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Equilibrium State of a Pendant Drop

with Inter-phase Layer

Evgeni Shcherbakov

Abstract. We consider equilibrium state of axisymmetrical pendant drop taking into
account intermediate layer. We show that the contact angle between drop’s surface
and horizontal plane differs from the classical one and depends on the width of the
layer and on the radii of the contact circle. When width of the layer is equal to zero
our representation of the contact angle reduces to the classical one.
We prove the existence of equilibrium forms of the axisymmetrical drops on the basis
of the variational principle.
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1. Formulation of the problem

Let us consider equilibrium state of an axisymmetrical drop pending from the
horizontal plane P . Let us denote through S the drop’s surface and through S∗

its projection onto the plane P . Let Σ be the circle of the contact of the two
surfaces S and S∗.

We suppose that the line L generating the surface S is a rectifiable curve
whose length is equal to l. We introduce Cartesian coordinates (x, y) in the
meridian section of the drop orienting the axis x along the line perpendicular
to the plane P and we denote through w = w(s) = (x(s), y(s)), 0 ≤ s ≤ l, the
natural parameterization of the curve L.

In the book [4], the different equilibrium states of the type just described
were investigated on the basis of variational principles for energy functional.
We will follow the same way but we take into account the intermediate layer
between liquid and gas phases.

In the paper [1], on the basis of Gibbs theory, a new condition generaliz-
ing the well known Laplace condition was proposed. In the general case, this
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condition has a complicated form depending on the variable width of the inter-
mediate layer, variable potentials C1, C2 and potential Φ of the external forces.
But when the width of the layer and potentials C1, C2 are constant and there
are no external forces this formula reduces to the following form

J · γ + 2K · C1 = P2 − P1. (1)

Here, in the denotations of the paper [1], γ is the coefficient of surface tension,
J is equal to double mean curvature of the equilibrium surface, K denotes
the Gauß curvature, and the difference P2 − P1 denotes the difference between
the pressures in the different phases. When the quantities γ, C1, C2 are not
constant the condition (1) can also be considered as the approximation of the
abovementioned general condition.

In the paper [8], the similar condition of equilibrium was proposed. We will
represent here in short terms the simple arguments of the authors of this paper.
Let us suppose that, at the moment τ = 0, two phases which we denote as L
(liquid) and V (vapor) are divided by the surface A0.

We will suppose also that, as the result of phase interchange, two new
surfaces appear. The boundary of the liquid phase we will denote as A1 and
the boundary of the vapor phase we will denote as A2.

Let us suppose that A1 moves into the liquid phase with the velocity ω1

and A2 moves into the vapor phase with the velocity ω2 along the normal n̄ of
the surface A0 at the point the deformation whose vicinity we consider. The
velocities ω1, ω2 tend to zero when time τ tends to infinity so that the following
limit exists

lim
τ→∞

∫ τ

0

(ω1 + ω2) · dt.

These deformations of the surfaces A1, A2 are described by the differentials
dA1, dA2.

Let f̄ = f̄(u, v) be a local representation of the surface A0 then the local
representations of the surfaces A1, A2 can be written in the following forms

A1 : f̄(u, v)− n̄

∫ τ

0

ω1 · dt, A2 : f̄(u, v) + n̄

∫ τ

0

ω2 · dt.

Let us “freeze” the boundary A2 then the relative position of the boundary A1 to
the boundary A2 can be described by the expression f̄(u, v)−n̄·

∫ τ

0
(ω1 + ω2)·dt.

The following calculations in [8] are based on the thermodynamic definition
of the capillary pressure Π

Π := PL − PV = σ
d(A1 − A2)

dVV,L

. (2)

The difference d(A1 − A2) characterizes the variation of the element of the
surface A0 due to the phase interchange and the differential dVV,L characterizes



Equilibrium State of a Pendant Drop 3

the variation of the volume of vapor phase (this formula can be written also for
the differential of the volume characterizing the variation of the liquid phase,
in this case we must put the signal minus in the right part of the equation (2)).
Now on application of the Olinde Rodrigues theorem we get that

dA1−dA2=

[

(k1+k2)+k1k2

∫ τ

0

(ω1+ω2)·dt
]
∫ τ

0

(ω1+ω2)·dt×
∣

∣f̄u×f̄v
∣

∣·dudv (3)

where k1 and k2 are the principal curvatures of the surface A0.
The variation of the volume due to the variation of the element of the surface

over the period [0, τ ] can be written in the following form

dVL,P =

∫ τ

0

(ω1 + ω2) · dt×
∣

∣f̄u × f̄v
∣

∣ · dudv. (4)

Passing to the limit in the formulas (3), (4) and substituting the resulting
variations of elements of area and volume into the formula (2) we arrive at the
following representation

PL − PV = σ2H +Klpσ. (5)

Here lp is equal to limτ→∞

∫ τ

0
(ω1 + ω2) · dt, H is the mean curvature of the

surface A0, and K is equal to its Gauß curvature.
The formulas (1) and (5) have similar structure. In the sequel we will use

the formula (5) in our calculations because it contains explicitly the width of
the intermediate layer.

It is necessary to indicate that there are other formulas describing the gener-
alization of the Laplace condition and bearing nonlinear character in order of H
(see [2, 6]). Hypothesis adopted in the last paper lead to the disappearance of
the linear term of H.

In spite of the critics of the approach realized in the paper [2] by the authors
of [1], it seems that, on assuming that the mass distributions of the different
phases are quasi independent on each sphere [5], the term including H2 instead
of H may appear.

In what follows we will study the simple version of the general theory de-
scribed by the equation (5).

We procure the surface S describing the liquid drop pendant from the
plane P . Of course the surface S does not coincide with the surface A0 de-
termined by the condition (5) for the constant λ. But as the width of the
intermediate layer is small we suppose that the condition (5) is satisfied on the
boundary of the liquid phase for some constant λ∗. Thus in fact we study two
phased model. We take into account the intermediate layer by introducing the
term σ · lp ·K into classical Laplace condition.

Now we proceed with the formulation of the variational principle which will
help us to prove the existence of the surfaces satisfying the generalized Laplace
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condition (5). As it was already said we use the same variational technique
that was exposed in the book [4] but now it is necessary for us to include the
energy needed for the formation of intermediate layer. It means that the energy
functional under its variation must yield not only the mean curvature but the
Gauß curvature as well.

Let S be the area of the surface S, Γ be the function describing the gravi-
tational potential, ρ be fluid’s density, β be coefficient of the relative adhesion,
W be drop’s interior part, and V be the volume of the domain W . Now let us
consider the functional F represented as follows

F (S) = σ

(

S+ lpΞ− β

∫

S∗

dS + λV + σ−1 ·
∫∫∫

W

ΓρdV

)

. (6)

In the formula (6) Ξ(S) is the functional of the type

Ξ(S) = 2π

∫ l

0

f (ẏ) · ds, ẏ =
dy

ds
, (7)

and the function f has the following representation

f(ẏ) =

√

1− ẏ2

2

{

E0 −
∫ ẏ

0

(

arcsin σ + σ
√
1− σ2 − π

2

)

(

1− σ2
)−

3

2 dσ

}

. (8)

It is easy to verify that the function f is a solution of the second order ordinary
differential equation

d2f

dτ 2
·
√
1− τ 2 − df

dτ

τ√
1− τ 2

+ f
1√

1− τ 2
= −1. (9)

The general solution of the equation (9) depends on two independent constants.
One of them was chosen to be −π

2
in order to guarantee the convergence of the

integral from the formula (7), the other one, E0, can be chosen arbitrary.
All the terms in the representation of the functional F for the exception of

the term Ξ correspond to the classical case [4]. Later we shall show that the
variation of the functional Ξ is conjugated to the rest of the terms in such a way
that the Gauß curvature will appear in the Euler necessary condition. Thus the
term Ξ may be considered as the amount of the energy needed for the formation
of intermediate layer.

Variational problem. Let M be the class of surfaces S described earlier.
For given values of the width lp of intermediate layer and of the contact

angle β and for a given volume V of the domain W (or for a given value of the
constant λ) it is necessary to find a surface Se ∈ M and a constant λ such that

F (Se) = inf {F (S), S ∈ M} .
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It is clear that in the case when the constant λ is given the volume V will be
defined by the extremal element.

In what follows we omit the symbol denoting the extremal surface. The
problem just formulated differs from the classical one of the same type [4] only
by the term Ξ in the energy functional.

2. Necessary conditions of the extremum

In this section we prove the following lemma.

Lemma 2.1. Let S be a solution of the variational problem formulated in Sec-

tion 1. Let us suppose that the function y = y(s) from the natural parameteri-

zation of its generating line L is twice continuously differentiable over (0, l) and
continuously differentiable over [0, l].

Then the mean and Gauß curvature of the surface S satisfy the equation

2H + lpK = λ∗, λ∗ = λ+
1

σ
Γρ. (10)

The contact angle γ and width lp of the intermediate layer satisfy the following

system of equations

λ =
1

πr2

[

2πr cos γ +
lpπr

2

2
sin2 γ − κV

]

, (11)

cos γ − lp
r

[

γ − sin 2γ

2

]

= β. (12)

The constant r in the equalities (11), (12) is the radius of the domain S∗. The

constant κ is equal to

κ =
ρg

σ
.

The equations (10)–(12) coincide with the known equations from [4] when lp is

equal to zero.

Proof. Let us denote as [0, xA] the projection of the domain W over x-axis.
Let T̄ denotes the vector tangential to the curve L and vector N̄ the normal
vector of it. We suppose both of these vectors to be normalized. We denote
as ς̄ virtual displacement of the surface S

ς̄ = ε
[

ξ(x, y)N̄ + η(x, y)T̄
]

+ o(ε), ε → 0.

We will select the functions η = η(x) = η (x, y(x)) , ξ = ξ(x) = ξ (x, y(x)) ,
x ∈ [0, xA] in two different ways.
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In the first case we will suppose that the supporters of these functions are
contained in the interior part of the segment [0, xA] in a vicinity of an interior
point under consideration. In the second case we will suppose that they are
symmetrical in order to the point x = 0. We suppose also that the functions
ξ, η are continuously differentiable ones.

In both cases we will select the displacements of different orders in variable ε
in the representation of ς̄ to be along the axis x. Then the displacement ς̄ can
be characterized by the function y∗

|ς̄| = y∗(x) = εt(x) + o(ε), ε → 0.

Let us now calculate the variations of the different terms of the functional F .
In the correspondence with the case under consideration we will denote these
variations by one of the symbols 1 or 2. Let us start with the calculation of δ1S,

δ1S = 2π

∫ xA

0

y1(s1) · ds1 − 2π

∫ xA

0

y(s) · ds

= 2π

∫ xA

0

(y(x) + εt)
√

1 + y′2(x) + 2εy′ · t′(x) + o(ε) · dx

− 2π

∫ xA

0

y(x)
√

1 + y′2(x) · dx+ o(ε)

= 2πε

∫ xA

0

yy′t′
dx

√

1 + y′2
+ 2πε

∫ xA

0

t(x)
√

1 + y′2(x)· dx+ o(ε)

= −2πε

∫ l

0

d (yẏẋ)

ds
t (x(s)) · ds

+ 2πε

∫ xA

0

t(x)
√

1 + y′2(x)dx+ o(ε)

= −2πε

∫ xA

0

(

yy′
√

1 + y′2

)′

t(x) · dx

+ 2πε

∫ xA

0

t(x)
√

1 + y′2(x) · dx+ o(ε)

= −2πε

∫ xA

0

2H(x)y(x)t(x) · dx+ o(ε), ε → 0.

(13)

It is clear that

δ1

(

π

∫ xA

0

y2(x) · dx
)

= 2πε

∫ xA

0

y(x)t(x) · dx+ o(ε), ε → 0. (14)

Let us now calculate δ1Ξ. When calculating δ1S we have already seen that

ds

ds1
= 1− εẏṫ(s) + o (ε) .
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Taking the last equation into account we will get

δ1Ξ = 2π

∫ xA

0

f

(

d

ds1
(y + εt+ o(ε))

)

√

1 + y′2 + 2εy′t′ + o(ε)dx

− 2π

∫ xA

0

f

(

dy

ds

)

√

1 + y′2 · dx

= 2π

∫ l1

0

{

f
[(

ẏ + εṫ+ o(ε)
) (

1− εẏṫ
)]

− f (ẏ)
}

· ds1

+ 2π

∫ l1

0

f (ẏ) · ds1 − 2π

∫ l

0

f (ẏ) · ds

= 2πε

∫ l

0

[

fẏẋ
2 + f (ẏ) ẏ

]

ṫ(s) · ds+ o(ε), ε → 0.

(15)

The function f satisfies the equation (9). Thus integrating the last expression
in (15) by parts and taking into account the equation (9) we arrive at the
expression

δ1Ξ = 2πε

∫ xA

0

ÿ(x)t(x) ·dx+ o(ε) = −2πε

∫ xA

0

K(x)y(x)t(x) ·dx+ o(ε), (16)

Now the variations of the last terms of the functional F can be easily calculated.
It is clear that in the first case we get that

δ1

(
∫

S∗

ds

)

= 0 (17)

and

δ1

(
∫∫∫

W

Γρ · dv
)

= 2πε

∫ xA

0

Γρt(x) · dx+ o(ε), ε → 0. (18)

Taking into account the equalities (13)–(18) we finally obtain

δ1F = εσ

{

− 2π

∫ xA

0

2H(x)y(x)t(x) · dx

− 2π

∫ xA

0

K(x)y(x)t(x) · dx+ 2πλ

∫ xA

0

y(x)t(x) · dx

+
1

σ
2π

∫ xA

0

Γρt(x) · dx
}

+ o(ε), ε → 0.

(19)

As the function t = t(x) in the representation (19) is an arbitrary continuously
differentiable function we arrive at the following condition

2H (x, y(x)) + lpK (x, y(x)) = λ+
1

σ
Γρ. (20)
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This condition is satisfied at all the points of the interval (0, xA). If we put
the width of the intermediate layer equal to zero than we get the well known
condition from [4]

2H (x, y(x)) = λ+
1

σ
Γρ.

Now we deduce a condition for the contact angle γ between S and P . To
this end we calculate the variation of the functional F the supporters of ξ and
η being in the neighborhood [0, δ] of zero. As in the first case we have

y2(x) = y(x) + εt(x) + o(ε), ε → 0. (21)

It is necessary to mention here that the function t now satisfies the inequality
t(0) 6= 0. Thus we have

δ2S = 2πε

∫ xA

0

yy′t′
dx

√

1 + y′2
+ 2πε

∫ xA

0

t(x)
√

1 + y′2 dx+ o(ε), ε → 0. (22)

Integrating again the first integral by parts we get

δ2S = −2πε

[

∫ δ

0

2H(x)y(x)t(x)dx+
y(0)y′(0)
√

1 + y′2(0)
t(0)

]

+ o(ε). (23)

In the same way we arrive at the following expression

δ2Ξ = 2πε

∫ lδ

0

[

fẏẋ
2 + f (ẏ) ẏ

]

ṫ(s) · ds+ o(ε)

= 2πε

∫ δ

0

ÿ(x)t(x) · dx+ 2πε
[

fẏẋ
2 + f (ẏ) ẏ

]

ṫ(0) + o(ε).

(24)

Here lδ is the length of the arc connecting the points (0, r) and (δ, y(δ)).
The variations

δ2

(

π

∫ xA

0

y2(x) · dx
)

, δ2

(
∫∫∫

W

Γρ · dv
)

in the case under consideration are defined by the expressions similar to that
of the formulas (14) and (17) corresponding to the first case

δ2

(

π

∫ xA

0

y2(x) · dx
)

= 2πε

∫ δ

0

y(x)t(x) · dx+ o(ε), (25)

δ2

(
∫∫∫

W

Γρ · dv
)

= 2πε

∫ δ

0

Γρy(x)t(x) · dx+ o(ε), ε → 0. (26)

Now we easily get that

δ2

(
∫

S∗

dS

)

= 2πεt(0)r + o(ε), ε → 0. (27)
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Using the equations (22)–(24) and (25)–(27) and arbitrariness of δ we arrive at
the following condition for the contact angle γ

−r cos γt(0) + lp
[

fτ (cos γ) sin
2 γ + f (cos γ)

]

t(0) + βrt(0) = 0. (28)

Let us make some rearrangements in the equality (28). To this end we use the
equation (9) written in the following form

d

dτ

[

fτ
(

1− τ 2
)

+ f (τ) τ
]

= −
√
1− τ 2. (29)

It follows from the equation (29) that

fτ (τ)
(

1− τ 2
)

+ f(τ)τ =
arccos τ

2
− τ

√
1− τ 2

2
. (30)

From the equations (28), (30) we now obtain

cos γ − lp
r

[

γ − sin 2γ

2

]

= β. (31)

We get classical condition from (31) if we put lp equal to zero [4].
Now let us calculate the multiplier λ. To this end we integrate the equation

(20) over the disk S∗ and thus get

2π

∫ r

0

2Hy · dy − 2π

∫ r

0

ÿ · dy = πr2 +
ρg

σ
V. (32)

It can be easily proved that ẋ(y)|y=0
= 0. The last condition implies that

∫ r

0

ÿ · dy =

∫ L

0

ÿẏ · ds = cos2 γ − 1

2
. (33)

It is known [4] that

∫ r

0

∫

2π

0

2Hy · dydϕ =

∫

Σ

cos γ · ds = 2πr cos γ. (34)

It follows from the equations (32)–(34) that

2π

[

r cos γ − lp
cos2 γ − 1

2

]

= πr2λ+ κV, (35)

where κ = (ρg)/σ. We now have that the multiplier λ is equal to

λ =
1

πr2

[

2πr cos γ +
lpπr

2

2
sin2 γ − κV

]

. (36)

We again obtain the classical condition (see [4]) when lp is equal to zero.
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3. Existence of the solution of variational problem

Here we prove the existence of the solution of the variational problem with the
properties described in the Lemma 2.1.

Theorem 3.1. Let N = N(t), f0 = f0(σ) be the functions defined as follows

N = N(t) =

√
2

2

1− t√
1 + t2

,

f0(σ) = −
(

arcsin σ + σ
√
1− σ2 − π

2

)

(

1− σ2
)−

3

2 , σ ∈ (0, 1).

Let c0 be the following constant

c0 = sup

{

3
(

1− t2
) f0 (N(t))

2 (1 + t2)
5

2

−
√
2(1 + t)3

f ′ (N(t))

4(1 + t)3
, t ∈ (−1, 1)

}

.

Let us suppose that the following inequality takes place

2− c0lp > 0. (37)

Then there exist a solution of the variational problem from the Section 1.

Proof. We can select the constant E0 in such a way that the values of the
functional F should be bounded from below.

Let {Sn} be minimal sequence for the problem under consideration. The
values of the functional F do not increase under Steiner symmetrization of the
domains [3]. It means that the lines Ln generating the surfaces Sn may be
considered as monotone ones. It implies that these lines are the graphs of the
monotone functions

yn = yn(x), x ∈ [0, xn
A] , yn (x

n
A) = 0, yn (0) = rn.

As the sequences {xn
A}, {rn} are evidently upper-bounded we arrive at the

conclusion that the sequence {yn} of the functions yn is compact in the sense
of uniform convergence [7].

Let ye = ye(x) be the limit of a convergent subsequence of {yn}, and Se

be a surface of rotation generated by the graph of the function ye = ye(x).
On the assumption defined by the inequality (37) the functional F is semi-
continuous from below on the set M of admissible surfaces [3]. It means that
F (Se) = inf {F (S), S ∈ M} .

Now we can prove the main theorem.
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Theorem 3.2. Let y = y(s) = y (x(s)), s ∈ [0, l], be the function whose graph

is given by the line L generating the extremal surface S. Than this function is

twice differentiable over (0, l) and continuously differentiable over [0, l] and the

condition (20) is satisfied with the constant λ defined by the expression (36).
Besides the contact angle γ and width lp of the intermediate layer satisfy the

equation (35). The following equality also takes place

ẏ(xA) = 1. (38)

Proof. We can write the variation δ1F corresponding to the variation of y = y(s)
in the neighborhood of the point (x, y) ∈ S in the following form

δ1F = 2πε

∫ l

0

yẏṫ · ds+ 2πlpε

∫ l

0

[

fẏẋ
2 + f(ẏ)ẏ

]

ṫ · ds

+ 2πελ

∫ l

0

yẋt · ds+ 2πε

∫ l

0

t · ds+ 2π

σ

∫ l

0

Γρytẋ·ds+ o(ε),

(39)

ε → 0. We get now from the equation (39) the following necessary condition for
the surface S to be extremal

∫ l

0

{

yẏ + lp
[

fẏẋ
2 + f (ẏ) ẏ

]}

ṫ · ds+
∫ l

0

(λyẋ+ 1 + κyxẋ) t · ds = 0. (40)

The equation (40) means that the function yẏ + lp [fẏẋ
2 + f (ẏ) ẏ] has the gen-

eralized derivative equal to the following function

λyẋ+ κyxẋ+ 1.

It means that in the neighborhood of the point (x0, y0), x0 = x(s0), y0 = y(s0)
where the derivative ẏ(s0) exists the following representation takes place

yẏ + lp
[

fẏẋ
2 + f (ẏ) ẏ

]

=

∫ s

s0

(λyẋ+ κyxẋ+ 1) · ds+ y0ẏ0. (41)

We denote by Ψ = Ψ(s) the integral in the right part of the expression (41) and
by Φ = Φ(s, t) the expression

Φ(s, τ) = y(s0)τ + ẏ(s0)(s− s0)τ + o(s− s0)− lp

∫ τ

τ0

√
1− σ2 · dσ−Ψ(s)− y0ẏ0.

Let us now consider the following equation

Φ(s, τ) = 0. (42)

It is clear that the function ẏ = ẏ(s) satisfies the equation Φ (s, ẏ(s)) = 0 for
almost all the values of the parameter s.
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We will use the equation (42) in order to prove that the function ẏ = ẏ(s)
is continuous over the interval [0, l].

We see that

∂Φ

∂t
(s0, t0) = y0 − lp

√

1− τ 2
0
> 0, y0 > lp. (43)

Since the derivative ∂Φ
∂s
(s0, t0) is positive over the interval (0, l∗), y(l∗) = lp,

the equation (42) can be solved locally in the class of continuous functions for
almost all the values of the natural parameter varying in the interval (0, l∗). It
means that the function ẏ = ẏ(s) is continuous in the neighborhoods of almost
all the points s0 ∈ (0, l∗). It implies that the second derivative ÿ(s0) exists
almost everywhere on the interval (0, l∗) (see [3]). Using the equation (40) we
arrive at the following equality

ÿ ·
(

1− lp
y

)

=
ẋ

y
+ λ+ κẋ (44)

for almost all the points of the interval (0, l∗).
Taking into account the equation (41) we get that the function ÿ = ÿ(s) is

bounded over (0, l∗) ⊂ [0, l] and that it is also continuous in the neighborhoods
of the points s0 ∈ (0, l∗) where the derivatives ẏ(s0), ÿ(s0) exist.

On the basis of the properties of the functions ẏ = ẏ(s), ÿ = ÿ(s) we will
evaluate now the dimensions of the neighborhoods of the points s0 ∈ (0, l∗)
where the derivatives ẏ(s0), ÿ(s0) exist. We are going to prove that these
neighborhoods overlap which will imply that the functions ẏ = ẏ(s), ÿ = ÿ(s)
are continuous over the interval (0, l∗).

Let s0 ∈ (0, l∗) be a point where the derivativeτ0 = ẏ(s0) exists. The point
(s0, τ0) is a solution of the equation (42). In accordance with the condition (43)
we get that the function Φ0(t) = Φ(s0, t) is increasing on the line R. Thus for
any ε > 0 we get

Φ(s0, τ0 − ε) < 0 < Φ(s0, τ0 + ε),

Φ(s0, τ0 ± ε) = y0(τ0 ± ε)− lp

∫ τ0±ε

τ0

√
1− σ2 · dσ − y0τ0

= ±y0ε− lp

∫ τ0±ε

τ0

√
1− σ2 · dσ.

Now let us consider Φ(s, t0 ± ε) in the neighborhood of the point s0 ∈ (0, l∗).
We see that

Φ(s, τ0 ± ε) = y0 ·(τ0 ± ε) + (τ0 ± ε)(s− s0)ẏ(s)

− lp

∫ τ0±ε

τ0

√
1− σ2 ·dσ −Ψ(s)− y0τ0 + o(s− s0)(τ0 ± ε)

= Φ(s0, τ0 ± ε) + Ψ(s) + (τ0 ± ε)(s− s0)ẏ(s)

+ o(s− s0)(τ0 ± ε).

(45)
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Using the evident identity

y(s)− y(s0) = ẏ(s0)(s− s0) + (s− s0)

∫ σ

s0

ÿ(s) · ds, s < σ < s0,

we can now evaluate the term o(s− s0) from the equation (45) in the following
way

|o(s− s0)| < sup
{

|ÿ(s)| (s− s0)
2, s ∈ (0, l∗)

}

. (46)

The inequality (46) implies that we can select ε∗ sufficiently small so that for
any s0, 0 < s0 < l∗, and any (s, t) ∈ [s0 − ε∗, s0 + ε∗] × [τ0 − ε, τ0 + ε] the
following conditions take place

Φ(s, τ0 + ε)Φ(s0, τ0 + ε) > 0, (47)

Φ(s, τ0 − ε)Φ(s0, τ0 − ε) > 0. (48)

These conditions guarantee the solvability of the equation (42) in terms of
τ = τ(s) in the class of the continuous functions in ε∗-neighborhoods of al-
most all the points of the interval (0, l∗). The ε∗-neighborhoods that we have
constructed are overlapping. It means that the function ẏ = ẏ(s) is continuous
over the interval (0, l∗).

Using the equation (44) we get that the function ÿ = ÿ(s) is continuous
and bounded over the interval (0, l∗). It implies that the function ẏ = ẏ(s) is
continuous over the interval [0, l∗].

Let us now consider the segment [l∗, l]. It is clear that at the point (s0, τ0)
such that ∂Φ

∂t
(s0, τ0) = 0, l > s0 > l∗, the value of τ0 differs from zero and unity.

Let us now consider an arbitrary sequence {sn}, limn→∞ sn = s0. Let {ẏm}
be a convergent subsequence of the bounded sequence {ẏn}, ẏn = ẏ(sn), and
τ1 = limn→∞ ym. Using the equation (31) we get

y0 (ẏm − τ0)− lp

∫ ẏm

τ0

√
1− σ2 · dσ = Φ(s) + o(s− s0). (49)

Passing to the limit in the expression (49) with sm tending to s0 we arrive at
the condition

(τ1 − τ0) =
1

√

1− τ 2
0

∫ τ1

τ0

√
1− σ2 · dσ. (50)

The equation (50) is valid only in the case when τ1 = τ0. Really the following
equation

τ1 − τ0 =
1

√

1− τ 2
0

√

1− τ 2
0
(τ1 − τ0)−

τ 2
∗

√

1− τ 2
∗

(τ1 − τ0)
2 (51)

takes place with the point τ∗ situated between τ0 and τ1. The equation (50)
shows that the point τ1 is not equal to zero. As τ∗ differs from zero in this case
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we get a contradiction. Thus in fact τ1 = τ0 and we get the continuity of the
function ẏ = ẏ(s) at the points of the set D ⊂ (l∗, l) consisting of the points of
differentiability of the function ẏ = ẏ(s).

Let us now consider a point s1 ∈ Dc = (l∗, l)\D. We can extend the

function ẏ at the point (x1, y1), x1 = x(s1), y1 = y(s1) as equal to
√

l2p − y2
1
.

The function ẏ thus extended will be continuous over the interval (l∗, l). In

order to prove this we need only to confirm that

lim
n→∞

ẏ(sn) =
√

l2p − y2
1
, lim

n→∞

y(sn) = y1,
∂Φ

∂t
(sn) 6= 0.

It is clear that it is sufficient to consider the case when limn→∞
∂Φ
∂t
(sn) = 0. As

the derivative ∂Φ
∂t

of the function Φ at the point (sn) is equal to

y(sn)− lp
√

1− ẏ2(sn), and the points y(sn) tend to y(s1) we get that the points

ẏ(sn) tend to the point
√

l2p − y2
1
. This means that the extended function is

continuous over (l∗, l).

As in the case of the interval (0, l∗) we now get that the function ẏ is
continuous over [l∗, l].

Taking into account the proven continuity of the function ẏ over the sets
[0, l∗] and [l∗, l] we get the continuity of this function over [0, l]. From the
equation (44) we now get that the function ÿ is continuous over (0, l).

Let us now show that ẋ(l) = 0. Suppose that it is not so. Than we have
that ẏ(l) 6= 1. It means that the function x = x(y) is differentiable at the
point zero and its derivative is different from zero. We get a contradiction as
the function x = x(y) achieves its maximum value there. It means that the
condition (38) is satisfied.

Thus we get that the function y = y(s) satisfies all the conditions of regu-
larity of Lemma 2.1. It means that it is a solution of the variational problem
which has all the properties declared in the formulation of Theorem 3.2.
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