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Abstract. For a given single- or multivalued function f and “atoms” Si, let Sf (λ, x)
be the set of all measurable selections of the function s 7→ f(λ, s, x(s)) which are
constant on each Si. It is discussed how this definition must be extended so that Sf

can serve as a right-hand side for PDEs when one is looking for weak solutions in
Sobolev spaces. Continuity and differentiability of the corresponding operators are
studied.
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1. Introduction

This paper is a continuation of [19], where multivalued superposition operators
with atoms in spaces of measurable functions had been studied. The aim of this
paper is to apply that study in spaces of Sobolev functions. Let us briefly recall
the motivation of atoms which originates from obstacle problems for PDEs.
Consider on a domain S an equation like

−∆u(s) ∈ f(λ, s, u(s),∇u(s)) on S, u|∂S = 0, (1)

where f is either single-valued or also contains some “jumps”, e.g. for some
real-valued functions g, h, u0

f(λ, s, u, v) =





{g(λ, s, u, v)} if u < u0(λ, s, v)

[g(λ, s, u, v)− h(λ, s, u, v), g(λ, s, u, v)] if u = u0(λ, s, v)

{g(λ, s, u, v)− h(λ, s, u, v)} if u > u0(λ, s, v);
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such jumps are an important tool for modeling unilateral obstacles, e.g. a source
or sink working under some conditions (see [8, 9, 18] for more realistic such
problems described by systems of equations). Now it can happen that on some
disjoint subsets Si ⊆ S (i ∈ I) the obstacle does not act “pointwise” but only
in an averaged sense, mathematically e.g. described by integrals like

−∆u(s) ≡ const ∈ f

(
λ, s,

∫

Si

u(t) dt,

∫

Si

∇u(t) dt

)
on Si,

−∆u(s) ∈ f(λ, s, u(s),∇u(s)) on S \
⋃

i∈I

Si, u|∂Ω = 0,
(2)

see [18]. Heuristically, on the obstacle Si the “obstacle’s cause” (u,∇u) is
averaged on the right-hand side. Hence, it makes sense, heuristically, to require
as in (2) that the “obstacle’s effect” −∆u should (in the simplest case) be
constant on Si. In fact, the latter follows even automatically in similar problems
from a natural weak formulation [7, 10].

Now the operator on the right-hand side of (2) can be described as the com-
position of differential and integral operators and of the (multivalued) operator

Sf (λ, u, v) :={y : y measurable, y(s) ∈ f(λ, s, u(s), v(s)) a.e.,

and y|Si
a.e. constant for every i}.

We call Sf the superposition operator with parameter λ and atoms Si. Mathe-
matically, the meaning of the atoms is that we do not consider arbitrary mea-
surable selections of f(λ, ·, u(·), v(·)), but only those selections which are mea-
surable on the “reduced” measure space where we identify Si as atoms of the
measure space (recall that measurable functions are by definition a.e. constant
on atoms of a measure space).

As mentioned above, the aim of the paper is to study continuity and differ-
entiability properties of Sf in Sobolev spaces. Usually, the latter would follow
by standard procedures (embedding theorems) from the corresponding results
in Lp spaces which was studied in [19]. Unfortunately, due to the multivalued-
ness of f , there can occur a surprising difficulty: A natural way to define weak
solutions of (1) in the Sobolev space W 1,2

0 (S) is to define them as those u for
which the variational equation

∫

S

∇u(s) · ∇ϕ(s) ds =

∫

S

y(s)ϕ(s) ds for all ϕ ∈ W 1,2
0 (S) (3)

holds with some y ∈ Sf (λ, u,∇u). If Sf (λ, u,∇u) is single-valued, it is equiva-
lent to require

∫

S

∇u(s)·∇ϕ(s) ds∈

{∫

S

y(s)ϕ(s) ds :y∈Sf(λ, u,∇u)

}
for all ϕ∈W 1,2

0 (S), (4)
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but in the multivalued case, it is not clear whether these equations are actually
equivalent (i.e., whether y in (4) can be chosen independent of ϕ). On the one
hand, we thus have a problem of heuristics: Is (3) or (4) the “natural” weak for-
mulation of (1)? On the other hand, no matter how we answer this question, we
have a serious mathematical problem if we want to apply e.g. degree theory for
multivalued maps: To apply this theory, one needs that the multivalued map is
upper semicontinuous and has closed values. However, roughly speaking, under
natural hypotheses, the former can be proved for the right-hand side of (3), and
the latter for the right-hand side of (4), but not vice versa. To solve the math-
ematical and the heuristic problem simultaneously, we will show that actually
the corresponding operators are the same, and so (cf. Examples 3.2 and 3.4)
the problems (3) and (4) are actually equivalent (under natural hypotheses),
and the corresponding maps are upper semicontinuous and have closed values.
To the author’s knowledge this equivalence is a new result (for multivalued su-
perposition operators) even without parameters and atoms, but the atoms Si

bring an additional aspect into its proof: Note that it is crucial that the test
function ϕ in (3) and (4) is not assumed to be constant on each Si, but only
the selection y of Sf should have this property. This explains that it is not
sufficient to just pass to a measure space with atoms, but that the set Si must
be considered as a feature of Sf only.

2. General Notations

By a multivalued function F : X ⊸ Y , we mean a function from X into the
powerset of Y . In contrast to usual practice, we will allow that F (x) is empty.
As usual for multivalued functions, we will use the notation

F (X0) :=
⋃

x∈X0

F (x) (X0 ⊆ X).

In [19], we had given the definition of upper/lower semicontinuity (in the uni-
form sense) in a general setting. We repeat this definition here for the simpler
setting that Y is metric space. In this case, an ε-uniform neighborhood of a
set M ⊆ Y is the set of all y ∈ Y which have distance less than ε to M . In
contrast, a topological neighborhood of M is just any set N ⊆ Y containing an
open subset containing M .

Definition 2.1. Let F : X ⊸ Y be a multivalued function between a topolog-
ical space X and a topological (metric) space Y .

1. F is upper semicontinuous at x0 ∈ X (in the uniform sense) if for each
topological (ε-uniform) neighborhood N ⊆ Y of F (x0) there is a neigh-
borhood M ⊆ X of x0 with F (M) ⊆ N .
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2. F is lower semicontinuous at x0 ∈ X if for each y ∈ F (x0) and each
topological neighborhood N ⊆ Y of y there is a neighborhood M ⊆ X of
x0 with F (x) ∩M 6= ∅ for each x ∈M .

3. F is lower semicontinuous at x0 ∈ X in the uniform sense if for each
ε > 0 there is a neighborhood M ⊆ X of x0 such that for each x ∈ M
and each y ∈ F (x0) there is some z ∈ F (x) with d(y, z) < ε.

What we call upper/lower semicontinuous at x0 in the uniform sense is in
literature sometimes called upper/lower semicontinuous at x0 in the ε-sense [1]
or (δ, ε)-upper/lower semicontinuous [3]. The following result was obtained
in [19] in a more general setting.

Proposition 2.2. If F is upper semicontinuous at x0 and Y is a metric space,
then F is upper semicontinuous at x0 in the uniform sense; the converse holds
if F (x0) is compact. If F is lower semicontinuous at x0 in the uniform sense
then it is lower semicontinuous at x0; the converse holds if Y is a metric space
and F (x0) is precompact.

Throughout this paper, (S,Σ, µ) will denote a complete σ-finite measure
space, and Si ∈ Σ (i ∈ I) will denote a fixed family of pairwise disjoint sets
with µ(Si) > 0 (i ∈ I) which will play the role of atoms mentioned in the
introduction. It is explicitly admissible that I = ∅, in which case the results of
this paper deal with “ordinary” multivalued superposition operators. As shown
in the first part of the paper, I is at most countable.

Let (U, |·|) and (V, |·|) be normed spaces, and Λ is a topological space. Then
every map f : Λ×S×U ⊸ V induces a (multivalued and parameter-dependent)
“superposition operator Sf with the atoms (Si)i∈I” in the following sense.

Definition 2.3. For f : Λ × U ⊸ V , let Sf : Λ × M (S, U) ⊸ M (S, V ) be
defined as follows. For λ ∈ Λ and x ∈ M (S, U), let Sf (λ, x) denote the set of
all y ∈ M (S, V ) with the following two properties.

1. y(s) ∈ f(λ, s, x(s)) for almost all s ∈ S.

2. y|Si
is constant (almost everywhere) for every i ∈ I.

In particular, Sf depends on the atoms Si (i ∈ I), although we do not mark
this dependency explicitly in the notation.

3. Continuity and Differentiability in Sobolev Spaces

In the weak formulation of PDEs, one is usually not directly interested in the su-
perposition operator but with a related operator which occurs e.g. in (3) or (4).
In this section, we consider, roughly speaking, “superposition operators” F and
FK defined by the right-hand side of (3) and (4), respectively. For F , we can
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transfer the continuity results of the first part of the paper in a straightforward
manner (Theorem 3.3), and concerning FK , we can prove that the values are
closed or even compact (Theorem 3.10). The main task of this section will be
to show that both operators actually coincide (Theorem 3.7) so that we can
conclude in Theorems 3.11 and 3.13 that F simultaneously is continuous and
has closed or compact values (and thus is e.g. upper semicontinuous not only in
the uniform sense). As a side result, the equality of the corresponding operators
implies that (3) and (4) are actually equivalent. At the end of the section, we
also show how the differentiability results of [19] carry over to F .

In order to not overburden this paper with even more technicalities, we
restrict ourselves to the setting of classical (nonweighted) Sobolev spaces and
measure spaces of finite measure, although generalizations would be possible
and are actually straightforward.

Let Ω ⊆ R
N be a (not necessarily bounded) domain with a Lipschitz bound-

ary. Let Ω0 ⊆ Ω be a subset of finite measure and Γ ⊆ ∂Ω be a subset of finite
(N − 1)-dimensional Hausdorff measure. Here, the hypotheses Ω0 ⊆ Ω and
Γ ⊆ ∂Ω are only for the sake of simplicity of notation; all results in this section
remain true (with appropriate change in the notation) if Ω0 ⊆ Ω has finite mea-
sure and Γ ⊆ Ω is a subset of a Lipschitz path with finite (N − 1)-dimensional
Hausdorff measure.

We will consider the measure space S := Ω0 ∪ Γ. The atoms Si ⊆ S (i ∈ I)
can even be measurable subsets of S, i.e., Si can even be the union of a subset
of Ω0 and of Γ.

Let U1, . . . , Um be real normed spaces, p1, . . . , pm ∈ [1,∞], and W0 be a
linear subspace of W 1,p1(Ω, U1)× · · · ×W 1,pm(Ω, Um). We use the notations

p∗0,i :=





piN

N−pi
if N > pi

∈ [1,∞) if N = pi > 1

∞ if N < pi or N = pi = 1,

p∗1,i :=





pi(N−1)
N−pi

if N > pi

∈ [1,∞) if N = pi > 1

∞ if N < pi or N = pi = 1,

where in case N = pi > 1 we mean that one can choose any number from the
interval [1,∞) in the definition. We put

X:=
(
Lp∗

0,1
(Ω0, U1)×· · ·×Lp∗

0,m
(Ω0, Um)

)
×
(
Lp1(Ω0, (U

∗
1 )

N)×· · ·×Lpm(Ω0, (U
∗
m)

N)
)

⊕
(
Lp∗

1,1
(Γ, U1)×· · ·×Lp∗

1,m
(Γ, Um)

)
;

here and in the following, we denote for a normed space U its dual space by U∗.
Similarly, let V1, . . . , Vn be real normed spaces, q1, . . . , qn ∈ [1,∞], and

let W be a linear subspace of W 1,q1(Ω, V1) × · · · × W 1,qn(Ω, Vn). We put
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V := V1 × · · · × Vn and use the notations

q∗0,i :=





qiN

qi(N+1)−N
if N > qi

∈ (1,∞] if N = qi > 1

1 if N < qi or N = qi = 1,

q∗1,i :=





qi(N−1)
qiN−N

if N > qi

∈ (1,∞] if N = qi > 1

1 if N < qi or N = qi = 1,

choose qj,i ≥ q∗j,i, and put

Y :=
(
Lq0,1(Ω0, V

∗
1 )× · · · × Lq0,n(Ω0, V

∗
n )
)
⊕
(
Lq1,1(Γ, V

∗
1 )× · · · × Lq1,n(Γ, V

∗
n )
)
.

Occasionally, we will also consider the space

Y ′ :=
(
Lq′

0,1
(Ω0, V1)× · · · × Lq′

0,n
(Ω0, Vn)

)
⊕
(
Lq′

1,1
(Γ, V1)× · · · × Lq′

1,n
(Γ, Vn)

)

where 1
q′j,i

+ 1
qj,i

= 1.

We will assume throughout that q0,i < ∞ (if Ω0 6= ∅) and that q1,i < ∞
(if Γ 6= ∅). In particular, in the limit case qi = 1 < N , our considerations only
apply when Γ = ∅ (although one could treat this case by considering Orlicz
spaces, but we will not do this here). The reason for the choice of the constants
are of course the Sobolev and trace embedding theorems which in our case can
be summarized in the following result.

Proposition 3.1. The linear maps T0 : W0 →X, T1 : W→Y ′, and T : Y →W ∗,
defined (in the usual sense of traces) by T0u := (u|Ω0

,∇u|Ω0
, u|Γ), T1v :=

(v|Ω0
,∇v|Γ), and

(Tv)w :=

∫

Ω0

v(s)w(s) ds+

∫

Γ

v(s)w(s) ds

are bounded. Moreover, T1 and T are compact maps if V1, . . . , Vn are finite-
dimensional and

N ≥ qi =⇒
(
q0,i > q∗0,i and q1,i > q∗1,i

)
(i = 1, . . . , n). (5)

Proof. The claims about T and T0 follow from classical embedding theorems
(see e.g. [20]). Note that Y ⊆ (Y ′)∗, and T is the restriction of the adjoint
operator T ∗

1 to Y and thus bounded resp. compact by Schauder’s theorem.
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Let now Λ be a topological space, and for j = 1, . . . , n, let

f0,j : Λ× Ω0 ×

m∏

i=1

Ui ×

m∏

i=1

(U∗
i )

N
⊸ V ∗

j

f1,j : Λ× Γ×
m∏

i=1

Ui ⊸ V ∗
j .

Recall that we assumed S = Ω ∪ Γ. We will later consider D ⊆ Λ × X. Let
E ⊆ S be a (possibly empty) union of finitely many atoms such that for any
(λ, x) ∈ D the function x is constant on the atoms in E. For almost all s ∈ S\E,
we require the growth estimates

sup
y∈f0,j(λ,s,u1,...,um,v1,...,vm)

|y| ≤ a0,λ,j(s) +
m∑

i=1

b0,i |ui|
p∗
0,i

q0,i +
m∑

i=1

ci |vi|
pi
q0,i

sup
y∈f1,j(λ,s,u1,...,um)

|y| ≤ a1,λ,j(s) +
m∑

i=1

b1,i |ui|
p∗
1,i

q1,i

(6)

where a0,λ,j ∈ Lq0,j(Ω0), a1,λ,j ∈ Lq1,j(Γ) and bk,i, ci ∈ [0,∞). For those i

with N < pi (i.e., with p
∗
k,i = ∞), we replace the terms bk,i |ui|

p∗
k,i

q−1

k,i in (6) by

arbitrary functions bk,i(s, u) with the property that for each r > 0 there are

b0,i,r ∈ Lq0,i(Ω0) and b1,i,r ∈ Lq1,i(Γ) with |bk,i(s, u)| ≤ bk,i,r(s) for |u| ≤ r.

On E, we require instead of (6) only that f0,j(·, s, ·) and f1,j(·, s, ·) are locally
bounded (actually we need the latter only in a neighborhood of (λ0, x0(s)) with
(λ0, x0) ∈ D in Theorem 3.3). We define now piecewise

f : Λ× S ×
m∏

i=1

Ui ×
m∏

i=1

(U∗
i )

N ×
m∏

i=1

Ui ⊸

n∏

j=1

V ∗
j

by

f(λ, s, u, v, w) :=

{∏n

j=1 f0,j(λ, s, u, v) if s ∈ Ω0∏n

j=1 f1,j(λ, s, w) if s ∈ Γ.

Finally, with T, T0 as in Proposition 3.1, we are able to define the map we are ac-
tually interested in: We define F : Λ×W0 ⊸ W ∗ by F (λ, u) := T (Sf (λ, T0(u))).

Example 3.2. Consider for simplicity m = n = 1, U1 = V1 = R. In the
space W = W0 = W 1,2

0 (Ω), the operator J : W0 → W ∗, defined by J(u)(ϕ) :=∫
S
∇u(s) ·∇ϕ(s) ds, is an isomorphism (J = id after an identification W ∗ = W0

with an an equivalent scalar product), and the problem (3) is equivalent to
J(u) ∈ F (λ, u). In this sense, the weak formulation of (1) is the inclusion
u ∈ F (λ, u) (with Ω0 = Ω, Γ = ∅, f0,1 = f).
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Similar examples could be given for problems with boundary conditions
of the type ∂u

∂n
(s) ∈ f1,1(λ, s, u(s)) on Γ ⊆ ∂Ω (in the space W = W0 ={

u ∈ W 1,2(Ω) : u|∂Ω\Γ = 0
}
) or for problems with the p-Laplacian instead of the

Laplacian (working in W = W0 = W 1,p
0 (Ω) with a different auxiliary map J).

It will be convenient to introduce the functions

F0(λ, x)(s) := f(λ, s, x(s))

fs(λ, u) := f(λ, s, u). (7)

Theorem 3.3 (Continuity and Boundedness/Compactness of F ). Under the
growth condition (6) (on S \ E and the locally boundedness on E mentioned
after (6)), the map F is well-defined. Moreover, we have for any (λ0, u0) ∈
D ⊆ Λ×W0:

1. If M0 ⊆ W0 is bounded and Λ0 ⊆ Λ is such that {‖ak,λ,j‖Lqk,j

: λ ∈ Λ0}

are bounded, and that fk,j(·, s, ·) are for s ∈ E uniformly bounded on
D1 := D ∩ (Λ0 ×M0) (k = 0, 1 and j = 1, . . . , n), then Sf (D1) ⊆ Y and
F (D1) ⊆ W ∗ are bounded. If additionally (5) holds and V1, . . . , Vn are
finite-dimensional, the set F (D0) ⊆ W ∗ is even precompact.

2. Let F0(λ0, T0u0) be measurable in the Bochner sense with compact val-
ues. If F0(λ0, T0u0) is constant on each Si (i ∈ I) and assumes only
nonempty values, then F (λ0, u0) 6= ∅. If {ak,λ,j : λ ∈ Λ0} has equicontin-
uous norm in Lqk,j for a neighborhood Λ0 of a point λ0 with a countable
base of neighborhoods, and for almost all s ∈ S the function (7) is upper
semicontinuous at (λ0, T0u0(s)) in the uniform sense, then F : D 7→ W ∗

is upper semicontinuous at (λ0, u0) in the uniform sense.

3. Let for each (λ, u) ∈ D the function F0(λ, T0u) be measurable in the
Bochner sense with nonempty compact values, and be constant on each
of the atoms Si. Then F assumes only nonempty values on D. Sup-
pose in addition that {ak,λ,j : λ ∈ Λ0} has equicontinuous norm in Lqk,j

for a neighborhood Λ0 of a point λ0 with a countable base of neighbor-
hoods, and for almost all s ∈ S the function (7) is lower semicontinuous
at (λ0, T0u0(s)). Then F : D 7→ W ∗ is lower semicontinuous at (λ0, u0).
Moreover, F : D 7→ W ∗ is lower semicontinuous at (λ0, u0) in the uni-
form sense if either (7) is lower semicontinuous at (λ0, T0u0(s)) in the
uniform sense for almost all s ∈ S or if (5) holds and V1, . . . , Vn are
finite-dimensional.

4. If all values of the functions (7) are convex for almost all s ∈ S, then also
all values of Sf and F are convex.

Analogous assertions hold even for the map T ◦ Sf : D0 ⊸ W ∗ at (λ0, x0) ∈
D0 ⊆ Λ×X.
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Proof. It suffices to prove the last statement, i.e., to prove the assertions for
the map T ◦ Sf . Indeed, since id ⊗T0 is bounded and continuous, the cor-
responding assertions for F = T ◦ Sf ◦ (id ⊗T0) then follow with the choice
D0 := (id ⊗T0)(D).

For j = 1, . . . , n and λ ∈ Λ0 let AΛ0
denote the set of all functions

aλ,j(s) :=

{
a0,λ,j(s) if s ∈ Ω0

a1,λ,j(s) if s ∈ Γ.

For s ∈ Ω0 resp. s ∈ Γ, let B0,j(s, u1, . . . , um, v1, . . . , vm) resp. B1,j(s, u1, . . . , um)
denote the set of all v ∈ V ∗

j whose norm is bounded by the sum in (6), and put

B(λ, s, u, v, w) :=

{∏n

j=1B0,j(λ, s, u, v) if s ∈ Ω0∏n

j=1B1,j(λ, s, w) if s ∈ Γ.

Then f |Λ0×S×V � AΛ0
+ B outside of E, and a straightforward estimate with

Minkowski’s inequality shows that S◦
B : X ⊸ Y and, moreover, if X0 ⊆ X

is bounded then S◦
B(X0) is bounded in Y . Hence, also Sf (D ∩ (Λ0 × X0)) ⊆

AΛ0
+ S◦

B(B0) is bounded in Y if AΛ0
is bounded in Y . This implies the first

claim by Proposition 3.1. For the continuity claims, we obtain from [19] that
Sf (λ, x) 6= ∅ resp. that Sf : D0 ⊸ Y is upper/lower semicontinuous (in the
uniform sense) at (λ0, x0) ∈ D0. Hence, the cointinuitity carries over to the
composition T ◦ Sf . The second claim concerning lower semicontinuity follows
from Proposition 2.2.

If the functions (7) assume only convex values for almost all s, then clearly
also Sf (λ, x) is convex for every (λ, x) ∈ Λ × X. Since T is linear, it follows
that T (Sf (λ, x)) is convex; in particular, F assumes only convex values.

Theorem 3.3 is essentially a straightforward application of the continuity
results from [19], combined with standard embedding results. However, it seems
not easy to show that the values F (λ, u) are closed (hence compact under the
additional hypotheses of the first part of Theorem 3.3). For this reason, we will
show that F coincides with a map for which it is easy to show that the values
are closed. For K ⊆ W , we define FK : Λ×X ⊸ W ∗ by

FK(λ, x) =
⋂

ϕ∈K

⋃

y∈Sf (λ,x)

{
z ∈ W ∗ : z(ϕ) =

∫

S

y(s)T1ϕ(s) ds
}

=
⋂

ϕ∈K

{
z ∈ W ∗ : z(ϕ) =

∫

Ω0

y(s)ϕ(s) ds+

∫

Γ

y(s)ϕ|Γ(s) ds

for some y ∈ Sf (λ, x)
}
.

(8)
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A special case of that operator has been introduced in [15]. Of course, we
understand ϕ|Γ in contexts as the above in the sense of traces. Note that
under our growth hypothesis (6), the integrals in (8) are well-defined, because
Sf (λ, x) is contained in Y , and T1(ϕ) ∈ Y ′ (by Theorem 3.3 and Proposition 3.1,
respectively).

Example 3.4. In the setting of Example 3.2, the problem (4) is equivalent
to J(u) ∈ FK(λ, T0u) if K = W . Hence (according to Example 3.2), the
problems (3) and (4) are equivalent if FK(λ, T0u) = F (λ, u) (for K = W ).

We will show that, if K is “large enough” in a certain sense, the equality
FK(λ, x) = T (Sf (λ, x)) holds, which for x = T0u means FK(λ, T0u) = F (λ, u).
The difficulty of this equality (in case K = W ) is that it requires an exchange
of the order of unions and intersections. The case K 6= W is interesting e.g. in
the setting of Example 3.4, where it might be more natural to work with the
cone K of nonnegative functions instead of the full space K = W (in fact, in
earlier results like e.g. [8] only this cone was considered). In order to formulate
precisely what we require for K, we introduce the following notion.

Definition 3.5. Let Z be a projectable space of (classes of) measurable func-
tions x : S → V . We say that a subsetM ⊆ Z is monotonically sub-dense in the
characteristic functions in Z if for any e ∈ V and any E0 ∈ Σ with µ(E0) > 0
and eχ

E0
∈ Z there is a subset K0 ⊆ E0 with µ(K0) > 0 such that eχ

K0
is

contained in the closure of M+∪ (−M+) where M+ denotes the set of all linear
combinations of elements of M with nonnegative coefficients.

Our main hypothesis for the equality FK(λ, x) = T (Sf (λ, x)) will be that
T1(K) be monotonically sub-dense in the characteristic functions in Y ′. The
following observation by standard density arguments shows that this holds if K
is not extremely degenerate on S = Ω0 ∪ Γ.

Proposition 3.6. Suppose that there are V0 ⊆ V and u0 : Ω → [0,∞], such that
for any e0 ∈ V0 and any smooth function ϕ : RN → [0, 1] with compact support
the pointwise product e0ϕu0 belongs to K ⊆ W . Suppose:

1. qk,j > 1 unless possibly k = N = 1.

2. The set V +
0 of all linear combinations of elements of V0 with nonnegative

coefficients has the property that V +
0 ∪ (−V +

0 ) is dense in V .

3. u0(x) 6= 0 for almost all x ∈ S (on Γ ⊆ S in the sense of traces, of
course).

Then T1(K) is monotonically sub-dense in the characteristic functions in Y ′.

Proof. If e∈V and E0∈Σ with µ(E0)>0 are given, we have mesN(E0 ∩Ω0)>0
or mesN−1(E0 ∩ Γ)> 0. Shrinking E0 if necessary, we can assume additionally
that u0(x) ≥ 1/m a.e. on E0 for some m ∈ N. We find by the inner-regularity
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of the measure a compact subset K0 ⊆ Ω0 or K0 ⊆ Γ with mesN(K0) > 0 or
mesN−1(K0) > 0. Then K0 has the property required in Definition 3.5.

More precisely, we show that if e ∈ ±V
+

0 then eχ
K0

∈ Y ′ can be approx-

imated in norm by functions from ±T1(K
+) where K+ denotes the set of all

linear combinations of K+ with nonnegative coefficients. To see this, note that
we have q′k,j < ∞ unless Γ consists of at most two atoms. By Lebesgue’s dom-
inated convergence theorem and since µ(S) < ∞, it thus suffices to show that
we can approximate eχ

K0
almost everywhere by a uniformly bounded sequence

of functions from ±T1(K
+). To this end, we choose a sequence ei ∈ ±V +

0 , a
decreasing sequence of open sets Ui ⊇ K0 with

⋂
i Ui = K0 (here we use the

compactness of K0) and by standard arguments sequences of smooth functions
ϕi, ψi : R

N → R with χ
K0

≤ ϕi ≤ χ
Ui

and ψi(x) → u0(x) for almost all x ∈ K0.
For the latter note that u0 belongs to some Sobolev space and thus can be ap-
proximated by smooth functions in the norm of that space. Since u0(x) ≥ 1/m
for x ∈ K0, we can also assume that ψi(x) ≥ 1/m for all x ∈ R

N . Hence,
the pointwise product vi = eiϕiu0/ψi belongs to K

+, and T1(vi) are uniformly
bounded and converge a.e. to eχ

K0
, as required.

We also have to introduce the measure space S0 which we obtain from S
by identifying the sets Si (i ∈ I) as actual atoms in S0 with the same measure
(this causes no measure theoretic difficulties since I is at most countable). We
write S0,0 and S1,0 for that part of S0 which comes from identifying the atoms
in Ω0 or Γ, respectively, and define

Y ′
0 :=

(
Lq′

0,1
(S0,0, V1)×· · ·×Lq′

0,n
(S0,0, Vn)

)
⊕
(
Lq′

1,1
(S0,1, V1)×· · ·×Lq′

1,n
(S0,1, Vn)

)
.

We assume here that the number of atoms Si which contain parts of Ω0 and Γ
simultaneously is finite. Under this hypothesis, we may even assume without
loss of generality that S0,0∩S1,0 = ∅, since we can join the corresponding atoms
to either S0,0 or S1,0, and a different choice only changes the norm in Y ′

0 to an
equivalent norm.

There is a natural linear surjection P : Y ′ → Y ′
0 , defined by

Px(s) :=





x(s) if s /∈
⋃

i∈I

Si

1

µ(Si)

∫

Si

x(t) dt if s ∈ Si.

By Young’s inequality, we have
∫

Si

|Px(s)|p ds ≤

∫

Si

1

µ(Si)

∫

Si

|x(t)|p dt ds =

∫

Si

|x(s)|p ds (1 ≤ p <∞),

i.e., the map P : Y ′ → Y ′
0 is bounded (by 1 if there are no atoms which inter-

sect Ω0 and Γ simultaneously). P is really a surjection and actually has norm at
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least 1, since for any function y0 ∈ Y ′
0 , we can define a corresponding preimage

y ∈ Y ′ with ‖y‖Y ′ = ‖y0‖Y ′

0

by the formula

y(s) :=




y0(s) if s /∈

⋃

i∈I

Si

y0(Si) if s ∈ Si.
(9)

In particular, it follows that for any dense setM ⊆ Y ′ the image P (M) is dense
in P (Y ′) = Y ′

0 .

Theorem 3.7. Let (λ0, x0) ∈ Λ×X. Assume the growth condition (6) (on S\E
and the locally boundedness on E mentioned after (6)), at least for λ = λ0; then
T (Sf (λ0, x0)) ⊆ FK(λ0, x0). Moreover, assume one of the following:

1. The linear hull of K is dense in W , and Sf (λ0, x0) is at most single-
valued. (The latter holds in particular, if the functions fk,j are at most
single-valued.)

2. There are only finitely many atoms Si which intersect Ω0 and Γ simultane-
ously. The function F0(λ0, x0) is Bochner measurable, and for almost all
s ∈ S the set F0(λ0, x0)(s) is convex and closed w.r.t. the weak∗ topology.
The spaces V1, . . . , Vn are separable. Moreover, if Sk,0 (k ∈ {0, 1}) does
not consist of only finitely many atoms, then suppose that qk,j > 1 and Vj
has the Radon-Nikodym property w.r.t. Sk,0 for all j ∈ {1, . . . , n}. T1(K)
is monotonically sub-dense in the characteristic functions in Y ′. Finally,
assume that there is a finite constant C such that the family of all linear
combinations of the form ϕ =

∑ℓ

k=1 µkϕk with ℓ ∈ N, vk ∈ K, such that

ℓ∑

k=1

|µk| ‖P (T1(ϕk))‖Y ′

0

≤ C ‖P (T1(ϕ))‖Y ′

0

(10)

is dense in W .

3. If F0(λ0, x0) is constant on each Si (i ∈ I), the hypothesis that T1(K)
be monotonically sub-dense in the characteristic functions in Y ′ can be
relaxed to the hypothesis that P (T1(K+)) be monotonically sub-dense in
the characteristic functions in Y ′

0 .

Then T (Sf (λ0, x0)) = FK(λ0, x0).

For the case I = ∅, i.e., if we consider superposition operators without
atoms, the condition for K concerning (10) becomes exactly the condition im-
posed on K in [15].

In most applications, one will work with reflexive spaces V1, . . . , Vn in which
case there is no need to care about the Radon-Nikodym property or the weak∗

topology:
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Remark 3.8. Let V1, . . . , Vn be separable and reflexive. Then V1, . . . , Vn have
the Radon-Nikodym property w.r.t. any σ-finite measure space, and moreover,
if F0(λ0, x0)(s) is convex and closed w.r.t. the norm topology then it is also
closed w.r.t. the weak topology and thus also closed w.r.t. the weak∗ topology.

Remark 3.9. We are not able to show directly the continuity of FK , but by the
equality FK = T ◦Sf (Theorem 3.7), it suffices to study the continuity of T ◦Sf

(Theorem 3.3). In view of Proposition 2.2 and the subsequent Theorem 3.10,
we thus find a result about the upper semicontinuity of FK which essentially
contains [15, Theorem 6.1].

This is important, since there is a gap in the beginning of the corresponding
proof of [15, Lemma 8.10] (namely, it is not clear whether the functions wn,i used
can be chosen independently of v ∈ K). Thus, our results not only overcome
this gap in the proof of [15], but we also do not need the structure conditions
about the dependency of parameters which were required in [15]. However, the
reader should be aware that we need in Theorem 3.7 in the multivalued case
two assumptions which were not supposed in [15, Theorem 6.1]:

1. V1, . . . , Vn are reflexive (or, at least, V1, . . . , Vn have the Radon-Nikodym
property and the values of F0 are even weakly∗-closed).

2. T1(K) is monotonically sub-dense in the characteristic functions in Y ′,
e.g. K satisfies the hypotheses of Proposition 3.6.

In all publications known to the author where the continuity claim from [15,
Theorem 6.1] was used in the multivalued case (these are [8,9,16,17]), the spaces
V1, . . . , Vn were even finite-dimensional and the hypotheses of Proposition 3.6
follow immediately from other hypotheses so that these results are not impacted
by the mentioned gap in the proof of [15].

Proof of Theorem 3.7. If z∈T (Sf (λ0, x0)), then we have for some y∈Sf (λ0, x0)
that z = T1(y), and so

z(ϕ) =

∫

S

y(s)ϕ(s) ds (ϕ ∈ W ).

In particular, z ∈ FK(λ0, x0) for every K ⊆ W .
If Sf (λ0, x0) is single-valued, we have at most one y∈Sf (λ0, x0). If no such y

exists then F (λ0, x0) ⊆ FK(λ0, x0) = ∅. However, if a unique y ∈ Sf (λ0, x0)
exists, then we have for every z ∈ FK(λ0, x0) that

z(ϕ) =

∫

S

y(s)ϕ(s) ds (ϕ ∈ K). (11)

Since both sides of (11) are linear, we conclude that (11) holds even for all z
in the linear hull of K. Moreover, since y ∈ Y and T1 : K → Y ′ is bounded,
we can pass to the closure in (11), i.e., (11) even holds for all ϕ ∈ W , i.e.,
z = T (y) ∈ T (Sf (λ0, x0)).



152 M. Väth

Now we consider the last two two cases in the claim. We recall that Theo-
rem 3.3 implies that Sf (λ0, x0) is bounded in Y by some constant C0. Hence,

if z ∈ FK(λ0, x0), we have for any linear combination ϕ =
∑ℓ

k=1 µkϕk with
ϕk ∈ K and (10) that, for some y1, . . . , yℓ ∈ Sf (λ0, x0),

|z(ϕ)| =
∣∣∣

ℓ∑

k=1

µk

∫

S

yk(s)ϕk(s) ds
∣∣∣

≤
ℓ∑

k=1

|µk|

(∫

S\
⋃

i∈I Si

|yk(s)ϕ(s)| ds+
∑

i∈I

|yk(Si)Pϕ(Si)|

)

≤
ℓ∑

k=1

|µk| ‖yk‖Y0
‖P (T1ϕk(s))‖Y ′

0

≤ C0C ‖P (T1(ϕ))‖Y ′

0

,

where we used Hölder’s inequality and the constant C from (10). Since the
functions ϕ of the above form are dense in W and P ◦T1 : W → Y ′

0 is bounded,
we conclude that

|z(ϕ)| ≤ C0C ‖P (T1(ϕ))‖Y ′

0

(ϕ ∈ W ). (12)

Let now Z := P (T1(W )), endowed with the norm of Y ′
0 . By (12), the kernel N

of the map P ◦T1 : W → Z is contained in the null space of z, and so z induces
some z0 ∈ (W/N)∗ by means of the formula z0([ϕ]) := z(ϕ). Hence, we can
define a linear functional h on Z by the formula h(P (T1(ϕ))) := z0([ϕ]). The
formula (12) implies h ∈ Z∗. By Hahn-Banach theorem, we can extend h to
some h ∈ (Y ′

0)
∗.

Now we use the hypothesis that either Sk,0 consists of only finitely many
atoms or that Vj has the Radon-Nikodym property w.r.t. Sk,0 and q′k,j < ∞.
In both cases, it follows that the dual space of Lq′

k,j
(Sk,0, Vj) is given by

Lqk,j(Sk,0, V
∗
j ) with the usual interpretation of integrals as functionals, see e.g. [6]

or [13, Section 2.22.5].
Hence, we can represent h as an integral functional, i.e., when we define Y0

analogously to Y but with Ω0 and Γ replaced by S0,0 and S1,0, respectively,
there is some y0 ∈ Y0 with h(v) =

∫
S0
y0(s)v(s) ds for v ∈ Y ′

0 . In particular, this
holds for all v ∈ Z = P (T1(W )). Defining y ∈ Y by means of the formula (9),
we obtain for all ϕ ∈ W

z(ϕ) = z0([ϕ]) = h(P (T1(ϕ))) =

∫

S0

y0(s)P (T1ϕ)(s) ds =

∫

S

y(s)T1ϕ(s) ds,

i.e., z = T (y). Note that, by construction, y is measurable and constant on
the atoms Si. Hence, if we can show that y(s) ∈ F0(λ0, x0)(s) for almost all



Superposition Operators with Atoms II 153

s ∈ S, we have y ∈ Sf (λ0, x0), and so z = T (y) ⊆ T (Sf (λ0, x0)) which implies
the claim.

Assume by contradiction that we do not have y(s) ∈ F0(λ0, x0)(s) for almost
all s ∈ S. Note first that (6) implies that the values F0(λ0, x0)(s) are for almost
all s ∈ S bounded in the norm of V ∗ and thus weak∗ compact and contain
no line. Since the normed space V is automatically a barrelled locally convex
space, it follows from [12, last Corollary] that the elements of F0(λ0, x0)(s) are
for every dense subset A0 ⊆ V characterized by

w ∈ F0(λ0, x0)(s) ⇐⇒ w(e) ≤ αe(s) := sup
v∈F0(λ0,x0)(s)

v(e) for every e ∈ A0.

We apply this for a countable dense subset A0 ⊆ V : If for any e ∈ A0, we
would have y(s)e ≤ αe(s) for almost all s ∈ S, then, since A0 is countable, we
would also have y(s) ≤ αe(s) for every e ∈ A0 for almost all s ∈ S, and so
y(s) ∈ F0(λ0, x0)(s) for almost all s ∈ S, contradicting our assumption. Hence,
there is some e ∈ A0 ⊆ V such that the inequality

y(s)e > αe(s) = sup {ve : v ∈ F0(λ0, x0)(s)} (s ∈ E0) (13)

holds on a non-null set E0 ⊆ S. (We note that (13) and our above argument is a
variant of [4, Proposition III.35] for the weak∗ topology.) Since F0 has essentially
separable range, and so there is a separable complete subspace V0 of V ∗ which
contains F0(λ0, x0)(s) for almost all s ∈ S, we can apply e.g. [11, Theorem 5.6]
in V0 to obtain that there is a countable family yk of measurable functions with
values in V0 (hence, yk are Bochner measurable) such that F0(λ0, x0)(s) is the
closure of {yk(s) : k} ⊆ V0 (in the norm topology) for almost all s ∈ S. In
particular, αe(s) = supk(yk(s)e) is measurable. Our argument from above now
implies that (13) actually holds for a measurable set E0 ⊆ S of positive measure.
The existence of the above functions yk also implies that for any x ∈ Y ′, the
functions

G+(x)(s) := sup (F0(λ0, x0)(s)x(s)) = sup
k

(yk(s)x(s))

G−(x)(s) := inf (F0(λ0, x0)(s)x(s)) = inf
k
(yk(s)x(s))

are measurable. We recall that {yk(s) : k} is bounded in the norm topology for
almost all s, and so g+(s, v) := supk (yk(s)v) and g−(s, v) := infk (yk(s)v) are
Carathéodory functions. SinceG± : Y ′ → L1(S,R) is the superposition operator
generated by g± it follows from [14, Theorem 6.4] that G± is continuous. Note
now that (13) implies that one of the strict inequalities

∫

S

y(s)x(s) ds >

∫

S

G+(x)(s) ds or

∫

S

y(s)x(s) ds <

∫

S

G−(x)(s) ds (14)
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holds for x = eχ
K0

or x = −eχ
K0

, respectively, whenever K0 ⊆ E has positive

measure. Assuming that T1(K) is monotonically sub-dense in the characteristic
functions in Y ′, using the notation of Definition 3.5, we can approximate at
least one such function ±eχ

K0
arbitrarily good in the space Y ′ by elements

from T1(K)+. Since both sides of the inequalities (14) depend continuously on
x ∈ Y ′, we obtain that at least one of these strict inequalities also holds for a
function x ∈ T1(K)+. Since T1 is linear, we find some ϕ ∈ K+ with x = T1ϕ,
hence z(ϕ) =

∫
S
y(s)T1ϕ(s) ds satisfies

z(ϕ) >

∫

S

G+(T1ϕ)(s) ds or z(ϕ) <

∫

S

G−(T1ϕ)(s) ds. (15)

By ϕ ∈ K+ we mean that there are µj ≥ 0 and ϕj ∈ K with ϕ =
∑ℓ

j=1 µjϕj.
Since z ∈ FK(λ0, x0) there are yϕj

∈ Sf (λ0, x0) with

z(ϕ) =
ℓ∑

j=1

µjz(ϕj) =
ℓ∑

j=1

µj

∫

S

yϕj
(s)T1ϕj(s) ds. (16)

Since yϕj
(s) ∈ F0(λ0, x0)(s) for almost all s ∈ S, we have

G−(T1ϕj)(s) ≤ yϕj
(s)T1ϕj(s) ≤ G+(T1ϕj)(s)

for almost almost all s ∈ S. Multiplying this inequality with µj ≥ 0 and
integrating and summing up, we find by (16) that

z(ϕ) ≤
ℓ∑

j=1

∫

S

µjG
+(T1ϕj)(s) ds =

∫

S

G+(T1ϕ)(s) ds,

and analogously

z(ϕ) ≥

∫

S

G−(T1ϕ)(s) ds.

Both inequalities together contradict (15).
If we assume that F0(λ0, x0) is constant on each Si (i ∈ I), then also G±(x)

are constant on each Si (i ∈ I), and we can consider G± as a superposition oper-
ator from Y ′

0 into L1(S0,R) which is continuous by the same reasoning as above.
Hence, essentially the same argument as above, only replacing throughout the
measure space S by S0 (and the function y by y0, T1 by PT1, and Y

′ by Y ′
0),

we obtain a contradiction analogously as above if P (T1(K)) is monotonically
sub-dense in the characteristic functions in Y ′

0 .

Theorem 3.10. Let (λ0, x0) ∈ D be such that the growth hypothesis (6) (on
S \ E and the locally boundedness on E mentioned after (6)) holds. Suppose
that the function F0(λ0, x0)(s) := f(λ0, s, x0(s)) is measurable in the Bochner
sense and assumes closed convex values for almost all s ∈ S. Then FK(λ0, x0)
is closed and convex.
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Proof. Since the intersection of closed convex sets is closed and convex, it suffices
to show that for each fixed ϕ ∈ K the set

{
z ∈ W ∗

∣∣∣∣ z(ϕ) =
∫

S

y(s)T1ϕ(s) ds for some y ∈ Sf (λ0, x0)

}

is closed and convex. Since Sf (λ0, x0) is convex, the proof of the convexity of
this set is trivial. To show that the set is closed, it suffices to show that

M :=

{∫

S

y(s)T1ϕ(s) ds : y ∈ Sf (λ, x0)

}

is closed, since then also the considered set {z ∈ W ∗ : z(ϕ) ∈M} is closed. We
define a multivalued function G : S0 ⊸ V ∗ by

G(s) :=

{
F0(λ0, x0)(s) if s /∈ Si

{z : there is y ∈ Sf (λ, x0) with y|Si
= z a.e.} if s ∈ Si.

Then the definition of Sf implies

M =

{∫

S0

y(s)PT1ϕ(s) ds : y measurable and y(s) ∈ G(s) a.e.

}
.

Since F0 has essentially separable range, there is a separable complete sub-
space V0 of V

∗ which contains F0(λ0, x)(s) almost all s ∈ S, without loss of gen-
erality for all s ∈ S. Then G : S0 ⊸ V0, and since I is countable, it follows that
G is measurable in the Bochner sense. From [11, Theorem 3.5], we obtain that
G has a measurable graph. Define h : S×V0 → R by h(s, ℓ) := ℓ(PT1ϕ(s)). For
any measurable function x : S → R with x(s) ∈ h(s,G(s)) = G(s)PT1ϕ(s) a.e.,
we find by the Fillipov’s implicit function theorem e.g. in the form of [11, Theo-
rem 7.2] that there is a measurable y with y(s) ∈ G(s) and x(s) = h(s, x(s)) =
y(s)PT1ϕ(s). This shows

M =

{∫

S0

x(s) ds

∣∣∣∣ x : S → R measurable with x(s) ∈ G(s)PT1ϕ(s)

}
.

Hence, putting G0(s) := G(s)PT1ϕ(s), we have M =
∫
S0
G0(s) ds, where the

integral is understood in the Aumann sense [2], i.e., as the set of all integrals
over measurable selections of G0. Note that the values G0(s) ⊆ R are closed and
convex, even compact by (6), and the latter also implies that G0 has a uniform
integrable majorant. It is well-known that this implies that M is convex and
compact, in particular closed. In our situation, one need not even invoke such
a deep classical result to see this: The convexity of the values G0(s) implies
that M is an interval, and to see that it is closed, it suffices to observe that
the functions s 7→ supG0(s) and s 7→ inf G0(s) are measurable selections of G0,
see [15, Proposition 3.2].
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Combining Theorem 3.7 with Theorem 3.10, we obtain that the values of
F are closed:

Theorem 3.11. Let (λ0, x0) ∈ Λ × X. Assume the growth condition (6) (on
S \E and the locally boundedness on E mentioned after (6)) at least for λ = λ0.
Suppose that only finitely many of the atoms Si intersect Ω0 and Γ simultane-
ously. Let F0(λ0, x0) be Bochner measurable, and for almost all s ∈ S the set
F0(λ0, x0)(s) be convex and closed w.r.t. the weak∗ topology. Suppose also that
the spaces V1, . . . , Vn are separable. For the case that Sk,0 (k ∈ {0, 1}) does
not consist of only finitely many atoms, assume qk,j > 1 and that Vj has the
Radon-Nikodym property w.r.t. Sk,0 for all j ∈ {1, . . . , n}. Finally, assume one
of the following:

1. T1(W ) is monotonically sub-dense in the characteristic functions in Y ′.

2. P (T1(W )) is monotonically sub-dense in the characteristic functions in
Y ′
0 , and the function F0(λ0, x0) is constant on each Si.

Then T (Sf (λ0, x0)) is convex and closed. In particular, if (5) holds and if
V1, . . . , Vn are finite-dimensional, then T (Sf (λ0, x0)) is compact.

For applications of Theorem 3.11 to problems involving also classical Neu-
mann and Dirichlet conditions (e.g. the references in Remark 3.9) it is worth to
note that it is sufficient that the support of the function u0 in Proposition 3.6
only covers those parts of S for which multivaluedness occurs:

Corollary 3.12. Let S1 ⊆ S be a measurable subset on which F0(λ0, x0) is a.e.
single-valued. Then Theorem 3.11 holds even if one replaces in the hypothesis
the space Y ′ (resp. Y ′

0) by the subspace of functions vanishing on S1 and on all
atoms intersecting S1 in a set of positive measure.

Proof. There is a single-valued function f1 and a multivalued function f2 van-
ishing on S1 such that

Sf (λ0, x0) = Sf1(λ0, x0) + Sf2(λ0, x0),

hence, it suffices to prove that the last term of

T (Sf (λ0, x0) = T (Sf1(λ0, x0)) + T (Sf2(λ0, x0))

is closed. Let S2 denote the union of S1 with the atoms intersecting S1 in a set
of positive measure. Then all functions from Sf2(λ0, x0) vanish outside S2, and

so T (Sf2(λ0, x0)) = T̃ (Sf2(λ0, x0)) where T̃ is defined as T but with Ω0 and Γ

replaced by Ω̃0 := Ω0 \ S2 and Γ̃ := Γ \ S2, respectively. Now the claim follows
by applying Theorem 3.11 in the setting of these modified sets.

Using Proposition 2.2 and Theorem 3.3, we obtain the upper semicontinuity
of F :
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Theorem 3.13. Let (λ0, u0) ∈ D ⊆ Λ×W0 be such that the hypotheses of Theo-
rem 3.10 or Corollary 3.12 hold with x0 = T0u0. Suppose also that V1, . . . , Vn are
finite-dimensional, and (5) holds. Let λ0 have a countable base of neighborhoods,
and suppose there is one neighborhood Λ0 ⊆ Λ of λ0 such that {ak,λ,j : λ ∈ Λ0}
has equicontinuous norm in Lqk,j . Finally, suppose that for almost all s ∈ S
the function (7) is upper semicontinuous at (λ0, T0u0(s)) in the uniform sense.
Then F : D ⊸ W ∗ assumes at (λ0, u0) a compact convex value and is upper
semicontinuous at (λ0, u0).

Concerning the differentiability of F : Λ×W0 ⊸ W ∗ and T ◦Sf: Λ×X ⊸ W ∗,
we obtain a stronger result if we observe that the growth estimate is actually
even independent of the choice of the auxiliary spaces Y (and similarly for X).

Theorem 3.14. Let D ⊆ Λ×X, α ∈ (0,∞), 1 ≤ pk,i ≤ p∗k,i, 1 ≤ p̃i ≤ pi, and
q̃k,i ≥ q∗k,i, and

X̃:=
(
Lp0,1(Ω0, U1)×· · ·×Lp0,m(Ω0, Um)

)
×
(
Lp̃1(Ω0, (U

∗
1 )

N)×· · ·×Lp̃m(Ω0, (U
∗
m)

N)
)

⊕
(
Lp1,1(Γ, U1)×· · ·×Lp1,m(Γ, Um)

)

Ỹ :=
(
Lq̃0,1(Ω0, V

∗
1 )×· · ·×Lq̃0,n(Ω0, V

∗
n )
)
⊕
(
Lq̃1,1(Γ, V

∗
1 )×· · ·×Lq̃1,n(Γ, V

∗
n )
)
.

Then

lim
r→0

sup
(λ,x)∈D

λ∈Λ0, ‖x‖X̃ ≤r

supy∈Sf (λ,x)
‖y‖Ỹ

rα
= 0 (17)

implies

lim
r→0

sup
(λ,T0u)∈D

λ∈Λ0, ‖u‖W0
≤r

supz∈F (λ,u) ‖z‖W ∗

rα
= lim

r→0
sup

(λ,x)∈D
λ∈Λ0, ‖x‖X ≤r

supz∈T (Sf (λ,x))
‖z‖W ∗

rα

= lim
r→0

sup
(λ,x)∈D

λ∈Λ0, ‖x‖X̃ ≤r

supz∈T (Sf (λ,x))
‖z‖W ∗

rα

= 0,

(18)

and

lim
(λ,r)→(λ0,0)
λ∈Λ, r>0

sup
‖x‖

X̃
≤r

(λ,x)∈D

supy∈Sf (λ,x)
‖y‖Ỹ

rα
= 0 (19)
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implies

lim
(λ,r)→(λ0,0)
λ∈Λ, r>0

sup
‖u‖W0

≤r

(λ,T0u)∈D

supz∈F (λ,u) ‖z‖W ∗

rα
= lim

(λ,r)→(λ0,0)
λ∈Λ, r>0

sup
‖x‖X≤r

(λ,x)∈D

supz∈T (Sf (λ,x))
‖z‖W ∗

rα

= lim
(λ,r)→(λ0,0)
λ∈Λ, r>0

sup
‖x‖

X̃
≤r

(λ,x)∈D

supz∈T (Sf (λ,x))
‖z‖W ∗

rα

=0.

(20)

Proof. Defining T̃ : Ỹ → W ∗ by the same formula as T , Proposition 3.1 implies
that T̃ is well-defined and bounded, and the definition implies T ◦ F = T̃ ◦ F .
Hence, (17) resp. (19) implies by the boundedness of T̃ the last equality in (18)

resp. (20). The boundedness of the embedding X → X̃ then implies the second
equality, and the first follows by the boundedness of T0 : W0 → X.

The motivation for changing the constants q̃j,i, in Theorem 3.14 is that the
hypothesis (17) or (19) can be less restrictive for smaller q̃j,i. In particular, even
if one is interested in the compact case (5) and thus assumes correspondingly
the more restrictive growth condition (6), one need not work with the same
restrictive constants qj,i if one is interested in proving (18) or (20), but one can
instead switch to the less restrictive constants q̃j,i := q∗j,i.

The motivation for choosing p̃k,i ≤ p∗k,i is that one can choose that former
to be finite even if the latter is infinite.

How to verify (17) or (19) was already discussed in [19]. (One can of course
consider the components of f in the product space separately.) For easier ref-
erence, we just formulate what one obtains from two special cases of [19].

Theorem 3.15. Let α ∈ (0,∞) satisfy αq∗i,j < pi,k ≤ p∗i,k and pi,k, pk ∈ [1,∞)
for all i = 0, 1, all j = 1, . . . , n, and all k = 1, . . . ,m. Let Λ0 ⊆ Λ be fixed (resp.
assume that λ0 has a countable base of neighborhoods). Assume that for any
sequence λν ∈ Λ0 (resp. λν → λ0) there are a monotone null sequence rν > 0
with rν

rν+1
being bounded and measurable functions gi,k,ν satisfying

g0,k,ν(s) ≥ sup {|w| : w ∈ f0,k(λν , s, u, v), |u| , |v| ≤ rν}

g1,k,ν(s) ≥ sup {|w| : w ∈ f1,k(λν , s, u), |u| ≤ rν}

for almost all s ∈ Ω0 or s ∈ Γ, respectively, and such that for every subsequence
there is a subsequence νi such that

g0,k,νi(s)

rανi
→ 0 and

g1,k,νi(s)

rανi
→ 0 (21)

for almost all s ∈ Ω0 or s ∈ Γ, respectively.



Superposition Operators with Atoms II 159

Finally, suppose that there are constants ci,j,k ∈ [0,∞) such that for any
λ ∈ Λ0 (resp. λ ∈ Λ) we have for almost all s ∈ Ω0 resp. s ∈ Γ the uniform
growth estimates

sup
w∈f0,k(λ,s,u1,...,um,v1,...,vm)

|w|

≤

m∑

j=1

(
c0,j,1 |uj|

p0,j

q∗
0,k + c0,j,2 |vj|

pj

q∗
0,k + c0,j,3 |uj|

α + c0,j,4 |vj|
α

)
,

(22)

sup
w∈f1,k(λ,s,u1,...,um)

|w| ≤
m∑

j=1

(
c1,j,1 |uj|

p1,j

q∗
1,k + c1,j,2 |uj|

α

)
.

Then (18) (resp. (20)) holds with D = Λ×X.
Moreover, if E is the union of finitely many of the atoms and XE ⊆ X

denotes the subset of all functions which are constant on these atoms, then (18)
(resp. (20)) holds with D = Λ × XE even if we assume the growth estimates
only for s ∈ S \ E, and if gi,k,j are constant on the atoms in E.

In the single-valued scalar case, m = n = 1, and f = f0,1 independent of
v, some special cases of Theorem 3.15 can be found in literature for particular
applications, e.g. [5, Lemma 3.11] (for α+1 = p1 = q1) or [8] (for α = 1, p1 = q1).
However, even in these special cases, the conditions of these results are more
restrictive. For instance, in [5, Lemma 3.11] the limit limu→0

f(λ,s,u)
|u|α

= 0 is
required to be uniform also with respect to s (a.e.), while our corresponding
requirement (21) is only pointwise (a.e.), and for our growth assumption (22)
(for small u) it suffices that this limit is uniformly bounded w.r.t. s; also for
large u our growth assumption (22) is weaker than that from [5, Lemma 3.11]
where, roughly speaking, |f(λ, s, u)| ≤ c0 + c1 |u|

γ with γ < p0,1 − 1 = p0,1
q∗
0,1

is

required while for (22) γ = p0,1
q∗
0,1

is still acceptable (for large u).
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