

(1

t

)

for all t ∈ (0,min(t0, r0)), k ∈ N.

Therefore there is t1∈(0,min(t0, r0)) such that

gk(t)≤
1

ωn−1

(1 − τ̃)
(ωn−1

B

)
n−1

n

log
1

γ

(1

t

)

for every t ∈ (0, t1), k ∈ N. (37)

Finally pick δ0 > 0 small enough so that

η := (1 + δ0)
γ(1 − τ̃)γ < 1 (38)

and let us show that we have a contradiction with (31). Indeed, (37), (38),

η < 1 and Kn,α

(

1
ωn−1

(

ωn−1

B

)
n−1

n

)γ

= n imply
∫

B(R)

exp(Kn,α(1 + δ0)|uk(x)|
γ) dx

= ωn−1

∫ R

0

exp(Kn,α(1 + δ0)|gk(y)|
γ)yn−1 dy

≤ C

∫ R

t1

exp(C|gk(t1)|
γ)yn−1 dy + C

∫ t1

0

exp
(

ηn log
(1

y

))

yn−1 dy

≤ C + C

∫ t1

0

yn−1−ηn dy

≤ C.
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Hence we have a contradiction with (31) and thus (32) is proved.
Now, fix r ∈ (0, R) and let us check the uniform convergence. From (12)

and (32) we obtain ‖∇uk‖LΦ(B(R)\B(r)) → 0. Hence ‖∇uk‖L1(B(R)\B(r)) → 0 and
thus the radial symmetry of uk, uk|∂B(R) = 0 and the monotonicity with respect
to |x| imply the uniform convergence.

Proof of Proposition 3.5. We prove Proposition 3.5 by contradiction. Suppose
that supk ‖ exp(Kn,α(1 + δ)|uk|

γ)‖L1(Ω) = ∞ for every δ > 0. Recall that for a
fixed k ∈ N and δ > 0 we have ‖ exp(Kn,α(1+δ)|uk|

γ)‖L1(Ω) <∞ by Lemma 2.4.
Thus passing to a subsequence, we can suppose that

‖ exp(Kn,α(1 + δ)|uk|
γ)‖L1(Ω)

k→∞
→ ∞ for every δ > 0. (39)

By a standard symmetrization argument (use Theorem 2.2 and the density
of C∞

0 -functions) we may assume that Ω is a ball, uk, u are continuous, spher-
ically symmetric, non-negative, non-increasing with respect to |x| and locally
absolutely continuous. Indeed, since uk ⇀ u in W0L

Φ(Ω) we have uk → u

in L1(Ω) and thus u#
k → u# in L1(Ω). Moreover ‖Φ(∇u#

k |)‖L1(Ω) ≤ 1 by The-
orem 2.2. It follows that the rearranged sequence contains a subsequence that
converges weakly in W0L

Φ(Ω) to a non-zero function. Since u#
k → u# in L1,

it is easy to see that this limit function must be u#. The subsequence again
satisfies (39) and hence assumptions of Lemma 3.6 are satisfied for this new
subsequence which we again denote as uk. We obtain that uk converge uni-
formly to the zero function on B(R) \ B(r) for every r ∈ (0, R). This implies
u = 0 a.e. and we have a contradiction with u 6= 0.

The last assertion of the Proposition 3.5 follows from Lemma 2.5.

Proof of Theorem 1.1. Theorem 1.1 follows from the Propositions 3.3 – 3.5.

4. Norm attaining functionals

In this section we apply the Concentration-Compactness Principle to the func-
tionals with the sub-critical growth.

Proof of Theorem 1.3. Put

S := sup
{

ΛF (u) : u ∈W0L
Φ(Ω), ‖Φ(|∇u|)‖L1(Ω) ≤ 1

}

.

If S = Ln(Ω)F (0), then the proof is trivial, because for u = 0 we have
ΛF (u) = Ln(Ω)F (0). Otherwise there is a sequence {uk}

∞
k=1 ⊂ {u ∈ W0L

Φ(Ω) :

‖Φ(|∇u|)‖L1(Ω) ≤ 1} such that ΛF (uk)
k→∞
→ S. We can further suppose that

uk ⇀ u in W0L
Φ(Ω), uk → u a.e. in Ω and Φ(|∇uk|)

∗
⇀ µ in M(Ω̄),
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otherwise we pass to a subsequence (note that W0L
Φ(Ω) is reflexive). Obviously

we have the estimate ‖Φ(|∇u|)‖L1(Ω) ≤ 1 and thus all we need to show is
ΛF (u) = S.

If (4) is satisfied, then we find δ > 0 such that K̃ := (1 + δ)K < Kn,α.
Now, we can use Lemma 2.5 (with α = K, β = δ, τ = γ and C1 = CK̃ , where
CK̃ <∞ comes from Theorem 2.3(i)) to conclude the proof.

The rest of the proof is devoted to the case when (5) is satisfied. By Theo-
rem 1.1 we have either

exp(Kn,α(1 + δ)|uk|
γ) is bounded in L1(Ω)

or
u = 0 and Φ(|∇uk|)

∗
⇀ δx0

in M(Ω̄).

In the first case we easily conclude the proof using Lemma 2.5 as above.
Now, it is enough to prove that in the second case we have

lim
k→∞

ΛF (uk) = Ln(Ω)F (0). (40)

Fix ε > 0. As ‖Φ(|∇uk|)‖L1(Ω) ≤ 1, we can use Theorem 2.3(ii) to obtain C2 > 0
such that

∫

Ω

exp
(

Kn,α|uk|
γ
)

≤ C2 . (41)

Next, by (5), there is t0 > 0 such that

|F (t)| ≤
ε

C2

exp
(

Kn,α|t|
γ
)

for |t| ≥ t0 . (42)

Now, we have

|ΛF (uk) − Ln(Ω)F (0)| ≤

∫

Ω

|F (uk) − F (0)|

≤

∫

Ω

∣

∣

∣
F (uk)χ{|uk|≤t0} − F (0)

∣

∣

∣
+

∫

Ω

|F (uk)|χ{|uk|>t0}

= I1 + I2.

Since F is continuous and uk → 0 a.e. in Ω, by the Lebesgue Dominated
Convergence Theorem we obtain I1 → 0. By (41) and (42) we see that I2 ≤ ε.
We have proved (40) and we are done.

5. Concluding remarks

(i) The original statement of the Concentration-Compactness Principle for the
space W 1,n

0 (Ω) (see [14, Theorem I.6]) can be misunderstood in the sense that
it might seem that if {uk}

∞
k=1 ⊂ W

1,n
0 (Ω) satisfy

‖∇uk‖Ln(Ω) ≤ 1, uk ⇀ u in W 1,n
0 (Ω), and |∇uk|

n ∗
⇀ δx0

in M(Ω̄),
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then there is just one c ≥ 0 such that exp
(

Kn,0|uk|
n

n−1

)

− 1
∗
⇀ cδx0

in M(Ω̄).
Our next proposition says that for a concentrating sequence the constant c is
not unique in general.

Proposition 5.1. Let n ≥ 2, α < n− 1, K ≥ 0 and let Φ be a Young function
satisfying (1) and let K ≤ Kn,α. Suppose that there is a sequence {uk}

∞
k=1 ⊂

W0L
Φ(Ω) such that

‖Φ(|∇uk|)‖L1(Ω) ≤ 1, uk ⇀ 0 in W0L
Φ(Ω), uk → 0 a.e. in Ω,

Φ(|∇uk|)
∗
⇀ δx0

in M(Ω̄) and {exp(K|uk|
γ) − 1}∞k=1

∗
⇀ cδx0

in M(Ω̄)

with c > 0. Then for every d ∈ [0, c] there is a sequence {vk}
∞
k=1 ⊂ W0L

Φ(Ω)
such that

‖Φ(|∇vk|)‖L1(Ω) ≤ 1, vk ⇀ 0 in W0L
Φ(Ω), vk → 0 a.e. in Ω,

Φ(|∇vk|)
∗
⇀ δx0

in M(Ω̄) and {exp(K|vk|
γ) − 1}∞k=1

∗
⇀ dδx0

in M(Ω̄).

Proof. If d = c, we set vk = uk and we are done. Thus suppose 0 ≤ d < c. We
can also suppose that x0 = 0 ∈ Ω̄. Applying Theorem 2.2 and the density of
C∞

0 -functions in W0L
Φ(Ω) we can further suppose that Ω = B(R), R > 0, uk are

radially symmetric, continuous, non-negative, non-increasing with respect to |x|
and locally absolutely continuous. This means that for every k ∈ N there is a
bounded continuous non-increasing non-negative function gk : [0, R] 7→ [0,∞),
such that gk(R) = 0, gk is differentiable a.e. in [0, R] and uk(x) = gk(|x|). Our
functions vk will be defined as a suitable modification of uk.

Clearly ck :=
∫

B(R)

(

exp(K|uk|
γ) − 1

) k→∞
→ c. We can suppose that ck > d,

otherwise we pass to a subsequence. Fix k ∈ N. The function

ψ(t) =

∫

B(R)

(

exp(K|min(t, uk)|
γ) − 1

)

is continuous on [0,∞) and satisfies ψ(0) = 0 and ψ(uk(0)) = ck > d. Thus
there is 0 ≤ t0 < uk(0) = gk(0) such that

ψ(t0) =

∫

B(R)

exp(K|min(t0, uk)|
γ) − 1 = d. (43)

As gk is continuous, there is a0 ∈ (0, R] such that gk(a0) = t0. Find L ∈ N large
enough so that

τ :=
gk(0) − t0

2L
≤

1

k
. (44)

The continuity of gk implies that there are 0 = a2L < a2L−1 < · · · < a1 < a0

such that gk(aj) = jτ + t0, j = 0, . . . , 2L. Let us define

hk(t) =

{

gk(t) − 2jτ, t ∈ [a2j+1, a2j], j = 0, . . . L− 1,

2(j + 1)τ − gk(t) + 2t0, t ∈ [a2j+2, a2j+1], j = 0, . . . L− 1.
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It is easy to check that this function is continuous and satisfies

0 ≤ hk ≤ gk, hk = gk on [a0, R], hk ∈ [t0, t0 + τ ] on [0, a0] (45)

and |h′k| = |g′k| on [0, R] \
⋃2L

j=1 aj. Set vk(x) = hk(|x|) for x ∈ B̄(R). From the
properties of hk we obtain

0 ≤ vk ≤ uk, vk → 0 a.e. in B(R), Φ(|∇vk|) = Φ(|∇uk|) a.e. in B(R),

vk ∈ W0L
Φ(B(R)), ‖Φ(|∇vk|)‖L1(B(R)) ≤ 1, |Φ(|∇vk|)|

∗
⇀ δ0 in M(B̄(R)).

Furthermore, we can suppose that vk ⇀ 0 in W0L
Φ(B(R)). Indeed, as the norm

‖Φ(|∇vk|)‖L1(B(R)) is bounded, passing to a subsequence we can suppose that
vk ⇀ v in W0L

Φ(B(R)) for some v ∈ W0L
Φ(B(R)). Hence vk → v in L1(B(R)).

Thus passing to a subsequence again we can suppose that vk → v a.e. in B(R)
and hence v = 0 (recall that uk → 0 a.e.).

Finally from (43) – (45), vk(x) = hk(|x|) and the continuity of the function
exp we see that

∫

B(R)

(

exp(K|vk|
γ) − 1

)

→ d. Thus Proposition 3.4 concludes

the proof.

(ii) In view of Corollary 1.2, one can ask whether there actually exist con-
centrating sequences satisfying the condition exp(Kn,α|uk|

γ) − 1
∗
⇀ cδx0

, with
c > 0. An explicit so called Moser sequence is known for the case x0 = 0, n = 2
and α = 0 and it is defined by

uk(x) =



























1

2π
log

1

2 (k), 0 ≤ |x| ≤
1

k
,

1

2π

log( 1
|x|

)

log
1

2 (k)
,

1

k
≤ |x| ≤ 1,

0, |x| ≥ 1.

(iii) The technical condition (2) was used in our proofs mainly for the ap-
plication of Theorem 2.3(ii). If it is possible to prove the analogue of The-
orem 2.3(ii) under weaker assumptions then we believe that it is possible to
obtain our results under this weaker assumptions as well.

(iv) It is possible to use similar methods to obtain the Concentration-
Compactness Principle also for embedding into multiple exponential spaces (see
forthcoming paper [3]). In these results it is necessary to use [5] instead of The-
orem 2.3.

(v) Even though it was essential for us to work with the norm given by (6)
(this is the norm giving the strong Hölder’s inequality), the statements of our
theorems with assumptions ‖Φ(∇uk)‖L1(Ω) ≤ 1 rather correspond to the stan-
dard Luxemburg norm (see Preliminaries) because the above assumption reads
that the Luxemburg norms of uk are bounded by 1. If the bound of the Luxem-
burg norm was not 1 but say C > 0 then one can easily see that our assertions
would still hold but with the critical parameter K = Kn,α

C
.
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