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Optimal L1-Control in Coefficients

for Dirichlet Elliptic Problems:

H-Optimal Solutions

Peter I. Kogut and Günter Leugering

Abstract. In this paper we study a Dirichlet optimal control problem associated with
a linear elliptic equation the coefficients of which we take as controls in L1(Ω). In
particular, when the coefficient matrix is taken to satisfy the decomposition B(x) =
ρ(x)A(x) with a scalar function ρ, we allow the ρ to degenerate. Such problems
are related to various applications in mechanics, conductivity and to an approach in
topology optimization, the SIMP-method. Since equations of this type can exhibit
the Lavrentieff phenomenon and non-uniqueness of weak solutions, we show that the
optimal control problem in the coefficients can be stated in different forms depending
on the choice of the class of admissible solutions. Using the direct method in the
Calculus of variations, we discuss the solvability of the above optimal control problems
in the so-called class of H-admissible solutions.

Keywords. Degenerate elliptic equations, control in coefficients, weighted Sobolev
spaces, Lavrentieff phenomenon, direct method in the Calculus of variations.
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1. Introduction

The aim of this work is to study ptimal control problems associated with a
linear elliptic equation and homogeneous Dirichlet boundary conditions. The
control variable is the matrix of L1-coefficients in the main part of elliptic op-
erator. Existence or non-existence of L1-optimal solutions heavily depends on
the class of admissible controls. The main questions concern the appropriate
space-setting for the optimal control problem with L1-controls in the coefficients
and the right choice of class of admissible solutions. Using the direct method
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in the Calculus of variations, we discuss the solvability of the above optimal
control problems in the class of H-admissible solutions.

Note that optimal control problems in coefficients for elliptic equations are
not new in the literature. As François Murat showed in 1970 (see [22, 23]), in
general, such problems have no solution even if the original elliptic equation
is non-degenerate. It turns out that this feature is typical for the majority
of problems for optimal control in coefficients. Note that this topic has been
widely studied by many authors in the case of non-degenerate weight function.
We mainly could mention Allaire [1], Calvo-Jurado & Casado-Dı́az [9], Haslinger
& Neittaanmaki [13], Kapustyan & Kogut [14], Lions [18], Litvinov [19], Lurie
[20], Murat [23], Murat & Tartar [25], Pironneau [28], Raytum [29], Sokolowski
& Zolesio [30].

In this paper we deal with an optimal control problem in coefficients for the
boundary value problem

{

−divB(x)∇y + y = f in Ω

y = 0 on ∂Ω,
(1)

where f ∈ L2(Ω) is a given function and B is a non negative invertible matrix
such that B+B−1 ∈ L1(Ω;RN×N ). Several physical phenomena related to equi-
librium of continuous media are modeled by this elliptic problem. While the
scalar situation discussed in this paper relates e.g. to conductivity problems,
where B(x) may represent a perfect conductor or a perfect insulator (see [11]),
vector-valued analogues, which are under investigation, refer to problems in
elasticity, where, in turn, B(x) represents the elasticity tensor which may vanish
for voids or damaged regions. In order to be able to handle such situations, we
allow the matrix B to vanish on thin sets in Ω or to be unbounded there.

In Section 4 we will further concentrate on matrices B(x) that admit a de-
composition B(x) = ρ(x)A(x) where the scalar coefficient ρ(x) may degenerate,
but satisfies certain bound-constraints almost everywhere as well as a “volume-
type” constraint. The classical SIMP-approach to topology optimization [2] is
reminiscent of the optimal control problem handled in this paper. In the SIMP-
approach the function ρ(·) is taken as a so-called pseudo-density. However, in
contrast to the modeling in this paper, the pseudo-density is taken to satisfy
a positive lower bound, which is not assumed here. In a sense, the problem
handled here is more general. In the context of image registration degenerate
problems of the kind discussed in this paper occur, if one considers an optimal
masking of thin features represented by ρ.

Even though numerous papers (see, for instance, [8,26,27,34] and references
there) are devoted to variational and non variational approaches to problems re-
lated to (1), only few papers deal with optimal control problems for degenerate
partial differential equations (see, for example, [4, 6, 7]). This can be explained
by several reasons. Firstly, boundary value problem (1) for every locally in-
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tegrable matrix B exhibit the Lavrentieff phenomenon, the non-uniqueness of
weak solutions, as well as other surprising consequences. So, in general, the
mapping B 7→ y(B) can be multi-valued. Besides, the characteristic feature of
this problem is the fact that for different admissible controls B with properties
prescribed above, the corresponding weak solutions of (1) belong to different
weighted Sobolev spaces. In addition, even if the original elliptic equation is
non-degenerate, i.e., admissible controls B are such that

B(x) ≥ αI, (B(x))−1 ≥ β−1I, a.e. in Ω,

the majority of optimal control problems in coefficients have no solution.
Our paper is organized as follow: at the beginning we state the problem

of optimal control in the coefficients and prescribe the class of admissible con-
trols which includes some div-like conditions in weighted spaces. After that we
discuss the classification of admissible solutions to the above optimal control
problem. We show that one of the characteristic features of this problem is the
following fact: for every admissible L1-control the corresponding H-solution to
the boundary value problem belongs to a weighted Sobolev space which essen-
tially depends on the original control. So, the set of the so-called H-admissible
solutions to the above problem can be viewed as a collection of pairs ”control-
state” in variable spaces each of which is embedded into L1(Ω;RN×N )×W

1,1
0 (Ω).

Further we deal with the existence of optimal solutions to the original prob-
lem. We begin with a refinement of the celebrated div-curl lemma of F. Murat
and L.C. Tartar [24] to the case of variable weighted Sobolev spaces. After
that we study the topological properties of the class of H-admissible solutions
and show that this set possesses some compactness properties with respect to
the appropriate convergence in variable spaces. In conclusion, using the direct
method in the Calculus of variations, we prove the existence of the H-optimal
solutions to the original problem.

2. Notation and Preliminaries

In this section we introduce some notation and preliminaries that will be useful
later on.

Let Ω be a bounded open subset of RN (N ≥ 1) with a Lipschitz boundary.
Let χE be the characteristic function of a subset E ⊆ Ω, i.e., χE(x) = 1 if
x ∈ E, and χE(x) = 0 if x 6∈ E. The space W

1,1
0 (Ω) is the closure of C∞

0 (Ω) in
the classical Sobolev space W 1,1(Ω). For any subset E ⊂ Ω we denote by |E| its
N -dimensional Lebesgue measure LN(E). Let Mβ

α (Ω) be the set of all matrices
A = [ai j ] in L∞(Ω;RN×N) such that

A(x) ≥ αI, (A(x))−1 ≥ β−1I, a.e. in Ω (2)
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for two fixed constants α and β with 0 < α ≤ β < +∞. Here I is the identity
matrix in R

N×N , and inequalities (2) should be considered in the sense of the
quadratic forms defined by (Aξ, ξ)

RN for ξ ∈ R
N . Note that (2) implies the

inequality |A(x)| ≤ β a.e. in Ω.
Hereinafter by a weight we mean a locally integrable function ρ on R

N such
that ρ(x) > 0 for a.e. x ∈ R

N . As a matter of fact, every weight ρ gives rise to
a measure on the measurable subsets of RN through integration. This measure
will also be denoted by ρ. Thus ρ(E) =

∫

E
ρ dx for measurable sets E ⊂ R

N . We
will use the standard notation L2(Ω, ρ dx) for the set of measurable functions f
on Ω such that

‖f‖L2(Ω,ρ dx) =

(
∫

Ω

f 2ρ dx

)
1

2

< +∞.

Definition 2.1. We say that a weight function ρ : RN → R+ is degenerate
on Ω if

ρ+ ρ−1 ∈ L1
loc(R

N),

and the sum ρ+ ρ−1 does not belong to L∞(Ω).

With each of the degenerate weight functions ρ we will associate two weigh-
ted Sobolev spaces Wρ = W (Ω, ρ dx) and Hρ = H(Ω, ρ dx), where Wρ is the set
of functions y ∈ W

1,1
0 (Ω) for which the norm

‖y‖ρ =

(
∫

Ω

(

y2 + ρ |∇y|2
)

dx

)
1

2

is finite, and Hρ is the closure of C∞
0 (Ω) in the Wρ-norm. Note that due to the

compact embedding W
1,1
0 (Ω) →֒ L1(Ω) and estimates

∫

Ω

|y| dx ≤ |Ω|
1

2

(
∫

Ω

|y|2 dx

)
1

2

≤
√

|Ω| ‖y‖ρ, (3)

∫

Ω

|∇y| dx ≤

(
∫

Ω

|∇y|2ρ dx

)
1

2

(
∫

Ω

ρ−1 dx

)
1

2

≤ C‖y‖ρ, (4)

we come to the following result (we refer to [34] for the details):

Theorem 2.2. Let ρ : RN → R+ be a degenerate weight on Ω. Then

(i) the spaces Hρ and Wρ are complete with respect to the norm ‖ · ‖ρ
(ii) Hρ ⊆ Wρ, and Wρ, Hρ are Hilbert spaces

(iii) Hρ ⊂ W
1,1
0 (Ω), Wρ ⊂ W

1,1
0 (Ω), and the estimate

‖v‖W 1,1
0

(Ω) ≤

(

√

|Ω| +

(
∫

Ω

ρ−1 dx

)
1

2

)

‖v‖ρ

is valid for every element v ∈ Wρ

(iv) the embeddings Hρ →֒ L1(Ω) and Wρ →֒ L1(Ω) are compact.
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If ρ is a non-degenerate weight function, that is, ρ is bounded between two
positive constants, then it is easy to verify that Wρ = Hρ. Note also that in
the case when the weight function ρ belongs to the class of A2 weights that was
introduced by B. Muckenhoupt in the early 1970’s (see [21]), then Wρ = Hρ as
well. However, for a ”typical” degenerate weight ρ the space of smooth functions
C∞

0 (Ω) is not dense in Wρ. Hence the identity Wρ = Hρ is not always valid (for
the corresponding examples we refer to [10, 31]).

3. Radon measures and convergence in variable spaces

We recall here the definition and main properties of convergence in variable
L2-spaces with respect to Radon measures (see, for instance, [33]).

By a nonnegative Radon measure on Ω we mean a nonnegative Borel mea-
sure which is finite on every compact subset of Ω. The space of all nonnegative
Radon measures on Ω will be denoted by M+(Ω). If µ is a nonnegative Radon
measure on Ω, we will use Lr(Ω, dµ), 1 ≤ r ≤ ∞, to denote the usual Lebesgue
space with respect to the measure µ with the corresponding norm

‖f‖Lr(Ω,dµ) =

(
∫

Ω

|f(x)|r dµ

)
1

r

.

Let {µk}k∈N, µ be Radon measures such that µk
∗
⇀ µ in M+(Ω), i.e.,

lim
k→∞

∫

Ω

ϕdµk =

∫

Ω

ϕdµ ∀ϕ ∈ C0(R
N), (5)

where C0(R
N) is the space of all compactly supported continuous functions.

The typical example of such measures is

dµk = ρk(x) dx, dµ = ρ(x) dx, where 0 ≤ ρk ⇀ ρ in L1(Ω).

1. A sequence {vk ∈ L2(Ω, dµk)}k∈N is called bounded if

lim sup
k→∞

∫

Ω

|vk|
2 dµk < +∞.

2. A bounded sequence {vk ∈ L2(Ω, dµk)}k∈N converges weakly to an element
v ∈ L2(Ω, dµ) if

lim
k→∞

∫

Ω

vkϕdµk =

∫

Ω

vϕ dµ for any ϕ ∈ C∞
0 (Ω),

which is denoted as vk ⇀ v in L2(Ω, dµk).
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3. Strong convergence vk → v in L2(Ω, dµk) means that v ∈ L2(Ω, dµ) and

lim
k→∞

∫

Ω

vkzk dµk =

∫

Ω

vz dµ as zk ⇀ z in L2(Ω, dµk).

The following convergence properties in variable spaces are well known:

(a) Compactness criterium: If the sequence is bounded in L2(Ω, dµk), then
this sequence is compact w.r.t. the weak convergence in L2(Ω, dµk).

(b) Property of lower semicontinuity : If vk ⇀ v in L2(Ω, dµk), then

lim inf
k→∞

∫

Ω

|vk|
2 dµk ≥

∫

Ω

v2 dµ.

(c) Criterium of strong convergence: vk → v if and only if vk ⇀ v in
L2(Ω, dµk) and

lim
k→∞

∫

Ω

|vk|
2 dµk =

∫

Ω

v2 dµ.

In what follows, we make use the following results concerning the conver-
gence in the variable space L2(Ω, ρkdx).

Lemma 3.1 ([33]). Let {ρk}k∈N be a sequence of non-negative functions of

L1(Ω) such that ρk → ρ in L1(Ω). Then the following statements hold true:

(B1) If a sequence {vk ∈ L2(Ω, ρkdx)}k∈N is bounded, then weak convergence

vk ⇀ v in L2(Ω, ρkdx) is equivalent to weak convergence ρkvk ⇀ ρv in

L1(Ω).

(B2) If a ∈ L∞(Ω) and vk ⇀ v in L2(Ω, ρkdx), then avk ⇀ av in L2(Ω, ρkdx).

Throughout the paper we will often use the concepts of weak and strong
convergence in L1(Ω). Recall also several definitions and facts about conver-
gence in the classical L1-space. Let {ak}k∈N be a sequence in L1(Ω). We recall
that {ak}k∈N is called equi-integrable if for any δ > 0 there is τ = τ(δ) such that
∫

S
|ak| dx < δ for every measurable subset S ⊂ Ω of Lebesgue measure |S| < τ .

Then the following assertions are equivalent:

(i) a sequence {ak}k∈N is weakly compact in L1(Ω);

(ii) the sequence {ak}k∈N is equi-integrable;

(iii) given δ > 0 there exists λ = λ(δ) such that supk∈N

∫

{|ak|>λ}
|ak| dx < δ.

Theorem 3.2 (Lebesgue’s Theorem). If a sequence {ak}k∈N ⊂ L1(Ω) is equi-

integrable and ak → a almost everywhere in Ω then ak → a in L1(Ω).

4. Setting of the Optimal Control Problem

Let ξ1, ξ2 be given elements of L1(Ω) satisfying the conditions

0 < ξ1(x) ≤ ξ2(x) a.e. in Ω, ξ−1
1 ∈ L1(Ω). (6)
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Let m ∈ R+ be a positive value such that ‖ξ1‖L1(Ω) ≤ m ≤ ‖ξ2‖L1(Ω). Let S be
a nonempty compact subset of L1(Ω) satisfying

S ∩
{

g ∈ L1(Ω) : ξ1(x) ≤ g(x) ≤ ξ2(x) a.e. in Ω
}

6= ∅. (7)

In order to introduce the class of admissible L1-controls, we adopt the fol-
lowing concept:

Definition 4.1. For given ρ ∈ L1(Ω) and ~v ∈ [L2(Ω, ρ dx)]
N

we say that an
element g ∈ L2(Ω, dµ) is the divergence of the vector field ~v with respect to the
weight ρ (in symbols g(x) = divρ~v(x)), if ~v and g are related by the formula
∫

Rn

g(x)ϕ(x) ρ(x) dx = −

∫

Rn

(~v(x),∇ϕ(x))
RN ρ(x) dx ∀ϕ ∈ C∞

0 (Ω). (8)

Definition 4.2. We say that a matrix B ∈ L1(Ω;RN×N ) is an admissible
control to the Dirichlet problem

−divB(x)∇y + y = f in Ω (9)

y = 0 on ∂Ω. (10)

(it is written as B ∈ Bad) if there is a matrix A = [~a1, . . . ,~aN ] ∈ L∞(Ω;RN×N )
and a weight ρ ∈ L1(Ω) such that

B(x) = A(x)ρ(x), A ∈ Mβ
α (Ω) (11)

|divρ~ai| ≤ γi ρ-a.e. in Ω, ∀ i = 1, . . . , N (12)

ρ ∈ Rad. (13)

Here

Rad =

{

ρ ∈ S :

∫

Ω

ρ dx = m, ξ1(x) ≤ ρ(x) ≤ ξ2(x) a.e. in Ω

}

, (14)

f ∈ L2(Ω), γ = (γ1, . . . , γN) ∈ R
N is a given positive vector, and elements

divρ~ai ∈ L2(Ω, ρ dx) are defined by (8).

Remark 4.3. As an example of a compact subset S of L1(Ω), we have (see [12])

S =

{

f ∈ L1(Ω) : ‖f‖L1(Ω) +

∫

Ω

|Df | ≤ C

}

,

where the variation
∫

Ω
|Df | of a measure Df is defined as follows

∫

Ω

|Df |=sup

{
∫

Ω

fdivϕdx : ϕ=(ϕ1, . . . , ϕN)∈C1
0(Ω;R

N), |ϕ(x)|≤1 for x ∈ Ω

}

and divϕ =
∑N

i=1
∂ϕi

∂xi
.
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Remark 4.4. As follows from Definition 4.2 and properties (6)–(7), for every
admissible control B ∈ L1(Ω;RN×N ) we deal with the boundary value problem
for the degenerate elliptic equation

−div (ρA(x)∇y) + y = f in Ω, y ∈ W
1,1
0 (Ω). (15)

It means that for some admissible matrices of coefficients B ∈ Bad the boundary
value problem (9)–(10) can exhibit the Lavrentieff phenomenon [31] as well as
other surprising consequences.

The optimal control problem we consider in this paper is to minimize the
difference between a given distribution yd ∈ L2(Ω) and the solution of the
Dirichlet problem (9)–(10) by choosing an appropriate matrix of coefficients
B ∈ Bad. More precisely, we are concerned with the following optimal control
problem

Minimize

{

I(B, y) = ζ

∫

Ω

|y(x)− yd(x)|
2 dx+

∫

Ω

|∇y(x)|2
RNρ dx

}

subject to the constraints (11)–(13).

(16)

Here ζ > 0 is a penalization parameter.
For our further analysis we make use the following observation. Let B =

Aρ ∈ Bad be an admissible control, and let A be a symmetric matrix. Then the
quadratic form Φ(y) =

∫

Ω
A(x)∇y ·∇y ρDx with domain Wρ ⊂ L2(Ω) is closed

and corresponds to a non-negative self-adjoint operator AW = −div ρA∇ in
L2(Ω). At the same time this form will also be closed in Hρ ⊂ L2(Ω), which
leads to another non-negative self-adjoint operator AH = −div ρA∇ in L2(Ω).
Thus, there exist at least two different problems

AWy + y = f and AHy + y = f, (17)

relating to boundary value problem (9)–(10). As we will see later, each of the
problem (17) is uniquely solvable. So, the mapping B 7→ y(B, f), where y(B, f)
is a solution to problem (9)–(10), is multivalued, in general.

5. Classification of optimal solutions

In view of the observation given above, we adopt the classification of the solu-
tions to the boundary valued problem (9)–(10) following Pastukhova & Zhikov
[34] (for more details and other types of solutions we refer to [3, 16, 33]).

Definition 5.1. We say that a function y = y(B, f) = y(A, ρ, f) ∈ Wρ is
a weak solution to the boundary value problem (9)–(10) for a fixed control
B = Aρ ∈ Bad and a given function f ∈ L2(Ω), if the integral identity

∫

Ω

((

A(x) ∇y,∇ϕ
)

RN
ρ(x) + yϕ

)

dx =

∫

Ω

fϕ dx (18)

holds for any ϕ ∈ C∞
0 (Ω).
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Definition 5.2. Let Vρ be some intermediate space withHρ ⊆ Vρ ⊆ Wρ. We say
that a function y = y(B, f) = y(A, ρ, f) ∈ Vρ is a Vρ-solution or a variational
solution to the boundary value problem (9)–(10) if the integral identity (18)
holds for every test function ϕ ∈ Vρ.

Remark 5.3. Note that for every fixed B = Aρ ∈ Bad the existence and
uniqueness of a Vρ-solution are the direct consequence of the Riesz Representa-
tion Theorem. At the same time, the variational solutions do not exhaust the
entire set of the weak solutions to the above boundary value problem. Indeed,
as follows from [34], a weak solution y = y(B, f) ∈ Wρ is a variational one if
and only if the energy equality

∫

Ω

((

A(x) ∇y,∇y
)

RN
ρ+ y2

)

dx =

∫

Ω

fy dx (19)

holds true. Therefore, if y1(B, f), y2(B, f) ∈ W are variational solutions with
y1(B, f) 6= y2(B, f) (hence they belong to the different intermediate spaces V1,ρ

and V2,ρ), then

y =
1

2
(y1(B, f) + y2(B, f))

is a weak solution to (9)–(10) but not variational one. Moreover, as follows
from Definition 5.1 the set of weak solutions to the boundary value problem
(9)–(10) for a fixed control B = Aρ ∈ Bad is convex and closed. Hence if
y1(B, f), y2(B, f) ∈ W are variational solutions such that y1(B, f) 6= y2(B, f)
then the corresponding set of the weak solutions is infinite.

It is obvious that for every fixed B∈Bad, f ∈C∞
0 (RN), and Vρ(Hρ⊆Vρ⊆Wρ)

a variational solution is also a weak solution to the problem (9)–(10). However,
the inverse assertion is not true in general. For a ”typical” degenerate weight
function ρ the space of smooth functions C∞

0 (Ω) is not dense in Wρ, and hence
there is no uniqueness of the weak solutions (see, for instance, [17,33]). However,
we can describe a case when the weak solution is unique.

Lemma 5.4 ([27]). Assume that the set C∞
0 (Ω) is dense in Wρ. Then the

two concepts of a solution to the boundary value problem (9)–(10), given by

Definitions 5.1 and 5.2, coincide and hence the weak solution y = y(B, f) =
y(A, ρ, f) ∈ Wρ is unique.

Now it is clear that the mapping B 7→ y(B, f) can be viewed as multivalued
in general, and this depends on the choice of the corresponding solutions space
Vρ. As a result, the variational formulation of the optimal control problem
(11)–(13), (16) can be stated in different forms. Taking this fact into account,
we restrict of our analysis to the two sets of admissible solutions for the original
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optimal control problem. Namely, we indicate the following sets

ΞH = {(B, y) | B = Aρ ∈ Bad, y ∈ Hρ, (B, y) are related by (19)} ,

ΞW = {(B, y) | B = Aρ ∈ Bad, y ∈ Wρ, (B, y) are related by (19)} .

As was mentioned above (see Remark 5.3), the sets ΞH and ΞW are always
nonempty. Hence the corresponding minimization problems

〈

inf
(B,y)∈ΞH

I(B, y)

〉

and

〈

inf
(B,y)∈ΞW

I(B, y)

〉

(20)

are regular. However, because of the Lavrentieff effect, it may happen that for
some fixed control B = Aρ ∈ Bad and a given f ∈ C∞

0 (RN) the correspond-
ing Hρ-solution yH(A, ρ, f) and Wρ-solution yW (A, ρ, f) to the boundary value
problem (15) are not the same. This implies that the variational problems
(20) are essentially different, in general. Hence, the minimizers to (20) can be
different as well as inf(B,y)∈ΞH

I(B, y) 6= inf(B,y)∈ΞW
I(B, y).

Note that due to the estimates (3)–(4), we have the obvious inclusions

ΞH ⊂ L1(Ω;RN×N)×W
1,1
0 (Ω), ΞW ⊂ L1(Ω;RN×N)×W

1,1
0 (Ω).

Taking this fact into account, we adopt the following concept:

Definition 5.5. We say that a pair (B0, y0) ∈ L1(Ω;RN×N ) × W
1,1
0 (Ω) is an

H-optimal solution to the problem (11)–(13), (16) if

(B0, y0) ∈ ΞH and I(B0, y0) = inf
(B,y)∈ΞH

I(B, y).

Definition 5.6. We say that a pair (B0, y0) ∈ L1(Ω;RN×N ) × W
1,1
0 (Ω) is an

W -optimal solution to the problem (11)–(13), (16) if

(B0, y0) ∈ ΞW and I(B0, y0) = inf
(B,y)∈ΞW

I(B, y).

The main question for the optimal control problem (11)–(13), (16) to be
answered in this paper is about its solvability in the class of H-solutions. It
should be noted that to the best knowledge of the authors, the existence of
optimal pairs to the above problem in the sense of Definition 5.5 has not been
studied in the literature.

6. On Compensated Compactness in Weighted Sobolev
Spaces

We begin this section with some auxiliary results that will be useful later.
Let {(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N be any sequence of H-admissible solutions.
With every function ρk ∈ Rad ⊂ L1(Ω) we associate the space

X(Ω, ρk dx) =
{

~f ∈ L2(Ω, ρk dx)
N
∣

∣

∣
divρk

~f ∈ L2(Ω, ρk dx)
}

∀ k ∈ N
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and endow it with the norm

‖~f‖X(Ω,ρk dx) =
(

‖~f ‖2L2(Ω,ρk dx)N + ‖divρk
~f ‖2L2(Ω,ρk dx)

)
1

2

.

We say that a sequence
{

~fk ∈ X(Ω, ρk dx)
}

k∈N
is bounded if

sup
k→∞

‖~f‖X(Ω,ρk dx) < +∞.

Lemma 6.1. Let {ρk}k∈N be a sequence in Rad such that ρk → ρ in L1(Ω) as

k → ∞. Then ρ ∈ Rad and (ρk)
−1 → ρ−1 in the variable space L2(Ω, ρk dx).

Proof. Let ρ ∈ L1(Ω) be a strong L1-limit of the sequence {ρk}k∈N. Then the
properties (6)–(7) and definition of the set Rad (see (14)) immediately lead to
the conclusion ρ ∈ Rad and

∫

Ω

∣

∣ρ−1
k

∣

∣ dx ≤

∫

Ω

∣

∣ξ−1
1

∣

∣ dx ∀ k ∈ N,

i.e., the sequence
{

ρ−1
k

}

k∈N
is equi-integrable on Ω. Since ξ−1

2 ≤ ρ−1
k ≤ ξ−1

1 and

ρk → ρ a.e. in Ω, Lebesgue Theorem implies ρ−1
k → ρ−1 in L1(Ω). For the

remaining part of the proof of this lemma we make use of the ideas of the paper

[34]. Let ϕ ∈ C∞
0 (Ω) be a fixed function. Then the equality

∫

Ω

ρ−1
k ϕρkdx ≡

∫

Ω

ϕdx =

∫

Ω

ρ−1ϕρ dx ∀k ∈ N

leads us to the weak convergence ρ−1
k ⇀ ρ−1 in L2(Ω, ρkdx). It should be stressed

here that ρkdx
∗
⇀ ρdx in the space of Radon measures M+(Ω) (see (5)).

However, taking into account the strong convergence ρ−1
k → ρ−1 in L1(Ω) and

the fact that Ω is a bounded domain, we get

lim
k→∞

∫

Ω

|ρk|
−2

ρkdx ≡ lim
k→∞

∫

Ω

ρ−1
k dx =

∫

Ω

ρ−1dx ≡

∫

Ω

|ρ|−2
ρdx.

Hence, by the criterium of the strong convergence in L2(Ω, ρkdx), we come to
the required conclusion. The proof is complete.

Further, for every k > 0 we define a cut-off operator Tk : R → R as follows
Tk(s) = max{min{s, k},−k}. By analogy with the well-known results for the
classical Sobolev spaces (see [15]), it is easy to verify the following assertion:

Proposition 6.2. Let y be an arbitrary element of Hρ. Then

(i) Tk(y) ∈ Hρ for every k > 0

(ii) ∇Tk(y) = χ{|y|<k}∇y almost everywhere in Ω

(iii) Tk(y) → y almost everywhere in Ω and strongly in Hρ as k → ∞.
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Taking these facts into account, we have

Proposition 6.3. Let {ρk}k∈N be a sequence in Rad such that ρk → ρ in L1(Ω)
as k → ∞. Let {gk ∈ Hρk}k∈N be a bounded sequence and let gk ⇀ g in the

variable space Hρk = H(Ω, ρk dx), i.e.,

gk ⇀ g in L2(Ω), and ∇gk ⇀ ∇g in L2(Ω, ρk dx)
N as k → ∞. (21)

Then there exists a decreasing sequence of positive numbers {ℓk}k∈N such that

ℓk → +∞ as k → ∞, and

Tℓk(gk) → g strongly in L1(Ω) as k → ∞. (22)

Proof. The key point of the proof is to show that up to a subsequence the
element g ∈ L2(Ω, ρ dx) is the strong limit of {gk ∈ Hρk}k∈N in L1(Ω)-topology.
Indeed, properties (21) and estimates

∫

Ω

|gk| dx ≤

(
∫

Ω

g2k dx

)
1

2

|Ω|
1

2 ≤ C|Ω|
1

2,

∫

Ω

|∇gk|RN dx ≤

(
∫

Ω

|∇gk|
2
RNρkdx

)
1

2

(
∫

Ω

ρ−1
k dx

)
1

2

≤ C

(
∫

Ω

ξ−1
1 dx

)
1

2

,

imply that the family {gk}k∈N is equi-integrable on Ω and bounded in W 1,1(Ω).
Hence, by compact embedding W 1,1(Ω) →֒ L1(Ω) this sequence is compact in
L1(Ω) with respect to the strong topology. Passing to a subsequence if necessary,
we can assume that there exists an element g∗ ∈ L1(Ω) such that gk → g∗ in
L1(Ω) as k → ∞. Hence limk→∞

∫

Ω
ϕgkdx =

∫

Ω
ϕg∗dx for all ϕ ∈ C∞

0 (Ω). On
the other side the condition (21) means that

lim
k→∞

∫

Ω

ϕgk dx =

∫

Ω

ϕg dx ∀ϕ ∈ C∞
0 (Ω).

Hence g = g∗ almost everywhere in Ω. As a result, we have

gk → g strongly in L1(Ω) as k → ∞

and by the compactness embedding Hρk →֒ L1(Ω) and property (iii) of Propo-
sition 6.2,

Tℓ(gk) → gk strongly in L1(Ω) as ℓ → +∞ ∀ k ∈ N.

Hence, having used the diagonal trick, we just to the required conclusion.

Now we are in the position to give the main result of this section (for
comparison we refer to the Compensated Compactness Lemma in [5, 24]).
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Theorem 6.4. Let {ρk}k∈N be a sequence of weights with properties indicated

in Lemma 6.1. Let {~fk ∈ L2(Ω, ρk dx)
N}k∈N, {gk ∈ Hρk}k∈N,

~f ∈ L2(Ω, ρ dx)N ,

and g ∈ Hρ be such that

(i) {~fk}k∈N is bounded in the variable space X(Ω, ρk dx), and ~fk ⇀ ~f in

L2(Ω, ρk dx)
N as k → ∞;

(ii) the sequence {gk}k∈N is bounded in the variable spaces H(Ω, ρk dx) and

gk ⇀ g in L2(Ω), and ∇gk ⇀ ∇g in L2(Ω, ρk dx)
N as k → ∞.

Then

lim
k→∞

∫

Ω

ϕ
(

~fk,∇gk

)

RN
ρkdx =

∫

Ω

ϕ
(

~f,∇g
)

RN
ρ dx, ∀ϕ ∈ C∞

0 (Ω).

Proof. We divide our proof into several steps. Our first step is to prove that

divρk
~fk ⇀ divρ ~f in L2(Ω, ρk dx) as k → ∞. (23)

Indeed, since the sequence
{

divρk
~fk ∈ L2(Ω, ρkdx)

}

k∈N
is bounded, by the

compactness criterium in the variable spaces, we can suppose that there exists
an element φ ∈ L2(Ω, ρ dx) such that divρk

~fk ⇀ φ in L2(Ω, ρk dx) as k → ∞.

Then passing to the limit in the relation
∫

Ω

(

~fk,∇ϕ
)

RN
ρk dx = −

∫

Ω

ϕ
(

divρk
~fk

)

ρk dx ∀ϕ ∈ C∞
0 (Ω) (24)

as k → ∞, we obtain
∫

Ω

(

~f,∇ϕ
)

RN
ρ dx = −

∫

Ω

ϕφρ dx ∀ϕ ∈ C∞
0 (Ω).

Therefore (see Definition 4.1), the element φ is the anisotropic divergence of the

vector field ~f ∈ L2(Ω, ρ dx)N with respect to the weight ρ, i.e., φ = divρ ~f ∈
L2(Ω, ρ dx). So, (23) is valid.

The next step is to study the asymptotic behavior as k → +∞ of the

following numerical sequence
{

∫

Ω
ϕ
(

~fk,∇gk

)

RN
ρk dx

}

k∈N
.

To begin with, we note that as was shown in the proof of Proposition 6.3, up
to a subsequence the element g ∈ L2(Ω, ρ dx) is the strong limit of {gk ∈ Hρk}k∈N
in L1(Ω)-topology. So, we can suppose that

gk → g a.e. in Ω. (25)

In view of the estimates
∣

∣

∣

∣

∫

Ω

(

~fk,∇ϕ
)

RN
ρk dx

∣

∣

∣

∣

≤

(
∫

Ω

∥

∥

∥

~fk

∥

∥

∥

2

RN
ρk dx

)
1

2

(
∫

Ω

‖∇ϕ‖2
RN ρk dx

)
1

2

,

∣

∣

∣

∣

∫

Ω

ϕ
(

divρk
~fk

)

ρk dx

∣

∣

∣

∣

≤ ‖ϕ‖L∞(Ω)‖ξ2‖
1

2

L1(Ω)

(
∫

Ω

(

divρk
~fk

)2

ρk dx

)
1

2
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and by the density of C∞
0 (Ω) in Hρk for every k ∈ N, the relation (24) can be

extended to the functions ϕ of Hρk ∩ L∞(Ω). Since Tℓ(gk) ∈ Hρk ∩ L∞(Ω) for
every k ∈ N and ℓ ∈ N, it follows that

∫

Ω

(

~fk,∇ (Tℓ(gk)ϕ)
)

RN
ρk dx = −

∫

Ω

(

divρk
~fk

)

ϕTℓ(gk)ρk dx

for all ϕ ∈ C∞
0 (Ω). Due to this relation, we make use of the following equality

∫

Ω

ϕ
(

~fk,∇Tℓ(gk)
)

RN
ρk dx =

∫

Ω

(

~fk,∇ (Tℓ(gk)ϕ)
)

RN
ρk dx

−

∫

Ω

Tℓ(gk)
(

~fk,∇ϕ
)

RN
ρk dx = −

∫

Ω

(

divρk
~fk

)

ϕTℓ(gk)ρk dx

−

∫

Ω

Tℓ(gk)
(

~fk,∇ϕ
)

RN
ρk dx = −Ik1,ℓ − Ik2,ℓ ∀ϕ ∈ C∞

0 (Ω). (26)

Our next intention is to study the asymptotic behavior of the integrals Ik1,ℓ
and Ik2,ℓ as k → ∞. Since the sequence

{

divρk
~fk ∈ L2(Ω, ρk dx)

}

k∈N
is bounded,

the property (23) and Lemma 3.1 imply that

ρk divρk
~fk ⇀ ρ divρ ~f in L1(Ω). (27)

Hence the family
{

ρk divρk
~fk
}

k∈N
is equi-integrable on Ω. Therefore, because of

the boundedness of {Tℓ(gk)− Tℓ(g)} the sequence
{

ρk(Tℓ(gk)−Tℓ(g))divρk
~fk
}

k∈N

is equi-integrable on Ω as well. Using the property (25), we have Tℓ(gk) → Tℓ(g)

a.e. in Ω for every ℓ ∈ N. Then Lebesgue’s Theorem implies

ρk (Tℓ(gk)− Tℓ(g)) divρk
~fk → 0 in L1(Ω) as k → ∞.

Moreover, by (27), we get

Tℓ(g)ρk divρk
~fk ⇀ Tℓ(g)ρ divρ ~f in L1(Ω) as k → ∞.

Combining these results, we obtain

ρkTℓ(gk) divρk
~fk = ρk (Tℓ(gk)− Tℓ(g)) divρk

~fk + ρkTℓ(g) divρk
~fk

⇀ ρTℓ(g) divρ ~f in L1(Ω).
(28)

On the other hand, the inequality
∥

∥

∥
Tℓ(gk) divρk

~fk

∥

∥

∥

L2(Ω,ρk dx)
≤ ‖Tℓ(gk)‖L∞(Ω)

∥

∥

∥
divρk

~fk

∥

∥

∥

L2(Ω,ρk dx)
≤ C,

immediately yields that the sequence
{

Tℓ(gk) divρk
~fk
}

k∈N
is bounded in variable

space L2(Ω, ρkdx) for every ℓ ∈ N. Hence, by the compactness criterion there
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exists an element ηℓ ∈ L2(Ω, ρ dx) such that Tℓ(gk) divρk
~fk ⇀ ηℓ in L2(Ω, ρkdx),

that is, Tℓ(gk)ρk divρk
~fk ⇀ ηℓ ρ in L1(Ω) (by Lemma 3.1). Then, in view of (28),

we get ηℓ = Tℓ(g) divρ ~f (ρ-almost everywhere in Ω). As a result, we come to
the relation

lim
k→∞

Ik1,ℓ =

∫

Ω

Tℓ(g)ϕ divρ ~f ρ dx.

Using similar arguments, we can prove that

lim
k→∞

Ik2,ℓ =

∫

Ω

Tℓ(g)
(

~f,∇ϕ
)

RN
ρ dx.

Thus, the passage to the limit in (26) leads us to the relation

lim
k→∞

∫

Ω

ϕ
(

~fk,∇Tℓ(gk)
)

RN
ρk dx

= −

∫

Ω

Tℓ(g)ϕ divρ ~f ρ dx−

∫

Ω

Tℓ(g)
(

~f,∇ϕ
)

RN
ρ dx

=

∫

Ω

(

~f,∇ (Tℓ(g)ϕ)
)

RN
ρ dx−

∫

Ω

Tℓ(g)
(

~f,∇ϕ
)

RN
ρ dx

=

∫

Ω

ϕ
(

~f,∇Tℓ(g)
)

RN
ρ dx ∀ϕ ∈ C∞

0 (Ω),

(29)

which holds true for every ℓ ∈ N.
Let {Tℓk(gk) ∈ Hρk}k∈N be a sequence with property (22) which is ensured

by Proposition 6.3. Then for any δ > 0 there exists a value k∗ ∈ N such that

‖Tℓk(gk)− gk‖ρk ≤ δ ∀ k > k∗ (by Proposition 6.2).

By Cauchy-Bunyakovskǐi inequality we have the estimate

L=sup
k∈N

∣

∣

∣

∣

∫

Ω

ϕ
(

~fk,∇Tℓk(gk)−gk

)

RN
ρk dx

∣

∣

∣

∣

≤δ‖ϕ‖C(Ω)‖
~fk‖L2(Ω,ρk dx)N ≤Cδ. (30)

Taking into account that χ{|gk|<ℓk} → χΩ strongly in L∞(Ω), it finally follows
that
∣

∣

∣

∣

lim
k→∞

∫

Ω

ϕ
(

~fk,∇gk

)

RN
ρk dx−

∫

Ω

ϕ
(

~f,∇g
)

RN
ρ dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

lim
k→∞

∫

Ω

ϕ
(

~fk,∇Tℓk(gk)
)

RN
ρk dx−

∫

Ω

ϕ
(

~f,∇g
)

RN
ρ dx

∣

∣

∣

∣

+ Cδ (by (30))

≤

∣

∣

∣

∣

lim
k→∞

∫

Ω

χ{|gk|<ℓk}ϕ
(

~f,∇g
)

RN
ρ dx−

∫

Ω

ϕ
(

~f,∇g
)

RN
ρ dx

∣

∣

∣

∣

+ Cδ (by (29))

= Cδ. (by Proposition 6.2)

Since δ > 0 is arbitrary, this concludes the proof.
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Remark 6.5. The key point of the proof of this lemma is the fact that the space
of smooth functions C∞

0 (Ω) is dense in the weighted spaces Hρk = H(Ω, ρkdx)
for every k ∈ N. So, in general, Lemma 6.4 does not hold for the case when
{gk}k∈N is a bounded sequence in the variable space Wρk .

7. Existence Theorem for H-optimal solutions

Our prime interest in this section deals with the solvability of optimal control
problem (11)–(13), (16) in the class of H-solutions. To begin with, we consider
the topological properties of the set ofH-admissible solutions ΞH to the problem
(11)–(13), (16). To do so, we introduce the following concepts:

Definition 7.1. We say that a sequence {(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N is
bounded if

sup
k∈N

[

‖Ak‖L∞(Ω;RN×N ) + ‖ρk‖L1(Ω) + ‖yk‖L2(Ω) + ‖∇yk‖L2(Ω,ρkdx)N

]

< +∞.

Definition 7.2. We say that a bounded sequence of H-admissible solutions
{(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N τ -converges to a pair (B, y) ∈ L1(Ω;RN×N )×
W

1,1
0 (Ω) if

(a) B = Aρ, where A ∈ L∞(Ω;RN×N) and ρ ∈ L1(Ω)

(b) Ak
∗
⇀ A in L∞(Ω;RN×N)

(c) ρk → ρ in L1(Ω)

(d) yk ⇀ y in L2(Ω)

(e) ∇yk ⇀ ∇y ∋ L2(Ω, ρ dx)N in the variable space L2(Ω, ρkdx)
N .

Theorem 7.3. For every f ∈ C∞
0 (RN) the set ΞH is closed with respect to the

τ -convergence.

Proof. Let {(Bk, yk)}k∈N ⊂ ΞH be a bounded τ -convergent sequence of H-
admissible pairs to the optimal control problem (11)–(13), (16). Let (B0, y0) =
(A0ρ0, y0) be its τ -limit. Our aim is to prove that (B0, y0) ∈ ΞH .

In view of the initial assumptions (11)–(12) we have:

Ak = [~a1 k, . . . ,~aN k] ∈ Mβ
α (Ω) and

|divρk ~ai k| ≤ γi ρk dx-a.e. in Ω ∀ i = 1, . . . , N, ∀ k ∈ N.

Hence, the sequences {divρk ~ai k ∈ L2(Ω, ρk dx)}k∈N for all i = 1, . . . , N are
uniformly bounded. The compactness criterium in variable L2(Ω, ρk dx)-spaces

and the fact that ρk → ρ0 in L1(Ω) imply the existence of {φi ∈ L2(Ω, ρ0 dx)}
N

i=1

such that

divρk ~ai k ⇀ φi in L2(Ω, ρk dx) as k → ∞ ∀ i = 1, . . . , N.
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Then passing to the limit as k → ∞ in the relations
∫

Ω

(~ai k,∇ϕ)RNρk dx = −

∫

Ω

ϕ divρk ~ai k ρk dx

∀ϕ ∈ C∞
0 (Ω), ∀ i ∈ {1, . . . , N}, ∀ k ∈ N,

−γi

∫

Ω

ϕρk dx ≤

∫

Ω

ϕ divρk ~ai k ρ dx ≤ γi

∫

Ω

ϕρk dx

∀ i ∈ {1, . . . , N}, ∀ k ∈ N, ∀ϕ ≥ 0,

Ak = [~a1 k, . . . ,~aN k] ∈ Mβ
α (Ω),

we come to the conclusion:

divρk ~ai k ⇀ φi = divρ~ai 0 in L2(Ω, ρk dx) as k → ∞, (31)

|divρ~ai 0| ≤ γi ρ-a.e. in Ω ∀ i ∈ {1, . . . , N}, (32)

Ak
∗
⇀ A0 = [~a1 0, . . . ,~aN 0] ∈ Mβ

α (Ω). (33)

Combining these results with the property ρk → ρ0 in L1(Ω), we deduce

ρ0 ∈ S :

∫

Ω

ρ0 dx = m, ξ1(x) ≤ ρ0(x) ≤ ξ2(x) a.e. in Ω,

i.e., ρ0 ∈ Rad and hence the limit matrix B0 = A0ρ0 is an admissible control to
the problem (11)–(13), (16).

It remains to show that the pair (B0, y0) is related by the energy equality
(19). We will do it in several steps.

Step 1. To begin with, we note that, by the initial assumptions there exists
of a constant C > 0 such that

‖yk‖L2(Ω) ≤ C, ‖∇yk‖L2(Ω,ρk dx)N ≤ C ∀ k ∈ N.

Hence

yk ⇀ y0 weakly in the variable Sobolev space Hρk ,

yk ⇀ y0 in W
1,1
0 (Ω) and yk → y0 in L1(Ω)

(for the details see the proof of Proposition 6.3). Further, we note that the
sequence {Ak∇yk}k∈N is bounded in L2(Ω, ρk dx)

N . Hence passing to a subse-
quence if necessary, we may assume that there exists a vector-function
~η ∈ L2(Ω, ρ0 dx)

N such that

Ak ∇yk =: ~ηk ⇀ ~η in L2(Ω, ρk dx)
N . (34)

Taking these facts into account, we can pass to the limit in the integral
identity

∫

Ω

((

Ak ∇yk,∇ϕ
)

RN
ρk + ykϕ

)

dx =

∫

Ω

fϕ dx ∀ϕ ∈ C∞
0 (Ω) (35)
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as k → ∞. As a result, we get
∫

Ω

((~η,∇ϕ)
RN ρ0 + y0ϕ) dx =

∫

Ω

fϕ dx ∀ϕ ∈ C∞
0 (Ω) (36)

or − div (ρ0 ~η ) = f − y0 in the sense of distributions.

Step 2. Here we show that ~η = A0 ∇y0. To do so, we introduce the following
scalar function

v(x) = (~z, x)RN , (37)

where ~z is a fixed element of RN . By the initial assumptions, we have
∫

Ω

ϕ
(

Ak (∇yk −∇v) ,∇yk −∇v
)

RN
ρk dx ≥ 0, ∀ϕ ≥ 0

or, in view of (37), this inequality can be rewritten as

∫

Ω

ϕ
(

Ak (∇yk − ~z ) ,∇yk − ~z
)

RN
ρk dx ≥ 0. (38)

Our next intention is to pass to the limit in (38) as k → ∞ using Theorem 6.4.

As follows from the initial assumptions, the sequence {ρk}k∈N is admissible for

Theorem 6.4. Having put in the statement of this lemma: ~fk = Ak∇ (yk − v),

and gk = yk−v for all k ∈ N, we see that the sequence {gk = yk − v}k∈N satisfies

all assumptions of Theorem 6.4.

In view of (34) and (33), we have

~fk = Ak∇ (yk − v) = Ak (∇yk − ~z) ⇀ ~η − A0~z in L2(Ω, ρk dx)
N . (39)

It remains to show that the sequence {~fk = Ak∇ (yk − v)}k∈N is bounded in
X(Ω, ρkdx). Indeed, from integral identity (35), we get

−

∫

Ω

divρk
(

Ak ∇yk
)

ϕρk dx =

∫

Ω

ϕ (f − yk) dx ∀ k ∈ N.

Since (f − yk) ⇀ (f − y0) = ρ−1
0 (f − y0) ρ0 in L2(Ω), it follows that the se-

quence {divρk (Ak∇yk)}k∈N is weakly compact in L2(Ω, ρk dx), and

divρk (Ak∇yk) ⇀ ρ−1
0 y0 − ρ−1

0 f in L2(Ω, ρk dx). (40)

To apply Theorem 6.4 we have to show that the sequence {divρk(Ak~z)}k∈N
is also weakly convergent in L2(Ω, ρk dx), where the elements divρk(Ak~z) are
defined as
∫

Ω

(

Ak ~z,∇ϕ
)

RN ρk dx = −

∫

Ω

ϕ divρk
(

Ak ~z
)

ρk dx ∀ϕ ∈ C∞
0 (Ω), ∀ k ∈ N.
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Indeed, for every test function ϕ ∈ C∞
0 (Ω), we have

∫

Ω

(

Ak ~z,∇ϕ
)

RN ρk dx =

∫

Ω

N
∑

i=1

N
∑

j=1

aki j(x)
∂ϕ

∂xi

zjρk dx

=
N
∑

j=1

zj

∫

Ω

(~aj k(x),∇ϕ)RNρk dx

= −
N
∑

j=1

zj

∫

Ω

ϕ divρk ~aj k ρk dx

= Jk.

(41)

Then using (31), we get

lim
k→∞

Jk=−
N
∑

j=1

zj lim
k→∞

∫

Ω

ϕ divρk~aj k ρk dx=−
N
∑

j=1

zj

∫

Ω

ϕ divρ0~aj 0 ρ0 dx. (42)

Applying the converse transformations with (42) as we did it in (41), we arrive
at

lim
k→∞

∫

Ω

ϕ divρk
(

Ak ~z
)

ρk dx = − lim
k→∞

∫

Ω

(

Ak ~z,∇ϕ
)

RN ρk dx

= −

∫

Ω

(

A0 ~z,∇ϕ
)

RN ρ0 dx

=

∫

Ω

ϕ divρ0
(

A0 ~z
)

ρ0 dx ∀ϕ ∈ C∞
0 (Ω).

(43)

Thus, from (40) and (43) it finally follows that

divρk (Ak (∇yk − ~z )) ⇀ ρ−1
0 (y0 − f)− divρ0

(

A0 ~z
)

in L2(Ω, ρk dx). (44)

As a result, combining properties (34), (44), (39) and the fact that ∇(yk−v) ⇀
∇(y0 − v) in L2(Ω, ρk dx)

N , we see that all suppositions of Theorem 6.4 are
fulfilled. So, passing to the limit in inequality (38) as k → ∞, we get

∫

Ω

ϕ(x) (~η − A0~z,∇y0 − ~z )
RN ρ0 dx ≥ 0, ∀~z ∈ R

N

for all positive ϕ∈C∞
0 (Ω). After localization, we have ρ0(~η−A0~z,∇y0−~z)RN ≥0

for all ~z ∈ R
N . Hence

~η = A0∇y0 ρ0 dx-almost everywhere in Ω. (45)
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Step 3. Taking (45) into account, we can represent the integral identity (36)
in the form

∫

Ω

((

A0 ∇y0,∇ϕ
)

RN ρ0 + y0 ϕ
)

dx =

∫

Ω

fϕ dx ∀ϕ ∈ C∞
0 (Ω), (46)

or −div (ρ0 A0∇y0 ) + y0 = f in the sense of distributions. Since C∞
0 (Ω) dense

in Hρ0 , this relation remains true for all ϕ ∈ Hρ0 . Hence, taking ϕ = y0 as a
test function in (46), we arrive at the energy equality

∫

Ω

((

A0 ∇y0,∇y0
)

RN ρ0 + y20
)

dx =

∫

Ω

fy0 dx ∀ϕ ∈ C∞
0 (Ω)

Thus, the τ -limit pair (B0, y0) belongs to ΞH , and this concludes the proof.

Now we are in a position to state the existence of H-optimal pairs to the
problem (11)–(13), (16).

Theorem 7.4. Let ξ1, ξ2 be given elements of L1(Ω) satisfying the condi-

tions (6) and
∫

Ω

ξ1 dx ≤ m ≤

∫

Ω

ξ2 dx.

Let S be a compact subset of L1(Ω) with the property (7), and let also f ∈ L2(Ω)
and yd ∈ L2(Ω) be given functions. Then the optimal control problem (11)–
(13), (16) admits at least one H-solution

(Bopt, yopt) ∈ ΞH ⊂ L1(Ω;RN×N )×W
1,1
0 (Ω).

Proof. First of all we note that for the given function f ∈ L2(Ω) and every
admissible control B = Aρ ∈ Bad, the Riesz Representation Theorem ensures
the existence and uniqueness of an H-solution y = y(B, f) ∈ Hρ such that
energy equality (19) holds true. Let {(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N be an H-
minimizing sequence to the problem (11)–(13), (16). Then as follows from the
inequality

inf
(B,y)∈ΞH

I(B, y)= lim
k→∞

[

ζ

∫

Ω

|yk(x)−vyd(x)|
2 dx+

∫

Ω

|∇yk(x)|
2
RNρk dx

]

<+∞,

there is a constant C > 0 such that

sup
k∈N

‖yk‖L2(Ω) ≤ C, sup
k∈N

‖∇yk‖L2(Ω,ρkdx)N ≤ C.

Hence, in view of the definition of the class of admissible controls Bad, we may
assume that, within a subsequence, there exist functions ρ∗ ∈ S, y∗ ∈ L2(Ω),
~g ∈ L2(Ω, ρ∗dx)N , and a matrix A∗ ∈ L∞(Ω;RN×N ) such that

Ak
∗
⇀ A∗ in L∞(Ω, RN×N), ρk → ρ∗ in L1(Ω), (47)

yk ⇀ y∗ in L2(Ω), ∇yk ⇀ ~g in L2(Ω, ρkdx)
N . (48)
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Using the arguments of the proof of Theorem 7.3, it can be shown that the
matrix B∗ = A∗ρ∗ ∈ L1(Ω, RN×N ) is admissible control to the problem (11)–
(13), (16). Let us prove that the equality ∇y∗ = ~g holds true. To do so, it is
enough to show that

yk ⇀ y∗ in L1(Ω) and ∇yk ⇀ ~g in L1(Ω)N . (49)

The validity of the first assertion in (49) immediately follows from the first
relation in (48). Further we note that by estimate

∫

Ω

|∇yk|RN dx ≤

(
∫

Ω

|∇yk|
2
RNρk dx

)
1

2

(
∫

Ω

ρ−1
k dx

)
1

2

≤ C

(
∫

Ω

ρ−1
k dx

)
1

2

the sequence
{

∇yk ∈ L2(Ω, ρkdx)
N
}

is equi-integrable, and hence this one is
weakly compact in L1(Ω)N . By Lemma 6.1 and properties of the strong con-
vergence in L2(Ω, ρkdx)

N , we immediately obtain limk→∞

∫

Ω
(∇yk, ~ϕ)RN dx =

limk→∞

∫

Ω
ρ−1
k (∇yk, ~ϕ)RNρk dx =

∫

Ω
(ρ∗)−1 (~g, ~ϕ)RNρ∗ dx =

∫

Ω
(~g, ~ϕ)RN dx. Thus

∇yk ⇀ ~g in L1(Ω) and yk ⇀ y∗ in L1(Ω). As a result, the equality ∇y∗ = ~g

follows from the completeness of normed space W
1,1
0 (Ω).

Combining these results, we obtain: the pair (B∗, y∗) is the τ -limit of the
H-minimizing sequence {(Bk, yk) ∈ ΞH}k∈N. Then, by Theorem 7.3, this pair is
an H-admissible to the problem (11)–(13), (16). Since the cost functional I is
lower τ -semicontinuous, we get

I(B∗, y∗) ≤ lim inf
k→∞

I(Bk, yk) = inf
(B, y)∈ΞH

I(B, y).

Hence (B∗, y∗) is an H-optimal pair, and this concludes the proof.
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