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On Perturbed Substochastic Semigroups
in Abstract State Spaces
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Abstract. The object of this paper is twofold: In the first part, we unify and extend
the recent developments on honesty theory of perturbed substochastic semigroups (on
L1(µ)-spaces or noncommutative L1 spaces) to general state spaces; this allows us to
capture for instance a honesty theory in preduals of abstract von Neumann algebras
or subspaces of duals of abstract C∗-algebras. In the second part of the paper, we
provide another honesty theory (a semigroup-perturbation approach) independent of
the previous resolvent-perturbation approach and show the equivalence of the two ap-
proaches. This second viewpoint on honesty is new even in L1(µ) spaces. Several fine
properties of Dyson-Phillips expansions are given and a classical generation theorem
by T. Kato is revisited.
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1. Introduction

In his famous paper on Kolmogorov’s differential equations (for Markov pro-
cesses with denumerable states) T. Kato [20] introduced the main tools for deal-
ing with positive unbounded perturbations B of generators A of substochastic
semigroups in ℓ1(N) provided that a suitable dissipation estimate on the positive
cone is satisfied. Among other things, he showed that there exists a unique ex-
tension G ⊃ B+A which generates a substochastic semigroup and characterized
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berto, Università degli Studi di Torino, Corso Unione Sovietica, 218/bis, 10134 Torino,
Italy; lods@econ.unito.it
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the closure property G = B +A by the fact that [B(λ−A)−1]
n → 0 strongly as

n→ +∞ (in general, G may be a proper extension of B +A). We note that for
“formally conservative” equations, such as Kolmogorov’s differential equations,
the property G = B +A is essential (i.e., necessary and sufficient) to assert that
the corresponding semigroup is mass-preserving on the positive cone. Finally,
T. Kato [20] pointed out that his formalism is adapted to general AL-spaces,
i.e., Banach lattices X whose norm is additive on the positive cone X+, i.e.,
∥x+ y∥ = ∥x∥ + ∥y∥ , x, y ∈ X+. Actually, even the lattice assumption is
not essential since Kato’s ideas were applied by E. B. Davies [12] to quantum
dynamical semigroups in the real Banach space of self-adjoint trace class oper-
ators; in this case, the closure property G = B +A is essential to assert that
the corresponding semigroup is trace-preserving on the positive cone.

By the end of the 1980’s, Kato’s paper [20] was revisited by means of
Miyadera perturbations in AL-spaces [2, 37, 38] and new functional analytic
developments followed also in the 2000’s [5, 6, 16] which are known nowadays
as the honesty theory of perturbed substochastic semigroups in L1(µ) spaces
[7, Chapter 6]. In this L1(µ) context, the honesty theory has been motivated by
various applications to kinetic theory and has been successfully applied to the
study of the linear Boltzmann equation for both elastic and inelastic interac-
tions [2,3] (see also the recent approach [26] in which the role of the physically
relevant detailled balance principle is fully exploited). We refer the reader to
the monograph [7] (and references therein) for several applications to fragmen-
tation equations, birth-and-death equations and so on; we note also that the
analysis of piecewise deterministic Markov processes is nicely related to honesty
theory in L1 spaces [36] (see also [21] for related topics). On the other hand,
in a noncommutative context, there exists also an important literature (relying
on Kato’s paper [20] or some dual version) on quantum dynamical semigroups,
e.g., [9, 10, 12, 15, 17, 18, 29, 33]; such semigroups acting on spaces of operators
arise in the theory of open quantum systems as models of irreversible (albeit
conservative) quantum dynamics. We mention that quantum dynamical semi-
groups enjoy the complete positivity property (a stronger property than the
fact to leave invariant the positive cone) which gives their generators a special
structure (see, e.g., [15]).

More recently, in [25], the honesty theory of perturbed substochastic semi-
groups in L1(µ) spaces has been improved and extended in different directions
while a noncommutative version of [25] was given in [24]. The first goal of the
present paper is to provide a general theory in abstract state spaces (i.e., real
ordered Banach spaces such that the norm is additive on the positive cone)
which covers both [25] and [24]. The interest of this abstract approach is not
simply motivated by a unified presentation of [24] and [25]: It provides us with
an intrinsic treatment of honesty theory in much more general spaces cover-
ing in particular preduals of abstract von Neumann algebras or more generally
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subspaces of duals of abstract C∗-algebras (see for example [27,35] on measure-
valued generalization of Kolmogorov equations on abstract measurable spaces).
We refer to E. B. Davies [11, pp. 30–31] for the relevance of the concept of
abstract state spaces in probability theory, quantum statistical mechanics, etc.
For its most part, the general theory we give follows closely [24, 25] but we
provide also new informations on the structure of the set of honest trajectories
in the Banach space of bounded measures on a measurable space and in the
Banach space of trace class operators on a Hilbert space. The second goal of
this paper is to provide another approach of honesty theory. This alternative
approach of honesty relies on Dyson-Phillips expansions (in contrast to the pre-
vious resolvent approach) and is new even in L1(µ) spaces. To this end, we
give several fine properties of Dyson-Phillips expansions. We also revisit a clas-
sical generation theorem by T. Kato [20]. Finally, this alternative viewpoint
on honesty presents the great advantage of being adaptable to nonautonomous
problems [4].

We recall briefly some properties of the class of Banach spaces we shall deal
with in this paper (more information on general real ordered Banach space can
be recovered from [8, 28]). In all this paper, we shall assume that X is a real
ordered Banach space with a generating positive cone X+ (i.e., X = X+−X+) on
which the norm is additive, i.e., ∥u+ v∥ = ∥u∥+∥v∥, u, v ∈ X+. The additivity
of the norm implies that the norm is monotone, i.e.,

0 6 u 6 v =⇒ ∥u∥ 6 ∥v∥.

In particular, the cone X+ is normal [8, Proposition 1.2.1]. It follows easily that
any bounded monotone sequence of X+ is convergent. A property playing an
important role in this paper is the existence of a linear positive functional Ψ on
X which coincides with the norm on the positive cone (see, e.g., [11, p. 30]), i.e.,

Ψ ∈ X⋆
+, ⟨Ψ, u⟩ = ∥u∥, u ∈ X+ (1.1)

Note that ∥Ψ∥ = 1. Indeed, given u ∈ X, one has u = u1 − u2 ∈ X with
ui ∈ X+ (i = 1, 2) and | ⟨Ψ, u⟩ | = |∥u1∥ − ∥u2∥| 6 ∥u∥. This proves that
∥Ψ∥ 6 1 and the equality sign follows from (1.1). We note also that by a Baire
category argument there exists a constant M > 0 such that each u ∈ X has a
decomposition u = u1 − u2 where ui ∈ X+ and ∥ui∥ 6 M∥u∥ (i = 1, 2); i.e.,
the positive cone X+ is non-flat, see [28, Proposition 19.1]. We recall that a C0-
semigroup (T (t))t>0 of bounded linear operators on X is called substochastic
(resp. stochastic) if T (t) is positive (i.e., leaves X+ invariant for any t > 0)
and ∥T (t)u∥ 6 ∥u∥ (resp. ∥T (t)u∥ = ∥u∥) for all u ∈ X+ and t > 0. It is
not difficult to see that a positive C0-semigroup (U(t))t>0 with generator A is
substochastic (resp. stochastic) if and only if ⟨Ψ,Au⟩ 6 0 (resp. ⟨Ψ,Au⟩ = 0)
for all u ∈ D(A)+ = D(A) ∩ X+. Because of a lack (a priori) of a lattice
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structure, (T (t))t>0 need not be a contraction semigroup. However, one easily
sees that ∥T (t)∥ 6 2M for all t > 0; in particular, its type is nonpositive.

The general structure of the paper is the following: Our general setting is
an abstract state space X, a substochastic C0-semigroup (U(t))t>0 on X with
generator A and a linear operator B : D(A) → X which is assumed to be
positive (i.e., B : D(A) ∩ X+ → X+) and such that

⟨Ψ,Au+ Bu⟩ 6 0, u ∈ D(A) ∩ X+.

In Section 2, we show that there exists a unique minimal substochastic C0-
semigroup (V(t))t>0 generated by an extension G of A + B. This result was
first given by T. Kato [20] under a lattice assumption on X. Our purpose
here is simply to show (by following essentially Kato’s ideas) that the lattice
assumption is actually unnecessary. We note that this result has been proved
differently by means of Miyadera perturbations [35] or by using Desch’s Theorem
[23]. We also show that the corresponding semigroup is given by a (strongly
convergent) Dyson-Phillips expansion V(t)u =

∑∞
n=0 Vn(t)u without using the

theory of Miyadera perturbations. It turns out that the resolvent of G is given
by the strongly convergent series

(λ− G)−1u =
∞∑
n=0

(λ−A)−1
[
B(λ−A)−1

]n
u, λ > 0.

This series (which does not converge a priori in operator norm) is the corner-
stone of a general honesty theory of the C0-semigroup (V(t))t>0 given in Section
3 in the spirit of the recent results [24,25]. Besides the functional

a0 : u ∈ D(G) 7→ − ⟨Ψ,Gu⟩

and its restriction a to D(A) we build up and study another functional a :
u ∈ D(G) → R which has the properties that a|D(A) = a and a 6 a0 on
D(G)+ = D(G)∩X+. The trajectory (V(t)u)t>0 emanating from u ∈ X+ is said
to be honest if

∥V(t)u∥ = ∥u∥ − a

(∫ t

0

V(r)u dr
)
, ∀t > 0

or equivalently if a
( ∫ t

0
V(r)u dr

)
= a0

( ∫ t

0
V(r)u dr

)
, for all t > 0. Various

characterization of honesty are given; in particular we show that (V(t)u)t>0

is honest if and only if limn→∞ ∥ (B(λ−A)−1)
n
u∥ = 0 which is equivalent to

(λ− G)−1u ∈ D(A+ B). Under the ”conservativity” assumption

⟨Ψ,Au+ Bu⟩ = 0, ∀u ∈ D(A),
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the mass-preservation in time (i.e., ∥V(t)u∥ = ∥u∥ for any t > 0) holds if and
only if the trajectory (V(t)u)t>0 is honest. The semigroup (V(t))t>0 is said to
be honest if all trajectories are honest. We show that the honesty of (V(t))t>0

is equivalent to the identity a = a0 or to the closure property G = A+ B.
Actually, we extend most of the results of [24, 25]; in particular we show that
the set H of initial data giving rise to a honest trajectory is a closed hereditary
subcone of X+ and provide a description of the order ideal H−H (induced by
it) in the case where X is either the Banach space of self-adjoint trace class
operators on a Hilbert space or the Banach space of bounded signed measures
on a measurable space.

In Section 4, the Dyson-Phillips expansion is the corner-stone of another
honesty theory of trajectories. To this end, we build up and study a new
functional â : u ∈ D(G) → R and show in particular that â|D(A) = a and
â 6 a0 on D(G)+. To distinguish a priori the second notion of honesty from
the previous one, we say that a trajectory (V(t)u)t>0 emanating from u ∈ X+

is mild honest if

∥V(t)u∥ = ∥u∥ − â

(∫ t

0

V(r)u dr
)
, t > 0.

Various characterizations of mild honesty are given in the paper; in particular
we show that (V(t)u)t>0 is mild honest if and only if

∫ t

0
V(r)u dr ∈ D(A+ B)

or, equivalently, if the integral B
∫ t

0
Vn(r)u dr converges strongly to 0 as n→ ∞.

This mild honesty is based on several new fine properties of the operators Vn.
Finally we prove that the functionals â and a coincide showing thus that the
notions of honesty and mild honesty are actually equivalent. Moreover, the
equivalence of the two viewpoints on honesty theory provides us with nontrivial
additional results. As we already said it, a honesty theory in terms of Dyson-
Phillips expansions suggests a convenient tool for the study of nonautonomous
problems [4] for which resolvent tools appear difficult to handle.

2. Kato’s generation theorem and first consequences

2.1. Classical Kato’s Theorem revisited. Let (U(t))t>0 be a substochastic
C0-semigroup on X with generator A. Kato’s generation theorem [20] provides
a useful sufficient condition ensuring that some extension of (A + B,D(A))
generates a substochastic C0-semigroup on X:

Theorem 2.1. Let (U(t))t>0 be a substochastic C0-semigroup on X with gener-
ator A. Let B : D(A) → X be a positive linear operator satisfying:

⟨Ψ, (A+ B)u⟩ 6 0, ∀u ∈ D(A)+ := D(A) ∩ X+. (2.1)
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Then, there exists an extension G of (A+B,D(A)) that generates a substochastic
C0-semigroup (V(t))t>0 on X. Moreover, for any λ > 0, the resolvent of G is
given by

(λ− G)−1u = lim
n→∞

(λ−A)−1

n∑
k=0

[
B(λ−A)−1

]k
u, u ∈ X. (2.2)

Finally, (V(t))t>0 is the smallest substochastic C0-semigroup whose generator is
an extension of (A+ B,D(A)).

The general strategy to prove such a result consists in two steps: Show that

Gr = A+ rB, D(Gr) = D(A)

is a generator of a substochastic C0-semigroup for any 0 < r < 1 and then use
a monotonic convergence theorem by letting r ↗ 1. The first step can be dealt
with by means of three different arguments: A direct approach via Hille-Yosida
estimates; the use of Miyadera perturbation theory [35] or simply the use of
Desch’s Theorem [23]. We revisit here the direct approach via Hille-Yosida
estimates by T. Kato [20].

Proof. Our proof is inspired by the original one of T. Kato [20] that we adapt
here to the more general situation we are dealing with (recall in particular that
substochastic semigroups are contracting only on X+). The proof consists in
several steps.

• Construction of (V(t))t>0: For any λ > 0, set J (λ) = B(λ−A)−1. Clearly,
J (λ) is a bounded linear positive operator on X and (2.1) implies that

∥J (λ)u∥ = ⟨Ψ,J (λ)u⟩ 6 −
⟨
Ψ,A(λ−A)−1u

⟩
6 ∥u∥− λ∥(λ−A)−1u∥ 6 ∥u∥,

Iterating such an inequality leads to ∥(J (λ))nu∥ 6 ∥u∥, for any u ∈ X+ and
any λ > 0, n ∈ N which implies that ∥(J (λ))n∥ 6 2M , for all n ∈ N, λ > 0,
where we recall (see Introduction) that M > 0 is a positive constant such that
any u ∈ X admits a decomposition u = u1−u2 with ui ∈ X+ and ∥ui∥ 6M∥u∥
(i = 1, 2). In particular, the spectral radius rσ(J (λ)) of the bounded operator
J (λ) is such that

rσ(J (λ)) 6 1, ∀λ > 0. (2.3)

Moreover, the resolvent formula shows that 0 6 J (µ)6 J (λ) for any 0 < λ < µ.
Now, for any 0 6 r < 1, let us define Gr as Gr = A + rB, D(Gr) = D(A).
Equation (2.3) implies that (λ− Gr) is invertible for any λ > 0 with

(λ− Gr)
−1 = (λ−A)−1

∞∑
n=0

rn [J (λ)]n , 0 6 r < 1 (2.4)
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where the series converges in B(X). For any fixed f ∈ X+, set v = (λ−A)−1f ,
λ > 0. One has v ∈ D(A)+ and

∥(λ− Gr)v∥ > ∥(λ−A)v∥ − r∥Bv∥ = λ ⟨Ψ, v⟩ − ⟨Ψ,Av⟩ − r ⟨Ψ,Bv⟩ > λ∥v∥.

Now given u ∈ X+ and applying the above reasoning with f=
∑∞

n=0 r
n [J (λ)]n u,

we deduce from (2.4) that

∥(λ− Gr)
−1u∥ 6 λ−1∥u∥, for any u ∈ X+. (2.5)

Iterating this relation, we see that ∥ [(λ− Gr)
−1]

n
u∥ 6 λ−n∥u∥, for any u ∈ X+

and any n ∈ N. Then, since X+ is non flat, such an estimate extends to the
whole space X leading to ∥ [(λ− Gr)

−1]
n ∥ 6 2M

λn , for all λ > 0, n ∈ N, and
one deduces from Hille-Yosida Theorem that, for any 0 6 r < 1, (Gr,D(A))
generates a C0-semigroup (Sr(t))t>0 in X. Since (λ − Gr)

−1 is positive and
because of (2.5), (Sr(t))t>0 is a substochastic C0-semigroup in X. Moreover, the
mapping r 7→ (λ−Gr)

−1u is nondecreasing for any fixed λ > 0 and any u ∈ X+

and one sees from the exponential formula

Sr(t)u = lim
n→∞

n

t

[(n
t
− Gr

)−1
]n
u, u ∈ X+,

that the mapping r ∈ [0, 1) 7→ Sr(t)u is also nondecreasing for any fixed t > 0
and any u ∈ X+. Since sup06r<1 ∥Sr(t)∥ 6 2M for any t > 0 and any bounded
monotone sequence of X+ is convergent, one gets that Sr(t) converges strongly
to some operator V(t) for any fixed t > 0 as r → 1. Obviously, V(t) is a positive
contraction on X+ with Sr(t) 6 V(t) for any 0 6 r < 1 and any t > 0.

• (V(t))t>0 is a C0-semigroup on X. Since Sr(t + s) = Sr(t)Sr(s) for any
t, s > 0 and any 0 6 r < 1, one has, at the limit, V(t+ s) = V(t)V(s), ∀t, s > 0.
Moreover, V(0) = Id. To prove that (V(t))t>0 is a C0-semigroup on X, it is
enough to prove that t > 0 7→ V(t)u is continuous at t = 0 for any u ∈ X. Let
us fix ε > 0 and u ∈ X+. Since (U(t))t>0 is a strongly continuous C0-semigroup,
there exists δ > 0 such that ∥U(t)u − u∥ < ε for any 0 6 t 6 δ. For such a t,
we see that, for any r ∈ [0, 1), since Sr(t) > U(t), one has

∥Sr(t)u−U(t)u∥ = ⟨Ψ,Sr(t)u⟩−⟨Ψ,U(t)u⟩ 6 ∥u∥−∥U(t)u∥ 6 ∥u−U(t)u∥ < ε.

One deduces from this estimate that

∥Sr(t)u− u∥ 6 ∥Sr(t)u− U(t)u∥+ ∥U(t)− u∥ 6 2ε, ∀0 < t < δ.

The important fact is that such an estimate is uniform with respect to r ∈ [0, 1)
so that, letting r ↗ 1, one deduces that ∥V(t)u − u∥ 6 2ε for any 0 < t < δ.
This shows that limt→0 V(t)u = u for any u ∈ X+ and, by linearity, the result
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is true for any u ∈ X which proves that V(t) is strongly continuous at t = 0.
We denote by G the generator of (V(t))t>0. Clearly, ]0,∞[⊂ ϱ(G) and (λ−G)−1

is positive, ∥(λ − G)−1u∥ 6 ∥u∥
λ
, u ∈ X+. Note that, since Sr(t) 6 V(t) for any

t > 0 and any r ∈ [0, 1), one also has (λ− Gr)
−1 6 (λ− G)−1 for any r ∈ [0, 1)

and any λ > 0.

• (λ−Gr)
−1 converges strongly to (λ−G)−1 as r → 1. Since for any u ∈ X+

the mapping r 7→ Sr(t)u is nondecreasing, by Dini’s Theorem one has for any
T > 0 and any u ∈ X+: limr→1 sup06t6T ∥Sr(t)u− V(t)u∥ = 0. Now, writing

(λ− G)−1u− (λ− Gr)
−1u =

∫ T

0

exp(−λt) (V(t)u− Sr(t)u) dt

+

∫ ∞

T

exp(−λt) (V(t)u− Sr(t)u) dt, ∀T > 0,

one sees from the uniform convergence that the first integral converges to 0 as
r ↗ 1 for any T > 0 while the uniform bound supt>0 ∥Sr(t)u− V(t)u∥ 6 2∥u∥
allows us to let T → ∞ in the second integral leading to

lim
r→1

∥(λ− Gr)
−1u− (λ− G)−1u∥ = 0, ∀λ > 0, u ∈ X.

• Proof of Equation (2.2). Let us fix λ > 0. From Equation (2.4) and the

fact that 0 6(λ−Gr)
−16(λ−G)−1 for any 0 6 r<1, one has R(n)

r 6(λ−Gr)
−1

6 (λ−G)−1, for any n > 1 where R(n)
r (λ) = (λ−A)−1

∑n
k=0 r

k [J (λ)]k . Letting
r ↗ 1, one gets

R(n)(λ) := (λ−A)−1

n∑
k=0

[J (λ)]k 6 (λ− G)−1, ∀n > 1.

Since the sequence
(
R(n)(λ)

)
n

is nondecreasing, the strong limit R(λ) :=

s− limn→∞R(n)(λ) exists and R(λ) 6 (λ − G)−1. We also have R(n)
r (λ) 6

R(n)(λ) 6 R(λ) for all 0 6 r < 1 and n > 1. Hence, (λ − Gr)
−1 =

s− limn→∞R(n)
r (λ) 6 R(λ) and (λ − G)−1 = s− limr→1(λ − Gr)

−1 6 R(λ).

This proves finally that R(λ) = (λ− G)−1 and Equation (2.2) is proved.

• G is a closed extension of A+B. With the notation of the previous item,
since J (λ) = B(λ−A)−1, one has

R(n)(λ) = (λ−A)−1 + (λ−A)−1

(
n−1∑
k=0

[J (λ)]k

)
B(λ−A)−1

= (λ−A)−1 +R(n−1)(λ)B(λ−A)−1.

Thus, for any u ∈ D(A), R(n)(λ)(λ − A)u = u + R(n−1)(λ)Bu for any n > 1.
Letting n → ∞, Equation (2.2) yields (λ − G)−1(λ − A)u = u + (λ − G)−1Bu
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or equivalently, (λ − G)−1(λ − A − B)u = u. In particular, u ∈ D(G) and
(λ − G)u = (λ − A − B)u. This proves that G is an extension of A and G is
closed as the generator of a C0-semigroup on X.

• (V(t))t>0 is minimal. Let (S(t))t>0 be a substochastic semigroup in X
whose generator G ′ is a closed extension of A+B. Let us prove that S(t) > V(t)
for any t > 0. Actually, for any λ > 0, one has (λ − G ′)−1 − (λ − Gr)

−1 =
(λ − G ′)−1(G ′ − Gr)(λ − Gr)

−1 and, since the range of (λ − Gr)
−1 is D(A) ⊂

D(G ′) ∩ D(Gr), one has

(λ− G ′)−1 − (λ− Gr)
−1 = (λ− G ′)−1(A+ B −A− rB)(λ− Gr)

−1

= (1− r)(λ− G ′)−1B(λ− Gr)
−1

and one sees that, at the (strong) limit, (λ − G ′)−1 > (λ − G)−1. From the
exponential formula, one obtains S(t) > V(t) for any t > 0.

2.2. On Dyson-Phillips expansion series. It is possible to strengthen the
above Theorem 2.1 by proving that the semigroup (V(t))t>0 is given by a Dyson-
Phillips expansion series. Our approach generalizes the result of [30] to the non
lattice case and relies on different arguments inspired by [22, Chapter 8]. We
first need some preliminary result. Let us define the space Csb(R+,B(X)) of
strongly continuous and bounded mappings

S : t > 0 7−→ S(t) ∈ B(X)

endowed with the norm ∥S∥∞ = supt>0 ∥S(t)∥B(X) which makes it a Banach
space. For any S ∈ Csb(R+,B(X)), it is possible to define the time-dependent
operator L (S)(t) defined over D(A) by

L (S)(t) : u ∈ D(A) 7−→
∫ t

0

S(t− s)BU(s)u ds ∈ X, t > 0.

We shall write that S ∈ Csb(R+,B+(X)) if S ∈ Csb(R+,B(X)) and S(t) is a
positive operator in X for any t > 0. One has the following

Lemma 2.2. For any S ∈ Csb(R+,B+(X)) and any t > 0, L (S)(t) extends
uniquely to a bounded positive operator in X, still denoted L (S)(t). Moreover,
for any u ∈ X, the mapping t > 0 7→ L (S)(t)u ∈ X is continuous.

Proof. It is clear that L (S)(t) is a nonnegative operator and, for any u ∈
D(A)+ and λ > 0 one has∥∥∥∥∫ t

0

S(t− s)BU(s)u ds
∥∥∥∥ =

∫ t

0

∥S(t− s)BU(s)u∥ ds 6 ∥S∥∞
∫ t

0

∥BU(s)u∥ ds.
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Now, ∫ t

0

∥BU(s)u∥ ds =
∫ t

0

⟨Ψ,BU(s)u⟩ ds

6 −
∫ t

0

⟨Ψ,AU(s)u⟩ ds

= −
⟨
Ψ,

∫ t

0

d

ds
U(s)u ds

⟩
= ⟨Ψ, u− U(t)u⟩ 6 ∥u∥.

(2.6)

Therefore,∫ t

0

∥S(t− s)BU(s)u∥ ds 6 ∥S∥∞∥u∥ ∀t > 0, ∀u ∈ D(A)+. (2.7)

Now, let u ∈ D(A) be arbitrary and let u = u1−u2 where ui ∈ X+ are such that

∥ui∥ 6 M∥u∥, i = 1, 2. Then, for any n > 1, uin := n
∫ 1

n

0
U(s)ui ds ∈ D(A)+

with uin → ui in X as n→ ∞, while

un := u1n − u2n = n

∫ 1
n

0

U(s)u ds→ u in D(A).

Moreover, for any t > 0, ∥S(t− s)BU(s)un∥ 6 ∥S∥∞∥BU(s)un∥. We follow the
arguments of [7, p. 148] and write BU(s)un = B(1−A)−1U(s)(1−A)un so that
∥BU(s)un∥ 6 2M∥un − Aun∥ 6 2M(∥un∥ + ∥Aun∥), for all s ∈ (0, t), n ∈ N.
Since Aun = nA

∫ 1
n

0
U(r)u dr = n

∫ 1
n

0
U(r)Au dr we have ∥Aun∥ 6 2M∥Au∥

and, since ∥un∥ 6 2M∥u∥, we get ∥BU(s)un∥ 6 4M2 (∥u∥+ ∥Au∥) , for all

s ∈ (0, t), n ∈ N. In particular, since un → u in D(A), we can use the Lebesgue

dominated convergence theorem to prove that∫ t

0

∥S(t− s)BU(s)u∥ ds = lim
n→∞

∫ t

0

∥S(t− s)BU(s)un∥ ds.

On the other hand, ∥S(t− s)BU(s)un∥ = ∥S(t− s)BU(s)(u1n − u2n)∥ 6 ∥S∥∞
(∥BU(s)u1n∥+ ∥BU(s)u2n∥) and Equation (2.7) yields

∫ t

0
∥S(t− s)BU(s)un∥ ds6

∥S∥∞ (∥u1n∥+ ∥u2n∥) and finally,∥∥∥∥∫ t

0

S(t− s)BU(s)u ds
∥∥∥∥ 6 ∥S∥∞ lim

n→∞

(
∥u1n∥+ ∥u2n∥

)
6 2M∥S∥∞∥u∥,

for all u ∈ D(A). Since D(A) is dense in X, L (S)(t) extends uniquely to a
bounded operator on X. We still denote L (S)(t) this extension. Notice that,
since D(A)+ is dense in X+, the extension L (S)(t) is still positive. One notes
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that, for any u ∈ D(A), the mapping t 7→ L (S)(t)u is continuous. Now, if
u ∈ X, considering a sequence (un)n ⊂ D(A) which converges to u, one has, for
any T > 0

sup
t∈[0,T ]

∥L (S)(t)un − L (S)(t)um∥ 6 2M∥S∥∞ ∥un − um∥, n,m ∈ N,

which implies that the mapping t ∈ [0,∞[7→ L (S)(t)u is continuous.

Arguing as in [22, Lemma 8.4], we prove the following

Theorem 2.3. For any t > 0, the following Duhamel formula holds:

V(t)u = U(t)u+
∫ t

0

V(t− s)BU(s)u ds, t > 0, u ∈ D(A). (2.8)

Moreover, the semigroup (V(t))t>0 defined in Theorem 2.1 is given by the Dyson-
Phillips expansion series

V(t) =
∞∑
n=0

L n(U)(t), t > 0 (2.9)

where the series converges strongly in X.

Proof. Let us first establish Duhamel formula. We use the ideas of [30, Lemma
1.4]. Let u ∈ D(A) and λ > 0. We see from (2.2) that

(λ− G)−1u− (λ−A)−1u = (λ− G)−1B(λ−A)−1u. (2.10)

Moreover, since B is A-bounded, the mapping t ∈ [0,∞) 7→ BU(t)u ∈ X is
continuous for all u ∈ D(A) and B(λ − A)−1u = B

∫∞
0

exp(−λt)U(t)u dt =∫∞
0

exp(−λt)BU(t)u dt. Notice that the last identity holds true by standard
properties of Bochner integrals using the fact that B is a bounded operator on
the Banach space D(A) endowed with the graph norm (see, for instance, [19,
Section 3.7, Theorem 3.7.12]). Since (λ − G)−1 is the Laplace transform of
(V(t))t>0, one gets from (2.10)∫ ∞

0

exp(−λt) (V(t)u− U(t)u) dt =
∫ ∞

0

dt

∫ ∞

0

exp(−λ(t+ s))V(t)BU(s)u ds

=

∫ ∞

0

exp(−λt)
(∫ t

0

V(t− s)BU(s)u ds
)
dt.

Finally, the uniqueness theorem for the Laplace transform provides the conclu-
sion.
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Let us prove now that (V(t))t>0 is given by the Dyson-Phillips expansion
(2.9). Duhamel formula (2.8) reads V(t)u = U(t)u + L (T )(t)u, for all t > 0,
u ∈ X and, by iteration,

V(t)u =
n∑

k=0

L k(U)(t)u+ L n+1(T )(t)u, t > 0, n > 1, u ∈ X.

In particular, for any u ∈ X+, one has
n∑

k=0

L k(U)(t)u 6 V(t)u, n > 1, u ∈ X+ (2.11)

and the series
∑∞

n=0 L n(U)(t)u is convergent towards a limit that we denote

T̃ (t)u. Notice that, for a given u ∈ X+, the mapping t ∈ [0,∞[7→ T̃ (t)u is
measurable. One has

T̃ (t)u 6 V(t)u, ∀u ∈ X+, t > 0. (2.12)

Now, it is not difficult to check by induction that∫ ∞

0

exp(−λt)L n(U)(t)u dt = (λ−A)−1
[
B(λ−A)−1

]n
u (2.13)

so that,
∑∞

n=0(λ−A)−1 [B(λ−A)−1]
n
u =

∫∞
0

exp(−λt)T̃ (t)u dt, and Equation
(2.12) together with Equation (2.2) yield∫ ∞

0

exp(−λt)T̃ (t)u dt =

∫ ∞

0

exp(−λt)V(t)u dt, ∀u ∈ X+, λ > 0.

The uniqueness theorem for the Laplace transform implies then T̃ (t)u = V(t)u
for any t > 0 and any u ∈ X+ so that

∑∞
n=0 L n(U)(t)u = V(t)u, for all u ∈ X+,

t > 0. Note that, according to Dini’s convergence theorem, the series converges
uniformly in bounded time. One extends then the convergence to arbitrary
u ∈ X by linearity.

Remark 2.4. Notice that the family of operators Vn(t) = L n(U)(t) (n ∈ N,
t > 0), is nothing but the classical Dyson-Phillips iterated usually defined by
induction [22, Chapter 7]:

Vn+1(t)u =

∫ t

0

Vn(t− s)BU(s)u ds, ∀n ∈ N, u ∈ D(A). (2.14)

Notice that, according to (2.11), one sees easily that
∑n

k=0 ∥Vk(t)u∥ 6 ∥u∥ for
any t > 0, u ∈ X+. Moreover, for any n ∈ N, the mapping t ∈ [0,∞) 7→ Vn(t)u
is continuous for any u ∈ X. Finally, arguing as in [7, p. 129], it is not difficult
to prove that, for any n ∈ N, the following relation holds:

Vn(t+ s)u =
n∑

k=0

Vk(t)Vn−k(s)u for any u ∈ X, t, s > 0. (2.15)
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3. On honesty theory: resolvent approach

From now, in all the paper, we assume that the assumptions of Theorem
2.1 are met.

3.1. About some useful functionals. Since the C0-semigroup (V(t))t>0 is
substochastic, one has, for any u ∈ X+,

⟨Ψ,V(t)u− u⟩ = ∥V(t)u∥ − ∥u∥ 6 0, ∀t > 0, u ∈ X+.

In particular, if one chooses u ∈ D(G)+ here above, since, ⟨Ψ,Gu⟩ = limt↘0

t−1 ⟨Ψ,V(t)u− u⟩ one gets

⟨Ψ,Gu⟩ 6 0, u ∈ D(G)+. (3.1)

Because of this elementary but fundamental inequality, a crucial role in the
present approach will be based on the properties of the following functional:

a0 : u ∈ D(G) 7→ a0(u) = −⟨Ψ,Gu⟩ ∈ R.

Because of (3.1), this functional a0 is nondecreasing, i.e., a0(u) > a0(v) for any
u, v ∈ D(G) with u > v. Moreover, since ∥Ψ∥ 6 1, one has a0(u) 6 ∥Gu∥ for
any u ∈ D(G). We denote by a its restriction to D(A), i.e.,

a : u ∈ D(A) 7→ a(u) = −⟨Ψ,Au+ Bu⟩ ∈ R.

Let λ > 0 be fixed. The following obvious identity

−a((λ−A)−1u) = λ∥(λ−A)−1u∥+ ∥B(λ−A)−1u∥ − ∥u∥, (3.2)

is valid for any u∈X+. Moreover, the sequence
(∑n

k=0(λ−A)−1[B(λ−A)−1]ku
)
n

is nondecreasing and convergent to (λ − G)−1u. Since a(·) is nondecreasing,
one gets a

(∑n
k=0(λ−A)−1[B(λ−A)−1]ku

)
6 a0((λ − G)−1u), for all u ∈ X+

and any n ∈ N. The real sequence
(
a
(∑n

k=0(λ−A)−1[B(λ−A)−1]ku
))

n
is

bounded, nondecreasing and therefore convergent. This convergence holds for
any u ∈ X = X+ − X+ and therefore defines a functional aλ (that depends a
priori on λ > 0) on the domain of G by

aλ
(
(λ− G)−1u

)
=

∞∑
n=0

a
(
(λ−A)−1

[
B(λ−A)−1

]n
u
)
, u ∈ X.

Following [25], we derive another expression for aλ from the identity
(λ − Gr)

−1u =
∑∞

n=0 r
n(λ − A)−1 [B(λ−A)−1]

n
u, u ∈ X+ established in the

proof of Theorem 2.1. We recall that, denoting DA and DG the domain of
A and G equipped with their respective graph norm, the series is convergent
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in DA and, since (λ−A)−1 6 (λ−G)−1, the embedding DA ↪→ DG is continuous.
Therefore,

a((λ− Gr)
−1u) =

∞∑
n=0

rna
(
(λ−A)−1

[
B(λ−A)−1

]n
u
)
, u ∈ X+.

Letting now r → 1, one gets

aλ
(
(λ− G)−1u

)
= lim

r↗1
a((λ− Gr)

−1u) =
∞∑
n=0

a
(
(λ−A)−1

[
B(λ−A)−1

]n
u
)
.

One has the following basic result which can be proved exactly as [25, Proposi-
tion 1.1] (see also an alternative proof at the end of the paper, Theorem 4.9):

Proposition 3.1. Let 0 < λ < µ. Then,

(i) aλ|D(A) = a

(ii) aλ = aµ.

This defines a functional a := aλ for any λ.

Remark 3.2. Let us point out that a is continuous with respect to the graph
norm of G.

The above definitions of functionals a and a0 lead to the following:

Definition 3.3. For any λ > 0, we define the functional Ξλ ∈ X⋆ by

⟨Ξλ, u⟩ = a0
(
(λ− G)−1u

)
− a

(
(λ− G)−1u

)
, u ∈ X.

One has the following Lemma:

Lemma 3.4. For any λ > 0 and u ∈ X

⟨Ξλ, u⟩ = lim
n→∞

⟨
Ψ,
[
B(λ−A)−1

]n
u
⟩
= lim

r↗1
(1− r)

⟨
Ψ,B(λ− Gr)

−1u
⟩
.

Proof. One has to compute ⟨Ξλ, u⟩ = a0 ((λ− G)−1u)− a ((λ− G)−1u). First,

a
(
(λ− G)−1u

)
=

∞∑
n=0

a
(
(λ−A)−1

(
B(λ−A)−1

)n
u
)

=
∞∑
n=0

⟨
Ψ,−(A+ B)(λ−A)−1

(
B(λ−A)−1

)n
u
⟩
.
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Now, the latter is equal to
∑∞

n=0

(⟨
Ψ,
(
B(λ−A)−1

)n
u−

(
B(λ−A)−1

)n+1
u−

λ(λ−A)−1
(
B(λ−A)−1

)n
u
⟩)
. Thus

a
(
(λ− G)−1u

)
= ⟨Ψ, u⟩ − lim

n→∞

⟨
Ψ,
(
B(λ−A)−1

)n
u
⟩
− λ

⟨
Ψ,

∞∑
n=0

(λ−A)−1
(
B(λ−A)−1

)n
u

⟩
= ⟨Ψ, u⟩ − lim

n→∞

⟨
Ψ,
(
B(λ−A)−1

)n
u
⟩
− λ

⟨
Ψ, (λ− G)−1u

⟩
= a0

(
(λ− G)−1u

)
− lim

n→∞

⟨
Ψ,
(
B(λ−A)−1

)n
u
⟩

which proves the first assertion. On the other hand,

a
(
(λ−G)−1u

)
= lim

r↗1
a
(
(λ−Gr)

−1u
)

= lim
r↗1

⟨
Ψ, (λ−A− rB − λ− (1−r)B)(λ−Gr)

−1u
⟩

= lim
r↗1

(
⟨Ψ, u⟩ − λ

⟨
Ψ, (λ−Gr)

−1u
⟩
− (1−r)

⟨
Ψ,B(λ−Gr)

−1u
⟩)

= ⟨Ψ, u⟩ − λ
⟨
Ψ, (λ−G)−1u

⟩
− lim

r↗1
(1−r)

⟨
Ψ,B(λ−Gr)

−1u
⟩

provides the second assertion.

We end this section with the following fundamental result:

Theorem 3.5. Let λ > 0 and u ∈ X+ be fixed. The following assertions are
equivalent:

(i) the set {[B(λ−A)−1]nu}n is relatively weakly compact

(ii) limn→∞ ∥[B(λ−A)−1]nu∥ = 0

(iii) ⟨Ξλ, u⟩ = 0

(iv) (λ− G)−1u ∈ D(A+ B).
Proof. It is clear from the definition of Ξλ that (ii) =⇒ (iii) and that (iii) =⇒
(ii) =⇒ (i).

(i) =⇒ (ii) and (iv). Let vn :=
∑n

k=0(λ − A)−1 [B(λ−A)−1]
k
u. Clearly,

vn ∈ D(A + B) and vn converges to v = (λ − G)−1u in X as n goes to infinity.
Moreover, it is not difficult to see that (λ−A−B)vn = u− [B(λ−A)−1]

n+1
u.

If some subsequence ([B(λ−A)−1]nku)k converges weakly in X to some z ∈ X,
then (λ − A − B)vnk

converges weakly to u − B(λ − A)−1z as k → ∞. It
follows from the weak closedness of the graph of A+ B that v ∈ D(A+ B) and
(λ − A+ B)v = u − B(λ − A)−1z. Since G is a closed extension of A + B and
v = (λ−G)−1u, the latter reads u = u−B(λ−A)−1z so that B(λ−A)−1z = 0.
Hence, [B(λ−A)−1]nk+1u converges weakly to 0 as k → ∞. In particular,

lim
k→∞

⟨
Ψ,

[
B(λ−A)−1

]nk+1

u

⟩
= 0 and lim

n→∞

⟨
Ψ,

[
B(λ−A)−1

]n
u

⟩
= 0
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since the whole sequence is always convergent. This proves (ii). Notice also
that v = (λ− G)−1u ∈ D(A+ B) and (iv) is proved.

(iv) =⇒ (iii). One can assume without loss of generality that Ξλ ̸= 0.
Assume that (λ − G)−1u ∈ D(A+ B). According to the identity D(A+ B) =
(λ − G)−1(I − B(λ−A)−1)X (see [7, Lemma 4.5, p. 117]) one sees that there
exists a sequence (un)n ⊂ (I − B(λ − A)−1)X such that limn→∞ un = u. It is
easy to see that ⟨Ξλ, un⟩=0 for any n ∈ N so that ⟨Ξλ, u⟩ = 0.

One deduces from the above result that D(A + B) is a core for G if and
only if Ξλ = 0:

Corollary 3.6. One has G = A+ B if and only if Ξλ = 0 for some (or equiv-
alently for all) λ > 0.

Remark 3.7. For v ∈ D(G)+ one can show as in [25, Proposition 1.6] that
v ∈ D(A+ B) if and only if a0(v) = a(v) which strengthens Proposition 3.1.

3.2. On honest trajectories. We note that, for any u ∈ X+ and any t > 0,
one has

∫ t

0
V(s)u ds ∈ D(G) with V(t)u−u = G

∫ t

0
V(s)u ds. Since the semigroup

is positive, one has

∥V(t)u∥ − ∥u∥ = −a0

(∫ t

0

V(s)u ds
)
. (3.3)

Definition 3.8. Let u ∈ X+ be given. Then, the trajectory (V(t)u)t>0 is said
to be honest if and only if

∥V(t)u∥ = ∥u∥ − a

(∫ t

0

V(s)u ds
)
, for any t > 0.

The whole C0-semigroup (V(t))t>0 will be said to be honest if all trajectories
are honest.

Remark 3.9. Note that, in the spirit of [25], it is possible to define a more
general concept of local honest trajectory on an interval I ⊂ [0,∞) by

a

(∫ t

s

V(r)u dr
)

= a0

(∫ t

s

V(r)u dr
)
, for any t, s ∈ I, t > s.

We do not try to elaborate on this point here.

Remark 3.10. One can deduce from Theorem 3.5 and Corollary 3.6 the fol-
lowing: Given u ∈ X+, one sees from (3.3) that (V(t)u)t>0 is honest if and only
if a
( ∫ t

s
V(r)u dr

)
= a0

( ∫ t

s
V(r)u dr

)
for any t > s > 0. Moreover, it is easy to

see that this is equivalent to a
( ∫ t

0
V(r)u dr

)
= a0

( ∫ t

0
V(r)u dr

)
for any t > 0.
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The link between honest trajectory and the functional Ξλ given by Defini-
tion 3.3 is provided by the following:

Theorem 3.11. Let u ∈ X+. The trajectory (V(t)u)t>0 is honest if and only if
⟨Ξλ, u⟩ = 0 for some (or equivalently for all) λ > 0.

Proof. We recall that, for any λ > 0,

(λ− G)−1u =

∫ ∞

0

exp(−λt)V(t)u dt = λ

∫ ∞

0

exp(−λt)
(∫ t

0

V(s)u ds
)
dt. (3.4)

Moreover, the function t 7→
∫ t

0
V(s)uds is continuous and linearly bounded as

a DG-function. This means that the above outer integral in (3.4) is convergent
in DG and commute with a0. Moreover, according to Proposition 3.1, it also
commutes with a so that

a0
(
(λ− G)−1u

)
= λ

∫ ∞

0

exp(−λt)a0
(∫ t

0

V(s)u ds
)
dt

and

a
(
(λ− G)−1u

)
= λ

∫ ∞

0

exp(−λt)a
(∫ t

0

V(s)u ds
)
dt.

One sees therefore that a0
( ∫ t

0
V(s)u ds

)
= a

( ∫ t

0
V(s)u ds

)
for any t > 0 is

equivalent to a0
(
(λ − G)−1u

)
= a

(
(λ − G)−1u

)
for any λ > 0 and proves the

theorem.

Remark 3.12. Notice that the whole semigroup (V(t))t>0 is honest if and only
G = A+ B and this is also equivalent to Ξλ = 0 for some (or equivalently for
all) λ > 0.

3.3. On an order ideal invariant under (V(t))t>0. We already know that,
for any u ∈ X+, the property ⟨Ξλ, u⟩ = 0 is independent of the choice of λ > 0.
This allows us to define the set

H = {u ∈ X+; ⟨Ξλ, u⟩ = 0 for any λ > 0} . (3.5)

Notice that, by virtue of Theorem 3.11, H is precisely the set of initial positive
data u giving rise to honest trajectories: H = {u ∈ X+; (V(t)u)t>0 is honest}.
One has the following

Proposition 3.13. The set H is invariant under (V(t))t>0 and (λ−G)−1, λ > 0.
Moreover, for any u ∈ H, if Iu = {z ∈ X+; ∃p ∈ R+ such that pu− z ∈ X+},
then span(Iu) ∩ X+ ⊂ H.
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Proof. Let u ∈ H. This means that ∥V(t)u∥ − ∥u∥ = −a
( ∫ t

0
V(s)u ds

)
, for

all t > 0. Let t0 > 0 be fixed and set v = V(t0)u. One has ∥v∥ − ∥u∥ =
−a
( ∫ t0

0
V(s)u ds

)
and, for any t > t0,

∥V(t−t0)v∥−∥u∥ = −a

(∫ t

0

V(s)u ds
)

= −a

(∫ t0

0

V(s)u ds
)
−a

(∫ t

t0

V(s)u ds
)

so that

∥V(t− t0)v∥ = ∥v∥ − a

(∫ t

t0

V(s)u ds
)

= ∥v∥ − a

(∫ t−t0

0

V(s)v ds
)
, ∀t > t0.

In other words, v ∈ H and H is invariant under the action of (V(t))t>0. Let
λ > 0 and u ∈ H be fixed. One has a0

(
(λ − G)−1u

)
= a

(
(λ − G)−1u

)
and

a0
(
(µ−G)−1u

)
= a
(
(µ−G)−1u

)
for any µ > 0. One sees as a direct application

of the resolvent formula that

a0
(
(µ− G)−1(λ− G)−1u

)
= a

(
(µ− G)−1(λ− G)−1u

)
, ∀µ > 0

which amounts to (λ − G)−1u ∈ H. Finally, let u ∈ H and z ∈ Iu be fixed,
there is some nonnegative real number p such that pu − z ∈ X+. Then, for
any n ∈ N, [B(λ−A)−1]n+1z 6 p[B(λ−A)−1]n+1u. Since ⟨Ξλ, u⟩ = 0, Lemma
3.4 clearly implies that limn→∞⟨Ψ, [B(λ−A)−1]

n+1
z⟩ = 0 and (V(t)z)t>0 is

honest according to Theorem 3.5. This proves that Iu ⊂ H and, since Ξλ is a
continuous and positive linear form on X, one deduces easily that span(Iu) ∩
X+ ⊂ H.

Thanks to the above structure of H, it is possible to provide sufficient
conditions ensuring that the whole semigroup is honest.

Theorem 3.14. (i) If H contains a quasi-interior element u, then the whole
semigroup (V(t))t>0 is honest.

(ii) Assume (V(t))t>0 to be irreducible. Let there exists u ∈ X+ \ {0} such
that (V(t)u)t>0 is honest. Then, the whole semigroup (V(t))t>0 is honest.

Proof. (i) If X contains a quasi-interior element u, then [28,32] span(Iu) = X+.
One sees then that, if u ∈ H, Proposition 3.13 implies H = X+.

(ii) According to Proposition 3.13, H is invariant by (λ−G)−1 for any λ > 0.
Therefore, v = (λ− G)−1u is a quasi-interior element of H and we conclude by
the first point.

Before giving some more precise properties of H let us introduce the notions
of ideal and hereditary subcone:

Definition 3.15. A subcone C of X+ is said to be hereditary if 0 6 u 6 v and
v ∈ C imply u ∈ C. An order ideal of X is a linear subspace A of X such that
u1 6 v 6 u2 and ui ∈ A , i = 1, 2 imply v ∈ A . An order ideal A of X is said
to be positively generated if A = (A ∩ X+)− (A ∩ X+) .
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Remark 3.16. Notice that, if A is a positively generated order ideal of X
then u ∈ A implies |u| ∈ A . Indeed, since A is positively generated one has
u = u1 − u2 with ui ∈ A ∩X+. Moreover, according to [31, Lemma 2], A ∩X+

is an hereditary subcone of X+. In particular, since 0 6 |u| 6 u1 + u2 one gets
|u| ∈ A ∩ X+.

The subset
H := H−H

enjoys the following properties:

Theorem 3.17. Let H be defined by (3.5). Then, H is a closed hereditary
subcone of X+ and H is an order ideal with induced positive cone H+ equal to
H. Moreover, H is invariant under (V(t))t>0.

Proof. We first note that, since Ξλ is a positive and continuous linear form
over X,

H = {u ∈ X; ⟨Ξλ, u⟩ = 0 for any λ > 0} ∩ X+

is clearly a closed convex subcone of X+. Moreover, if 0 6 u 6 v with v ∈ H
then, for any λ > 0, ⟨Ξλ, v⟩ = 0 and consequently ⟨Ξλ, u⟩ = 0 since Ξλ is
positive, i.e., H is a closed hereditary subcone of X+. It is easy to see that
H := H−H is the linear space generated by H. Then, by [31, Lemma 2], H
is an order ideal with positive cone H. The fact that H is invariant under the
semigroup (V(t))t>0 follows from the previous proposition.

A priori, in the general setting above, it is not clear that H is closed in X.
However, we have more precise results in AL-spaces (i.e., Banach lattices with
additive norm) and in preduals of von Neumann algebras.

Proposition 3.18. (i) If X is a AL-space then H is a closed lattice ideal (and
therefore a projection band) of X. In particular, there exists a band projection P
onto H such that H = PX and X = H ⊕ Hd where the disjoint complement
Hd of H is given by Hd = (I −P)X.

(ii) Let X be the predual of a von Neumann algebra. Then, H is a closed
order ideal.

Proof. (i) Let (un)n ⊂ H be such that un → u in X. By assumption, un =
vn − wn with vn, wn ∈ H. In particular, |un| 6 vn + wn and ⟨Ξλ, |un|⟩ 6
⟨Ξλ, vn⟩ + ⟨Ξλ, wn⟩ = 0 whence |un| ∈ H. It follows that the negative and
positive parts u−n and u+n both belong to H. Since X is a vector lattice, the
mappings v ∈ X 7→ v± ∈ X+ are continuous [32, Proposition 5.2], one has
u±n → u± and u+, u− belong to H. This proves that u = u+ − u− ∈ H .

(ii) If A is a von Neumann algebra and X = A⋆ is its predual, then the
mapping u ∈ X 7→ |u| ∈ X+ is continuous (see, e.g., [34, Proposition 4.10,
p. 415] ) and then, arguing as in (i), one gets the conclusion.
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Remark 3.19. In the above case (i), the positive cone of the disjoint com-
plement Hd does not contain non-trivial elements with a honest trajectory. In
particular, dishonest trajectories are all emanating from elements of the positive
cone of X = H ⊕ Hd having a non-trivial component over Hd.

We now deal with two practical examples for concrete spaces:

Example 1: The space of bounded signed measures. Let (Σ,F) be a
measure space and X = M(Σ,F) denote the Banach space of all bounded signed
measures over (Σ,F) endowed with the total variation norm ∥µ∥ = |µ|(Σ), for
all µ ∈ M. We recall here that X = M(Σ,F) is a AL-space [32, Example 3,
p. 114] and every µ ∈ X splits as µ = µ+−µ where µ± ∈ X+ and |µ| = µ++µ−.
Given two measures µ and ν of X, we shall denote ν ≺ µ if ν is absolutely
continuous with respect to |µ|. Using the terminology of [1], we shall say that
a closed subspace A of X = M(Σ,F) is a M -ideal if, for any µ ∈ A and any
ν ∈ X, ν ≺ µ implies ν ∈ A . Then, one has the following

Proposition 3.20. A subspace A of M(Σ,F) is a M-ideal of M if and only
if A is a closed and positively generated order ideal of M(Σ,F).

Proof. Let us first assume that A is a closed and positively generated order ideal
of X and let µ ∈ A and ν ∈ X such that ν ≺ µ. From Radon-Nikodym Theorem,
there is some h ∈ L1(Σ,F), d |µ|) such that ν = h |µ|. Thus, |ν| = |h| |µ| and
limn→∞ ∥|ν| − βn∥ = 0 where βn := (|h| ∧ n) |µ|. Indeed βn 6 |ν| for any n ∈ N
and

∥|ν| − βn∥ = |ν| (Σ)− βn(Σ) =

∫
Σ

[|h| − (|h| ∧ n)] d |µ|

goes to zero as n→ ∞ according to the dominated convergence theorem. Now,
βn 6 n |µ| with |µ| ∈ A (see Remark 3.16) and, from the ideal property, βn ∈ A.
From the closedness of A , one gets that |ν| ∈ A. Since − |ν| 6 ν 6 |ν|,
one finally obtains ν ∈ A and A is a M -ideal. Conversely, let A be a M -
ideal. By definition, if µ ∈ A then |µ| ∈ A and µ± ∈ A . In particular,
A = (A ∩ X+) − (A ∩ X+). Moreover, since 0 6 µ 6 ν implies µ ≺ ν, one
sees that A ∩X+ is an hereditary subcone of X+ and A is an order ideal of X
according to [31, Lemma 2].

One deduces from this the following which allows to give a complete de-
scription of the state µ leading to a dishonest trajectory (see Remark 3.19):

Proposition 3.21. Under the assumptions of Theorem 3.17 with X=M(Σ,F),
one has H is a M-ideal of X and X = H ⊕ Hd where

Hd = {µ ∈ X = M(Σ,F), such that ν ≺ µ and ν ∈ H =⇒ ν = 0 }. (3.6)
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Proof. We saw in Theorem 3.17 that H is a closed lattice ideal of X. In
particular, one can define a band projection P onto H such that H = PX
and the disjoint complement Hd of H given by Hd = (I −P)X are such that
X = H ⊕ Hd [32]. Since, according to Proposition 3.20, H is a M -ideal of X,
one deduces from [1] that Hd = H ⊥ where H ⊥ is given by (3.6).

Example 2: The space of trace class operators. We assume here that
X = Ts(h) is the Banach space of all linear self-adjoint trace class operators on
some separable Hilbert space h endowed with the trace norm ∥ϱ∥ = Trace[ |ϱ| ]
for any ϱ ∈ X (see [24] for details). The scalar product of h shall be denoted
by (·, ·). Under the assumptions of the present section, one deduces from [24,
Theorem 5] that, for any λ > 0, there exists βλ ∈ L +

s (h) such that ⟨Ξλ, u⟩ =
Trace[βλϱ] for all ϱ ∈ X+ where L +

s (h) is the space of all positive bounded
self-adjoint operators on h. One has the following

Theorem 3.22. The null space of βλ is independent of λ and

H = {ϱ ∈ X+; ϱ = Pϱ = ϱP } = {ϱ ∈ X+; Qϱ = ϱQ = 0 }

where P is the projection of h onto Null(βλ) while Q = Idh −P.

Proof. Let λ > 0 be fixed. According to Theorem 3.15, H is a closed hereditary
subcone of X+. On the other hand, closed hereditary cones of X are character-
ized in [10, Lemma 3.2, pp. 54–55] which tells us that the set

h0 = {h ∈ h; |h⟩⟨h| ∈ H}

is a closed linear subspace1 of h andH = {ϱ ∈ X+; ϱ = Pϱ = ϱP} whereP is the
orthogonal projection of h onto h0 while |h⟩⟨h| denotes the one-dimensional trace
class operator: x 7→ (x, h)h. The proof consists in showing that Null(βλ) = h0
for any λ > 0. First, let h ∈ h0, h ̸= 0 and let ϱ = |h⟩⟨h|. For any orthonormal
basis (en)n of h we have

Trace[βλϱ] =
∑
n

(βλϱ(en), en) =
∑
n

(ϱen, βλ(en)) =
∑
n

(h, en) (βλ(h), en).

Choosing in particular a basis (en)n with e0 =
h

∥h∥ , one gets that

Trace[βλϱ] = 0 ⇐⇒ (βλ(h), h) = 0 ⇐⇒ h ∈ Null(βλ)

since βλ > 0. This proves that h0 = Null(βλ) which, in particular, turns out to
be independent of λ > 0. Finally, since PQ = 0 and P+Q = Id, we see that
ϱ = Pϱ = ϱP amounts to Qϱ = ϱQ = 0. This is equivalent to QϱQ = 0.

1Notice that, in [10, Lemma 3.2, pp. 54–55], Davies calls ideal what we call closed heredi-
tary subcone.
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This allows to provide a full characterization of H :

Corollary 3.23. One has H = H−H = {ϱ ∈ X; ϱ = Pϱ = ϱP } .

Proof. The fact that H ⊂ {ϱ ∈ X; ϱ = Pϱ = ϱP } is clear. Conversely, let
ϱ ∈ X be such that ϱ = Pϱ = ϱP. Since ϱ ∈ Ts(h), one has ϱ =

∑
n αn|en⟩⟨en|

where (en)n is an orthonormal basis of h made of eigenvectors of ϱ associated
to the real eigenvalues (αn)n, i.e., ϱ(h) =

∑
n αn(h, en)en for any h ∈ h. Since

ϱ = ϱP, one has

ϱ(h) =
∑
n

αn(h, en)en =
∑
n

αn(Ph, en)en =
∑
n

αn(h,Pen)en ∀h ∈ h

while, since Pϱ = ϱ, one has ϱ(h) =
∑

n αn(h,Pen)Pen for any h ∈ h. In
particular, ϱ =

∑
n αn|Pen⟩⟨Pen|. As we saw in the proof of the above theorem,

|Pen⟩⟨Pen| ∈ H for any n ∈ N so that, writing αn = α+
n − α−

n with α±
n > 0, we

see that ϱ = ϱ+ − ϱ− with ϱ± ∈ H.

3.4. Sufficient conditions of honesty. We provide here sufficient conditions
of honesty based on the above Theorem 3.11 and on a new derivation of the
functional Ξλ.

Theorem 3.24. For any λ > 0, let (ψn(λ))n ⊂ X⋆ be defined inductively by

ψn+1(λ) =
[
B(λ−A)−1

]⋆
ψn(λ), ψ0(λ) = Ψ

where we recall that Ψ is the positive functional defined in (1.1). Then, (ψn(λ))n
is nonincreasing and converges in the weak-⋆ topology of X to ψ(λ) such that[

B(λ−A)−1
]⋆
ψ(λ) = ψ(λ). (3.7)

Moreover, ψ(λ) = Ξλ for all λ > 0 and Ξλ is the maximal element of
{ψ ∈ X⋆, ψ 6 Ψ} satisfying (3.7).

Proof. It is clear that [B(λ−A)−1]
⋆
is a positive contraction in X⋆. Then, for

all ψ ∈ X⋆
+ with ∥ψ∥ 6 1,

∥∥[B(λ−A)−1]
⋆
ψ
∥∥ 6 1 or, in an equivalent way,⟨[

B(λ−A)−1
]⋆
ψ, u

⟩
6 ∥u∥ = ⟨Ψ, u⟩ , ∀u ∈ X+,

i.e., Ψ− [B(λ−A)−1]
⋆
ψ is an element of the positive cone of X⋆. Actually, it is

straightforward to see that, for any given u ∈ X+, the sequence (⟨ψn(λ), u⟩)n is
bounded and nonincreasing in R+. This means that (ψn(λ))n converges in the
weak-⋆ topology to some ψ(λ) 6 Ψ. Let u ∈ X+ be given. Then,

⟨ψn+1(λ), u⟩ =
⟨[
B(λ−A)−1

]⋆
ψn(λ), u

⟩
=
⟨
ψn(λ),B(λ−A)−1u

⟩
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so, letting n → ∞, ⟨ψ(λ), u⟩ = ⟨ψ(λ),B(λ−A)−1u⟩ which shows (3.7). Now,
since

⟨Ξλ, u⟩ = lim
n→∞

⟨
Ψ,
[
B(λ−A)−1

]n+1
u
⟩

= lim
n→∞

⟨([
B(λ−A)−1

]n+1
)⋆

Ψ, u
⟩

= lim
n→∞

⟨ψn+1(λ), u⟩

= ⟨ψ(λ), u⟩

one sees that ψ(λ) = Ξλ. Let us now prove that ψ(λ) = Ξλ is the maximal
element of {ψ ∈ X⋆, 0 6 ψ 6 Ψ} satisfying (3.7) (λ > 0). To do so, let ψ be
in the positive cone of X⋆, ψ 6 Ψ be such that [B(λ−A)−1]

⋆
ψ = ψ. Then,

ψ =
(
[B(λ−A)−1]

⋆)n
ψ 6

(
[B(λ−A)−1]

⋆)n
Ψ which proves, letting n go to

infinity, that ψ 6 Ξλ.

As a consequence, one has

Corollary 3.25. Assume there exists λ > 0 such that B(λ − A)−1 is irre-
ducible. Then, the whole semigroup (V(t))t>0 is honest if and only if there is
some u ∈ X+, u ̸= 0, for which the trajectory (V(t)u)t>0 is honest.

Proof. We give two proofs of this result. The first one uses Theorem 3.14 and
the second one the spectral interpretation of the functional Ξλ.

Proof 1. Let u ∈ X+ \{0} and ω ∈ X⋆
+ \{0}. Then, (λ−A⋆)−1ω ∈ X⋆

+ \{0}
and ⟨

ω, (λ− G)−1u
⟩
=

∞∑
k=0

⟨
ω, (λ−A)−1

[
B(λ−A)−1

]k
u
⟩

=
∞∑
k=0

⟨
(λ−A⋆)−1ω,

[
B(λ−A)−1

]k
u
⟩
> 0

where we used the fact that there exists k0 > 0 such that
⟨
(λ − A⋆)−1ω,

[B(λ−A)−1]
k0 u
⟩
> 0. One obtains then that ⟨ω, (λ− G)−1u⟩ > 0 for any

ω ∈ X⋆
+ \ {0}, i.e., (λ − G)−1u is quasi-interior for any u ∈ X+ \ {0}. Thus,

(V(t))t>0 is irreducible and Theorem 3.14 leads to the conclusion.

Proof 2. Let B(λ−A)−1 be irreducible and assume there exists some honest
trajectory (V(t)u)t>0 with u ∈ X+ \{0}. Then, from Theorem 3.11, ⟨Ξλ, u⟩ = 0.
Assume that Ξλ ̸= 0. Then, for any z ∈ X+ \ {0}, there exists an integer n > 0
such that

⟨
Ξλ, [B(λ−A)−1]

n
z
⟩
> 0. According to Theorem 3.24, it is clear

that

⟨Ξλ, z⟩ =
⟨([

B(λ−A)−1
]⋆)n

Ξλ, z
⟩
=
⟨
Ξλ,

[
B(λ−A)−1

]n
z
⟩
,

i.e., ⟨Ξλ, z⟩ > 0 for any z ∈ X+ \ {0}. This is a contradiction and, necessarily,
Ξλ = 0. Thus, the whole semigroup (V(t))t>0 is honest.
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We end this section with two practical sufficient conditions ensuring the
existence of honest trajectories:

Theorem 3.26. Let λ > 0 and u ∈ X+ be such that

B(λ−A)−1u 6 u, (3.8)

then the trajectory (V(t)u)t>0 is honest.

Proof. Since B(λ − A)−1 is positive, our assumption (3.8) implies that the se-
quence ([B(λ − A)−1]nu)n is nonincreasing in X and [B(λ−A)−1]

n
u 6 u, for

all n > 1. Therefore the whole sequence ([B(λ−A)−1]nu)n is convergent in X
which ends the proof because of Theorem 3.5.

This provides another honesty criterion in terms of sub-eigenvalues of A+B.

Corollary 3.27. Assume that there exists λ > 0 and u ∈ D(A)+ such that
(A+ B)u 6 λu, Then, (V(t)u)t>0 is honest.

Proof. Define z = (λ − A)u. One has z > Bu > 0 and z satisfies (3.8). The
trajectory (V(t)z)t>0 is therefore honest from Theorem 3.26. Defining v =
(λ−G)−1z, one has also that (V(t)v)t>0 is honest (see Proposition 3.13). Since
0 6 u = (λ − A)−1z 6 v, (V(t)u)t>0 is honest since H is a closed hereditary
subcone of X+ (see Theorem 3.17).

3.5. Instantaneous dishonesty. According to Definition 3.8, if a trajectory
(V(t)u)t>0 is not honest, then there exists t0 > 0 such that ∥V(t0)u∥ < ∥u∥ −
a
( ∫ t0

0
V(s)u

)
. This suggests to introduce the following mass loss functional

∆u(t) = ∥V(t)u∥ − ∥u∥+ a

(∫ t

0

V(s)u ds
)
, t > 0.

One has the following property:

Lemma 3.28. For any u ∈ X+, the mapping t > 0 7→ ∆u(t) is nonincreasing.

Proof. Let t2 > t1 > 0 be fixed. Then, ∆u(t2)−∆u(t1) = ∥V(t2)u∥−∥V(t1)u∥+
a
( ∫ t2

t1
V(s)u ds

)
= ⟨Ψ,V(t2)u− V(t1)u⟩+a

( ∫ t2
t1

V(s)u ds
)
. Since V(t2)u−V(t1)u

= G
∫ t2
t1

V(s)u ds, one sees that

∆u(t2)−∆u(t1) = a

(∫ t2

t1

V(s)u ds
)
− a0

(∫ t2

t1

V(s)u ds
)

6 0,

since a always dominates a0.
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Lemma 3.29. Let u ∈ X+. If the trajectory (V(t)u)t>0 is dishonest, then there
exists t0 > 0 such that ∆u(t) < 0 for any t > t0 and ∆v(t) < 0 for any t > 0
where v = V(t0)u.

Proof. By definition of dishonest trajectory and since ∆u(t) 6 0 for any t > 0,
one has t0 := inf{t > 0 such that ∆u(t) < 0} is well-defined. Since ∆u(·)
is nonincreasing, one has ∆u(t) < 0 for any t > t0. Moreover, since the
mapping t 7→ ∆u(t) ∈ (−∞, 0] is clearly continuous, one has ∆u(t) = 0
for any t ∈ [0, t0]. Set v = V(t0)u. For any t > 0, since ∆u(t + t0) < 0
one has ∥V(t)v∥ = ∥V(t+ t0)u∥ < ∥u∥ − a

( ∫ t+t0
0

V(s)u ds
)
while the identity

∆u(t0) = 0 reads ∥u∥ = ∥v∥+ a(
∫ t0
0

V(s)u ds). Consequently,

∥V(t)v∥<∥V(t0)u∥+a

(∫ t0

0

V(s)u ds
)
−a

(∫ t+t0

0

V(s)u ds
)
=∥v∥−a

(∫ t

0

V(r)v dr
)
,

i.e., ∆v(t) < 0 for all t > 0.

To summarize, when the semigroup (V(t))t>0 is dishonest, that is, if some
trajectory (V(t)u)t>0 is not honest, then it is possible to find some z ∈ X+ \{0}
such that the trajectory emanating from z is instantaneously dishonest, i.e.,
∆z(t) < 0 for any t > 0. In particular, whenever

⟨Ψ, (A+ B)u⟩ = 0 ∀u ∈ D(A)+,

the semigroup (V(t))t>0 is dishonest if and only if there exists some z ∈ X+\{0}
such that ∥V(t)z∥ < ∥z∥, for all t > 0.

Theorem 3.30. Assume that ⟨Ψ, (A+ B)u⟩ = 0 for any u ∈ D(A)+. If
G ≠ A+ B then ∥V(t)u∥ < ∥u∥, t > 0, for any quasi-interior u ∈ X+.

Proof. If (V(t))t>0 is dishonest, then, according to Lemma 3.29, there exists
z ∈ X+ \ {0} such that ∥V(t)z∥ < ∥z∥ for all t > 0. In particular,

⟨Ψ,V(t)z − z⟩ < 0, ∀t > 0.

Define Zt := Ψ − V⋆(t)Ψ ∈ X⋆, for any t > 0 where (V⋆(t))t>0 is the dual
contractions semigroup of (V(t))t>0. Since ⟨Ψ,V(t)u− u⟩ 6 0 for any u ∈ X+,
Zt belongs to the positive cone X⋆

+ of X⋆ for any t > 0 while ⟨Zt, z⟩ > 0, for
all t > 0. Therefore, Zt belongs to X⋆

+ \ {0} for any t > 0. Therefore, for
any quasi-interior u ∈ X+ one has ⟨Zt, u⟩ > 0, for all t > 0. This proves the
result.

Remark 3.31. Whenever X is an AL-space, it is possible to prove a more
general result of immediate dishonesty by resuming in a straightforward way
the arguments of [25, Corollary 2.12]. Precisely, recall that, if X is an AL-
space, H is a projection band of X (see Proposition 3.18) and let P be the
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band projection onto H . Then, one can prove the following: Let us assume
that (V(t))t>0 is not honest and let u ∈ X+ be such that v = (I − P)u is a
quasi-interior element of the disjoint complement of H . Then, the trajectory
(V(t)u)t>0 is immediately dishonest, i.e., ∥V(t)u∥ < ∥u∥ − a

( ∫ t

0
V(s)u ds

)
for

any t > 0. However, from the technical point of view, the formal arguments
need the use of the concept of local honesty as in [25].

4. On honesty theory: Dyson-Phillips approach

We establish here an alternative of concept of honesty of the trajectory in
terms of the Dyson-Phillips iterated defined by (2.14). To do so, we have first
to investigate several fine properties of these iteration terms.

4.1. Fine properties of the Dyson-Phillips iterations. The various terms
of the Dyson-Phillips series (2.14) enjoy the following properties:

Proposition 4.1. For any n ∈ N, n > 1, the Dyson-Phillips iterated defined in
(2.14) satisfy:

(i) For any u ∈ D(A), the mapping t ∈ (0,∞) 7→ Vn(t)u is continuously
differentiable with

d

dt
Vn(t)u = Vn(t)Au+ Vn−1(t)Bu.

(ii) For any u ∈ D(A), Vn(t)u ∈ D(A), the mapping t ∈ (0,∞) 7→ AVn(t)u
is continuous and

AVn(t)u = Vn(t)Au+ Vn−1(t)Bu− BVn−1(t)u

(iii) For any u ∈ X and any t > 0,
∫ t

0
Vn(s)u ds ∈ D(A), the mapping

t ∈ (0,∞) 7→ A
∫ t

0
Vn(s)u ds is continuous with

A
∫ t

0

Vn(s)u ds = Vn(t)u− B
∫ t

0

Vn−1(s)u ds. (4.1)

(iv) For any u ∈ X+ and any t > 0,⟨
Ψ,B

∫ t

0

Vn(s)u ds

⟩
6 −⟨Ψ,Vn(t)u⟩+

⟨
Ψ,B

∫ t

0

Vn−1(s)u ds

⟩
. (4.2)

(v) For any u ∈ X, and λ > 0, the limit

lim
t→∞

∫ t

0

exp(−λs)Vn(s)u ds =:

∫ ∞

0

exp(−λs)Vn(s)u ds

exists in the graph norm of A and

(λ−A)

∫ ∞

0

exp(−λs)Vn(s)u ds = B
∫ ∞

0

exp(−λs)Vn−1(s)u ds. (4.3)
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Remark 4.2. Notice that, in Equation (4.3), B
∫∞
0

exp(−λs)Vn−1(s)u ds is
well-defined since B is A-bounded and the integral converges in the graph norm
of A. Moreover, it is easily deduced from (4.3) that

B
∫ ∞

0

exp(−λs)Vn(s)u ds =
[
B(λ−A)−1

]n+1
u, ∀u ∈ X, n > 1. (4.4)

Proof. We first recall that the formula (2.14) reads on D(A) as:

Vn+1(t)u =

∫ t

0

Vn(t− s)BU(s)u ds, ∀u ∈ D(A), t > 0, n ∈ N.

Then h−1Vn+1(h)u = h−1
∫ h

0
Vn(h − s)BU(s)u ds → Vn(0)BU(0)u as h→ 0+

because the mapping (s, h) 7→ Vn(h − s)BU(s)u is strongly continuous on
{(s, h) ∈ R+ × R+; 0 6 s 6 h}. Since V0(0) = U0(0) = Id while Vn(0) = 0 for
any n > 1, we see that

lim
h→0

h−1Vn+1(h)u =

{
Bu when n = 0

0 when n > 1, ∀u ∈ D(A).
(4.5)

(i) Let n > 1 be fixed. Let u ∈ D(A) and t, h > 0 be fixed. One deduces
from (2.15) that, given t > 0 and h > 0,

Vn(t+ h)u− Vn(t)u =
n−1∑
k=0

Vk(t)Vn−k(h)u+ Vn(t)(V0(h)u− u)

=
n∑

k=1

Vn−k(t)Vk(h)u+ Vn(t)(V0(h)u− u).

Thus, h−1(Vn(t+h)u−Vn(t)u) =
∑n

k=1 Vn−k(t)
(
1
h
Vk(h)u

)
+Vn(t)

V0(h)u−u
h

which
yields, since u ∈ D(A),

lim
h→0+

Vn(t+ h)u− Vn(t)u

h
= Vn−1(t)Bu+ Vn(t)Au.

Similarly, it is easy to prove that, for any t > 0 and any 0 < h < t,

Vn(t)u− Vn(t− h)u =
n∑

k=1

Vn−k(t− h)Vk(h)u+ Vn(t− h)(V0(h)u− u) (4.6)

and therefore

lim
h→0+

Vn(t)u− Vn(t− h)u

h
= Vn−1(t)Bu+ Vn(t)Au.
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Since, for any u ∈ D(A) the mapping t 7→ Vn−1(t)Bu + Vn(t)Au is continuous
(see Remark 2.4), (i) holds true.

(ii) Let u ∈ D(A). It is clear that the two properties

Vk(t)u ∈ D(A) and t > 0 7→ AVk(t)u is continuous

hold true for k = 0. Let n > 1 be fixed and assume the above properties hold
true for any k 6 n and prove they still hold for k = n + 1. For any t, h > 0,
Equation (2.15) yields Vn+1(t+h)u = Vn+1(h+ t)u =

∑n+1
k=0 Vk(h)Vn+1−k(t)u so

that

V0(h)Vn+1(t)u−Vn+1(t)u=
(
Vn+1(t+h)u−Vn+1(t)u

)
−

n+1∑
k=1

Vk(h)Vn+1−k(t)u. (4.7)

Assume now u ∈ D(A), by virtue of (i) and (4.5), we have

lim
h→0+

V0(h)Vn+1(t)u− Vn+1(t)u

h
= Vn(t)Bu+ Vn+1(t)Au− BVn(t)u.

This shows that Vn+1(t)u ∈ D(A) for any u ∈ D(A) with AVn+1(t)u =
Vn+1(t)Au+Vn(t)Bu−BVn(t)u and proves (ii) since the continuity of the map-
ping t > 0 7→ AVn+1(t)u is easy to prove.

(iii) The first part of this assertion clearly holds for n = 0. Let u ∈ X and
n ∈ N be fixed. Assume that, for any t > 0 and any k 6 n,

∫ t

0
Vk(s)u ds ∈ D(A),

the mapping t ∈ (0,∞) 7→ A
∫ t

0
Vk(s)u ds is continuous. Let us prove the result

for k = n+ 1. Let t, h > 0. From (4.7) we have

(V0(h)− Id)

∫ t

0

Vn+1(s)u ds

=

∫ t

0

(V0(h)Vn+1(s)u− Vn+1(s)u) ds

=

∫ t

0

(Vn+1(s+ h)u− Vn+1(s)u) ds−
n+1∑
k=1

Vk(h)

∫ t

0

Vn+1−k(s)u ds

=

∫ t+h

t

Vn+1(r)u dr −
∫ h

0

Vn+1(r)u dr −
n+1∑
k=1

Vk(h)

∫ t

0

Vn+1−k(s)u ds.

Since we assumed that
∫ t

0
Vj(s)u ds ∈ D(A) ⊂ D(B) for any 0 6 j 6 n, we

deduce immediately

lim
h→0+

h−1(V0(h)− Id)

∫ t

0

Vn+1(s)u ds = Vn+1(t)u− B
∫ t

0

Vn(s)u ds
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where we used (4.5) and the fact that h−1
∫ t+h

t
Vn+1u ds→ Vn+1(t)u as h→ 0+.

Therefore, (iii) holds true for n+ 1.

(iv) Let u ∈ X and t > 0 be fixed. Applying (2.1) to v =
∫ t

0
Vn(s)u ds

(which belongs to D(A) from (iii)), one deduces easily (4.2) from (4.1).

(v) It is clear that the definition of Vn(t) given in (2.14) is equivalent to

exp(−λt)Vn+1(t)u =

∫ t

0

exp (−λ(t− s))Vn(t− s)B [exp (−λs)U(s)]u ds

for any u ∈ D(A), n ∈ N and any λ > 0. Moreover, for any λ > 0, the operators
Aλ := A−λ (with domain D(A)) and B satisfy the assumptions of Theorem 2.1
since ⟨Ψ, (Aλ + B)u⟩ 6 −λ ⟨Ψ, u⟩ 6 0, for all u ∈ D(A)+, λ > 0. One sees then
that there is an extension of Aλ + B that generates a C0-semigroup (Vλ(t))t>0

in X. Clearly, the family (exp(−λt)Vn(t))n∈N is the family of Dyson-Phillips
iterated associated to Aλ, B and Vλ(t). In particular, applying Formula (4.1)
to Aλ, B and (exp(−λt)Vn(t))n∈N, one gets

A
∫ t

0

exp(−λs)Vn(s)u ds = exp(−λt)Vn(t)u+ λ

∫ t

0

exp(−λs)Vn(s)u ds

− B
∫ t

0

exp(−λs)Vn−1(s)u ds,

(4.8)

for all λ > 0, u ∈ X, n > 1. Notice that, since for any n ∈ N, Vn(t) = L n(U)(t),
we already saw in the proof of Theorem 2.3 that limt→∞

∫ t

0
exp(−λs)Vn(s)u ds

exists in X, for any u ∈ X and any λ > 0, and∫ ∞

0

exp(−λs)Vn(s)u ds = (λ−A)−1
[
B(λ−A)−1

]n
u, ∀n ∈ N. (4.9)

Now, for n = 0, since

A
∫ t

0

exp(−λs)U(s)u ds = exp(−λt)U(t)u− u+ λ

∫ t

0

exp(−λs)U(s)u ds

one easily sees that the limit limt→∞A
∫ t

0
exp(−λs)U(s)u ds exists in X with

lim
t→∞

A
∫ t

0

exp(−λs)U(s)u ds = −u+ λ

∫ ∞

0

exp(−λs)U(s)u ds,

i.e.,
∫∞
0

exp(−λs)U(s)u ds converges in the graph norm of A. Since B is A-
bounded, the limit

lim
t→∞

B
∫ t

0

exp(−λs)U(s)u ds = B
∫ ∞

0

exp(−λs)U(s)u ds = B(λ−A)−1u
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exists in X. Now, applying (4.8) to n = 1, the integral
∫∞
0

exp(−λs)V1(s)u ds
converges in the graph norm of A with

A
∫ ∞

0

exp(−λs)V1(s)u ds = λ

∫ ∞

0

exp(−λs)V1(s)u ds− B
∫ ∞

0

exp(−λs)U(s)u ds

and, as above, since B is A-bounded,

lim
t→∞

B
∫ t

0

exp(−λs)V1(s)u ds = B
∫ ∞

0

exp(−λs)V1(s)u ds

converges in X. A simple induction leads to the result for any n ∈ N.

Remark 4.3. Note that for any u ∈ D(A), one deduces from [19, Section 3.7,
Theorem 3.7.12]

B
∫ t

0

Vk(r)u dr =

∫ t

0

BVk(r)u dr ∀t > 0, k > 1. (4.10)

From the above Proposition, limt→∞ B
∫∞
t

exp(−λs)Vn(s)u ds converges to
zero for any n ∈ N and any u ∈ X+. Actually, this convergence is uniform with
respect to n:

Proposition 4.4. For any λ > 0 and any u ∈ X, one has

lim
t→∞

sup
n∈N

∥∥∥∥B ∫ ∞

t

exp(−λs)Vn(s)u ds

∥∥∥∥ = 0.

Proof. The combination of (4.8) and (4.3) gives A
∫∞
t

exp(−λs)Vn(s)u ds =
−e−λtVn(t)u+ λ

∫∞
t

exp(−λs)Vn(s)u ds− B
∫∞
t

exp(−λs)Vn−1(s)u ds so that⟨
Ψ,A

∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
=

⟨
Ψ, λ

∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
−
⟨
Ψ, e−λtVn(t)u

⟩
−
⟨
Ψ,B

∫ ∞

t

exp(−λs)Vn−1(s)u ds

⟩
.

Since
∫∞
t

exp(−λs)Vn(s)u ds ∈ D(A)+ for u ∈ X+ then by (2.1)⟨
Ψ,A

∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
6 −

⟨
Ψ,B

∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
whence⟨

Ψ,B
∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
+

⟨
Ψ, λ

∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
6
⟨
Ψ, e−λtVn(t)u

⟩
+

⟨
Ψ,B

∫ ∞

t

exp(−λs)Vn−1(s)u ds

⟩
.
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In particular for all n⟨
Ψ,B

∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
6
⟨
Ψ, e−λtVn(t)u

⟩
+

⟨
Ψ,B

∫ ∞

t

exp(−λs)Vn−1(s)u ds

⟩
and it follows by induction that⟨

Ψ,B
∫ ∞

t

exp(−λs)Vn(s)u ds

⟩
6

n∑
j=1

⟨
Ψ, e−λtVj(t)u

⟩
+

⟨
Ψ,B

∫ ∞

t

exp(−λs)V0(s)u ds

⟩
6
⟨
Ψ, e−λtV(t)u

⟩
+

⟨
Ψ,B

∫ ∞

t

exp(−λs)V0(s)u ds

⟩
and then

∥∥B ∫∞
t

exp(−λs)Vn(s)u ds
∥∥ 6 e−λt ∥u∥ +

∥∥B ∫∞
t

exp(−λs)V0(s)u ds
∥∥

which ends the proof since X = X+ − X+.

4.2. A new functional. While, in Section 3, we introduced a functional a
related to a through the resolvent (λ−A)−1, we introduce here a new functional
â constructed through the Dyson-Phillips iteration terms:

Proposition 4.5. Under the assumption of Theorem 2.1, for any v ∈ D(G),
there exists

lim
t→0+

1

t

∞∑
n=0

a

(∫ t

0

Vn(s)v ds

)
=: â(v) (4.11)

with |â(v)| 6 4M (∥v∥+ ∥Gv∥). Furthermore, for v ∈ D(G)+,

â(v) 6 a0(v) 6 ∥Gv∥.

Proof. First, one notices that, for any u ∈ X+, n ∈ N and any t > 0, one has

n∑
k=0

a

(∫ t

0

Vk(s)u ds

)
6 a0

(∫ t

0

V(s)u ds
)

= −
⟨
Ψ,G

∫ t

0

V(s)u ds
⟩
.

In particular, the series
∑∞

k=0 a
(∫ t

0
Vk(s)u ds

)
converges with

∞∑
k=0

a

(∫ t

0

Vk(s)u ds

)
6 −

⟨
Ψ,G

∫ t

0

V(s)u ds
⟩

6 ∥u∥. (4.12)

Recall now that, for any integers 0 < n1 < n2 < n3 and any s, r > 0

n1∑
k=0

Vk(s)

(
n2∑
p=0

Vp(r)u

)
6

2n2∑
k=0

2n2−k∑
p=0

Vk(s)Vp(r)u =

2n2∑
k=0

Vk(s+ r)u

6
2n2∑
k=0

Vk(s)

(
2n3∑
p=0

Vp(r)u

)
, ∀u ∈ X+.
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Consequently, we get for any t, τ > 0 and any integers 0 < n1 < n2 < n3

n1∑
k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

n2∑
p=0

Vp(r)u dr

]
ds

)
6

2n2∑
k=0

a

(∫ t

0

ds

∫ τ

0

Vk(s+ r)u dr

)

6
2n2∑
k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

2n3∑
p=0

Vp(r)u dr

]
ds

)

for all u ∈ X+. Letting first n3 then n2 and finally n1 go to infinity, we get

∞∑
k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)u dr
]
ds

)
6

∞∑
k=0

a

(∫ t

0

ds

∫ τ

0

Vk(s+ r)u dr

)
6

∞∑
k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)u dr
]
ds

)

i.e.,
∑∞

k=0 a
(∫ t

0
Vk(s)

[∫ τ

0
V(r)u dr

]
ds
)
=
∑∞

k=0 a
(∫ t

0
ds
∫ τ

0
Vk(s+ r)u dr

)
, for all

u ∈ X+. In particular, for any t, τ > 0

∞∑
k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)u dr
]
ds

)
=

∞∑
k=0

a

(∫ τ

0

Vk(s)

[∫ t

0

V(r)u dr
]
ds

)
. (4.13)

Equation (4.12) implies
∣∣∑∞

k=0 a
( ∫ t

0
Vk(s)u ds

)∣∣ 6 2M∥u∥ for all u ∈ X. Since
limτ→0+ τ

−1
∫ τ

0
V(s)u ds = u, one gets that

lim
τ→0+

1

τ

∞∑
k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)u dr
]
ds

)
=

∞∑
k=0

a

(∫ t

0

Vk(s)u ds

)
∀t > 0. (4.14)

Now, for u ∈ D(G)+, Equation (4.12) reads

∞∑
k=0

a

(∫ t

0

Vk(s)u ds

)
6−

⟨
Ψ,

∫ t

0

V(s)Gu ds
⟩
=

∥∥∥∥∫ t

0

V(s)Gu ds
∥∥∥∥6 t∥Gu∥ (4.15)

since ∥Ψ∥ 6 1. One extends this estimate to D(G) in the following way: Let
u ∈ D(G) be given and let v = u−Gu ∈ X. Then, there exist v1, v2 in X+ with
v = v1 − v2 and ∥vi∥ 6 M∥v∥, i = 1, 2. Set ui = (1 − G)−1vi, i = 1, 2. Then,
ui ∈ D(G)+, ∥ui∥ 6 ∥vi∥, i = 1, 2 and ∥Gu1∥ + ∥Gu2∥ 6 2 (∥v1∥+ ∥v2∥) 6
4M∥v∥ 6 4M (∥u∥+ ∥Gu∥) . Now, from (4.15),∣∣∣∣∣

∞∑
k=0

a

(∫ t

0

Vk(s)u ds

)∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=0

a

(∫ t

0

Vk(s)(u1 − u2) ds

)∣∣∣∣∣ 6 t (∥Gu1∥+ ∥Gu2∥),
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i.e., ∣∣∣∣∣
∞∑
k=0

a

(∫ t

0

Vk(s)u ds

)∣∣∣∣∣ 6 4Mt (∥u∥+ ∥Gu∥) ∀u ∈ D(G), t > 0. (4.16)

For any v ∈ X and any t1, t2 > 0 fixed, applying the above estimate to
u = 1

t1

∫ t1
0

V(r)v dr − 1
t2

∫ t2
0

V(r)v dr ∈ D(G) we get∣∣∣∣∣
∞∑
k=0

a

(∫ t

0

Vk(s)

[
1

t1

∫ t1

0

V(r)v dr − 1

t2

∫ t2

0

V(r)v dr
]
ds

)∣∣∣∣∣
64Mt

∥∥∥∥1t1
∫ t1

0

V(r)v dr− 1

t2

∫ t2

0

V(r)v dr
∥∥∥∥+4Mt

∥∥∥∥1t1G
∫ t1

0

V(r)v dr− 1

t2
G
∫ t2

0

V(r)v dr
∥∥∥∥

which, by virtue of (4.13), reads∣∣∣∣∣ 1t1
∞∑
k=0

a

(∫ t1

0

Vk(s)z ds

)
− 1

t2

∞∑
k=0

a

(∫ t2

0

Vk(s)z ds

)∣∣∣∣∣
64M

∥∥∥∥1t1
∫ t1

0

V(r)v dr− 1

t2

∫ t2

0

V(r)v dr
∥∥∥∥+4M

∥∥∥∥1t1G
∫ t1

0

V(r)v dr− 1

t2
G
∫ t2

0

V(r)v dr
∥∥∥∥

where z = t−1
∫ t

0
V(r)v dr. Letting now t→ 0+ one deduces from (4.14) that∣∣∣∣∣ 1t1

∞∑
k=0

a

(∫ t1

0

Vk(s)v ds

)
− 1

t2

∞∑
k=0

a

(∫ t2

0

Vk(s)v ds

)∣∣∣∣∣
64M

∥∥∥∥1t1
∫ t1

0

V(r)v dr− 1

t2

∫ t2

0

V(r)v dr
∥∥∥∥+4M

∥∥∥∥1t1G
∫ t1

0

V(r)v dr− 1

t2
G
∫ t2

0

V(r)v dr
∥∥∥∥

If v ∈ D(G) then 1
ti
G
∫ ti
0
V(r)v dr = 1

ti

∫ ti
0
V(r)Gv dr, i = 1, 2 and it is easy to

see that, for any ε > 0, there exists δ > 0 such that∣∣∣∣∣ 1t1
∞∑
k=0

a

(∫ t1

0

Vk(s)v ds

)
− 1

t2

∞∑
k=0

a

(∫ t2

0

Vk(s)v ds

)∣∣∣∣∣ 6 4Mε, ∀0<t1<t2<δ.

This achieves to prove that, for any v ∈ D(G), limt→0+
1
t

∑∞
k=0 a

( ∫ t

0
Vk(s)v ds

)
exists. We denote this limit by â(v) and the first part of the theorem is proved.
The first estimate |â(v)| 6 4M (∥v∥+ ∥Gv∥) is a direct consequence of (4.16).
Finally, since

∑∞
k=0 a

( ∫ t

0
Vk(s)v ds

)
6 a0

( ∫ t

0
V(s)v ds

)
one gets that

â(v) = lim
t→0+

t−1

∞∑
k=0

a

(∫ t

0

Vk(s)v ds

)
6 lim

t→0+
t−1a0

(∫ t

0

V(s)v ds
)

= a0(v)

since limt→0+
1
t

∫ t

0
V(s)v ds = v in the graph norm of G and a0(·) is continuous

with respect to the graph norm of D(G). The fact that a0(v) 6 ∥Gv∥ is a direct
consequence of the estimate ∥Ψ∥ 6 1.
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Before investigating further properties of the functional â we need to estab-
lish several properties of the various terms Vn(t) appearing in (2.14).

4.3. Further properties of â. We are now in position to establish very useful
properties of the functional â complementing Proposition 4.5.

Proposition 4.6. The functional â(·) : D(G) → R defined by (4.11) is such
that â(v) = a0(v) for any v ∈ D(A). Consequently,

â(u) = a0(u), ∀u ∈ D(A+ B).

Proof. From (4.1) one sees that, for any n > 1 and any u ∈ X+

n∑
k=0

(A+B)
∫ t

0

Vk(s)u ds =
n∑

k=0

Vk(s)u− u+B
∫ t

0

Vn(s)u ds, ∀n ∈ N. (4.17)

In particular, −⟨Ψ,
∑n

k=0(A+ B)
∫ t

0
Vk(s)u ds⟩ = ⟨Ψ, u⟩ −

∑n
k=0 ⟨Ψ,Vk(s)u⟩ −

⟨Ψ,B
∫ t

0
Vn(s)u ds⟩. Letting n go to infinity, we see that limn→∞ ∥B

∫ t

0
Vn(s)u ds∥

exists and

∞∑
k=0

a

(∫ t

0

Vk(s)u ds

)
=⟨Ψ, u−V(t)u⟩− lim

n→∞

⟨
Ψ,B

∫ t

0

Vn(s)u ds

⟩
∀t > 0. (4.18)

Now, for any u ∈ D(A)+ and any k > 1, one deduces from Proposition 4.1
(ii) that ⟨Ψ,BVk(s)u⟩ 6 −⟨Ψ,AVk(s)u⟩ = ⟨Ψ,BVk−1(s)u⟩ − ⟨Ψ,Vk(s)Au⟩ −
⟨Ψ,Vk−1(s)Bu⟩ and

⟨Ψ,BVk(s)u⟩ − ⟨Ψ,BVk−1(s)u⟩ 6 −⟨Ψ,Vk(s)Au⟩ ∀s > 0. (4.19)

Since, for any u ∈ D(A) the series
∑∞

k=0 Vk(t)Au converges to V(t)Au uniformly
on every bounded time interval, for any T > 0 and any ε > 0, there exists N > 1
such that, for any s ∈ (0, T ) and any n > N , |

∑n
k=N ⟨Ψ,Vk(s)Au⟩| 6 ε. From

(4.19), one gets
∑n

k=N (⟨Ψ,BVk(s)u⟩ − ⟨Ψ,BVk−1(s)u⟩) 6 ε, for all s ∈ (0, T ),
i.e., ⟨Ψ,BVn(s)u⟩ 6 ⟨Ψ,BVN−1(s)u⟩ + ε for any s ∈ (0, T ). Fixed N > 1
and u ∈ D(A), the mapping s ∈ (0, T ) 7→ BVN−1(s)u being continuous and
converging to zero as s → 0+, there exists t > 0 such that ⟨Ψ,BVN−1(s)u⟩ < ε
for any 0 < s < t and consequently ⟨Ψ,BVn(s)u⟩ < 2ε for any n > N and any
0 < s < t. Now, from Equation (4.10) one has⟨

Ψ,B
∫ t

0

Vn(s)u ds

⟩
=

⟨
Ψ,

∫ t

0

BVn(s)u ds

⟩
6 2εt ∀n > N.

Then, one deduces from (4.18) that
∣∣∣∑∞

k=0 t
−1a
(∫ t

0
Vk(s)u ds

)
−
⟨
Ψ,u−V(t)u

t

⟩∣∣∣62ε
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for all t>0. Letting t→ 0+, since limt→0+ t
−1
⟨
Ψ, u−V(t)u

t

⟩
= −⟨Ψ,Gu⟩ = a0(u),

we get that |â(u)− a0(u)| 6 2ε. This proves that â coincides with a0 on D(A)

since ε is arbitrary. Finally, if u ∈ D(A+ B), there exists a sequence (un)n ⊂
D(A) with un → u and (A + B)un → Gu as n → ∞. Since â(un) = a0(un) for

any n ∈ N, one deduces easily that â(u) = a0(u).

4.4. Mild honesty. We introduce now another concept of honest trajectories.
To distinguish it a priori from the previous one, we will speak rather of mild
honesty.

Definition 4.7. Let u ∈ X+ be given. Then, the trajectory (V(t)u)t>0 is said
to be mild honest if and only if

∥V(t)u∥ = ∥u∥ − â

(∫ t

0

V(s)u ds
)
, for any t > 0.

We are now in position to state the main result of this section, reminiscent
to Theorem 3.5:

Theorem 4.8. Given u ∈ X+, the following statements are equivalent

(i) the trajectory (V(t)u)t>0 is mild honest

(ii) limn→∞ ∥B
∫ t

0
Vn(s)u ds∥ = 0 for any t > 0

(iii)
∫ t

0
V(s)u ds ∈ D(A+ B) for any t > 0

(iv) the set
(
B
∫ t

0
Vn(s)u ds

)
n
is relatively weakly compact in X for any t > 0.

Proof. Let u ∈ X+ and t > 0 be fixed. One has
∫ t

0
V(s)u ds ∈ D(G) and

â

(∫ t

0

V(s)u ds
)

= lim
τ→0+

τ−1

∞∑
n=0

a

(∫ τ

0

Vn(s) ds

[∫ t

0

V(r)u dr
])

.

From (4.13) and (4.14), it is easy to deduce that

â

(∫ t

0

V(s)u ds
)

=
∞∑
n=0

a

(∫ t

0

Vn(s)u ds

)
, ∀u ∈ X+, t > 0. (4.20)

Thus, Equation (4.18) can be rewritten as â
( ∫ t

0
V(s)u ds

)
= ⟨Ψ, u− V(t)u⟩ −

limn→∞
∥∥B ∫ t

0
Vn(s)u ds

∥∥. This proves immediately that (i) ⇐⇒ (ii).

Let us prove that (ii) =⇒ (iii). Observe that, according to (4.17)

(A+ B)

(
n∑

k=0

∫ t

0

Vk(s)u ds

)
=

n∑
k=0

Vk(t)u− u+ B
∫ t

0

Vn(s)u ds
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so that, from (ii) we deduce that the right-hand side converges to V(t)u− u as

n goes to infinity. Since
∑n

k=0

∫ t

0
Vk(s)u ds converges to

∫ t

0
V(s)u ds as n goes

to infinity, one gets immediately that (iii) holds with
(
A+ B

) ∫ t

0
V(s)u ds =

V(t)u− u.
Let us now assume that (iii) holds. Then, from (4.6), â

( ∫ t

0
V(s)u ds

)
=

a0
( ∫ t

0
V(s)u ds

)
, i.e., â

( ∫ t

0
V(s)u ds

)
= ∥u∥− ∥V(t)u∥ which is nothing but (i).

Assume now (iv) to hold. Then, up to extracting a subsequence, we have

that B
∫ t

0
Vn(s)u ds converges weakly to some v ∈ X. Then,

∑n
k=0

∫ t

0
Vk(s)u ds

converges weakly to
∫ t

0
V(s)u ds while (A + B)

∑n
k=0

∫ t

0
Vk(s)u ds converges

weakly to (V(t)u− u− v) . In particular,
( ∫ t

0
V(s)u ds,V(t)u− u− v

)
belongs

to the weak closure (and thus the strong closure) of the graph of A + B. In

particular, (iii) holds.

Finally, it is clear that (ii) =⇒ (iv).

The following result proves that the two notions of honesty and mild honesty
are equivalent:

Theorem 4.9. The two functionals â and a coincide and consequently the no-
tions of honest or mild honest trajectories are equivalent.

Proof. Let u ∈ X+ and λ > 0 be given. One deduces from (4.20) that∫ ∞

0

exp(−λt)â
(∫ t

0

V(s)u ds
)

dt =
∞∑
k=0

∫ ∞

0

exp(−λt)a
(∫ t

0

Vk(s)u ds

)
dt

because all the functions involved are positive. On the other hand, since the
mapping t > 0 7→

∫ t

0
V(s)u ds ∈ D(G) is continuous as well as the mapping

t > 0 7→
∫ t

0
Vk(s)u ds ∈ D(A) ⊂ D(G), we have∫ ∞

0

exp(−λt)â
(∫ t

0

V(s)u ds
)

dt = â

(∫ ∞

0

exp(−λt) dt
∫ t

0

V(s)u ds
)

=
1

λ
â

(∫ ∞

0

exp(−λs)V(s)u ds
)

=
1

λ
â
(
(λ−A)−1u

)
since â is D(G)-continuous. We also have, for any k ∈ N∫ ∞

0

exp(−λt)a
(∫ t

0

Vk(s)u ds

)
dt = a0

(∫ ∞

0

exp(−λt) dt
∫ t

0

Vk(s)u ds

)
=

1

λ
a0

(∫ ∞

0

exp(−λs)Vk(s)u ds

)
=

1

λ
a
(
(λ−A)−1

(
B(λ−A)−1

)k
u
)
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where we used (4.9) and the fact that a0 is D(G)-continuous. Hence we get

â ((λ−A)−1u) =
∑∞

k=0 a
(
(λ − A)−1 (B(λ−A)−1)

k
u
)
which proves (see Sub-

section 3.1) that â = a.

Remark 4.10. The above provides an alternative proof of Proposition 3.1.

Remark 4.11. The equivalence between the two notions of honesty established
here above has some unsuspected consequences. For instance, one notes that
Theorems 3.5 and 4.8 imply that, for a given u ∈ X+,∫ t

0

V(s)u ds ∈ D(A+ B) ∀t > 0 ⇐⇒
[
B(λ−A)−1u

]n → 0 as n→ ∞.

Notice also that, for any u ∈ X+, the mass loss functional ∆u(t) defined in
Section 3.5 is given by ∆u(t) = − limn→∞

∥∥B ∫ t

0
Vn(s)u ds

∥∥.
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