Zeitschrift für Analysis und ihre Anwendungen (C) European Mathematical Society Journal for Analysis and its Applications Volume 31 (2012), 183–201 DOI: 10.4171/ZAA/1454

Characterization of Besov Spaces on Nested Fractals by Piecewise Harmonic Functions

Maryia Kabanava

Abstract. In the present paper we characterize the Besov spaces $B_{pq}^s(\Gamma,\mu)$ on nested fractals in terms of the coefficients of functions with respect to the piecewise harmonic basis.

Keywords. Besov spaces, traces, nested fractals

Mathematics Subject Classification (2010). 46E35, 28A80

1. Introduction

Besov spaces $B_{pq}^s(\Gamma,\mu)$ on d-sets in \mathbb{R}^n can be defined by traces of Besov spaces $B_{pq}^{s+\frac{n-a}{p}}(\mathbb{R}^n)$. When the smoothness parameter s is small, $B_{pq}^{s}(\Gamma,\mu)$ can be characterized by intrinsic building blocks, namely atoms. In the present paper first we give a characterization of Besov spaces by a new type of atoms, which we call (s, p, σ) -atoms.

On the other hand Besov spaces on the most trivial example of a d-set, the unit interval, can be described by means of Faber-Schauder basis [18]. We are looking for its counterpart for the d-set Γ . So we need to find the description of functions in Faber-Schauder basis in such a way that it can be transferred to other sets. Our approach is to start with a Dirichlet form $(\mathcal{E}, \mathcal{D})$, see e.g. [8, 15]. Then the harmonic function on Γ with given boundary values can be defined as the unique function that minimizes $\mathcal{E}(f)$. Similarly we can define piecewise harmonic functions. Piecewise harmonic functions on the unit interval are exactly the functions forming the Faber-Schauder basis. Thus the family of piecewise harmonic functions may be regarded as the counterpart of Faber-Schauder basis. Piecewise harmonic functions are Lipschitz with respect to the

M. Kabanava: Mathematical Institute, Friedrich Schiller University of Jena, Germany; maryia.kabanava@uni-jena.de

effective resistance metric. We additionally assume that Γ is a nested fractal. Then the effective resistance metric is equivalent to the Euclidean metric taken to some power and this enables us to treat piecewise harmonic functions as (s, p, σ) -atoms. Thus functions from $B_{pq}^s(\Gamma, \mu)$ can be characterized in terms of the coefficients of its expansion in a piecewise harmonic basis.

The main result of the paper is contained in the Theorem 5.1. Our proof is based on the atomic characterization of Besov spaces. A similar result is also presented in the paper [13], where the harmonic representation of Lipschitz spaces $(\Lambda^{p,q}_{\alpha})^{(1)}(\Gamma)$ introduced by Strichartz is stated. It was shown in [1] that $(\Lambda^{p,q}_{\alpha})^{(1)}(\Gamma)$ coincide with $\text{Lip}(\alpha/\alpha_0, p, q, \Gamma)$, when Γ is a nested fractal. Thus the harmonic representation of Besov spaces might be also proved by using the discrete characterizations of Besov spaces.

2. Preliminaries

2.1. Basic notation and classical Besov spaces. Let $\mathbb N$ be the collection of all natural numbers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Z is the set of all integers. Let \mathbb{R}^n be Euclidean *n*-space, where $n \in \mathbb{N}$. The scalar product of $x, y \in \mathbb{R}^n$ is given by $xy = \sum_{i=1}^{n} x_i y_i$. Put $\mathbb{R} = \mathbb{R}^1$, whereas \mathbb{C} is the complex plane. Let $S(\mathbb{R}^n)$ be the Schwartz space of all complex-valued, rapidly decreasing, infinitely differentiable functions on \mathbb{R}^n . By $S'(\mathbb{R}^n)$ we denote its topological dual, the space of all tempered distributions on \mathbb{R}^n . $L_p(\mathbb{R}^n)$ with $0 < p \leq \infty$, is the standard quasi-Banach space with respect to Lebesgue measure, quasi-normed by

$$
||f|L_p(\mathbb{R}^n)|| = \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}}, \quad 0 < p < \infty,
$$

$$
||f|L_\infty(\mathbb{R}^n)|| = \operatorname*{ess-sup}_{x \in \mathbb{R}^n} |f(x)|.
$$

If $\varphi \in S(\mathbb{R}^n)$ then

$$
\widehat{\varphi}(\xi) = \mathcal{F}\varphi(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \varphi(x) e^{-ix\xi} dx, \quad \xi \in \mathbb{R}^n,
$$

denotes the Fourier transform of φ . The inverse Fourier transform is given by

$$
\varphi^{\vee}(x) = \mathcal{F}^{-1}\varphi(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \varphi(\xi) e^{ix\xi} d\xi, \quad x \in \mathbb{R}^n.
$$

One extends $\mathcal F$ and $\mathcal F^{-1}$ in the usual way from S to S'. For $f \in S'(\mathbb R^n)$, $\mathcal{F}f(\varphi) = f(\mathcal{F}\varphi)$, where $\varphi \in S(\mathbb{R}^n)$.

Let $\varphi_0 \in S(\mathbb{R}^n)$ with

$$
\varphi_0(x) = 1, |x| \le 1 \text{ and } \varphi_0(x) = 0, |x| \ge \frac{3}{2},
$$
\n(1)

and let

$$
\varphi_k(x) = \varphi_0(2^{-k}x) - \varphi_0(2^{-k+1}x), \quad x \in \mathbb{R}^n, \ k \in \mathbb{N}.
$$
 (2)

Then, since

$$
1 = \sum_{j=0}^{\infty} \varphi_j(x) \quad \text{for all } x \in \mathbb{R}^n,
$$
 (3)

the φ_j form a dyadic resolution of unity in \mathbb{R}^n . According to the Paley-Wiener-Schwartz theorem $(\varphi_k \widehat{f})^{\vee}$ is an entire analytic function on \mathbb{R}^n for any $f \in S'(\mathbb{R}^n)$. In particular, $(\varphi_k \hat{f})^{\vee}(x)$ makes sense pointwise.

Definition 2.1. Let $\varphi = {\{\varphi_j\}}_{j=0}^{\infty}$ be the dyadic resolution of unity according to (1)-(3), $s \in \mathbb{R}$, $0 < p \leq \infty$, $0 < q \leq \infty$ and

$$
\left\|f|B_{pq}^s(\mathbb{R}^n)\right\|_\varphi=\left(\sum_{j=0}^\infty 2^{jsq}\left\|\left(\varphi_k\widehat{f}\right)^\vee\left|L_p(\mathbb{R}^n)\right|\right|^q\right)^{\frac{1}{q}}
$$

(with the usual modification if $q = \infty$). Then the Besov space $B_{pq}^s(\mathbb{R}^n)$ consists of all $f \in S'(\mathbb{R}^n)$ such that $||f|B_{pq}^s(\mathbb{R}^n)||_{\varphi} < \infty$.

2.2. Trace spaces $B_{pq}^s(\Gamma,\mu)$. We proceed with defining Besov spaces on d-sets.

Definition 2.2. A compact set Γ in \mathbb{R}^n is called a *d*-set with $0 < d < n$ if there is a Radon measure μ in \mathbb{R}^n with support Γ such that for some positive constants c_1 and c_2 , holds

$$
c_1 r^d \le \mu(B(\gamma, r)) \le c_2 r^d, \quad \gamma \in \Gamma, \ 0 < r < 1. \tag{4}
$$

where $B(x,r)$ is a ball in \mathbb{R}^n centered at $x \in \mathbb{R}^n$ and of radius $r > 0$. The measure μ satisfying (4) is called a *d*-measure.

If Γ is a d-set, then the restriction to Γ of the d-dimensional Hausdorff measure H^d satisfies (4) and any measure μ satisfying (4) is equivalent to $H^d|_{\Gamma}$.

Definition 2.3. Let μ be a Radon measure in \mathbb{R}^n . Let

$$
s > 0, \ 1 < p < \infty, \ 0 < q < \infty. \tag{5}
$$

Let for some $c > 0$,

$$
\int_{\Gamma} |\varphi(\gamma)| \mu(d\gamma) \le c \left\| \varphi | B_{pq}^s(\mathbb{R}^n) \right\| \quad \text{for all } \varphi \in S(\mathbb{R}^n). \tag{6}
$$

Then the trace operator tr_{μ} ,

$$
\mathrm{tr}_{\mu}: B_{pq}^s(\mathbb{R}^n) \hookrightarrow L_1(\Gamma, \mu),
$$

is the completion of the pointwise trace $(\text{tr}_{\mu} \varphi)(\gamma) = \varphi(\gamma), \varphi \in S(\mathbb{R}^n)$. Furthermore, the image of tr_{μ} is denoted by $\text{tr}_{\mu} B_{pq}^s(\mathbb{R}^n)$ and is quasi-normed by

$$
||g| \operatorname{tr}_{\mu} B_{pq}^s(\mathbb{R}^n) || = \inf \{ ||f| B_{pq}^s(\mathbb{R}^n) || : \operatorname{tr}_{\mu} f = g \}.
$$

Remark 2.4. The above definition is justified since $S(\mathbb{R}^n)$ is dense in $B_{pq}^s(\mathbb{R}^n)$ with (5) . We refer to [16, Theorem 2.3.3, p. 48]. Due to (6) , the trace of f is independent of the approximation of f in $B_{pq}^s(\mathbb{R}^n)$ by $S(\mathbb{R}^n)$ -functions.

Definition 2.5. Let Γ be a *d*-set in \mathbb{R}^n . Let $s > 0$, $1 < p < \infty$, $0 < q < \infty$. Then

$$
B_{pq}^s(\Gamma,\mu) = \operatorname{tr}_{\mu} B_{pq}^{s + \frac{n-d}{p}}(\mathbb{R}^n)
$$

with

$$
||f|B_{pq}^{s}(\Gamma,\mu)|| = \inf \{||g|B_{pq}^{s}(\mathbb{R}^{n})|| : \text{tr}_{\mu} g = f\}.
$$

There is the extension operator which is closely connected to the trace operator. The following assertion is covered by [6, Theorem 3, p. 155], we also refer to [17, Section 1.17.2].

Theorem 2.6. Let Γ be a compact d-set in \mathbb{R}^n with $0 < d < n$ and let μ be a corresponding Radon measure. Let

$$
0 < s < 1, \ 1 < p < \infty, \ 1 \le q \le \infty, \ t = s + \frac{n - d}{p},
$$

and let tr_{μ} be the trace operator. Then there is a linear and bounded extension operator $ext{ext}_{\mu}$ with

$$
\operatorname{ext}_{\mu}: B_{pq}^s(\Gamma, \mu) \hookrightarrow B_{pq}^t(\mathbb{R}^n) \tag{7}
$$

and

$$
\text{tr}_{\mu} \circ \text{ext}_{\mu} = \text{id} \quad (identity \text{ in } B_{pq}^{s}(\Gamma, \mu)). \tag{8}
$$

All our reasoning strongly uses the fact that $B_{pp}^s(\Gamma,\mu)$ with $1 < p < \infty$ and $0 < s < 1$ can be equivalently normed by $||f| B_{pp}^{s}(\Gamma, \mu)||_*$ with

$$
||f|B_{pp}^{s}(\Gamma,\mu)||_{*}^{p} = \int_{\Gamma} |f(\gamma)|^{p} \mu(d\gamma) + \int_{\Gamma} \int_{\Gamma} \frac{|f(\gamma) - f(\delta)|^{p}}{|\gamma - \delta|^{d+sp}} \mu(d\gamma)\mu(d\delta), \qquad (9)
$$

we refer to [6]. We simplify the notation and write $B_p^s(\Gamma)$ instead of $B_{pp}^s(\Gamma,\mu)$.

3. Atomic characterizations of $B^s_p(\Gamma)$

Besov spaces $B_p^s(\Gamma)$ with $0 < s < 1$ and $1 < p < \infty$ can be characterized in terms of intrinsic building blocks, namely atoms.

Let for $\delta > 0$, $\Gamma_{\delta} = \bigcup_{\gamma \in \Gamma} B(\gamma, \delta)$ where

$$
B(\gamma, \delta) = \{x \in \mathbb{R}^n : |x - \gamma| < \delta\},\tag{10}
$$

be a δ-neighbourhood of Γ . Let $0 < r < 1$ be fixed. Let for $j \in \mathbb{N}_0$, $\{\gamma_{j,m}\}_{m=1}^{M_j} \subset \Gamma$ be the lattice of points with the following properties:

• For some $c_1 > 0$

$$
|\gamma_{j,m_1} - \gamma_{j,m_2}| \ge c_1 r^j, \quad j \in \mathbb{N}_0, \ m_1 \ne m_2.
$$
 (11)

• For some some $c_2 > 0$

$$
\Gamma_{c_2r^j} \subset \bigcup_{m=1}^{M_j} B(\gamma_{j,m}, r^j), \quad j \in \mathbb{N}_0,
$$
\n(12)

where $B(\gamma_{j,m}, r^j)$ are given by (10).

Let

$$
B_{j,m}^{\Gamma} = \{ \gamma \in \Gamma : |\gamma - \gamma_{j,m}| < r^j \}, \quad j \in \mathbb{N}_0, \ m = 1, \dots, M_j,
$$
 (13)

be the intersection of balls $B(\gamma_{j,m}, r^j)$ with Γ .

Definition 3.1. Let Γ be a *d*-set in \mathbb{R}^n . Let $1 < p < \infty$ and $0 < s < 1$. Then a continuous function a_{jm} on Γ is called an $(s, p)^*$ -atom, if for $j \in \mathbb{N}_0$ and $m=1,\ldots,M_j,$

$$
supp a_{jm} \subset B_{j,m}^{\Gamma}, \tag{14}
$$

$$
|a_{jm}(\gamma)| \le \mathcal{H}^d \left(B_{j,m}^{\Gamma} \right)^{\frac{s}{d} - \frac{1}{p}}, \quad \gamma \in \Gamma,
$$
\n(15)

and

$$
|a_{jm}(\gamma) - a_{jm}(\delta)| \le \mathcal{H}^d \left(B_{j,m}^{\Gamma} \right)^{\frac{s-1}{d} - \frac{1}{p}} |\gamma - \delta| \tag{16}
$$

with $\gamma, \delta \in \Gamma$, [17, Section 8.1.3].

Since Γ is a d-set, we can reformulate (15) and (16) as

$$
|a_{jm}(\gamma)| \leq c r^{j(s-\frac{d}{p})},
$$

$$
|a_{jm}(\gamma) - a_{jm}(\delta)| \leq c r^{j(s-1-\frac{d}{p})} |\gamma - \delta|.
$$

For our further purposes we need the following assertion which is covered by [17, Proposition 8.10].

Lemma 3.2. Let Γ be a d-set. Let $r > 0$ and

$$
B^{\Gamma}(r) = \{ \gamma \in \Gamma : |\gamma - \gamma_0| < r \} \quad \text{for some } \gamma_0 \in \Gamma,
$$

and $B(2r) = \{x \in \mathbb{R}^n : |x - \gamma_0| < 2r\}$. Let $f \in B_p^s(\Gamma)$ with supp $f \subset B^{\Gamma}(r)$. Then

$$
||f|B_p^s(\Gamma)|| = \inf ||g|B_p^t(\mathbb{R}^n)||
$$
, $t = s + \frac{n-d}{p}$,

where the infimum is taken over all $g \in B_p^t(\mathbb{R}^n)$, $g|_{\Gamma} = f$, supp $g \subset B(2r)$.

Now we can formulate an intrinsic atomic decomposition of the trace spaces $B_p^s(\Gamma)$.

Theorem 3.3. Let $1 < p < \infty$, and $0 < s < 1$. Then $B_p^s(\Gamma)$ is the collection of all $f \in L_1(\Gamma,\mu)$ which can be represented as

$$
f(\gamma) = \sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \lambda_m^j a_{jm}(\gamma), \quad \gamma \in \Gamma,
$$
 (17)

where $\|\lambda\| = \left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_j} |\lambda_m^j|^p\right)^{\frac{1}{p}} < \infty$, a_{jm} are $(s, p)^*$ -atoms according to Definition 3.1 and (17) converges absolutely in $L_1(\Gamma,\mu)$. Furthermore,

$$
||f|B_p^s(\Gamma)|| \sim \inf ||\lambda|| \tag{18}
$$

where infimum is taken over all admissible representations (17), [17, Chapter 8.1.3].

We introduce new type of atoms, that we call (s, p, σ) -atoms.

Definition 3.4. Let $1 < p < \infty$, $0 < \sigma < 1$ and $0 < s < \sigma$. Then a continuous function a_{jm} on Γ is called an (s, p, σ) -atom, if for $j \in \mathbb{N}_0$ and $m = 1, \ldots, M_j$,

$$
supp a_{jm} \subset B_{j,m}^{\Gamma}, \tag{19}
$$

$$
|a_{jm}(\gamma)| \le c r^{j\left(s - \frac{d}{p}\right)}, \quad \gamma \in \Gamma,
$$
\n⁽²⁰⁾

and

$$
|a_{jm}(\gamma) - a_{jm}(\delta)| \leq c r^{j(s - \sigma - \frac{d}{p})} |\gamma - \delta|^{\sigma}
$$
 (21)

with $\gamma, \delta \in \Gamma$.

Let a_{jm} be an $(s, p)^*$ -atom and $0 < s < \sigma$. Then

$$
|a_{jm}(\gamma) - a_{jm}(\delta)| \leq cr^{j(s-1-\frac{d}{p})} |\gamma - \delta|
$$

= $cr^{j(s-1-\frac{d}{p})} |\gamma - \delta|^{1-\sigma} |\gamma - \delta|^{\sigma}$
 $\leq cr^{j(s-1-\frac{d}{p})} r^{j(1-\sigma)} |\gamma - \delta|^{\sigma}$
= $cr^{j(s-\sigma-\frac{d}{p})} |\gamma - \delta|^{\sigma},$

which shows that any $(s, p)^*$ -atom is an (s, p, σ) -atom.

Theorem 3.5. Let $1 < p < \infty$, $0 < \sigma < 1$ and $0 < s < \sigma$. Then $B_p^s(\Gamma)$ is the collection of all $f \in L_1(\Gamma,\mu)$ which can be represented as

$$
f(\gamma) = \sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \lambda_m^j a_{jm}(\gamma), \ \gamma \in \Gamma,
$$
 (22)

where $\|\lambda\| = \left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_j} |\lambda_m^j|^p\right)^{\frac{1}{p}} < \infty$, a_{jm} are (s, p, σ) -atoms according to Definition 3.4 and (22) converges absolutely in $L_1(\Gamma,\mu)$. Furthermore,

$$
\left\|f|B_p^s(\Gamma)\right\|\sim \inf \|\lambda\|
$$

where infimum is taken over all admissible representations (22).

Proof. The proof is the adaption of reasoning in [17, Section 8.1.3]. The representation (17) with $(s, p)^*$ -atoms is a special case of the representation (22) and it holds (18). Hence it remains to show that from the representation (22) follows that

$$
f \in B_p^s(\Gamma)
$$
 and $||f|B_p^s(\Gamma)|| \leq c ||\lambda||$.

First we estimate the norm of (s, p, σ) -atoms in $B_p^s(\Gamma)$. Let L be a number such that diam $\Gamma \leq 2^L$. Then

$$
\int_{\Gamma} \int_{\Gamma} \frac{|a_{jm}(\gamma) - a_{jm}(\delta)|^p}{|\gamma - \delta|^{d+sp}} \mu(d\delta) \mu(d\gamma)
$$
\n
$$
\leq c \int_{\Gamma} \int_{\Gamma} \frac{1}{|\gamma - \delta|^{d + (s - \sigma)p}} \mu(d\delta) \mu(d\gamma)
$$
\n
$$
= c \int_{\Gamma} \sum_{i = -\infty}^{L} \int_{B(\gamma, 2^i) \setminus B(\gamma, 2^{i-1})} \frac{1}{|\gamma - \delta|^{d + (s - \sigma)p}} \mu(d\delta) \mu(d\gamma)
$$
\n
$$
\leq c \int_{\Gamma} \sum_{i = -\infty}^{L} \int_{B(\gamma, 2^i) \setminus B(\gamma, 2^{i-1})} \frac{1}{2^{i(d + (s - \sigma)p)}} \mu(d\delta) \mu(d\gamma)
$$
\n
$$
\leq c \mu(\Gamma) \sum_{i = -\infty}^{L} \frac{2^{id}}{2^{i(d + (s - \sigma)p)}}
$$
\n
$$
= c\mu(\Gamma) \frac{2^{L(s - \sigma)p}}{1 - 2^{(s - \sigma)p}}
$$
\n
$$
\leq C.
$$

Moreover,

$$
\int_{\Gamma} |a_{jm}(\gamma)|^p \,\mu(d\gamma) \le \int_{B_{jm}} \mu(B_{jm})^{\frac{sp}{d}-1} \mu(d\gamma) \le \mu(\Gamma)^{\frac{sp}{d}} = C.
$$

This means that there is a constant $C > 0$ such that $||a_{jm}|B_p^s(\Gamma)|| \leq C$ for all (s, p, σ) -atoms. Furthermore, for $0 < s \leq \overline{s} < \sigma$ we can write $a_{jm}(\gamma) =$ $r^{j(s-\bar{s})}b_{jm}(\gamma)$, where $b_{jm}(\gamma) = r^{j(\bar{s}-s)}a_{jm}(\gamma)$. For each $j \in \mathbb{N}_0$ and $m = 1, ..., M_j$ we have

$$
\operatorname{supp} b_{jm} = \operatorname{supp} a_{jm} \subset B_{jm}^{\Gamma}, \quad |b_{jm}(\gamma)| \le c r^{j(\bar{s} - \frac{d}{p})}
$$

and

$$
|b_{jm}(\gamma) - b_{jm}(\delta)| \le c r^{j(\bar{s} - \sigma - \frac{d}{p})} |\gamma - \delta|^{\sigma}
$$

.

.

This shows that b_{jm} are (\bar{s}, p, σ) -atoms and $||b_{jm}|B_p^{\bar{s}}(\Gamma)|| \leq C$. Hence

$$
||a_{jm}|B_p^{\bar{s}}(\Gamma)|| \le Cr^{j(s-\bar{s})}.
$$

We apply Lemma 3.2 to a_{jm} . Then it follows that there are functions $A_{jm} \in B_{pp}^{\bar{t}}(\mathbb{R}^n)$, where $\bar{t} = \bar{s} + \frac{n-d}{p}$, such that

$$
\operatorname{tr}_{\mu} A_{jm} = a_{jm}, \quad \operatorname{supp} A_{jm} \subset \left\{ x \in \mathbb{R}^n : |x - \gamma_{jm}| \le c_1 r^j \right\}
$$

and

$$
\left\|A_{jm}|B_{pp}^{\bar{t}}(\mathbb{R}^n)\right\| \le c_2 r^{j(t-\bar{t})}, \quad t = s + \frac{n-d}{p}
$$

Then according to [17, Definition 2.7] A_{jm} are non-smooth atoms for $B_{pp}^t(\mathbb{R}^n)$ and from [17, Theorem 2.3] it follows that

$$
F = \sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \lambda_m^j A_{jm} \quad \text{with} \ \|\lambda\| < \infty
$$

belongs to $B_{pp}^t(\mathbb{R}^n)$ and $||F|B_{pp}^t(\mathbb{R}^n)|| \le c ||\lambda||$. Taking into account that $f = \text{tr}_{\mu} F$, we may conclude $||f|B_p^s(\Gamma)|| \leq c||\lambda||$. \Box

4. Self-similar sets

Typical examples of d-sets are self-similar sets with invariant measure μ . Generally speaking, a self-similar set is a set that is made up of parts which are similar to the whole. The mathematical definition was given by Hutchinson in [4].

Definition 4.1. A mapping $F : \mathbb{R}^n \to \mathbb{R}^n$ is called a similarity (similitude), if there is a constant $0 < \rho < 1$ such that for all $x, y \in \mathbb{R}^n$ holds

$$
|F(x) - F(y)| = \rho |x - y|.
$$

The constant ρ is called the contraction ratio of F.

Theorem 4.2. Let ${F_i}_{i=1}^N$ be similarities in \mathbb{R}^n . Then there exists a unique non-empty compact set $\Gamma \subset \mathbb{R}^n$ that satisfies

$$
\Gamma = \bigcup_{i=1}^{N} F_i(\Gamma). \tag{23}
$$

 Γ is called a self-similar set with respect to $\{F_i\}_{i=1}^N$.

There are many books and papers dealing with self-similar sets, we refer to $[2, 4, 8]$.

A set Γ_w with $w = (w_1, w_2, \ldots, w_i), w_i \in \{1, \ldots, N\}$ defined by

$$
\Gamma_w = F_w(\Gamma) = F_{w_1} \circ F_{w_2} \circ \ldots \circ F_{w_j}(\Gamma),
$$

is called j-simplex. We call w a word of length $j = |w|$. Then it holds $\Gamma =$ $\bigcup_{|w|=j} F_w(\Gamma)$.

Let $\Sigma = \{(\omega_1, \omega_2, \ldots) : \omega_i \in \{1, 2, \ldots, N\}\}\$ be a set of all infinite sequence. For any $\omega = (\omega_1, \omega_2, ...) \in \Sigma$ define a continuous surjective map $\pi : \Sigma \to \Gamma$ by

$$
\pi(\omega) = \bigcap_{m=1}^{\infty} \Gamma_{\omega_1 \omega_2 \dots \omega_m}.
$$

Let $C = \bigcup_{i \neq j} (\Gamma_i \cap \Gamma_j)$, $C = \pi^{-1}(C)$ and $\mathcal{P} = \bigcup_{n \geq 1} \sigma^n(\mathcal{C})$, where $\sigma : \Sigma \to \Sigma$ is the shift map defined by

$$
\sigma(\omega_1, \omega_2, \ldots) = (\omega_2, \omega_3, \ldots).
$$

Let $V_0 = \pi(\mathcal{P})$ and $V_j = \bigcup_{i=1}^N F_i(V_{j-1}),$ or equivalently

$$
V_j = \bigcup_{|w|=j} F_w(V_0).
$$

Then V_i describes the set of boundary points of simplexes of fixed level j. It is clear that $V_j \subset V_{j+1}$. Let $V_* = \bigcup_{j=0}^{\infty} V_j$, then $\Gamma = \overline{V_*}$ in the Euclidean topology. When j is fixed, V_j is the natural lattice of points in the self-similar set Γ that satisfies (11) and (12). We followed [8, Sections 1.2–1.3]. We form a graph G_i with vertices V_j and edge relation $\xi \sim_j \eta$ holding if and only if there exists a *j*-simplex containing both ξ and η as boundary points.

In this paper we consider sets Γ such that they are self-similar with respect to the similarities with the same contraction ratio $0 < \rho < 1$, that is

$$
|F_i(x) - F_i(y)| = \rho |x - y|.
$$
 (24)

The unit interval $I = [0, 1]$ is a self-similar set with respect to the similarities $F_i: \mathbb{R} \to \mathbb{R}, i = 1, 2,$

$$
F_1(x) = \frac{1}{2}x
$$
, $F_2(x) = \frac{1}{2}x + \frac{1}{2}$.

The Koch curve K is a self-similar set with respect to the similarities F_i : $\mathbb{R}^2 \to \mathbb{R}^2$, $i = 1, 2$,

$$
F_1(x,y) = \left(\frac{1}{2}x + \frac{1}{2\sqrt{3}}y, \frac{1}{2\sqrt{3}}x - \frac{1}{2}y\right),
$$

$$
F_2(x,y) = \left(\frac{1}{2}x - \frac{1}{2\sqrt{3}}y + \frac{1}{2}, -\frac{1}{2\sqrt{3}}x - \frac{1}{2}y + \frac{1}{2\sqrt{3}}\right)
$$

see [8], where mappings F_1 , F_2 are given in a complex form. The self-similar structure of the unit interval I and the Koch curve K can be used to establish the transform

$$
H: \mathcal{I} \to K,\tag{25}
$$

,

such that

$$
|H(x) - H(y)|^d \sim |x - y|,\t(26)
$$

where $d = \frac{\ln 4}{\ln 3}$ is the Hausdorff dimension of the Koch curve K. For the analytical expression of H we refer to [8, Example 1.2.7], some information can be also find in [17, Section 8.2.2].

There is a special kind of sets that are self-similar with respect to similarities (24), satisfying some additional properties, known as nested fractals. They were first introduced by Lindstrøm [11], and afterwards were studied by many authors, e.g. [10, 12]. Nested fractals should satisfy following conditions:

- C0. $\#V_0 \geq 2$.
- C1. **Open set condition.** The family of similarities ${F_i}_{i=1}^N$ satisfies the open set condition if there exists an open, bounded, nonempty set $O \subset \mathbb{R}^n$ such that

$$
F_i(O) \cap F_j(O) = \emptyset
$$
 for $i \neq j$ and $\bigcup_{i=1}^N F_i(O) \subset O$.

When the open set condition is satisfied, the Hausdorff dimension d of Γ is

$$
d = \frac{\log N}{\log \frac{1}{\rho}},
$$

we refer to $[2, 4]$.

C2. **Nesting.** If $j \ge 1$ and $w = (w_1, w_2, \dots, w_j)$ and $w' = (w'_1, w'_2, \dots, w'_j)$ are distinct elements of $\{1, 2, ..., N\}^n$, then

$$
\Gamma_w \cap \Gamma_{w'} = F_w(V_0) \cap F_{w'}(V_0).
$$

- C3. **Connectivity.** The graph (V_1, G_1) is connected.
- C4. **Symmetry.** For any $x, y \in \mathbb{R}^n$ with $x \neq y$, let H_{xy} denote the hyperplane given by

$$
H_{xy} = \{ z \in \mathbb{R}^n : |z - x| = |z - y| \}
$$

and let R_{xy} denote the reflection with respect to H_{xy} . Then for any $x, y \in V_0$ with $x \neq y$, R_{xy} maps j-cells to j-cells, and maps any j-cell which contains elements in both sides of H_{xy} to itself for each $j \geq 0$.

The simplest example of the nested fractal is the Sierpinski gasket SG, which is generated by three similarities in the plane $F_i : \mathbb{R}^2 \to \mathbb{R}^2$, $i = 1, 2, 3$, defined by

$$
F_i(x) = \frac{1}{2}(x - \xi_i) + \xi_i,
$$
\n(27)

where ξ_i are the vertices of an equilateral triangle, see [15, Section 1.1].

Further on we assume that the diameter of Γ is 1. Then the diameter of each *j*-simplex $\Gamma_{w_1...w_j}$ is ρ^j , where ρ is from (24). In case of *I* and SG we get $\rho = \frac{1}{2}$ $\frac{1}{2}$, in case of K we have $\rho = \frac{1}{\sqrt{2}}$ $\overline{3}$.

Suppose a real-valued function u is given on the vertices V_j . Then there is a natural Dirichlet form

$$
E_j(u) = \sum_{\xi \sim_j \eta} \left(u(\xi) - u(\eta) \right)^2.
$$

We need to multiply E_j by the renormalization factor α^j in order to have the following consistency property:

Lemma 4.3. For every function u on V_i there exists a unique extension \tilde{u} to V_{i+1} minimizing E_{i+1} , *i.e.*,

$$
E_{j+1}(\tilde{u}) = \min \{ E_{j+1}(u') : u'|_{V_j} = u \},
$$

and

$$
\alpha^j E_j(u) = \alpha^{j+1} E_{j+1}(\tilde{u}).\tag{28}
$$

For I and K the renormalization factor α is equal to 2, for SG we have $\alpha = \frac{5}{3}$ $\frac{5}{3}$ [15, Section 1.3]. The number $d_w = \frac{\log N\alpha}{\log 1}$ $\frac{\log N\alpha}{\log \frac{1}{\epsilon}}$ is called the walk dimension of Γ . The renormalized graph energies are defined by $\mathcal{E}_j(u) = \alpha^j E_j(u)$. Then (28) can be reformulated as

$$
\mathcal{E}_j(u)=\mathcal{E}_{j+1}(\tilde{u}).
$$

The function \tilde{u} is called a harmonic extension of u.

Definition 4.4. A continuous function $h: V_* \to \mathbb{R}$ is called harmonic if it minimizes \mathcal{E}_j at all levels for given boundary values on V_0 :

$$
\mathcal{E}_j(h) = \min \left\{ \mathcal{E}_j(u) : u|_{V_0} = \rho \right\}.
$$

According to [8, Theorem 3.2.4] for any harmonic function u there exists a unique extension $\tilde{u} \in C(\Gamma)$ such that $\tilde{u}|_{V_*} = u|_{V_*}$. Thus, we identify u with its extension \tilde{u} and think of a harmonic function as a continuous function on Γ. The maximum and the minimum of the harmonic function are attained at the boundary V_0 . This assertion is known as the maximum principle [8].

Definition 4.5. A continuous function $\psi: V_* \to \mathbb{R}$ is called piecewise harmonic of level j if $\psi \circ F_w$ is harmonic for all $|w| = j$.

We denote the set of piecewise harmonic functions of level j by H_j . These functions minimize \mathcal{E}_m at all levels $m \geq j$ for given boundary values on V_j .

For $f: V_* \to \mathbb{R}$ define

$$
\mathcal{E}(f) = \lim_{j \to \infty} \mathcal{E}_j(f), \quad \tilde{\mathcal{D}} = \{f: V_* \to \mathbb{R}, \mathcal{E}(f) < \infty\}.
$$

If $f \in \tilde{\mathcal{D}}$, then it is uniformly continuous on V_* , hence it has a unique continuous extension to Γ. Let

$$
\mathcal{D} = \{ f \in C(\Gamma) : \mathcal{E}(f) < \infty \} \, .
$$

Then $(\mathcal{E}, \mathcal{D})$ is regular Dirichlet form on $L_2(\Gamma, \mu)$.

By effective resistance metric on the set Γ we mean a function $R : \Gamma \times \Gamma \to$ $[0, \infty]$ defined by $R(x, x) = 0$ for $x \in \Gamma$ and

$$
R(x, y)^{-1} = \inf \{ \mathcal{E}(f) : f(x) = 0, f(y) = 1 \}.
$$

Let ψ_{ε}^j $\zeta, \xi \in V_j$, be a piecewise harmonic function of level j which equals 1 at ξ and 0 at any other vertex of V_j :

$$
\psi_{\xi}^{j}(x) = \delta_{\xi x} = \begin{cases} 1, & x = \xi \\ 0, & x \in V_{j} \setminus \{\xi\}. \end{cases}
$$

Note that $\text{supp } \psi_{\xi}^j \subset B(\xi, \rho^j)$.

In the case of the unit interval I piecewise harmonic functions are just piecewise linear functions. In fact, for $x = \frac{m}{2i}$ $\frac{m}{2^{j-1}} + \frac{1}{2^j}$ $\frac{1}{2^j} \in V_j \setminus V_{j-1}$

$$
\psi_x^j(t) = \begin{cases}\n2^j(t - \frac{m}{2^{j-1}}), & \frac{m}{2^{j-1}} \le t < \frac{m}{2^{j-1}} + \frac{1}{2^j} \\
2^j(\frac{m+1}{2^{j-1}} - t), & \frac{m}{2^{j-1}} + \frac{1}{2^j} \le t < \frac{m+1}{2^{j-1}} \\
0, & \text{otherwise,} \n\end{cases}
$$

and it holds

 $|\psi_x^j(t) - \psi_x^j(s)| \le c |t - s| \text{ for all } t, s \in I.$ (29)

For the Koch curve Γ piecewise harmonic functions $\widetilde{\psi}_{\xi}^{j}$ with $\xi = H(x)$ are the composition ψ_x^j with the transform H^{-1} from (25), $\widetilde{\psi}_{\xi}^j = \psi_x^j \circ H^{-1}$. Taking into account (29) and (26) we get

$$
\left| \widetilde{\psi}_{\xi}^{j}(\gamma) - \widetilde{\psi}_{\xi}^{j}(\delta) \right| \leq c \left| \gamma - \delta \right|^{d},\tag{30}
$$

where $d = \frac{\ln 4}{\ln 3}$ is the Hausdorff dimension of Γ .

In general it was shown in [9] that harmonic functions on Γ are uniformly Lipschitz continuous with respect to the resistance metric $R(x, y)$. From [3] follows that for a certain class of nested fractals, that satisfy Assumption 2.2 in [10], there exist constants $c, c' > 0$ such that for all $x, y \in \Gamma$

$$
c' \left| x - y \right|^{\frac{\log \frac{1}{\alpha}}{\log \rho}} \le R(x, y) \le c \left| x - y \right|^{\frac{\log \frac{1}{\alpha}}{\log \rho}},
$$

note that $\frac{\log \frac{1}{\alpha}}{\log \rho} = d_w - d$. Thus piecewise harmonic functions on certain nested fractals satisfy

$$
\left|\psi_{\xi}^{j}(x) - \psi_{\xi}^{j}(y)\right| \leq c \left|x - y\right|^{\sigma},\tag{31}
$$

with $\sigma = d_w - d$. In particular, piecewise harmonic functions on the Sierpinski gasket satisfy

$$
\left|\psi_{\xi}^{j}(x) - \psi_{\xi}^{j}(y)\right| \le c \left|x - y\right|^{\beta}, \quad \text{for all } x, y \in \text{SG},
$$

where $\beta = \frac{\ln(5/3)}{\ln 2}$.

5. Characterization of Besov spaces $B_{pq}^s(\Gamma,\mu)$ by piecewise harmonic functions

Let $f \in C(\Gamma)$ and let P_nf , $n \geq 0$, be the unique piecewise harmonic function in H_n which interpolates f at all points in V_n :

$$
P_0 f = \sum_{\xi \in V_0} f(\xi) \psi_{\xi}^0,
$$

$$
P_n f = \sum_{\xi \in V_0} f(\xi) \psi_{\xi}^0 + \sum_{j=1}^n \sum_{\xi \in V_j \backslash V_{j-1}} c_{\xi}(f) \psi_{\xi}^j, \ n \ge 1,
$$

with

$$
c_{\xi}(f) = f(\xi) - P_{j-1}f(\xi), \quad \xi \in V_j \setminus V_{j-1}, \ 1 \le j \le n,
$$
 (32)

[8, Definition 3.2.18]. For $\xi \in V_j \setminus V_{j-1}$ there is an $\omega \in \Sigma$ such that

$$
\xi = \pi(\omega). \tag{33}
$$

We define $\Delta(\xi)$ by $\Delta(\xi) = \{ \eta \in V_{j-1} : \eta \in F_{\omega_1 \omega_2 \dots \omega_{j-1}}(\Gamma) \}$, where ω is chosen according to (33). $\Delta(\xi)$ consists of vertices of $(j-1)$ -simplex that ξ belongs to. It is the same as the one defined in [5, Section 4.1]. Then (32) can be equivalently calculated as

$$
c_{\xi}(f) = f(\xi) - \sum_{\eta \in \Delta(\xi)} \alpha_{\xi\eta} f(\eta), \quad \xi \in V_j \setminus V_{j-1}, \ 1 \le j \le n,
$$
 (34)

196 M. Kabanava

with

$$
\sum_{\eta \in \Delta(\xi)} \alpha_{\xi\eta} = 1. \tag{35}
$$

Let $V_{-1} = \emptyset$ and $P_{-1}f \equiv 0$, then $P_n f = \sum_{j=0}^n \sum_{\xi \in V_j \setminus V_{j-1}} c_{\xi}(f) \psi_{\xi}^j$ ξ . From the maximum principle for harmonic functions and from [14, Proposition 1.3.2] it follows that $P_n f$ tends to f uniformly on Γ as $n \to \infty$ and $f \in C(\Gamma)$ has the unique representation

$$
f = \sum_{j=0}^{\infty} \sum_{\xi \in V_j \backslash V_{j-1}} c_{\xi}(f) \psi_{\xi}^{j}.
$$

The question arises whether Besov spaces with a certain range of parameters can be characterized by coefficients $c_{\xi}(f)$. We give an affirmative answer in the following theorem.

Theorem 5.1. Let Γ be the above d-set with ρ as in (24) and σ as in (31). Let

$$
1 < p < \infty \quad and \quad \frac{d}{p} < s < \min\left\{1, \sigma\right\}.\tag{36}
$$

Then $f \in C(\Gamma)$ belongs to $B_p^s(\Gamma)$ if and only if it can be represented as

$$
f = \sum_{j=0}^{\infty} \sum_{\xi \in V_j \backslash V_{j-1}} c_{\xi}(f) \psi_{\xi}^j,
$$
 (37)

where $C_p^s(f) = \left(\sum_{j=0}^{\infty} \rho^{j(\frac{d}{p}-s)p} \sum_{\xi \in V_j \setminus V_{j-1}} |c_{\xi}(f)|^p\right)^{\frac{1}{p}} < \infty$, unconditional convergence being in $C(\Gamma)$. Furthermore

$$
||f|B_p^s(\Gamma)|| \sim C_p^s(f).
$$

Proof. The idea of the proof is the same as in [5, Theorem 5.1]. Let

$$
a_{j\xi}(x) = \rho^{j\left(s - \frac{d}{p}\right)} \psi_{\xi}^{j}(x), \quad j \in \mathbb{N}_{0}, \ \xi \in V_{j} \setminus V_{j-1}.
$$

Then $a_{j\xi}$ satisfy (19)-(21). Taking into account that $C(\Gamma) \subset L_1(\Gamma)$ we get that (37) is an atomic representation of f and from the Theorem 3.5 it follows that

$$
||f|B_p^s(\Gamma)|| \le c C_p^s(f).
$$

To prove the converse, let $f \in B_p^s(\Gamma)$ and let $f = \sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \lambda_m^j a_{jm}$ be an atomic decomposition of f into (s, p, σ) -atoms with $r = \rho$ in (13), (20) and (21) such that $\ddot{}$

$$
\|\lambda\| \le c \left\| f |B_p^s(\Gamma) \right\|.
$$
\n(38)

Then taking into account (20) and that $s > \frac{d}{p}$ we get

$$
\left|\sum_{m=1}^{M_j} \lambda_m^j a_{jm}\right| \leq \sup_m |\lambda_m^j| \sum_{m=1}^{M_j} \rho^{j\left(s-\frac{d}{p}\right)} \leq c\rho^{\left(s-\frac{d}{p}\right)} \sup_m |\lambda_m^j| \leq c\rho^{\left(s-\frac{d}{p}\right)} \left(\sum_{m=1}^{M_j} |\lambda_m^j|^p\right)^{\frac{1}{p}}.
$$

The Weierstrass test together with the estimate (38) imply that the series $\sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \lambda_m^j a_{jm}$ converges uniformly and it follows

$$
c_{\xi}(f) = \sum_{j=0}^{\infty} \sum_{m=1}^{M_j} \lambda_m^j c_{\xi}(a_{jm}).
$$

From the formula (34) together with (35) and the property (20) of (s, p, σ) atoms follows \overline{a}

$$
|c_{\xi}(a_{jm})| \le 2\rho^{j\left(s - \frac{d}{p}\right)}.
$$
\n
$$
(39)
$$

Moreover, for $i > 0$ the property (21) implies

$$
|c_{\xi}(a_{jm})| = \left| a_{jm}(\xi) - \sum_{\eta \in \Delta(\xi)} \alpha_{\xi\eta} a_{jm}(\eta) \right|
$$

=
$$
\left| \sum_{\eta \in \Delta(\xi)} \alpha_{\xi\eta} (a_{jm}(\xi) - a_{jm}(\eta)) \right|
$$

$$
\leq \rho^{i\sigma} \rho^{j(s-\sigma-\frac{d}{p})}, \quad \xi \in V_i \setminus V_{i-1}.
$$
 (40)

Let us split $c_{\xi}(f)$ into two parts

$$
c_{\xi}(f) = \sum_{j=0}^{i} \sum_{m=1}^{M_j} \lambda_m^j c_{\xi}(a_{jm}) + \sum_{j=i+1}^{\infty} \sum_{m=1}^{M_j} \lambda_m^j c_{\xi}(a_{jm}) = x_{\xi}(f) + y_{\xi}(f).
$$

Taking into account the support condition for atoms (19), we get that for all ξ and j the number of atoms such that $c_{\xi}(a_{jm}) \neq 0$ is finite.

First we deal with

$$
X_{i,p} = \left(\sum_{\xi \in V_i \setminus V_{i-1}} |x_{\xi}(f)|^p\right)^{\frac{1}{p}}.
$$

Note that $\{\xi \in V_i \setminus V_{i-1} : c_{\xi}(a_{jm}) \neq 0\} \subset \{\xi \in V_i \cap B^{\Gamma}(\gamma_{jm}, \rho^j)\}\.$ The balls $B^{\Gamma}(\xi,\frac{\rho^i}{2}$ $\frac{\rho^i}{2}$) corresponding to different $\xi \in V_i \cap B^{\Gamma}(\gamma_{jm}, \rho^j)$ are disjoint and for $j < i$ they are contained in $B^{\Gamma}(\gamma_{jm}, 2\rho^j)$. Thus

$$
\sum_{\xi \in V_i \cap B^{\Gamma}(\gamma_{j,m},\rho^j)} \mu\left(B^{\Gamma}\left(\xi,\frac{\rho^i}{2}\right)\right) \leq \mu\left(B^{\Gamma}\left(\gamma_{j,m},2\rho^j\right)\right).
$$

Since μ is a *d*-measure this implies that $\{\xi \in V_i \cap B^{\Gamma}(\gamma_{jm}, \rho^j)\}\)$ can have at most $c\left(\frac{\rho^j}{\rho^i}\right)$ $\frac{\rho^j}{\rho^i}\Big)^d$ elements. Hence

$$
\# \{\xi \in V_i \setminus V_{i-1} : c_{\xi}(a_{jm}) \neq 0\} \leq c\rho^{(j-i)d}, \quad j < i.
$$

By Minskowski's and Hölder's inequalities together with (40)

$$
X_{i,p} \leq \sum_{j=0}^{i} \left(\sum_{\xi \in V_i \setminus V_{i-1}} \left(\sum_{m=1}^{M_j} |\lambda_m^j| |c_{\xi}(a_{jm})| \right)^p \right)^{\frac{1}{p}}
$$

$$
\leq \sum_{j=0}^{i} \sum_{m=1}^{M_j} \left(\sum_{\xi \in V_i \setminus V_{i-1}} |\lambda_m^j|^{p} |c_{\xi}(a_{jm})|^p \right)^{\frac{1}{p}}
$$

$$
\leq \sum_{j=0}^{i} \sum_{m=1}^{M_j} |\lambda_m^j| \rho^{i\sigma} \rho^{j(s-\sigma-\frac{d}{p})} \rho^{(j-i)\frac{d}{p}}
$$

$$
\leq c \rho^{i(\sigma-\frac{d}{p})} \sum_{j=0}^{i} \rho^{j(s-\sigma)} \left(\sum_{m=1}^{M_j} |\lambda_m^j|^{p} \right)^{\frac{1}{p}}
$$

and it follows $X_{i,p,s} = \rho^{i(\frac{d}{p}-s)} X_{i,p} \leq c \rho^{i(\sigma-s)} \sum_{j=0}^i \rho^{j(s-\sigma)} \left(\sum_{m=1}^{M_j} |\lambda_m^j|^p \right)^{\frac{1}{p}}$. Jensen's inequality implies

$$
X_{i,p,s}^p \le c\rho^{i(\sigma-s)p} \rho^{i(s-\sigma)(p-1)} \sum_{j=0}^i \rho^{j(s-\sigma)} \sum_{m=1}^{M_j} |\lambda_m^j|^p = c\rho^{i(\sigma-s)} \sum_{j=0}^i \rho^{j(s-\sigma)} \sum_{m=1}^{M_j} |\lambda_m^j|^p.
$$

Then

$$
\left(\sum_{i=0}^{\infty} X_{i,p,s}^{p}\right)^{\frac{1}{p}} \leq c \left(\sum_{i=0}^{\infty} \rho^{i(\sigma-s)} \sum_{j=0}^{i} \rho^{j(s-\sigma)} \sum_{m=1}^{M_{j}} \left|\lambda_{m}^{j}\right|^{p}\right)^{\frac{1}{p}}
$$

$$
= c \left(\sum_{j=0}^{\infty} \left(\sum_{i=j}^{\infty} \rho^{i(\sigma-s)}\right) \rho^{j(s-\sigma)} \sum_{m=1}^{M_{j}} \left|\lambda_{m}^{j}\right|^{p}\right)^{\frac{1}{p}}
$$

$$
\leq c \left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_{j}} \left|\lambda_{m}^{j}\right|^{p}\right)^{\frac{1}{p}} = c \left\|\lambda\right\|.
$$

To estimate

$$
Y_{i,p} = \left(\sum_{\xi \in V_i \setminus V_{i-1}} |y_{\xi}(f)|^p\right)^{\frac{1}{p}}
$$

we use Minkowski's and Hölder's inequalities together with the property (39). Then we get

$$
Y_{i,p} \leq \sum_{j=i}^{\infty} \left(\sum_{\xi \in V_i \setminus V_{i-1}} \left(\sum_{m=1}^{M_j} |\lambda_m^j| |c_{\xi}(a_{jm})| \right)^p \right)^{\frac{1}{p}}
$$

$$
\leq \sum_{j=i}^{\infty} \sum_{m=1}^{M_j} \left(\sum_{\xi \in V_i \setminus V_{i-1}} |\lambda_m^j|^{p} |c_{\xi}(a_{jm})|^p \right)^{\frac{1}{p}}
$$

$$
\leq c \sum_{j=i}^{\infty} \sum_{m=1}^{M_j} |\lambda_m^j| \rho^{j(s-\frac{d}{p})}
$$

$$
\leq c \sum_{j=i}^{\infty} \rho^{j(s-\frac{d}{p})} \left(\sum_{m=1}^{M_j} |\lambda_m^j|^p \right)^{\frac{1}{p}}.
$$

Hence we have $Y_{i,p,s} = \rho^{i(\frac{d}{p}-s)} Y_{i,p} \leq c \rho^{i(\frac{d}{p}-s)} \sum_{j=i}^{\infty} \rho^{j(s-\frac{d}{p})} \left(\sum_{m=1}^{M_j} |\lambda_m^j|^p \right)^{\frac{1}{p}}$. Applying Jensen's inequality we get

$$
Y_{i,p,s}^p \le c\rho^{i(\frac{d}{p}-s)p} \rho^{i(\frac{d}{p}-s)(p-1)} \sum_{j=i}^{\infty} \rho^{j(s-\frac{d}{p})} \sum_{m=1}^{M_j} |\lambda_m^j|^p \le c\rho^{i(\frac{d}{p}-s)} \sum_{j=i}^{\infty} \rho^{j(s-\frac{d}{p})} \sum_{m=1}^{M_j} |\lambda_m^j|^p.
$$

Then

$$
\left(\sum_{i=0}^{\infty} Y_{i,p,s}^{p}\right)^{\frac{1}{p}} \leq c \left(\sum_{i=0}^{\infty} \sum_{j=i}^{\infty} \rho^{i\left(\frac{d}{p}-s\right)} \rho^{j\left(s-\frac{d}{p}\right)} \sum_{m=1}^{M_{j}} \left|\lambda_{m}^{j}\right|^{p}\right)^{\frac{1}{p}}
$$

$$
\leq c \left(\sum_{j=0}^{\infty} \left(\sum_{i=0}^{j} \rho^{i\left(\frac{d}{p}-s\right)}\right) \rho^{j\left(s-\frac{d}{p}\right)} \sum_{m=1}^{M_{j}} \left|\lambda_{m}^{j}\right|^{p}\right)^{\frac{1}{p}}
$$

$$
\leq c \left(\sum_{j=0}^{\infty} \sum_{m=1}^{M_{j}} \left|\lambda_{m}^{j}\right|^{p}\right)^{\frac{1}{p}} = c \left\|\lambda\right\|.
$$

Thus $C_p^s(f) = \left(\sum_{i=0}^{\infty} \rho^{i(\frac{d}{p}-s)p} \sum_{\xi \in V_i \setminus V_{i-1}} |c_{\xi}(f)|^p\right)^{\frac{1}{p}}$ can estimated by

$$
C_p^s(f) \le \left(\sum_{i=0}^\infty X_{i,p,s}^p\right)^{\frac{1}{p}} + \left(\sum_{i=0}^\infty Y_{i,p,s}^p\right)^{\frac{1}{p}} \le c\, \|\lambda\| \le c\, \big\|f|B_p^s(\Gamma)\big\|\,.
$$

Corollary 5.2. Let

$$
1 < p < \infty \quad and \quad \frac{d}{p} < s < \min\left\{1, \sigma\right\}.
$$

The system of functions $\{\psi^j_{\xi}\}$ $\{z_i, j \in \mathbb{N}_0, \xi \in V_j \setminus V_{j-1}\}$ is an unconditional basis in $B_p^s(\Gamma)$.

Proof. Let $f \in B_p^s(\Gamma)$. Then f has the unique representation

$$
f = \sum_{j=0}^{\infty} \sum_{\xi \in V_j \backslash V_{j-1}} c_{\xi}(f) \psi_{\xi}^{j}
$$
 (41)

with the convergence first being in $C(\Gamma)$. It is left to show that (41) converges in $B_p^s(\Gamma)$.

Let us show that the sequence of partial sums $S_n = \sum_{j=0}^n \sum_{\xi \in V_j \setminus V_{j-1}} c_{\xi}(f) \psi_{\xi}^j$ ξ is a Cauchy sequence in $B_p^s(\Gamma)$. For $n > m$

$$
||S_n - S_m|B_p^s(\Gamma)|| = \left\| \sum_{j=m+1}^n \sum_{\xi \in V_j \backslash V_{j-1}} c_{\xi}(f) \psi_{\xi}^j |B_p^s(\Gamma) \right\|
$$

$$
\sim \left(\sum_{j=m+1}^n \rho^{j(\frac{d}{p}-s)p} \sum_{\xi \in V_j \backslash V_{j-1}} |c_{\xi}(f)|^p \right)^{\frac{1}{p}} \to 0, \quad n, m \to \infty.
$$

Since $B_p^s(\Gamma)$ is complete, the series (41) converges to f in $B_p^s(\Gamma)$.

$$
\qquad \qquad \Box
$$

Corollary 5.3. Let

$$
\frac{d}{p} < s < \min\left\{1, \sigma\right\}, \quad 1 < p < \infty, \quad 1 \le q < \infty.
$$

Then the Theorem 5.1 remains valid for $B_{pq}^s(\Gamma,\mu)$.

The proof follows by the same arguments that were used in [7, Section 3.3].

References

- [1] Bodin, M., Discrete characterisations of Lipschitz spaces on fractals. Math. Nachr. 282 (2009), 26 – 43.
- [2] Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications. Chichester: Wiley 2001.
- [3] Hu, J. and Wang, X., Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals. Studia Math. 177 (2006), $153 - 172$.
- [4] Hutchinson, J. E., Fractals and self similarity. Indiana Univ. Math. Journ. 30 $(1981), 713 - 747.$
- [5] Jonsson, A. and Kamont, A., Piecewise linear bases and Besov spaces on fractal sets. Anal. Math. 27 (2001), 77 – 117.
- [6] Jonsson, A. and Wallin, H., Function Spaces on Subsets of \mathbb{R}^n . Math. Rep. 2(1). London: Harwood Acad. 1984.
- [7] Kabanava, M., Function spaces on the snowflake. In: Function Spaces IX (Proceedings Krak´ow (Poland) 2009; eds.: H. Hudzik et al.). Banach Centre Publications 92. Warsaw: Polish Acad. Sciences 2011, pp. 131 – 142.
- [8] Kigami, J., Analysis on Fractals. Cambridge: Cambridge Univ. Press 2003.
- [9] Kigami, J., Harmonic analysis for resistance forms. J. Funct. Anal. 204 (2003), 399 – 444.
- [10] Kumagai, T., Estimates of transition densities for Brownian motion on nested fractals. Probab. Theory Relat. Fields 96 (1993), $205 - 224$.
- [11] Lindstrøm, T., Brownian Motion on Nested Fratals. Mem. Amer. Math. Soc. 420 (1990).
- [12] Pietruska-Pałuba, K., Some function spaces related to the Brownian motion on simple nested fractals. Stochastics 67 (1999), 267 – 285.
- [13] Pietruska-Pałuba, K. and Bodin, M., Harmonic functions representation of Besov-Lipschitz functions on nested fractals. Umeå Univ., Dept. Math., Research Report in Math. 2 (2010).
- [14] Semadeni, Z., Schauder Bases in Banach Spaces of Continuous Functions. Lect. Notes Math. 918. Berlin: Springer 1982.
- [15] Strichartz, R., Differential Equations on Fractals. Princeton: Princeton Univ. Press 2006.
- [16] Triebel, H., *Theory of Function Spaces*. Basel: Birkhäuser 1983.
- [17] Triebel, H., *Theory of Function Spaces III.* Basel: Birkhäuser 2006.
- [18] Triebel, H., Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. Zürich: Europ. Math. Soc. 2010.

Received January 21, 2011