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Abstract. For a given single- or multivalued function f and “atoms” Si, let Sf (λ, x)
be the set of all measurable selections of the function s 7→ f(λ, s, x(s)) which are con-
stant on each Si. Continuity and differentiability of such operators are studied in
spaces of measurable functions containing ideal, Orlicz and Lp spaces with new re-
sults for the parameter-dependent case even for single-valued superposition operators
without atoms. A motivation is to apply the results for variant of such maps Sf in
Sobolev spaces in the second part of this article [Z. Anal. Anwend. 31 (2011) (to
appear)].
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1. Introduction

The aim of this paper is to study continuity and differentiability of superposition
(Nemytskij) operators in spaces of measurable functions. In the second part [26]
of the article, we will apply these results to certain superposition type operators
in Sobolev spaces. The main novelty of the first part is that we also include the
case of parameter-dependent f (cf. Remark 1.1). Moreover, for both parts, we
also include “atoms”. The latter is interesting mainly for multivalued f , and
the motivation for it originates from obstacle problems for PDEs. As one of the
simplest examples of the latter, consider on a domain S an equation like

−∆u(s) ∈ f(λ, s, u(s),∇u(s)) on S, u|∂S = 0, (1)
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where f is either single-valued or also contains some “jumps”, e.g. for some
real-valued functions g, h, u0

f(λ, s, u, v) =





{g(λ, s, u, v)} if u < u0(λ, s, v)

[g(λ, s, u, v)− h(λ, s, u, v), g(λ, s, u, v)] if u = u0(λ, s, v)

{g(λ, s, u, v)− h(λ, s, u, v)} if u > u0(λ, s, v);

such jumps are an important tool for modeling unilateral obstacles, e.g. a source
or sink working under some conditions (see [10, 11, 25] for more realistic such
problems described by systems of equations). Now it can happen that on some
disjoint subsets Si ⊆ S (i ∈ I) the obstacle does not act “pointwise” but only
in an averaged sense, mathematically e.g. described by integrals like

−∆u(s) ≡ const ∈ f(λ, s,

∫

Si

u(t) dt,

∫

Si

∇u(t) dt) on Si,

−∆u(s) ∈ f(λ, s, u(s),∇u(s)) on S \
⋃

i∈I

Si, u|∂Ω = 0,
(2)

see [25]. Heuristically, on the obstacle Si the “obstacle’s cause” (u,∇u) is
averaged on the right-hand side. Hence, it makes sense, heuristically, to require
as in (2) that the “obstacle’s effect” −∆u should (in the simplest case) be
constant on Si. In fact, the latter follows even automatically in similar problems
from a natural weak formulation [9, 12].

Now the operator on the right-hand side of (2) can be described as the com-
position of differential and integral operators and of the (multivalued) operator

Sf (λ, u, v) :={y : y measurable, y(s) ∈ f(λ, s, u(s), v(s)) a.e.,

and y|Si
a.e. constant for every i}.

We call Sf the superposition operator with parameter λ and atoms Si. Mathe-
matically, the meaning of the atoms is that we do not consider arbitrary mea-
surable selections of f(λ, ·, u(·), v(·)), but only those selections which are mea-
surable on the “reduced” measure space where we identify Si as atoms of the
measure space (recall that measurable functions are by definition a.e. constant
on atoms of a measure space). Note, however, that we cannot easily reduce the
study of Sf to the study of the “classical” superposition operator in the “re-
duced” measure space, since the measurability requirements in this “reduced”
measure space would be too restrictive (i.e., also u, v and f(λ, ·, u, v) would
have to be constant on Si). Indeed, the functions in e.g. (2) “live” naturally
on the Lebesgue measure, and only in the definition of Sf we need to consider
functions constant on Si; this will become particularly clear in the setting of
Sobolev spaces explained in more detail in [26]. Therefore, the atoms Si must
really be treated as part of the operator Sf and not of the underlying measure
space, i.e., the theory for the operator Sf has to take the atoms Si into account.
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The paper consists of two loosely related examinations: The study of the
continuity properties of Sf in spaces of measurable functions (Section 3) and
the study of differentiability properties of Sf in spaces of measurable functions
(Section 4). Although we must treat atoms in all sections, the main technical
difficulties concerning atoms will occur only in the next part [26] of the paper;
in Sections 3 and 4 the main difficulty and novelty is the dependency on the
parameter λ.

Since the continuity and differentiability of Sf in spaces of measurable func-
tions is of independent interest (e.g. also for integral equations) we study both
in the most natural framework in which this study can be done: For the conti-
nuity, this is the framework of ideal spaces (which is also the natural framework
for integral equations), and for the differentiability, this is the setting of Or-
licz spaces; both generalize Lp spaces and are introduced in the corresponding
sections. Note that in the context of Sobolev spaces we have in view of the
embedding theorems (u,∇u) ∈ Lp × Lq with p 6= q. Unfortunately, Lp × Lq is
for p 6= q neither an ideal space nor a (classical) Orlicz space, and so we are
forced to deal with the more technical classes of generalized ideal spaces and
products of Orlicz spaces in Section 3 and 4, respectively.

Roughly speaking, Section 3 can be considered as the generalization of
the famous result of M. A. Krasnoselskij [14] that a superposition (Nemytskij)
operator F (x)(s) = f(s, x(s)) generated by a Carathéodory function f is au-
tomatically continuous if it acts from Lp into Lq with q < ∞. However, for
the multivalued case the situation is more complicated, since, contrary to what
was claimed in [4] (see also [3, Theorem 8.2]), it was shown in [23] that the
superposition operator is usually never upper semicontinuous. Nevertheless, it
was shown in [23] that such operators are often upper semicontinuous in the
uniform sense (see Section 2 for the terminology). Hence, the result in Section 3
is actually a generalization of the main result of [23] to the setting of superpo-
sition operators with atoms Si and a parameter λ. Neither of these extensions
(atoms or a parameter) can be reduced to the classical superposition operator
F (x)(s) = f(s, x(s)) in any obvious manner (cf. Remark 1.1).

By “differentiability properties” we mean estimates like e.g.

lim
(u,v)→0

sup
λ∈Λ0

supy∈Sf (λ,u,v)
‖y‖

‖(u, v)‖
= 0, (3)

or

lim
(λ,u,v)→(λ0,u,v)

(u,v) 6=(0,0)

supy∈Sf (λ,u,v)
‖y‖

‖(u, v)‖
= 0, (4)

where ‖·‖ denotes the norm of the respective considered spaces; the relation of
such estimates with differentiability (in the single-valued case) is sketched at
the beginning Section 4. Estimates like (3) or (4) are not only useful to prove
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differentiability but also in connection with the study of bifurcation problems
(also in the multivalued case). For instance, it follows from (3) that for a linear
isomorphism J the operator J − tSf (λ, ·) has for t ∈ [0, 1] no nontrivial zero in
a neighborhood of 0, i.e., the inclusion J(u, v) ∈ Sf (λ, u, v) has no bifurcation
at 0, and e.g. the homotopy invariance of a corresponding degree theory can
be used. In this context, the uniformness of (3) (or (4)) with respect to λ is
often essential, as it implies that a corresponding neighborhood is independent
of λ ∈ Λ0 (or for λ close to λ0, respectively).

For the classical superposition operator without a parameter F (x)(s) =
f(s, x(s)) sharp differentiability criteria are known in Lp and Orlicz spaces [1,2]
(see also [5]), but as remarked above, even to treat (1), we need this for products
of such spaces. Our results in Section 4 extend the mentioned criteria to such
products (and to the parameter-dependent and multivalued case). However,
although these criteria are best possible, in a sense, they can hardly be verified
in practice. Therefore, we derive from it some criteria which are (although
mathematically weaker) rather simple to verify. For instance, we show that for
a mapping from Lp into Lq with q < p differentiability of f together with certain
growth conditions already implies (3) (for q ≥ p there is no such result, since it
is well-known that superposition operators are never differentiable in such cases
unless they are affine, see e.g. [5, Theorem 3.12]). Various similar criteria can
be found in literature (see the comments after Theorems 4.16), but rarely in
connection with parameters (not to speak about multivalued f or atoms). The
parameter-dependence is worth a separate remark.

Remark 1.1. It is a well-known trick that in some cases results about super-
position operators with a parameter F (λ, x)(s) = f(λ, s, x(s)) can be reduced
to results about classical superposition operators (without parameters) by con-
sidering λ as a function and applying the result for the corresponding auxiliary
superposition operator G(λ, x)(s) = f(λ(s), s, x(s)) of a vector function (λ, x).
However, this trick cannot always be applied. For instance, in connection with
differentiability, it is rather obvious that such a trick cannot directly lead to
estimates like (3) where the limit should be uniform w.r.t. λ. Moreover, even
for rather natural functions f , this trick sometimes cannot even even be used
to obtain the continuity of F . For instance, for p, q ∈ (0,∞), β ∈ (0, p

q
),

α ∈ (0, 1− βq

p
), the function

f(λ, s, u) := |λ− s|−α |u|β−1 u

(in case β ≤ 1 define f(λ, s, 0) := 0) satisfies by Jensen’s inequality

|f(λ, s, u)| ≤
(
1−

βq

p

)
|λ− s|−(1−

βq

p )
−1

α +
βq

p
|u|

p

q ,

and so our results (Example 3.10 and Theorem 3.17) will imply that F :
R × Lp([0, 1]) → Lq([0, 1]) is continuous, in particular, continuous at 0. How-
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ever, the mentioned auxiliary operator G is locally unbounded at 0 (and not
even defined in a neighborhood of 0) on the space Lr([0, 1])×Lp([0, 1]), even in
case r = ∞.

In view of Remark 1.1, the continuity and differentiability results obtained
in Sections 3 and 4 are new for the parameter-dependent case (even for single-
valued scalar superposition operators without atoms). Of course, the same
remark holds (with similar examples as in Remark 1.1) for the setting of Sobolev
spaces which is studied in the next part [26] of the paper.

2. General Notations

Throughout this paper, (S,Σ, µ) will denote a complete σ-finite measure space,
and Si ∈ Σ (i ∈ I) will denote a fixed family of pairwise disjoint sets with
µ(Si) > 0 (i ∈ I) which will play the role of atoms mentioned in the introduc-
tion. It is explicitly admissible that I = ∅, in which case the results of this
paper deal with “ordinary” multivalued superposition operators.

Proposition 2.1. I is at most countable.

Proof. S is a union of countably many sets En∈Σ with µ(En)<∞. Hence, I is
the union of the countably many countable sets In={i ∈ I :µ(En ∩ Si)>0}.

Section 3 deals also with spaces which are not normed, so let us fix some
terminology. Let (U, |·|) be a quasi-pseudonormed space; here, “quasi” means
that instead of the triangle inequality, we only assume

|x+ y| ≤ q · (|x|+ |y|)

with some finite constant q, and “pseudo” means that |x| may be infinite and
that |x| = 0 may hold also for x 6= 0.

Example 2.2. The space U = Lp([0, 1]) with 0 < p < 1 is not normed but
quasi-normed by

|x| :=

(∫ 1

0

|x(s)|p ds

) 1
p

.

(This is the reason, why we can include the case p, q < 1 in Remark 1.1.)

Of course, we understand U equipped with the induced uniform structure
and corresponding topology. It is easy to see that with this topology, every
quasi-normed space is a topological vector space, i.e., addition and scalar mul-
tiplication are continuous operations. However, |·| might be discontinuous (al-
though this is usually not the case). In order to avoid pathological measurability
problems, we will assume throughout that |·| is at least a Borel function.
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We call a function x : S → U measurable if it can be approximated almost
everywhere by a sequence of simple (assuming only finitely many values on
measurable sets) functions; since we assume that |·| is a Borel function, also
|x(·)| is measurable in this case. By M (S, U), we denote the space of measurable
functions x : S → U . Usually, we will tacitly identify functions x, y ∈ M (S, U)
if |x(s)− y(s)| = 0 for almost all s ∈ S, i.e., we understand the elements of
M (S, U) usually as corresponding equivalence classes.

By a multivalued function F : X ⊸ Y , we mean a function from X into the
powerset of Y . In contrast to usual practice, it will be convenient to allow that
F (x) is empty; instead, we define the notation

D(F ) := {x ∈ X : F (x) 6= ∅} .

We call F single-valued if F (x) contains at most one element for every x ∈ X;
in this case, we will notationally not distinguish between F and the function
F : D(F ) → Y which is canonically induced by F , although this is of course a
slight misuse of notation. As usual for multivalued functions, we will use the
notation

F (X0) :=
⋃

x∈X0

F (x) (X0 ⊆ X).

Moreover, we work with the small and large counter-images

F−(M) := {x ∈ X : F (x) ⊆ M} ,

F+(M) := {x ∈ X : F (x) ∩M 6= ∅} .
(M ⊆ Y ) (5)

Note that F−(M) contains by definition the complement of D(F ) and that
D(F ) ⊇ F+(M) ⊇ F−(M) ∩D(F ) (explaining the name “large counterimage”
for F+(M)).

In our case, the space Y will not only be a topological space but even carry
a (quasi-)uniform structure, induced e.g. by a quasi-pseudonorm. Hence, for a
set M ⊆ Y , we have two natural notions of neighborhoods: A “topological”
neighborhood (i.e., a set containing an open set containing M) and a “uniform”
neighborhood which is a set containing U(M) for some element U of the quasi-
uniform structure of Y , see e.g. [13] for the corresponding terminology.

The two kind of preimages and the topology/quasi-uniform structure on Y
lead to four natural notions of continuity for multivalued maps.

Definition 2.3. Let F : X ⊸ Y be a multivalued function between a topolog-
ical space X and a topological (quasi-uniform) space Y .

1. F is upper semicontinuous at x0 ∈ X (in the uniform sense) if for each
topological (uniform) neighborhood N ⊆ Y of F (x0) the set F−(N) is a
neighborhood of x0.
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2. F is lower semicontinuous at x0 ∈ X if for each y ∈ F (x0) and each
topological neighborhood N ⊆ Y of y the set F+(N) is a neighborhood
of x0.

3. F is lower semicontinuous at x0 ∈ X in the uniform sense if for each
element U of the quasi-uniform structure of Y there is a neighborhood
M ⊆ X of x0 with M ⊆ F+(U(y)) for each y ∈ F (x0).

What we call upper/lower semicontinuous at x0 in the uniform sense is in
literature sometimes called upper/lower semicontinuous at x0 in the ε-sense [6]
or (δ, ε)-upper/lower semicontinuous [8]. In the author’s opinion the latter
notions are unfortunately chosen, especially since they suggest a relation to
some kind of metric, although it is actually the quasi-uniform structure of Y
which is employed. We provide the short proof of the following result since it
is perhaps slightly more general than what is well-known:

Proposition 2.4. If F is upper semicontinuous at x0 and Y is a quasi-uniform
space, then F is upper semicontinuous at x0 in the uniform sense; the converse
holds if F (x0) is compact. If F is lower semicontinuous at x0 in the uniform
sense then it is lower semicontinuous at x0; the converse holds if Y is a uniform
space and F (x0) is precompact.

Proof. The claim concerning upper semicontinuity follows from the subsequent
Proposition 2.5. For the last claim, assume that F is lower semicontinuous at
x0, F (x0) is precompact, and U is an element of the uniform structure of Y .
Choosing an element V of the uniform structure of Y with V ◦ V −1 ⊆ U ,
we find finitely many y1, . . . , yn ∈ F (x0) with F (x0) ⊆

⋃n

k=1 V (yk). For each
k = 1, . . . , n there is a neighborhood Mk ⊆ X of x0 with Mk ⊆ F+(V (yk)).
For each y ∈ F (x0) there is some k with y ∈ V (yk), hence yk ∈ V −1(y), and
so Mk ⊆ F+(V (yk)) ⊆ F+(U(y)). Consequently, M := M1 ∩ · · · ∩Mn satisfies
M ⊆ F+(U(y)) for very y ∈ F (x0).

We recall the following proof, observing that it requires really only a quasi -
uniform structure.

Proposition 2.5. Each uniform neighborhood of M in a quasi-uniform space
is a topological neighborhood. The converse holds if M is compact.

Proof. If N is a topological neighborhood of a compact set M , let O denote the
family of all open sets O with the property that there is some x ∈ O and an
element U of the uniform structure with O ⊆ U(x) and U2(x) ⊆ N . Then O

is an open cover of M . Let O1, . . . , On ∈ O form a finite subcover, and choose
corresponding xk ∈ Ok and Uk. Then U := U1 ∩ · · · ∩ Un has the required
property since for each x ∈ M there is some k with x ∈ Ok ⊆ Uk(xk), and so
U(x) ⊆ U2

k (xk) ⊆ N .
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Unless we say otherwise, (U, |·|) and (V, |·|) are quasi-pseudo-normed spaces,
and Λ is a topological space. Moreover, f : Λ × U ⊸ V will usually denote a
multivalued function with the property

|u1 − u2| = 0 =⇒ f(λ, s, u1) = f(λ, s, u2).

Then f induces a (multivalued and parameter-dependent) “superposition oper-
ator Sf with the atoms (Si)i∈I” in the following sense.

Definition 2.6. For f : Λ × U ⊸ V , let Sf : Λ × M (S, U) ⊸ M (S, V ) be
defined as follows. For λ ∈ Λ and x ∈ M (S, U), let Sf (λ, x) denote the set of
all y ∈ M (S, V ) with the following two properties.

1. y(s) ∈ f(λ, s, x(s)) for almost all s ∈ S.

2. y|Si
is constant (almost everywhere) for every i ∈ I.

In particular, Sf depends on the atoms Si (i ∈ I), although we do not mark
this dependency explicitly in the notation.

3. Continuity in Generalized Ideal Spaces

As remarked in the introduction, it would not be sufficient for us to consider
continuity only in Lp-spaces or, more general, ideal spaces. Instead, we have
to deal with products of such spaces, and probably the most natural way to
treat those is to work in the framework of “generalized ideal spaces” which
were introduced in [23,24] exactly for this purpose. Unfortunately, this requires
some terminology which we recall in the next section.

3.1. Generalized Ideal Spaces. For a measurable set E ⊆ S, we denote
by χ

E
the characteristic function of E, and by PEx(s) := χ

E
(s)x(s) the corre-

sponding canonical projection in M (S, U). We are mainly interested in spaces
where these projections are “bounded by 1” in the following sense.

Definition 3.1. Let X⊆M (S, U) be a nonempty subset, and ‖·‖ :X → [0,∞].
We call (X, ‖·‖) a (quasi-pseudometric) projectable space if the following holds.

1. x, y ∈ X implies x− y ∈ X.

2. ‖−x‖ = ‖x‖, and ‖0‖ = 0.

3. ‖x+ y‖ ≤ q · (‖x‖+ ‖y‖) for all x, y ∈ X.

4. x ∈ X and E ∈ Σ imply PEx ∈ X and ‖PEx‖ ≤ ‖x‖.

We drop the additions “quasi” if we have q = 1, “pseudo” if we have ‖·‖ :
X → [0,∞) and ‖x‖ = 0 =⇒ x = 0, “metric” (and write sometimes “normed”
instead) if X is a (real) linear space and ‖·‖ is positively homogeneous.
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We recall that Lp([0, 1]) with 0 < p < 1 in Example 2.2 is not normed, but
it is a quasinormed projectable space in the above sense.

The main reason to include even metric spaces in the definition is that we
want to include X = M (S, U) with its usual quasi-pseudometric

‖x‖
M (S,U) := inf

m>0

(
m+ µ({s ∈ S : |x(s)| ≥ m})

)
.

Note that if µ(S) = ∞ then even in case U = R, this is only a pseudo-
metric (e.g. ‖1‖ = ∞), and the scalar multiplication is discontinuous. To
avoid this inconvenience, we equip M (S, U) instead usually with the uniform
structure of convergence in measure on sets of finite measure, i.e., with the
quasi-pseudometric

‖x‖
M (S,U) := inf

m>0

(
m+ ν({s ∈ S : |x(s)| ≥ m})

)
, (6)

where ν is an equivalent normalized measure: The quantity (6) depends on the
choice of ν of course, but the induced uniform structure does not, see [23] for
details. If (U, |·|) is (quasi-)normed then M (S, U) is a (quasi-)metric projectable
space and a topological vector space.

The most important projectable spaces are the ideal spaces:

Definition 3.2. A (quasi-pseudometric) projectable space X is preideal if the
relations x ∈ X, y ∈ M (S, U), and |y(s)| ≤ |x(s)| a.e. imply that y ∈ X and
‖y‖ ≤ ‖x‖. If X is also complete, we call it ideal.

Unfortunately, Lp([0, 1])×Lq([0, 1]), understood as a subset of M ([0, 1],R2),
is not an ideal space in case p 6= q, and so the class of ideal spaces is too narrow
for our intentions. Therefore, we have to consider a more general class of spaces.

Definition 3.3. Let X be a (quasi-pseudometric) projectable space.

1. X is a (quasi-pseudometric) generalized preideal space if for each sequence
xn ∈ X ∩ L∞(S, U) which converges uniformly to 0 the following holds:
For every set E ∈ Σ with µ(E) > 0 there is some D ⊆ E in Σ with
µ(D) > 0 such that ‖PDxn‖ → 0. If X is complete, we speak of a (quasi-
pseudometric) generalized ideal space.

2. X is embeddable if for each sequence xn ∈ X ∩L∞(S, U) which converges
uniformly to some y ∈ L∞(S, U) and which converges in X (to a possibly
different function) the following holds: For every set E ∈ Σ with µ(E) > 0
there is some D ⊆ E in Σ with µ(D) > 0 such that PDy ∈ X.

Each (quasi-pseudonormed) preideal space is simultaneously generalized
preideal and embeddable. Moreover, the product of (quasi-pseudonormed) em-
beddable generalized preideal spaces is also embeddable and generalized prei-
deal, so that e.g. Lp(S, U)×Lq(S, V ) ⊆ M (S, U×V ) are embeddable generalized
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ideal spaces. More general, if U is finite-dimensional, all ideal spaces and Orlicz
spaces in the sense of [15, 16] are embeddable generalized ideal spaces. Proofs
for all these claims (especially the last is not trivial) can be found in [23].

We will also need a convergence theorem of Vitali type. To this end, we
define:

Definition 3.4. Let X be a (quasi-pseudonormed) projectable space. Then
M ⊆ X has equicontinuous norm if for each sequence Dn ∈ Σ

Dn ↓∅ =⇒ lim
n→∞

sup
x∈M

‖PDn
x‖ = 0.

The regular part X0 ofX is the set of all x ∈ X for which {x} has equicontinuous
norm.

A trivial argument by contradiction implies that it suffices to consider count-
able subsets:

Lemma 3.5. M ⊆ X has equicontinuous norm if and only if any sequence in
M has equicontinuous norm.

Recall that we equipped M (S, U) with the uniform structure of convergence
in measure on sets of finite measure (6). The term “embeddable” means that if
X is complete, then it is (topologically and uniformly) embedded into M (S, U).

Proposition 3.6. Let X ⊆ M (S, U) be an embeddable quasi-pseudometric
generalized ideal space and simultaneously be a topological vector space (for the
induced topology). Then the identity map id : X → M (S, U) is continuous
(hence uniformly continuous by linearity) and thus each (uniform) neighborhood
of a set M ⊆ X in X is the restriction to X of a (uniform) neighborhood of M
in M (S, U).

A generalized form of Vitali’s convergence theorem states that a certain
converse holds for sets in the regular part under some hypothesis on equicontin-
uous norm [23, Corollary 3.2] (the relation to the classical Vitali theorem was
explained in [23]).

Theorem 3.7 (Vitali). Let X ⊆ M (S, U) be a quasi-pseudometric generalized
preideal space with regular part X0, and let A ⊆ X have equicontinuous norm.
If M ⊆ X0 is such that each neighborhood of M in M (S, U) intersects A, then
each neighborhood of M in X intersects A. An analogous statement holds for
uniform neighborhoods if also M has equicontinuous norm.
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3.2. Continuity in Generalized Ideal Spaces. Now we come to our main
aim, the superposition operator Sf with atoms and parameters. In contrast
to the superposition operator without atoms, it is not reasonable to assume
that D(Sf ) has interior points, hence the well-known continuity results about
superposition operators make no sense in our setting. In order to apply them
anyway, it seems reasonable to consider besides Sf a superposition operator
without atoms.

Definition 3.8. For B : S × U ⊸ V satisfying

|u1 − u2| = 0 =⇒ B(s, u1) = B(s, u2),

we define S◦
B : M (S, U) ⊸ M (S, V ) as follows. For x ∈ M (S, U), let S◦

B(x)
denote the set of all y∈M (S, V ) such that y(s)∈B(s, x(s)) for almost all s∈S.

The main difference between the definition of S◦
B and Sf is that the latter

has atoms and depends on λ.
For superposition operators S◦

B as above (without atoms and parameters)
it is known that, roughly speaking, acting and Carathéodory type conditions
already imply continuity in (generalized) ideal spaces. One cannot expect such a
strong result with respect to parameters, since even in the autonomous single-
valued case f(λ, s, u) = a(λ, s), it is easy to give examples where a(·, s) is
continuous for all s ∈ [0, 1] and a(λ, ·) ∈ Y = Lq([0, 1]) for all λ ∈ [0, 1] and
0 < q < ∞ but Sf (λ, x) is not continuous with respect to λ in Y ; consider

for instance a(λ, s) := λ− 1
q s

1
λ (λ > 0), a(0, ·) := χ

{1}
, at λ = 0. The Vitali

convergence theorem states that actually a necessary and sufficient condition
for continuity of a(λ, ·) in Y with respect to λ in such an example is that the
family a(λ, ·) has equicontinuous norm in Y .

Recall in this connection that Kransoselskij’s famous acting condition states
that the (classical) superposition operator generated by a (single-valued) func-
tion f(λ, ·) acts from X = Lp([0, 1]) (0 < p < ∞) into Y if and only if there are
functions aλ ∈ Y and constants bλ with

f(λ, s, u) ≤ aλ(s) + bλ |u|
p

q .

In the autonomous case discussed above, one can think of bλ = 0, and therefore,
it appears appropriate to assume for a continuity result that the family of
functions aλ has equicontinuous norm in Y (and that bλ is bounded). We will
discuss such a condition in a moment.

Note that the requirement that the family aλ has equicontinuous norm is
a much weaker requirement in the above growth assumption than the natural
appearing hypothesis that aλ and bλ are both independent of λ: Even the
autonomous superposition operator generated by f(λ, s, u) = a(s − λ) with
λ ∈ [0, 1] and an essentially unbounded function a ∈ Lq([−1, 1]) would not
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satisfy this requirement, although it is of course continuous in Y = Lq([0, 1])
and will be included in our weaker hypothesis.

The crucial condition for our continuity result will be formulated in terms
of the following definition.

Definition 3.9. Let D ⊆ Λ × M (S, U), A ⊆ M (S, V ), B : S × U ⊸ V . For
E ∈ Σ, we write f � A + B on D outside of E if for each (λ, x) ∈ D we
have Sf (λ, x) ⊆ A+ S◦

B(x) outside of E in the sense of equivalence classes, i.e.,
if for each y ∈ Sf (λ, x) there is some a ∈ A and some b ∈ S◦

B(x) such that
y(s) = a(s) + b(s) for almost all s ∈ S \ E.

We point out that even for a “classical” single-valued superposition oper-
ator Sf without atoms but with a parameter, the function B will have to be
chosen multivalued, in general. The following is the model example for the
above definition:

Example 3.10. Let X := Lp1(S, U1) × · · · × Lpm(S, Um) and Y := Lq(S, V )
with pj ∈ (0,∞], 0 < q < ∞, and pseudonormed spaces Uj and V . For
D ⊆ Λ ×X and E ∈ Σ assume that for any (λ, x) ∈ D, x = (x1, . . . , xm), and
any y ∈ Sf (λ, x), we have for almost all s ∈ S \ E

|y(s)| ≤ aλ(s) +
m∑

j=1
pj 6=∞

bj |xj(s)|
pj

q ,

where aλ ∈ Lq(S,R) (independent of x) and bj ∈ [0,∞) is independent of
(λ, x) ∈ D. (Note that for continuity in a point (λ0, x0) it suffices to consider
neighborhoods of this point, hence one need only consider sets D which contain
only couples (λ, x) with ‖x− x0‖X < ε; in particular, the above inequality
needs only be verified for functions x for which ‖xj‖L∞

≤ ‖x0,j‖L∞

+ ε for those
components j with pj = ∞.) Then f � A+B on D outside of E with

A := {aλ : λ ∈ Λ} , B(s, u1, . . . , um) :=

{
v ∈ V : |v| ≤

m∑

j=1
pj 6=∞

bj |uj|
pj

q

}
,

and moreover, the superposition operator S◦
B acts from X into Y , i.e., X ⊆

(S◦
B)

−(Y ) which will be the only requirement for B in our continuity result
(actually, it is even more than what will be required). For A, we will require
that it has equicontinuous norm in Y .

We will not make any assumptions on the continuity or measurability of B
but only (implicitly) assumptions on the norm of the elements of B(s, u). In
this sense, the above example is typical: One should consider B(s, u) as some
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sort of “uniform bound” for the “norm” of the elements of f(λ, s, u), allowing
that the bound may be violated on null sets in a sense.

Our reason to introduce the exceptional set E is that for certain sets E
the following hypothesis may be trivial to verify in some cases (at least for sets
D which one will typically consider in connection with superposition operators
with atoms).

Definition 3.11. Let D ⊆ Λ × M (S, U), (λ0, x0) ∈ D, and E ∈ Σ. We say
that Sf is regular on E for (λ0, x0) on D if for any sequence (λn, xn) ∈ D with
(λn, xn) → (λ0, x0) and any sequence yn ∈ Sf (λn, xn) the set {PEyn : n} has
equicontinuous norm in Y .

Example 3.12. Suppose that E is the union of finitely many of the atoms
Si1 , . . . , Sin and that D is such that for any (λ, x) ∈ D the function x|Sik

is
constant. If Y = Lq(S, V ) (0 < q < ∞) and f(·, s, ·) is uniformly bounded in a
neighborhood of (λ0, x0(s)) for each s ∈ E, then Sf is regular on E for (λ0, x0)
on D.

Theorem 3.13 (Continuity in M (S, V ) implies continuity). Let X⊆M (S, U)
be an embeddable quasi-pseudometric generalized ideal space and simultaneously
be a topological vector space (for the induced topology). Let Y ⊆ M (S, V ) be a
quasi-pseudometric generalized preideal space with regular part Y0.

Let Sf : Λ× M (S, U) ⊸ M (S, V ) be a parameter-dependent superposition
operator with atoms (Si)i∈I , and (λ0, x0) ∈ D ⊆ Λ × X. Suppose that Sf

is regular on E for (λ0, x0) on D and f � A + B on D outside of E where
A ⊆ Y has equicontinuous norm and x0 is in the topology of X an inner point
of X ∩ (S◦

B)
−(Y0). Assume also that λ0 ∈ Λ has a countable neighborhood base.

Let Sf : D ⊸ M (S, V ) be upper or lower semicontinuous at (λ0, x0) (in the
uniform sense). Then Sf : D ⊸ Y is upper or lower semicontinuous at (λ0, x0)
(in the uniform sense), respectively.

An analogous result holds if we equip D in the hypothesis with the topology
inherited from Λ× M (S, U).

The hypothesis that x0 is an inner point of X ∩ (S◦
B)

−(Y0) means by Defi-
nition 3.8 and (5) that for every x ∈ X in a neighborhood of x0 all measurable
functions y satisfying y(s) ∈ B(s, x(s)) a.e. belong to Y0. It is not necessary to
verify whether such a function y exists.

Proof. The crucial tool of the proof is that, by [23, Corollary 4.1 and Propo-
sition 5.1], we have for any sequence xn ∈ X with ‖xn − x0‖X → 0 and any
sequence yn ∈ S◦

B(xn) that the set {yn : n} has equicontinuous norm in Y under
our assumptions. It follows that Sf is regular on S for (λ0, x0) on D. Indeed,
if (λn, xn) ∈ D converges to (λ0, x0) and yn ∈ Sf (λn, xn), there are an ∈ A and
ŷn∈S◦

B(xn) with yn=PEyn+PS\Ean+PS\E ŷn. Since
{
PEyn, PS\Ean, PS\E ŷn :n

}

has equicontinuous norm it follows that also {yn :n} has equicontinuous norm.



106 M. Väth

As a side result we obtain for the particular choice (λn, xn) := (λ0, x0) by
Lemma 3.5 that M := Sf (λ0, x0) has equicontinuous norm.

Assume first by contradiction that Sf : D ⊸ Y is not upper semicontinuous
at (λ0, x0) (in the uniform sense). Since λ0 has a countable neighborhood base,
we find a (uniform) neighborhood N ⊆ Y of M and a sequence (λn, xn) ∈ D
with λn → λ0, ‖xn − x0‖X → 0, and yn ∈ Sf (λn, xn) \ N . We have shown
that then the sets A0 := {yn : n} and M have equicontinuous norm in Y . We
conclude from Theorem 3.7 that there is a (uniform) neighborhood of M in
M (S, V ) which is disjoint from A0. This implies that Sf : D ⊸ M (S, V ) fails
to be upper semicontinuous at (λ0, x0) (in the uniform sense). For the last
claim, we use here Proposition 3.6.

Now assume that Sf : D ⊸ Y is not lower semicontinuous at (λ0, x0) (in
the uniform sense). Then there are a sequence (λn, xn) ∈ X with λn → λ0,
‖xn − x0‖X → 0, ε > 0, and a constant sequence zn := z ∈ M (resp. a sequence
zn ∈ M) such that Sf (λn, xn) contains no element y with ‖y − zn‖Y < ε. How-
ever, if Sf : D ⊸ M (S, V ) is lower semicontinuous at (λ0, x0) (in the uniform
sense), there are yn ∈ Sf (λn, xn) with yn−zn → 0 in M (S, V ); for the last claim,
we use here Proposition 3.6. Since we have shown that the sets A0 := {yn : n}
and {zn : n} ⊆ M have equicontinuous norm, we conclude from Theorem 3.7
that ‖yn − zn‖Y → 0, a contradiction.

In order to apply Theorem 3.13, one has to verify some continuity of Sf in
measure. It seems natural to expect that some Carathéodory type hypothesis
suffices for the latter. For such an hypothesis, we need a notion of measurability
of multivalued functions.

Definition 3.14. A multivalued function G : S ⊸ V is called measurable if
G−(M) ∈ Σ for each open set M ⊆ V and weakly measurable if G−(M) ∈ Σ for
each closed set M ⊆ V . We call G (weakly) measurable in the Bochner sense if
additionally G has essentially separable range, i.e., if there is a null set S0 such
that G(S \ S0) is separable.

Each measurable function is weakly measurable, and we have a Kuratowski-
Ryll-Nardzewsky type selection theorem, i.e., any weakly measurable in the
Bochner sense function G : S ⊸ V with nonempty complete values has a se-
lection which is measurable in the sense that it can be approximated a.e. by
simple functions [23, Section 6]. The following result is a straightforward ex-
tension of [23, Theorem 6.2]; only due to the presence of atoms an additional
argument is required.

Lemma 3.15. Let (λ0, x0) be such that F0(s) := f(λ, s, x0(s)) is compact and
closed for almost all s ∈ S, and F0 is measurable in the Bochner sense and
that f(·, s, ·) is upper semicontinuous at (λ0, x0(s)) in the uniform sense for
almost all s ∈ S. Assume that λ0 ∈ Λ has a countable neighborhood base.
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Then Sf : Λ× M (S, U) ⊸ M (S, V ) is upper semicontinuous at (λ0, x0) in the
uniform sense, and hence the same holds if Λ × M (S, U) is replaced by any
subset D.

Proof. Otherwise, there are ε > 0, sequences (λn, xn) ∈ Λ × M (S, U) with
λn → λ0 and xn → x0 in measure on each set of finite measure, and sequences
yn ∈ Sf (λn, xn) such that for all z ∈ Sf (λ0, x0) we have ‖yn − z‖

M (S,V ) ≥ ε
for all n. In view of [17, (1.24)], we may assume that V is equipped with a
pseudometric generating the same uniform structure; hence, by an extension
of Riesz’ theorem (see e.g. [22, Corollary 1.10]) we can assume, passing to a
subsequence if necessary, that xn(s) → x0(s) for almost all s ∈ S. For almost
all s ∈ S, since f(·, s, ·) is upper semicontinuous at (λ0, x0(s)) in the uniform
sense, we obtain from yn(s) ∈ f(λn, s, xn(s)) that F0(s) 6= ∅, and moreover,
αn(s) := dist(yn(s), F0(s)) → 0. Now repeating the arguments of the proof
of [23, Theorem 6.2], we find measurable selections zn of F0 such that yn(s) −
zn(s) → 0 for almost all s ∈ S.

We use now that yn is constant a.e. on Si, say yn(s)=cn,i for almost all s∈Si.
We can fix for each of the countably many i ∈ I some si ∈ Si with yn(si) = cn,i,
yn(si)−zn(si) → 0 and such that F0(si) is compact. Since {zn(si) : n} ⊆ F0(si),
we can conclude that (cn,i)n has a convergent subsequence for every i ∈ I.
Since I is countable, we find by a diagonal argument a subsequence nk such
that (cnk,i)nk

converges for every i ∈ I. Passing to this subsequence, we can
assume without loss of generality that cn,i → ci (n → ∞) for every i ∈ I. In
particular, yn(s) = cn,i → ci for almost all s ∈ Si, and so yn(s) − zn(s) → 0
implies zn(s) → ci for almost all s ∈ Si. Since zn(s) ∈ F0(s), we thus have
ci ∈ F0(s) for almost all s ∈ Si. We redefine now zn(s) := ci for s ∈ Si.
Then zn(s) ∈ F0(s) for almost all s ∈ S and zn is constant on each Si. Hence,
zn ∈ Sf (λ0, x0). By construction, we have yn(s) − zn(s) → 0 for almost all
s ∈ S. Indeed, for almost all s ∈ Si, this follows from yn(s) = cn,i → ci = zn(s).
Since yn(s)− zn(s) → 0 for almost all s ∈ S, we obtain by [23, Proposition 2.2]
that ‖yn − zn‖M (S,V ) → 0 which is a contradiction.

Concerning lower semicontinuity, we have to suppose some assumptions
on f and D concerning the atoms. Apart from that, the statement and proof
of the following lemma are analogous to [23, Theorem 6.3].

Lemma 3.16. Let (λ0, x0) ∈ D ⊆ Λ×M (S, U) be such that for any (λ, x) ∈ D
the function F (λ, x)(s) := f(λ, s, x(s)) is measurable in the Bochner sense,
assume a.e. nonempty compact closed values, and a.e. constant on each Si

(i ∈ I). Then:

1. D ⊆ D(Sf ), i.e., Sf (λ, x) 6= ∅ for each (λ, x) ∈ D.
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2. If λ0 has a countable base of neighborhoods and if for almost all s ∈ S the
function f(·, s, ·) is lower semicontinuous at (λ0, x0(s)) (in the uniform
sense) then Sf : D ⊸ M (S, V ) is lower semicontinuous at (λ0, x0) (in the
uniform sense).

Proof. By the mentioned Kuratowski-Ryll-Nardzewsky theorem, there is a mea-
surable selection of F (λ, x); redefining this selection constant on each of the
countably many atoms Si (which is possible by hypothesis), we see Sf (λ, x) 6= ∅.
For the second claim, we may assume as in the proof of Lemma 3.15 that V
is pseudonormed. If Sf is not lower semicontinuous at (λ0, x0) (in the uniform
sense), there are ε > 0, a constant (resp. not necessarily constant) sequence
zn ∈ Sf (λ0, x0) and a sequence (λn, xn) ∈ D with (λn, xn) → (λ0, x0) such that
for each n and all y ∈ Sf (λn, xn) we have ‖y − zn‖M (S,V ) > 3ε. Passing to a
subsequence, we may assume that xn(s) → x0(s) for almost all s ∈ S. Re-
peating the arguments of the proof of [23, Theorem 6.3], we obtain from the
lower semicontinuity of f(·, s, ·) (in the uniform sense) that there is a sequence
yn of measurable functions with yn(s) ∈ f(λn, s, x0(s)) and |yn(s)− zn(s)| ≤ ε
for all s ∈ En where En ∈ Σ satisfy En ↑S (up to a null set). By hypoth-
esis, we can redefine yn such that yn|Si

is constant for each i ∈ I. Since
zn ∈ Sf (λ0, x0) is constant on each i ∈ I, it remains true also for the re-
defined yn that |yn(s)− z(s)| ≤ ε. Note that the redefined function satisfies
yn ∈ Sf (λn, xn). Now proceeding as in the proof of [23, Theorem 6.3], we
obtain that ‖yn − zn‖M (S,V ) < 3ε for all sufficiently large n which is a contra-
diction.

Combining Theorem 3.13 with Lemma 3.15 or Lemma 3.16, respectively,
we obtain the following result:

Theorem 3.17 (Continuity for Functions of Carathéodory Type). Let X ⊆
M (S, U) be an embeddable quasi-pseudometric generalized ideal space and si-
multaneously be a topological vector space (for the induced topology). Let Y ⊆
M (S, V ) be a quasi-pseudometric generalized preideal space with regular part Y0.

Let Sf : Λ× M (S, U) ⊸ M (S, V ) be a parameter-dependent superposition
operator with atoms (Si)i∈I , and (λ0, x0) ∈ D ⊆ Λ × X. Suppose that Sf

is regular on E for (λ0, x0) on D and f � A + B on D outside of E such
that A has equicontinuous norm in Y and for every x ∈ X in a neighborhood
of x0 all measurable selections of the function s 7→ B(s, x(s)) belong to Y0. Put
fs(λ, u) := f(λ, s, u), and F (λ, x)(s) := f(λ, s, x(s)).

1. Let the function F (λ0, x0) be measurable in the Bochner sense and assume
a.e. nonempty compact closed values. If λ0 has a countable base of neigh-
borhoods and for almost all s ∈ S, the function fs is upper semicontinuous
at (λ0, x0(s)) in the uniform sense, then Sf : D ⊸ Y is upper semicontin-
uous at (λ0, x0) in the uniform sense. If F (λ0, x0) is constant on each Si

and assumes only nonempty values, then Sf (λ0, x0) 6= ∅.
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2. Suppose that for each (λ, x) ∈ D the function F (λ, x) is measurable in the
Bochner sense, assumes a.e. nonempty compact values, and is constant
on each Si. Then Sf : D ⊸ Y assumes only nonempty values on D.
If additionally λ0 has a countable base of neighborhoods and for almost
all s ∈ S, the function fs is lower semicontinuous at (λ0, x0(s)) (in the
uniform sense) then Sf : D ⊸ Y is lower semicontinuous at (λ0, x0) (in
the uniform sense).

For the case I = ∅ (no atoms) and parameter-independent f , Theorem 3.17
was obtained in [23], and our proof followed that approach as far as possible.
Special cases (for ideal spaces in R

n) have been obtained in [4] and [3, The-
orem 8.2], where however, also an analogous result for the upper semiconti-
nuity (not in the uniform sense) was claimed, mistakenly: The example given
in [23, Example 6.2] shows that Sf is practically never upper semicontinuous if
f is not single-valued.

It should not be too surprising that for the claim Sf (λ, x) 6= ∅ we restrict
ourselves to those (λ, x) for which F (λ, x) is constant on the atoms. Also for
lower semicontinuity, one cannot expect to drop this hypothesis, as can be seen
even in the single-valued autonomous case:

Example 3.18. Let S := [0, 2] with the Lebesgue measure, consider only one
atom I := {1}, S1 := [0, 1], and f(λ, s, u) := {u}. Then Sf (λ, x) is either {x}
or empty, depending on whether x|[0,1] is constant or not. In particular, Sf : Λ×
Lp(S) ⊸ Lq(S) fails to be lower semicontinuous at (0, 0) for every p, q ∈ (0,∞].

Having this example in mind, it might appear rather surprising that we do
not need any restriction for D or f concerning the atoms (Si)i for the upper
semicontinuity in the uniform sense in Theorem 3.17.

4. Differentiability in Products of Orlicz Spaces

For the rest of this paper, we will deal only with normed spaces; in particular,
from now on, we assume that (U, |·|) is normed.

Moreover, we consider a much smaller class of function spaces than in the
previous section, since even the class of ideal spaces is somewhat too large to
obtain reasonable criteria for the differentiability of superposition operators. In
fact, even for the classical superposition operator (single-valued, without atoms
and parameters) there is not too much known about differentiability in ideal
spaces (except e.g. [5, Theorem 2.14]). The largest subclass for which sharp
criteria are known is the class of Orlicz spaces [5]. Therefore, we concentrate
on that class of spaces. We recall the definition of that class.
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Definition 4.1. A Young function is a function Φ: S × R → [0,∞] with the
following two properties:

1. For any measurable function x : S → R the superposition function s 7→
Φ(s, x(s)) is measurable.

2. For almost all s ∈ S, the function Φ(s, ·) is even, convex, and lower
semicontinuous on R with Φ(s, 0) = 0. Moreover, Φ is not constant (i.e.,
only 0 or ∞) on R \ {0}.

The Orlicz space LΦ(S, U) generated by a Young function Φ is the set of all
measurable functions x : S → U for which there is some λ > 0 with

∫

S

Φ
(
s, λ−1 |x(s)|

)
ds < ∞.

It is well-known that LΦ(S, U) becomes a normed preideal space with the
Luxemburg norm

‖x‖LΦ
:= inf

{
λ > 0 :

∫

S

Φ
(
s, λ−1 |x(s)|

)
ds ≤ 1

}
.

Moreover, the monotone convergence theorem implies that this space is perfect
and thus an ideal space if U is a Banach space, see e.g. [21, Corollary 3.2.4].

Example 4.2. The spaces Lp(S, U) (1 ≤ p ≤ ∞) are Orlicz spaces with the

Young function Φ̃p(s, u) = |u|p (in case p < ∞) resp.

Φ̃∞(s, u) :=

{
0 if |u| ≤ 1

∞ if |u| > 1.

By using the argument s of Φ, one sees that also Lp-spaces with weight-
functions or Lp(·) spaces where p(·) varies with s are Orlicz spaces in the above
sense.

Throughout this section, let U1, . . . , Um and V be real normed spaces,
and U := U1 × · · · × Um. Let Φ1, . . . ,Φm and Ψ be Young functions, X :=
LΦ1(S, U1)×· · ·×LΦm

(S, Um), and Y := LΨ(S, V ). As in Section 2, we consider
a given multivalued superposition operator Sf with a topological parameter
space Λ and atoms Si ⊆ S (i ∈ I).

In the single-valued case, it is easy to guess how the derivative of Sf must
look like. In order to formulate a corresponding result, we recall that in case of
single-valued f and in the presence of atoms one cannot expect that the domain
of definition of Sf contains an interior point. Hence, we call a map F : D → Y
with D ⊆ X differentiable at x0 ∈ D with a derivative A : X → Y , if A is linear
with

lim
h→0

h∈D−x0

‖F (x0 + h)− F (x0)− Ah‖Y
‖h‖X

= 0.
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If x0 is not an interior point of D, then A is not necessarily uniquely determined
by this requirement. Nevertheless, A is uniquely determined on the set D◦

A of
all h ∈ X with the property that there is a null sequence tn ∈ R \ {0} with
x0 + tnh ∈ D. By linearity, A is then of course even uniquely determined on
DA := spanD◦

A.

Proposition 4.3. Suppose that f is single-valued, D ⊆ X, and that the map
Sf (λ0, ·) : D → Y is differentiable at x0 with a derivative A : X → Y , and that
f(λ0, s, ·) is Gateaux differentiable at x0(s) for almost all s ∈ S with derivative
fu(λ0, s, x0(s)) : U → V . Then we have for all h ∈ DA that

Ah(s) = fu(λ0, s, x0(s))h(s) (7)

for almost all s ∈ S and that (7) is constant on each Si.

Proof. For t ∈ R \ {0} put Ft(h) := t−1 (Sf (λ0, x0 + th)− Sf (λ− 0, x0))− Ah.
Then ‖Ft(h)‖LΨ(S,V ) → 0 as t → 0. Hence, if h ∈ D◦

A and tn 6= 0 is a
null sequence with x0 + tnh ∈ DA, we find by [21, Corollary 3.1.2] a subse-
quence nk with Ftnk

(h)(s) → 0 for almost all s ∈ S. Since Ftnk
(h)(s) →

fu(λ0, s, x0(s))h(s)−Ah(s) for almost all s ∈ S and the first term in the defini-
tion of Ft(h) is constant on each Si, we obtain (7) and that Ah is constant on
each Si. Since this holds for every h ∈ D◦

A, it holds by linearity of both sides
of (7) also for every h ∈ DA.

Remark 4.4. If I = ∅ then at least in the scalar case (i.e., U = V = R), one has
a similar representation even without the hypothesis that f(λ0, s, ·) is Gateaux
differentiable, if one assumes that x0 is an interior point of {x : (λ0, x) ∈ D},
see [5, Theorem 2.14].

Hence, in all natural situations, the derivative of Sf (λ0, ·) (if it exists) can
be considered as a linear superposition operator Sfu(λ0,x0) with the same family
of atoms. Thus, in order to prove that the derivative exists (and is given by
Sfu(λ0,x0)) one has to replace f by

f̃(λ0, s, u) := f(λ0, s, x0(s) + u)− f(λ0, s, x0(s))− fu(λ0, s, x0(s))u (8)

and has to verify that ‖S
f̃
(λ0, h)‖

Y
= o(‖h‖X). Summarizing, in order discuss

the differentiability of Sf , we can assume without loss of generality that x0 = 0
and discuss only the case that the derivative is 0.

Similar considerations apply for higher derivatives of order α ∈ N where it
is for a similar reason in practical cases possible to consider only the case that
all these derivatives are 0, and where by Peano’s reminder term in the Taylor
series the only difference is to replace o(‖h‖X) by o(‖h‖αX). For the case of
scalar classical superposition operators (which in this respect is not different
from ours), details can be found in [1, 2].
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Summarizing our previous discussion: After perhaps replacing f by an aux-
iliary function, we are interested in showing that ‖Sf (λ, h)‖ = o(‖h‖αX) as
h → 0. This is what we study in this section now, observing also that it is
useful (e.g. for bifurcation problems with λ as a bifurcation parameter) to know
that such estimates holds uniformly w.r.t. λ (or at least as (λ, h) → (λ0, 0)).
This question makes also sense in the multivalued case.

Given a multivalued map f : Λ× S ×U ⊸ V and Λ0 ⊆ Λ, we thus look for
criteria such that

sup
‖x‖X≤r

sup
λ∈Λ0

sup
y∈Sf (λ,x)

‖y‖Y ≤ c(r) (9)

or

lim sup
(λ,r)→(λ0,0)
λ ∈ Λ, r > 0

sup
‖x‖X≤r

sup
y∈Sf (λ,x)

‖y‖Y
c(r)

≤ 1 (10)

holds where c(r) ≥ 0 satisfies c(r)
rα

→ 0 as r → 0. Here, we use the conventions
sup∅ := 0, 0

0
:= 0, ∞

c(r)
:= ∞, and put ‖y‖Y := ∞ if y /∈ Y . For (10), we do

not necessarily require that the accumulation point λ0 belongs to Λ; it may also
belong to some larger space of which Λ is only a subspace. In the latter case,
we will in a slight misuse of notation call a set Λ0 ⊆ Λ a neighborhood of λ0 if
it is an intersection of a neighborhood of λ0 with Λ.

In our spaces, the problems (9) and (10) are theoretically almost completely
answered by the following result. In order to quantify the estimates precisely,
we assume that the Cartesian product space X is equipped with the max-norm.

For the rest of this section, we do not require that S be σ-finite; in particular,
the number of atoms may also be uncountable.

Theorem 4.5. Let c, r ∈ (0,∞) be given, and Λ0 ⊆ Λ. Suppose that for each
λ ∈ Λ0, there are Cλ ∈ [0,∞) and functions aλ ∈ L1(S,R) with ‖aλ‖L1

≤ Cλ

such that for almost all s ∈ S the estimate

sup
v∈f(λ,s,u1,...,um)

Ψ
(
s,
Cλ +m

c
|v|V

)
≤ aλ(s) +

m∑

j=1

Φj

(
s,

1

r
|uj|Uj

)
(11)

holds for all (u1, . . . , um) ∈ U . Then (9) holds with c(r) := c.

Theorem 4.6. Let C ∈ [0,∞), α ∈ (0,∞). Suppose that for each ε > 0 there
is some neighborhood Λ0 of λ0 (resp. suppose Λ0 ⊆ Λ is fixed) and some R > 0
such that for each r ∈ (0, R) and each λ ∈ Λ0 there are functions aλ,r ∈ L1(S,R)
with ‖aλ,r‖L1

≤ C such that for almost all s ∈ S the estimate

sup
v∈f(λ,s,u1,...,um)

Ψ
(
s,

1

εrα
|v|V

)
≤ aλ,r(s) +

m∑

j=1

Φj

(
s,

1

r
|uj|Uj

)
(12)

holds for all (u1, . . . , um) ∈ U . Then (10) (or (9), respectively) holds with a

function c : (0,∞) → [0,∞] satisfying c(r)
rα

→ 0 as r → 0.
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Theorem 4.6 follows immediately from Theorem 4.5 by defining c(r) as
the left-hand side of (9) with Λ0 corresponding to the choice ε := r. Indeed,
Theorem 4.5 implies that for each ε > 0 there is some R > 0 with c(r) ≤ ε rα

C+m

for all r ∈ (0, R).

Remark 4.7. In contrast to Section 3, we do not consider an exceptional set
E ∈ Σ here on which the estimate (11) can be relaxed if one is interested only
in

lim
r→0

sup
(λ,x)∈D

‖x‖ ≤ r, λ ∈ Λ0

supy∈Sf (λ,x)
‖y‖Y

rα
= 0 (13)

or

lim
(λ,r)→(λ0,0)
λ ∈ Λ, r > 0

sup
(λ,x)∈D
‖x‖X≤r

supy∈Sf (λ,x)
‖y‖Y

rα
= 0 (14)

for some particular set D ⊆ Λ×X (where, e.g., all corresponding x are constant
on certain subsets of E). Indeed, this would not make the result more general,
since if one has other means to prove

lim
r→0

sup
(λ,x)∈D

‖x‖ ≤ r, λ ∈ Λ0

supy∈Sf (λ,x)
‖PEy‖Y

rα
= 0

for such a set E, one obtains (13) by applying the above result on the measure
space S \E and then using the triangle inequality for the sum y = PEy+PS\Ey;
similarly for (14).

Proof of Theorem 4.5. Let ‖x‖X ≤ r. Since we assume the max-norm on the
product space X, this means that writing x = (x1, . . . , xm) we have xj ∈
LΦj

(S, Uj) and ‖xj‖LΦj

≤ r for all j ∈ {1, . . . ,m}. The definition of the Lux-

emburg norm thus implies

∫

S

Φj

(
s,

|xj(s)|Uj

r + ε

)
ds ≤ 1 (j = 1, . . . ,m) (15)

for any ε > 0; letting ε = 1
n
and using the monotone convergence theorem

(recalling that Φj(s, ·) is monotone on [0,∞) and lower semicontinuous), we see
that (15) holds also for ε = 0. Moreover, the convexity of Ψ(s, ·) and Ψ(s, 0) = 0
imply

Ψ(s, t) = Ψ
(
s,
(Cλ +m)t+ 0

Cλ +m

)
≤

1

Cλ +m
Ψ
(
s, (Cλ +m)t

)
.



114 M. Väth

Hence, for any y ∈ Sf (λ, x), the hypotheses imply

∫

S

Ψ
(
s,
1

c
|y(s)|V

)
ds ≤

1

Cλ +m

∫

S

Ψ
(
s,

Cλ +m

c
|y(s)|V

)
ds

≤
1

Cλ +m

(∫

S

aλ(s) ds+
m∑

j=1

∫

S

Φj

(
s,
|xj(s)|Uj

r

)
ds

)

≤
1

Cλ +m
(Cλ +m) = 1,

and so we have proved y ∈ Y , ‖y‖Y ≤ c.

Since the proof of Theorem 4.5 (and thus of Theorem 4.6) is so strikingly
straightforward, one might conjecture that much better results are available,
but the lower estimate in [5, Theorem 4.3] (cf. also [2, Satz 2]) shows that this
is not the case (up to possibly some multiplicative constant), at least if f is
single-valued without parameters and atoms and U = V = R.

In the setting of Lebesgue-Bochner spacesX = Lp1(S, U1)×· · ·×Lpm(S, Um)
and Y = Lq(S, V ) with pj ∈ [1,∞], q ∈ [1,∞), the inequality (12) is easier

to understand: This corresponds to the particular case when Φj := Φ̃pj and

Ψ := Φ̃q where Φ̃p are defined as in Example 4.2. Hence, (12) means

sup
v∈f(λ,s,u1,...,um)

|v|q ≤ εqrαqaλ,r(s) +
m∑

j=1

εqrαqΦ̃pj

(
s,
1

r
|uj|Uj

)
. (16)

Note that Theorem 4.6 requires that this holds for all small r > 0. Apparently,
this becomes very restrictive w.r.t. to the dependency on uj in case αq > pj
(and also in case αq = pj) for some j.

For α = 1 this is of course in accordance with Krasnoselskij’s classical
example: If the (classical) superposition operator is differentiable from Lp([0, 1])
into Lq([0, 1]) where q > p or q = p then this operator is automatically constant
resp. affine, cf. e.g. [5, Theorem 3.12]. In fact, a similar result holds even for
operators like Fu(s) = f(s,∇u(s)) from W 1,p

0 into Lq [20, Theorem 6.1].

Since we are not interested in such “degeneration” results here, we suppose
that αq < pj for all j. In this case, (16) can be reformulated such that the
dependency on ε and r can be expressed in one variable δ. In the following for-
mulation we also use Jensen’s inequality to make the hypothesis look somewhat
analogous to Example 3.10.
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Theorem 4.8. Let X = Lp1(S, U1) × · · · × Lpm(S, Um) with pj ∈ [1,∞], and
Y = Lq(S, V ) with q∈ [1,∞), and let α∈ (0,∞) be such that αq < pj for all j.
Let J∞ and J c

∞ denote the set of all indices j such that pj = ∞ or pj 6= ∞,
respectively. Suppose that for each j ∈ J∞ there are constants εj ∈ (0,∞) and
cj ∈ [0,∞) and that there is a monotone null sequence δn > 0 with bounded δn

δn+1

such that for each λ ∈ Λ0 (resp. λ ∈ Λ) there are functions bλ,n ∈ Lq(S,R) with
‖bλ,n‖Lq

→ 0 uniformly in λ ∈ Λ0 as n → ∞ (resp. as (λ, n) → (λ0,∞)) such
that for every index n and every λ the following holds for almost all s ∈ S:

sup
v∈f(λ,s,u1,...,um)

|v|V ≤ δαnbλ,n(s) +
∑

j∈Jc
∞

δ
α−

pj

q
n cj |uj|

pj

q

Uj
(17)

for all (u1, . . . , um) ∈ U with |uj| < εj for all j ∈ J∞. Then (9) (resp. (10))

holds with a function c : (0,∞) → [0,∞] satisfying c(r)
rα

→ 0 as r → 0.

Proof. We use the above notation Φj := Φ̃pj and Ψ := Φ̃q with Φ̃p as in Exam-
ple 4.2 Without loss of generality, we assume cj > 0. Given ε > 0 and C := 1,
it suffices to show by Theorem 4.6 that (16) holds for all small r > 0 and all
λ ∈ Λ0 (Λ0 a later specified neighborhood of λ0) when we choose aλ,r with
‖aλ,r‖L1

≤ 1 appropriately. For sufficiently small r > 0 there is some largest
index n = n(r) with δn ≥ r and

δn ≥ r

(
ε

cj

) q

αq−pj

(j ∈ J c
∞).

Then n(r) → ∞ as r → 0. Put δ(r) := δn(r). Since δn
δn+1

is bounded, it follows

from our choice of n(r) (since the right-hand sides of the above formulas depend

linearly on r) that q(r) := δ(r)
r

is bounded as r → 0. Hence, putting

aλ,r(s) := ε−qq(r)αq |bλ,n(r)(s)|
q ,

we thus have ‖aλ,r‖L1
→ 0 uniformly with respect to λ ∈ Λ0 as r → 0 (resp. as

(λ, r) → (λ0, 0)). In particular, there is some R > 0 (and some neighborhood
Λ0 of λ0) with ‖aλ,r‖L1

≤ C = 1 for all r ∈ (0, R) and all λ ∈ Λ0. We may also
assume that R ≤ εj for all j ∈ J∞.

If u = (u1, . . . , um) ∈ U is such that |uj| ≥ εj for some j ∈ J∞ then we

have for all r ∈ (0, R) that
|uj |

r
> 1, and so (16) holds trivially, since the j-th

term in the last sum is infinite. Otherwise, we can use (17), and so for each
v ∈ f(λ, s, u), we have by Jensen’s inequality for every r ∈ (0, R)

|v|q ≤ δ(r)αq |bλ,n(r)(s)|
q +

∑

j∈Jc
∞

δ(r)αq−pjcqj |uj|
pj
Uj

≤ εqrαqaλ,r(s) +
∑

j∈Jc
∞

εqrαq−pj |uj|
pj
Uj

.

Hence, (16) holds in all cases for all r ∈ (0, R).
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Theorem 4.8 is a generalization of [1, Theorem 4] (or of [5, Theorem 3.13])
and actually even in case m = 1 somewhat easier to verify: For λ ∈ Λ, one only
has to determine countably many functions bλ,n, needs to verify (17) only for
small numbers δn > 0, and also the constants cj can be chosen conveniently for
the verification. Note that the converse implication of [1, Theorem 4] implies
that Theorem 4.8 is close to the best possible one can say.

In contrast to what is claimed in [1, Theorem 4], our result even holds if
µ(S) = ∞ (moreover, recall that we even do not suppose here that S be σ-
finite). This is rather surprising, because, for instance, there is no absolutely
continuous embedding of Lq(R) into Lp(R) for p > q, not even an embedding, in
general, although one might expect from [5, Sections 3.6 and 4.6] that such an
absolutely continuous embedding is necessary for the existence of nondegenerate
differentiable superposition operators. But this is not the case. In fact, the
following special case of Theorem 4.8 shows that there are a lot of superposition
operators from e.g. Lp(R) into Lq(R) if p > q which are differentiable at 0
although they are not degenerate in any sense, also not degenerate in the sense
that their image near 0 does not have full support.

Theorem 4.9. Let X = Lp1(S, U1) × · · · × Lpm(S, Um) with pj ∈ [1,∞], and
Y = Lq(S, V ) with q ∈ [1,∞), and let α ∈ (0,∞) be such that αq < pj for all
j. Let J∞ and J c

∞ denote the set of all indices j such that pj = ∞ or pj 6= ∞,
respectively. Let Λ0 ⊆ Λ. Suppose that there are N ∈ N, C ∈ (0,∞), and
ε ∈ (0,

pj
q
− α) such that for each j ∈ J∞ there are εj > 0, and for each j ∈ J c

∞

and each λ ∈ Λ0, there are N numbers βλ,j,k ∈ [α + ε,
pj
q
) (k = 1, . . . , N) and

corresponding measurable functions aλ,j,k : S → R with

∫

S

|aλ,j,k(s)|
pjq

pj−βλ,j,kq ds ≤ C (k = 1, . . . , N)

such that for almost all s ∈ S the estimate

sup
v∈f(λ,s,u1,...,um)

|v|V ≤
∑

j∈Jc
∞

N∑

k=1

aλ,j,k(s) |uj|
βλ,j,k

Uj
(18)

holds for all u = (u1, . . . , um) ∈ U satisfying |uj| < εj for each j ∈ J∞. Then
the hypotheses of Theorem 4.8 are satisfied, hence (9) holds with a function

c : (0,∞) → [0,∞] satisfying c(r)
rα

→ 0 as r → 0.
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Proof. For fixed λ ∈ Λ0, the summand corresponding to j and k in (18) becomes
in view of pj > βλ,j,kq by Young’s inequality for any δ > 0

(
δ

(pj−αq)βλ,j,k
pj aλ,j,k(s)

)(
δ
−

(pj−αq)βλ,j,k
pj |uj|

βλ,j,k

Uj

)

≤
pj − βλ,j,kq

pj

(
δ

(pj−αq)βλ,j,k
pj |aλ,j,k(s)|

) pj

pj−βλ,j,kq

+
βλ,j,kq

pj

(
δ
−

(pj−αq)βλ,j,k
pj |uj|

βλ,j,k

Uj

) pj

βλ,j,kq

≤ δ
(pj−αq)βλ,j,k
pj−βλ,j,kq |aλ,j,k(s)|

pj

pj−βλ,j,kq + δα−
pj

q |uj|
pj

q

Uj
.

Now observe that the power of δ in the first summand is uniformly larger than α
since βλ,j,k ≥ α + ε.

It appears not so easy to include the two limit cases βλ,j,k ∈ {α,
pj
q
} in

Theorem 4.9. The upper choice βλ,j,k =
pj
q
will cause no problems if µ(S) < ∞

and aλ,j,k are constant, as we will see. To allow the lower choice βj,n = α, one
will at least have to assume that f(λ, s, u) descends to 0 strictly faster than |u|α

in a sense. It seems that also this can be treated in a satisfactory way only if
µ(S) < ∞.

We will prepare now such a (sufficient) criterion. To this end, we introduce
the notion of uniform convergence in measure: Suppose that for each λ ∈ Λ
there is a sequence of functions yλ,n : S → [0,∞]. Then we write

µ-limsup
λ∈Λ0
n→∞

yλ,n = 0 or µ-limsup
(λ,n)→(λ0,∞)

yλ,n = 0 (19)

if

lim
n→∞

µ∗({s ∈ S : yλ,n(s) > ε}) = 0 uniformly w.r.t. λ ∈ Λ0,

or

lim
(λ,n)→(λ0,∞)

µ∗({s ∈ S : yλ,n(s) > ε}) = 0,

respectively, holds for each ε > 0, where µ∗ denotes the outer measure for µ.
We point out that this definition does not require that the functions yλ,n are
measurable or that µ(S) < ∞. However, if this is the case, the condition (19)
can be described much easier.

Proposition 4.10. If µ(S) < ∞, yλ,n are measurable (and λ0 has a countable
base of neighborhoods), then (19) holds if and only if for every sequence λn ∈ Λ0

(resp. λn → λ0) every subsequence of yλn,n contains a subsequence nk with
yλnk

,nk
(s) → 0 for almost all s ∈ S.
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Proof. By Egorov’s and Riesz’ theorems, the condition in the claim is equivalent
to the fact that for every sequence λn ∈ Λ0 (resp. λn → λ0) and each ε > 0 we
have

lim
n→∞

µ({s ∈ S : yλn,n(s) > ε}) = 0,

see e.g. [23, Proposition 2.2].

Roughly speaking, the following result states that under the condition that
f(λ, ·, u) = o(|u|α) in measure, one does not need to require in Theorem 4.8 that
‖bλ,n‖Lq

→ 0, but mere boundedness suffices. However, we are able to prove
this only if the functions bλ,n are constant and independent of λ:

Proposition 4.11. Let X = Lp1(S, U1) × · · · × Lpm(S, Um) with pj ≥ 1, and

Y = Lq(S, V ) with q ≥ 1. Suppose α ∈ (0,∞), and αq < pj < ∞ for all j. Let

b, Cj ∈ [0,∞) and a monotone null sequence δn > 0 with bounded δn
δn+1

be given

such that for any λ ∈ Λ0 (resp. any λ ∈ Λ) and any index n the following holds

for almost all s ∈ S:

sup
v∈f(λ,s,u1,...,um)

|v|V ≤ δαnb+
m∑

j=1

δ
α−

pj

q
n Cj |uj|

pj

q

Uj
(20)

for all u = (u1, . . . , um) ∈ U . If

µ-limsup
λ∈Λ0
n→∞

sup {|v|V : v ∈ f(λ, ·, u), |u|U < δn}

δαn
= 0 (21)

(or

µ-limsup
(λ,n)→(λ0,∞)

sup {|v|V : v ∈ f(λ, ·, u), |u|U < δn}

δαn
= 0, (22)

respectively) holds, then the hypotheses of Theorem 4.8 are satisfied for some bλ,n
and cj.

Proof. Without loss of generality, we may assume that the product space U
is equipped with the max-norm. By (21) resp. (22), there are a null sequence
dn > 0 and sets Eλ,n ∈ Σ with µ(Eλ,n) → 0 uniformly w.r.t. λ ∈ Λ0 as n → ∞
(resp. as (λ, n) → (λ0,∞)) and

S \ Eλ,n ⊆ {s ∈ S : |v|V ≤ dnδ
α
n whenever v ∈ f(λ, s, u), |u|U < δn} .

We show that the hypotheses of Theorem 4.8 hold with cj := Cj + b and

bλ,n(s) :=

{
b if s ∈ Eλ,n

dn if s /∈ Eλ,n.
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Indeed, ‖bλ,n‖Lq
→ 0 follows from µ(Eλ,n) → 0 and dn → 0. We have to prove

that (17) holds. In case s ∈ Eλ,n, (17) follows in view of b = bλ,n(s) and Cj ≤ cj
immediately from (20). In case s ∈ S \ Eλ,n, we assume first |u|U < δn. Then
our choice of Eλ,n implies

sup
v∈f(λ,s,u)

|v|V ≤ dnδ
α
n = δαnbλ,n(s)

which in turn implies (17) also in this case. In the remaining case |u|U ≥ δn
there is some index j0 = j with |uj|Uj

≥ δn. With this j0, the first term on the

right-hand side of (20) is

δαnb = δ
α−

pj0
q

n δ
pj0
q

n b ≤ δ
α−

pj0
q

n b |uj0|
pj0
q

Uj0
,

hence combining this estimate with the j0-th summand in (20), we obtain (17)
also in this case.

As [1, Example at end of Section 1] shows, the criteria of Proposition 4.11
and Theorem 4.9 are far from being necessary. However, hypotheses (20), (21),
and (22) of Proposition 4.11 are rather simple to verify as we show in the
following two lemmas.

The first of these lemmas means that Proposition 4.11 allows to treat the
limit cases βλ,j,k ∈ {α,

pj
q
} which had to be omitted in Theorem 4.9. Since we

are restricted to the case of constant coefficients and µ(S) < ∞ anyway, it is
no loss of generality to consider estimates which involve only these limit cases,
i.e., it is reasonable to formulate the hypothesis without further interpolating
numbers βλ,j,k as we did in Proposition 4.11.

Lemma 4.12. Let X = Lp1(S, U1) × · · · × Lpm(S, Um) with pj ≥ 1, and Y =
Lq(S, V ) with q ≥ 1, and α ∈ (0,∞), αq < pj < ∞. Assume that there are
cj,1, cj,2 ∈ [0,∞) such that for every λ ∈ Λ we have that for almost all s ∈ S
the estimates

sup
v∈f(λ,s,u1,...,um)

|v|V ≤
m∑

j=1

(
cj,1 |uj|

pj

q

Uj
+ cj,2 |uj|

α

Uj

)
(23)

for every (u1, . . . , um) ∈ U . Then there are b, Cj ∈ [0,∞) such that (20) holds
for every δn ∈ (0, 1].

Proof. For any δ ∈ (0, 1] we have

cj,1 |uj|
pj

q

Uj
≤ cj,1δ

α−
pj

q |uj|
pj

q

Uj
,
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and, moreover, the same calculation as in the proof of Theorem 4.9 with
βλ,j,k := α and aj,n(s) := cj,2 (using Young’s inequality) shows that for any
δ > 0

cj,2 |uj|
α

Uj
≤ δαc

pj

pj−αq)

j,2 + δα−
pj

q |uj|
pj

q

Uj
.

Adding both estimates, we obtain (20) from (23) for every δn = δ ∈ (0, 1].

Lemma 4.13. Let α ∈ (0,∞). Assume µ(S) < ∞ (and that λ0 has a countable
base of neighborhoods). Suppose that for any sequence λn ∈ Λ0 (resp. λn →
λ0). there are a monotone null sequence rn > 0, with rn

rn+1
being bounded, and

measurable functions fn : S → [0,∞] satisfying

sup
|u|U<rn

sup
v∈f(λn,s,u)

|v|V ≤ fn(s) (24)

for almost all s ∈ S and such that every subsequence contains a subsequence nk

such that

lim
k→∞

fnk
(s)

rαnk

= 0 (25)

for almost all s ∈ S. Then (21) (resp. (22)) holds for all null sequences δn > 0.

Proof. If (21) resp. (22) fails for a null sequence δn > 0 then there are ε, δ > 0,
λn ∈ Λ0 (resp. λn → λ0) and un ∈ U with |un|U < δn, and

µ∗({s ∈ S : sup
v∈f(λn,s,un)

|v|V > εδαn}) > δ (26)

for infinitely many n. Let rn > 0 be the corresponding sequence of the hypoth-
esis. Since δn → 0 and rn is a monotone null sequence with rn

rn+1
≤ c0, there are

numbers nk → ∞ with c−1
0 rnk

≤ δk < rnk
for all large k. By (24), we obtain

from (26) that µ∗({s ∈ S : fnk
(s) > εc−α

0 rαnk
}) > δ for infinitely many k which

is a contradiction in case µ(S) < ∞, since Egorov’s theorem implies by (24)
that fnk

r−α
nk

→ 0 in measure (cf. proof of Proposition 4.10).

Summarizing the previous observations, we obtain for instance the following
convenient condition.

Theorem 4.14. Let X = Lp1(S, U1) × · · · × Lpm(S, Um) with pj ≥ 1, and
Y = Lq(S, V ) with q ≥ 1. Let α ∈ (0,∞), Λ0 ⊆ Λ, and λ0 have a countable base
of neighborhoods in Λ. Suppose that αq < pj < ∞ for all j and that µ(S) < ∞.
Assume that for any sequence λn ∈ Λ0 (resp. λn → λ0) there are a monotone
null sequence rn > 0, rn

rn+1
being bounded, and measurable functions fn : S →

[0,∞] satisfying (24) for almost all s ∈ S and such that every subsequence
contains a subsequence with (25) for almost all s ∈ S. Finally, assume that for
almost all s ∈ S the estimate (23) holds for all (u1, . . . , um) ∈ U .

Then (9) (resp. (10)) holds for all small r > 0 with a function c : (0,∞) →

[0,∞] satisfying c(r)
rα

→ 0 as r → 0.
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The proof follows from Proposition 4.11 whose assumptions are verified by
the previous lemmas.

For easier reference, we give some particular application of Remark 4.7.

Theorem 4.15. Let the hypotheses of Theorem 4.14 be satisfied only on S \E
where E is a finite union of atoms Si1 , . . . , Sin, and let XE ⊆ X denote the
subset of all functions which are constant on each Sij . If

lim
r→0

sup
|u|U<r

sup
λ∈Λ0

sup
s∈E

supv∈f(λ,s,u) |v|

rα
= 0

(or lim
(λ,r)→(λ0,0)
λ ∈ Λ, r > 0

sup
|u|U<r

sup
s∈E

supv∈f(λ,s,u) |v|

rα
= 0 respectively),

then (13) (resp. (14)) holds with D = Λ×XE.

As described in the beginning of this section, all results of this section could
be formulated in terms of classical Fréchet derivatives (in the single-valued and
parameter-independent case) by applying them in case α = 1 to the auxiliary
function (8). As an example, here is such a reformulation of Theorem 4.14. To
simplify the measurability hypotheses, we assume separability of the spaces Uj.

Theorem 4.16. Let U := U1 × · · · × Um be separable, X = Lp1(S, U1)× · · · ×
Lpm(S, Um), and Y = Lq(S, V ) with 1 ≤ q < pj < ∞ for all j. Let µ(S) < ∞.
Suppose that f : S×U → V is such that f(·, u) is measurable for all u ∈ U and
that there is a ∈ Lq(S) such that for almost all s ∈ S the growth condition

|f(s, u)| ≤ a(s) +
m∑

j=1

bj |uj|
pj

q

Uj

holds for all u = (u1, . . . , um) ∈ X. Let x0 ∈ X be such that f(s, ·) is for almost
all s ∈ S continuous on U and Fréchet differentiable at x0(s) with derivative
fu(s, x0(s)) : U → V , and that there are cj,i ∈ [0,∞) such that for almost all
s ∈ S the estimate

|f(s, u+ x0(s))− f(s, x0(s))− fu(s, x0(s))u| ≤
m∑

j=1

(
cj,1 |uj|

pj

q

Uj
+ cj,2 |uj|Uj

)

holds for every u=(u1, . . . , um)∈U . Then F (x)(s) :=f(s, x0(s)) maps X into Y
and is Fréchet differentiable at x0 with derivative (F ′(x)h)(s)=fu(s, x0(s))(h(s)).

Proof. It is well-known that F : X → Y . The claim about the derivative follows
from Theorem 4.14 with α = 1 and the function (8). Here we use that the

function fr(s) := sup|u|<r |f̃(λ, s, u)|V occurring in (24) is measurable for every
r > 0, since U is separable. Indeed, if {ũ1, ũ2, . . . } is a countable dense subset

of {u ∈ U : |u| < r}, the functions fr,n(s) := |f̃(λ, s, un)|V are measurable and
satisfy fr(s) = supn fr,n(s) for almost all s ∈ S.
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For m = 1 and U1 = V = R, Theorem 4.16 becomes a variant of [27,
Theorem 7] (for the latter also some s-dependency of c1,2 is admissible and thus
actually also a corresponding variant of Theorem 4.9 is covered). Various similar
differentiability criteria for the classical superposition operator can be found in
literature, see e.g. [18, 19] or [7, Proposition 1.1.4] where, however, usually the
continuity (in [7, Proposition 1.1.4] even Hölder continuity) of fu(s, ·) on the
whole space is required (in contrast, we only require that this function is defined
on u = x0(s)).

However, the main new contribution of this section concerns the dependency
on the parameter λ which was apparently only studied in some very particular
cases in the setting of Sobolev spaces (see the comments in the next part of the
paper). The multivalued case even seems to be completely new.

Acknowledgement. The paper was written in the framework of a research
visiting position at the Academy of Sciences of the Czech Republic under
the Grant IAA100190805 of the GAAV and the Institutional Research Plan
AV0Z10190503. Financial support is gratefully acknowledged.

The author wants to thank M. Kučera for inspiring discussions.
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