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Abstract. The paper considers the so-called strict s-numbers, which form an impor-
tant subclass of the family of all s-numbers. For operators acting between Hilbert
spaces the various s-numbers are known to coincide: here we give examples of linear
maps T and non-Hilbert spaces X,Y such that all strict s-numbers of T : X → Y

coincide. The maps considered are either simple integral operators acting in Lebesgue
spaces or Sobolev embeddings; in these cases the exact value of the strict s-numbers
is determined.
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1. Introduction

In 1974, Pietsch [12] introduced his axiomatic theory of s-numbers of bounded
linear operators acting between Banach spaces. This theory plays an important
rôle in approximation theory and also in operator theory, and offers a unified
base for studying the approximation numbers and other important numbers
such as those associated with Bernstein, Mityagin and Kolmogorov. To be
more precise we now define s-numbers and mention some basic facts concerning
them.

Given Banach spaces X, Y, the closed unit ball in X will be denoted by BX ,
while B(X, Y ) will stand for the space of all bounded linear maps of X to Y ;
we shall write B(X) instead of B(X,X).

Let s : T 7−→ (sn(T )) be a rule that attaches to every bounded linear
operator acting between any pair of Banach spaces a sequence of non-negative
numbers that has the following properties:
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(S1) ‖T‖ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0.

(S2) sn(S + T ) ≤ sn(S) + ‖T‖ for S, T ∈ B(X, Y ) and n ∈ N.

(S3) sn(BTA) ≤ ‖B‖ sn(T ) ‖A‖ whenever A ∈ B(X0, X), T ∈ B(X, Y ),
B ∈ B(Y, Y0) and n ∈ N.

(S4) sn(Id : ln2 → ln2 ) = 1 for n ∈ N.

(S5) sn(T ) = 0 when rank(T ) < n.

We shall call sn(T ) (or sn(T : X → Y )) the nth s-number of T.

When the property (S4) is replaced by

(S6) sn(Id : E → E) = 1 for every Banach space E with dim (E) ≥ n,

we say that sn(T ) is the nth s-number of T in the “strict” sense. It is obvious
that (S6) implies (S4), and so for a given operator T the class of s-numbers
is larger than that of strict s-numbers. Note that the original definition of
s-numbers given in [12] coincides with that of strict s-numbers provided here.

Given T ∈ B(X, Y ) and n ∈ N, the nth approximation number of T is
defined to be

an(T ) = inf{‖T − F‖ : F ∈ B(X, Y ), rank(F ) < n};

the nth isomorphism number of T is

in(T ) = sup
{
‖A‖−1 ‖B‖−1} ,

where the supremum is taken over all Banach spaces G with dim(G) ≥ n and
all maps A ∈ B(Y,G), B ∈ B(G,X) such that ATB is the identity on G.
The approximation numbers are strict and are the largest s-numbers; the iso-
morphism numbers are the smallest strict s-numbers; for maps between Hilbert
spaces, all s-numbers coincide. Further examples of s-numbers are given by the
numbers associated with the names of Bernstein, Chang, Gelfand, Hilbert, Kol-
mogorov, Mityagin and Weyl; the Bernstein, Gelfand and Mityagin numbers are
strict. When the spaces involved are not Hilbert spaces it is certainly not true
that all s-numbers coincide: for example, if I1 : l1 → l∞ is the identity, then
the nth Bernstein and Mityagin numbers of I1 coincide and equal 1

n
, while the nth

Gelfand and Kolmogorov numbers of I1 coincide and are ≥ 1
2
; for the identity

map I2 : l1 → l1 we have an(I2) = 1 and the nth Hilbert number of I2 behaves
like 1√

n
. For these results, together with more information about s-numbers,

and those that are strict, we refer to [12] and the remarkable book [13].

In this paper integral operators of Hardy type, acting in Lp, and certain
Sobolev embeddings are considered: for each of these it is shown that all
strict numbers coincide and are given by an explicit formula: see Theorems 3.3
and 3.5, together with Theorems 4.1–4.4.
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2. Preliminaries

Let 1 < p < ∞ and define a (differentiable) function Fp : [0, 1] → R by

Fp(x) =

∫ x

0

1
p
√
1− tp

dt, 0 ≤ x ≤ 1. (2.1)

Since Fp is strictly increasing it is a one-to-one function on [0, 1] with range[
0, πp

2

]
, where

πp = 2

∫ 1

0

1
p
√
1− tp

dt. (2.2)

The inverse of Fp on
[
0, πp

2

]
we denote by sinp and extend as in the case of sin

(when p = 2) to [0, πp] by defining

sinp(x) = sinp(πp − x) for x ∈
[πp

2
, πp

]
;

further extension is achieved by oddness and 2πp-periodicity on the whole of R.
By this means we obtain a differentiable function on R which coincides with sin
when p = 2.

Corresponding to this we define a function cosp by the prescription

cosp(x) =
d

dx
sinp(x), x ∈ R. (2.3)

Clearly cosp is even, 2πp-periodic and odd about πp; and cos2 = cos. If

x∈
[
0, πp

2

]
, then from the definition it follows that cosp(x)=

(
1 − (sinp(x))

p
) 1

p .

Moreover, the antisymmetry and periodicity show that

| sinp(x)|p + | cosp(x)|p = 1, x ∈ R. (2.4)

From (2.2) it follows that

πp

2
= p−1

∫ 1

0

(1− s)−
1
p s

1
p
−1ds = p−1B

(
1− 1

p
,
1

p

)
= p−1Γ

(
1− 1

p

)
Γ

(
1

p

)
,

where B is the Beta function, Γ is the Gamma function and

πp =
2π

p sin
(
π
p

) . (2.5)

Clearly π2 = π and, with p′ = p
p−1

,

pπp = 2Γ

(
1

p′

)
Γ

(
1

p

)
= p′πp′ . (2.6)
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More about the sinp and cosp functions can be found in [1,4] and [6–11]; in
particular, an excellent historical review of generalized trigonometric functions
is given in [9].

Consider the most simple integral operator. On the interval I = (a, b) let

Tcf(x) :=

∫ x

c

f(t)dt, where c ∈ [a, b]. (2.7)

At first we consider T0 as a map from L2(0, 1) into L2(0, 1). It is obvious that T0

is compact and that there exists a function in L2(0, 1) at which the norm of T0

is attained. In this case it is quite simple to show that ‖T0|L2(0, 1) → L2(0, 1)‖
= 2

π
and that the norm is attained when f(t) = cos

(
πt
2

)
π
2
so that T0f(t) =

sin
(
πt
2

)
.

When p 6= 2 then again T0 is a compact map from Lp(0, 1) into Lp(0, 1) and
there exists a function at which the norm is attained. In a classical paper [5],
the following theorem was proved.

Theorem 2.1. Let p ∈ (1,∞)and let I be the interval (0, 1). Then

‖T0 : Lp(I) → Lp(I)‖ =
(p′)

1
pp

1
p′

π
sin

(
π

p

)
. (2.8)

The extremals are the non-zero multiples of f(x) = πp

2
cosp

(πpx

2

)
and T0f(x) =

sinp

(πpx

2

)
.

A more general version of this theorem was independently proved in [14].
We define a quantity A0 that plays a key rôle in the approximation of Tc.

Definition 2.2. Let J := (c, d) ⊂ I = (a, b). We define

A0(J) = sup
‖u‖p,J>0

inf
α∈R

∥∥∫ ·
c
u(t)dt− α

∥∥
p,J

‖u‖p,J
.

The next two lemmas can be obtained, after some modifications, from re-
sults contained in the paper [3] but for the reader’s convenience we prove them.

Lemma 2.3. Let (x, y) ⊂ I. Then A0((x, y)) is a continuous function of x
and y.

Proof. For simplicity we shall write A0(x, y) instead of A0((x, y)). Suppose that
there are x, y ∈ I and ε > 0 such that A0(x, y + hn)− A0(x, y) > ε for some
sequence {hn} with 0 < hn ↓ 0 as n ↑ ∞. Then there exists ε1 > 0 such that
Ap

0(x, y + hn)− Ap
0(x, y) > ε1 for all n ∈ N. For economy of expression write

Iw,z = inf
α∈R

∥∥∫ ·
x
u(s)ds− α

∥∥p
p,(x,w)

‖u‖pp,(x,z)
.
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Then for all h > 0 we have

Ap
0(x, y + h)− Ap

0(x, y) = sup
‖u‖p,(x,y+h)>0

Iy+h,y+h − sup
‖u‖p,(x,y)>0

Iy,y

≤ sup
‖u‖p,(x,y+h)>0

{Iy+h,y+h − Iy,y+h}

≤ sup
‖u‖p,(x,y+h)>0

∥∥∫ ·
x
u(s)ds

∥∥p
p,(y,y+h)

‖u‖pp,(x,y+h)

≤ |(y, y + h)|
p
p′ = h

p
p′ ,

and we have a contradiction. Hence A0(x, y + h) → A0(x, y) as h → 0. In the
same way it can be shown that A0(x+ h, y) → A0(x, y) as h → 0.

Lemma 2.4. Let J = (c, d) ⊂ I. Then there is a function f ∈ Lp(J) and a
point s ∈ [c, d] such that

A0(J) =

∥∥∫ ·
s
f(t)dt

∥∥
p,J

‖f‖p,J
= inf

α∈R

∥∥∫ ·
c
f(t)dt− α

∥∥
p,J

‖f‖p,J
.

Proof. There is a sequence {fn} of functions in Lp(J), with ‖fn‖p,J = 1 for each
n ∈ N, and a sequence of numbers {sn} from [c, d] such that

∥∥∥∥
∫ ·

sn

fn(t)dt

∥∥∥∥
p,J

+
1

n
= inf

α∈R

∥∥∥∥
∫ ·

c

fn(t)dt− α

∥∥∥∥
p,J

+
1

n
> A0(J).

Since Tc : Lp(J) → Lp(J) is compact, there is a subsequence of {fn}, again
denoted by {fn} for convenience, which converges weakly in Lp(J), to f , say,
and Tcfn → Tcf in Lp(I). As Tc : Lp(J) → Lp(J) is compact, Tc also acts com-
pactly from Lp(J)/ sp{1}, the quotient space modulo constants, to itself, where
‖h‖Lp(J)/ sp{1} := infα∈R ‖h− α‖p,J ; moreover, Tcfn → Tcf in Lp(J)/ sp{1}. Us-
ing the facts that ‖f‖p,J ≤ lim inf ‖fn‖p,J and ‖Tcf‖Lp(J)\{1} = A0(J), we

conclude that ‖f‖p,J = 1. Because

F (u) :=

∥∥∫ ·
u
f(t)dt

∥∥
p,J

‖f‖p,J

depends continuously on u, there exists s ∈ [c, d] such that

∥∥∫ ·
s
f(t)dt

∥∥
p,J

‖f‖p,J
= inf

c≤u≤d

∥∥∫ ·
u
f(t)dt

∥∥
p,J

‖f‖p,J
= A0(J).

Thus f has all the properties required in the theorem.
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The next lemma was also proved in [3].

Lemma 2.5. Let J = (c, d) ⊂ I and suppose that f and s are as in the last
lemma. Then f may be chosen so that s = c+d

2
, f(c+) = f(d−) = 0 and f is

odd about c+d
2
.

Theorem 2.6. Let J = (c, d) ⊂ I. Then

A0(J) =

∥∥∥
∫ ·

c+d
2
u(t)dt

∥∥∥
p,J

‖u‖p,J
= inf

α∈R

∥∥∥
∫ ·

c+d
2
u(t)dt− α

∥∥∥
p,J

‖u‖p,J
= γp |J |,

where

u(x) = cosp

(
πp

(
x− c+d

2

)

d− c

)
and γp =

(p′)
1
pp

1
p′

2π
sin

(
π

p

)
.

Proof. From Lemma 2.5 it follows that the function f of that lemma is odd
with respect to c+d

2
and has a derivative vanishing at c and d; moreover, it is

an extremal for

sup
g

∥∥∫ ·
s
g(t)dt

∥∥
p,(s,d)

‖g‖p,(s,d)
and sup

g

∥∥∫ ·
s
g(t)dt

∥∥
p,(c,s)

‖g‖p,(c,s)
.

The result is now a consequence of Theorem 2.1.

From Theorem 2.1 also follows the next remark.

Remark 2.7. The function φ defined by φ(x) = sinp

(
πp

x−a
b−a

)
satisfies

‖φ‖p,I
‖φ′‖p,I

= γp |I|,

where γp is as in Theorem 2.6.

Three different partitions of [a, b] will be useful in what follows. These are
J(n) := {J0, J1, . . . , Jn} , where

J0 =

[
a, a+

b− a

2n+ 1

]
, Ji =

[
a+

(2i− 1)(b− a)

2n+ 1
, a+

(2i+ 1)(b− a)

2n+ 1

]
(2.9)

for i = 1, . . . , n; S(n) := {S1, . . . , Sn} , where

Si =

[
a+

(i− 1)(b− a)

n
, a+

i(b− a)

n

]
for i = 1, . . . , n, (2.10)

and I(n) := {I0, . . . , In}, where

I0 =

[
a, a+

b− a

2n

]
, In =

[
b− b− a

2n
, b

]
,

Ii =

[
a+

(2i− 1)(b− a)

2n
, a+

(2i+ 1)(b− a)

2n

]
for i = 1, . . . , n− 1.

(2.11)
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3. The Hardy operator Tc

We first determine the approximation numbers of the operator Tc on the interval
I = (a, b) where c = a+b

2
.

Lemma 3.1. Let n be an odd natural number and let c = a+b
2
. Then

an+1(Tc) = an(Tc) = γp
|I|
n
,

where γp is as in Theorem 2.6. Moreover, the bounded linear operator PTc defined
by

PTcf(x) =
∑(∫ di

c

f(t)dt

)
χSi

(x) + 0χSn+1
2

(x), (3.1)

(where the sum is over all i ∈ {1, 2, . . . , n} with i 6= n+1
2
, S(n) = {Si}ni=1 is the

partition of [a, b] given by (2.10) and di is the mid-point of Si), is the optimal
linear approximant to Tc among all n- and (n−1)-dimensional linear operators.

Proof. Let Si = [ai, bi], so that di =
ai+bi

2
, and note that |Si| = |I|

n
. The map PTc

given by (3.1) has rank n−1. Let f ∈ Lp(I). By Theorem 2.1,
(
b−a
n

)
γp ‖f‖p,(ai,bi)

is greater than or equal to

(∥∥∥∥
∫ ·

di

f(t)dt

∥∥∥∥
p

p,(di,bi)

+

∥∥∥∥
∫ ·

di

f(t)dt

∥∥∥∥
p

p,(ai,di)

) 1
p

if i 6= n+ 1

2
,

and (
‖Tcf‖pp,(di,bi) + ‖Tcf‖pp,(ai,di)

) 1
p

if i =
n+ 1

2
.

Using c = dn+1
2

we obtain

‖Tcf − PTcf‖pp,I ≤
n∑

i=1

‖(Tc − PTc)(f)‖pp,Ii

≤
n∑

i=1

(∥∥∥∥
∫ .

di

f(t)dt

∥∥∥∥
p

p,(ai,di)

+

∥∥∥∥
∫ .

di

f(t)dt

∥∥∥∥
p

p,(di,bi)

)

≤
n∑

i=1

{
γp

b− a

n

}p

‖f‖pp,(ai,bi)

≤
{
γp

b− a

n

}p

‖f‖pp,I ,

so that for odd n we have an(Tc) ≤ γp
|I|
n
.

To estimate the approximation numbers from below we again use the par-
tition S(n) = {Si}ni=1 of I, and {di}ni=1 as above. Then using Theorems 2.1
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and 2.6 for each i ∈ {1, 2, . . . , n}, i 6= n+1
2
, we see that there are functions

φ ∈ Lp(I), non-zero only on Si, and functions φ−, φ+ ∈ Lp(I), non-zero only on(
an+1

2
, c
)
and

(
c, bn+1

2

)
respectively, such that

inf
α∈R

‖Tdiφi − α‖p,Si

‖φi‖p,Si

,

‖Tcφ−‖
p,
(
an+1

2
,c
)

‖φ−‖
p,
(
an+1

2
,c
) and

‖Tcφ+‖
p,
(
c,bn+1

2

)

‖φ+‖
p,
(
c,bn+1

2

)

are all equal to γp |Si| . Let Pn : Lp(I) → Lp(I) be bounded and linear, with
rank n. Then there are constants λi

(
i ∈ {1, 2, . . . , n}, i 6= n+1

2

)
, λ−, λ+ such

that for g =
∑

λiφi + λ−φ− + λ+φ+ we have Png = 0. And we obtain

‖Tcg − Png‖pp,I = ‖Tcg‖pp,I

=
n∑

i=1

‖Tcg‖pp,Si

=
n∑

i=1

‖Tdi(g) + (Tcg)(di)‖pp,Si

≥
∑

i 6=n+1
2

inf
α∈R

‖λiTdiφi − α‖pp,Si
+ ‖Tg‖p

p,
(
an+1

2
,c
) + ‖Tg‖p

p,
(
c,bn+1

2

)

=
∑

i 6=n+1
2

‖λiφi‖pp,Si

(
γp

|I|
n

)p

+

(
‖λ−φ−‖p

p,
(
an+1

2
,c
) + ‖λ+φ+‖p

p,
(
c,bn+1

2

)
)(

γp
|I|
n

)p

≥
(
γp

|I|
n

)p

‖g‖pp,I ,

from which it follows that for odd n, an+1(Tc) ≥ γp
|I|
n
. Hence for odd n,

γp
|I|
n

≤ an+1(Tc) ≤ an(Tc) ≤ γp
|I|
n
,

and the proof is complete.

Lemma 3.2. Let n be an odd natural number and let Tc : Lp(I) → Lp(I) be the
Hardy operator with c = a+b

2
. Then

γp
|I|
n

= an+1(Tc) ≤ in+1(Tc),

where γp is as in Theorem 2.6.
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Proof. It is enough to deal with the case when I = (−1, 1). Let I(n) = {Ii}ni=0

be the partition of I = (−1, 1) given by (2.11). Note that 2|I0| = 2|In| = |Ii|
when 0 < i < n.

We introduce a sequence space lnp,w with norm

‖{ci}‖lnp,w :=

{
2

n−1∑

i=1

|ci|p + |c0|p + |cn|p
} 1

p

.

Maps A : lnp,w → Lp(0, 1) and B : Lp(0, 1) → lnp,w are defined by

A ({ci}ni=0) =
n∑

i=0

(−1)i+1ciχIi(x) cosp

(πpnx

2

)

and

B(g(x)) =

{(
n− 1

2

)
πp

∫
Ii
(−1)i+1g(x)

(
sinp

(πpnx

2

))
(p)

dx
∥∥sinp

(πpn ·
2

)∥∥
p,Ii

}n

i=0

,

where (s)p = |s|p−2s (s ∈ R \ {0}), (0)p = 0, whenever p ∈ (1,∞). Then

Tc

(
ciχIi(x) cosp

(πpnx

2

))
=

ciχIi(x) sinp

(πpnx

2

)
πpn

2

,

from which it follows that

Tc (A ({ci}ni=0)) =
n∑

i=0

(−1)i+1ciχIi(x) sinp

(πpnx

2

)
πpn

2

.

Using the definition of B we obtain

B (Tc (A ({ci}ni=0))) =

{
ci

∫

Ii

∣∣sinp

(πpnt

2

)∣∣p
∥∥sinp

(πpn ·
2

)∥∥
p,Ii

dt

}n

i=0

= {ci}ni=0.

Thus BTcA is the identity on lnp,w.

Moreover,

{
‖B:Lp(0,1)→lnp,w‖

πpn

2

}p

equals the supremum, over all g ∈ Lp(0, 1)

with ‖g‖p,(0,1) ≤ 1, of

2
n−1∑

i=1

∣∣∣∣∣

∫
Ii
g(t)

(
sinp

(πpnt

2

))
(p)

dt
∥∥sinp

(πpn ·
2

)∥∥p
p,Ii

∣∣∣∣∣

p

+

∣∣∣∣∣

∫
I0
g(x)

(
sinp

(πpnt

2

))
(p)

dt
∥∥sinp

(πpn ·
2

)∥∥p
p,I0

∣∣∣∣∣

p

+

∣∣∣∣∣

∫
In
g(x)

(
sinp

(πpnt

2

))
(p)

dt
∥∥sinp

(πpn ·
2

)∥∥p
p,In

∣∣∣∣∣

p

.
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Note that the supremum is attained only when g(x) =
∑n

i=0 ciχIi(x) sinp

(πpnx

2

)
.

Hence
‖B:Lp(0,1)→lnp,w‖

πpn

2

equals

sup
{ci}∈lnp,w

(
2
∑n−1

i=1 |ci|p + |c0|p + |cn|p
) 1

p

∥∥∑n
i=0 ciχIi(·) sinp

(πpn ·
2

)∥∥
p,(0,1)

= sup
{ci}∈lnp,w

(
2
∑n−1

i=1 |ci|p + |c0|p + |cn|p
) 1

p

{∑n
i=0

∫
Ii

∣∣ciχIi(x) sinp

(πpnx

2

)∣∣p dx
} 1

p

= sup
{ci}∈lnp,w

(
2
∑n−1

i=1 |ci|p + |c0|p + |cn|p
) 1

p

(
2
∑n−1

i=1 |ci|p + |c0|p + |cn|p
) 1

p

{∫
In

∣∣sinp

(πpnx

2

)∣∣p dx
} 1

p

=
1

{∫
In

∣∣sinp

(πpnx

2

)∣∣p dx
} 1

p

,

and
∥∥A : lnp,w → Lp(0, 1)

∥∥ equals

sup
‖{ci}‖lnp,w≤1

{∫

I

∣∣∣∣∣

n∑

i=0

ciχIi(x) cosp

(πpnx

2

)∣∣∣∣∣

p

dx

} 1
p

= sup
‖{ci}‖lnp,w≤1

{
n∑

i=1

|ci|p
∫

Ii

∣∣∣cosp
(πpnx

2

)∣∣∣
p

dx

} 1
p

= sup
‖{ci}‖lnp,w≤1

(
2

n−1∑

i=1

|ci|p + |c0|p + |cn|p
) 1

p(∫

In

∣∣∣cosp
(πpnx

2

)∣∣∣
p

dx

) 1
p

=

(∫

In

∣∣∣cosp
(πpnx

2

)∣∣∣
p

dx

) 1
p

.

Thus

in(T ) ≥ ‖A‖−1 ‖B‖−1 =

(∫
In

∣∣sinp

(πpnx

2

)∣∣p dx
) 1

p

πpnx

2

(∫
In

∣∣cosp
(πpnx

2

)∣∣p dx
) 1

p

,

which completes the proof.

From Lemmas 3.1 and 3.2 we have, using the ordering of the strict
s-numbers mentioned in the Introduction,
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Theorem 3.3. Let Tc : Lp(I) → Lp(I) be the Hardy operator with c = a+b
2

and
let s̃n stand for any strict s-number. If n is odd, then

s̃n(Tc) = s̃n+1(Tc) = γp
|I|
n
, (3.2)

where γp is as in Theorem 2.6. The bounded linear operator PTc defined in (3.1)
is an optimal n-dimensional approximation of Tc.

By technical modification of Lemma 3.1 and Theorem 3.3 for the integral
operator Ta on I = (a, b) we obtain the next lemma and theorem.

Lemma 3.4. For all n ∈ N, the approximation numbers of the map Ta :
Lp(I) → Lp(I) are given by

an+1(Ta) = γp
|I|

n+ 1
2

,

where γp is as in Theorem 2.6. Moreover, the bounded linear operators PT ,
where

PTf(x) =
n∑

i=1

(∫ si

a

f(t)dt

)
χJi(x) + 0χJ0(x), (3.3)

the Ji are given by (2.9) and si is the mid-point of Ji, are optimal n-dimensional
linear approximations of Ta.

Theorem 3.5. Let Ta : Lp(I) → Lp(I) be the Hardy operator given by (2.7)
and let s̃n stand for any strict s-number. Then for all n ∈ N,

s̃n(Ta) = γp
|I|

n− 1
2

, (3.4)

where γp is as in Theorem 2.6.

4. Sobolev embeddings on intervals

Here we obtain the exact values of strict s-numbers of various Sobolev embed-
dings with arguments that again crucially depend on generalised trigonometric
functions. Throughout this section I = [a, b] will be a bounded interval and T

will stand for the unit circle realised as the interval [−π, π] with identified end-
points; we always suppose that 1 < p < ∞.

By W 1
p (I)/ sp{1} we denote the factorisation of the usual Sobolev space

W 1
p (I) with respect to constants, equipped with the norm

∥∥[f ] | W 1
p (I)/ sp{1}

∥∥ := ‖f ′‖p,I ;
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note that elements of W 1
p (I)/ sp{1} are equivalence classes [·] of functions which

differ by a constant. In the same way, Lp(I)/ sp{1} is given the norm

‖[f ] | Lp(I)/ sp{1}‖ := inf ‖f − c‖p,I ,

where the infimum is taken over all scalars c. The spaces W 1
p (T)/ sp{1} and

Lp(T)/ sp{1} are defined analogously. As usual,
0

Wp
1(I) is the space of all ab-

solutely continuous functions f on I with norm ‖f ′‖p,I and zero values at a

and b. By
a

Wp
1(I) (resp.

mid

Wp
1(I)) we mean the space of all absolutely continuous

functions f on I with norm ‖f ′‖p,I and zero value at a
(
resp. at a+b

2

)
.

We consider the following Sobolev embeddings:

E0 :
0

Wp
1(I) → Lp(I), Ea :

a

Wp
1(I) → Lp(I), Emid :

mid

Wp
1(I) → Lp(I),

and

EI : W
1
p(I)/ sp{1} → Lp(I)/ sp{1}, ET : W 1

p(T)/ sp{1} → Lp(T)/ sp{1}.

The norm of E0 is defined by

‖E0‖ = sup
‖f ′‖p,I>0,f(a)=f(b)=0

‖f ′‖p,I
‖f‖p,I

;

the norms of Ea and Emid we define in a similar way, while that of EI is given by

‖EI‖ = sup
[f ]∈W 1

p (I)/sp{1}

‖f ′‖p,I
‖[f ]‖p,I

,

with a corresponding definition for the norm of ET. Since the length |I| of I is
finite all these embeddings are compact (see, for example, [2, Theorem V.4.18]).

The closed unit ball in
a

Wp
1(I) is denoted by B

a

Wp
1(I); unit balls in the other

spaces mentioned above are represented by similar expressions. Plainly

Ta (BLp(I)) = B
a

Wp
1(I), Tc (BLp(I)) = B

mid

Wp
1(I),

where c = a+b
2
. From this observation and Theorems 3.3 and 3.5 the next

theorem follows.

Theorem 4.1. Let n ∈ N, let s̃n stand for any strict s-number and let γp be as
in Theorem 2.6. Then:

(i) if n is odd, s̃n(Emid) = s̃n+1(Emid) = γp
|I|
n
;

(ii) for all n ∈ N, s̃n(Ea) = γp
|I|

n+ 1
2

.
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Next we focus on the strict s-numbers for the Sobolev embeddings EI

and ET.

Theorem 4.2. Let n ∈ N and let s̃n stand for any strict s-number. If n is
even, then

s̃n(ET) ≥ γp
2π

n+ 1
,

and when n is odd,

s̃n(ET) = γp
2π

n+ 1
,

where γp is as in Theorem 2.6. Moreover, for given odd n, the bounded linear
operator PT given by

PT[f ] =

[
n+1∑

i=1

f(ai) + f(bi)

2
χSi

(.)

]
, (4.1)

where {Si}n+1
1 = S(n + 1) is a partition of I = [a, b] = T = [−π, π] (see (2.10)

with Si = [ai, bi], a0 = bn, and ai+1 = bi), is an optimal linear operator for the
Sobolev embedding ET among all linear operators with rank ≤ n− 1.

Proof. Let n be odd and {Si}n+1
i=1 = S(n + 1) be a partition of [−π, π] = T =

I = [a, b]. We can rewrite the operator PT in the following way:

PT[f ] =

[
f(a1) + f(b1)

2
χT(.) +

n∑

i=2

(
f(ai) + f(bi)

2
− f(a1) + f(b1)

2

)
χSi

(.)

+

((
n∑

i=1

(f(ai) + f(bi))(−1)i
1

2

)
− f(a1) + f(b1)

2

)
χSn+1(.)

]
.

From this we can see that the rank of PT as a linear operator fromW 1
p (T)/ sp{1}

into Lp(T)/ sp{1} is equal to n− 1. Let f ∈ W 1
p (T)/ sp{1}; then

‖[f ]− PT[f ]‖Lp(T)/ sp{1} = inf
c∈R

‖f − PTf − c‖pp,T
≤ ‖f − PTf‖pp,T

=
n+1∑

i=1

∥∥∥∥f − f(ai) + f(bi)

2

∥∥∥∥
p

p,Si

.

From Lemma 2.4 we have for any i with 1 ≤ i ≤ n+ 1:

sup
‖f‖

W1
p (Si)

≤1

∥∥∥∥f − f(ai) + f(bi)

2

∥∥∥∥
p

p,Si

= sup
‖f‖

W1
p (Si)≤1

inf
c∈R

‖f − c‖pp,Si

= sup
‖f‖

W1
p (Si)

≤1

inf
c∈R

∥∥∥∥f − f(ai) + f(bi)

2
− c

∥∥∥∥
p

p,Si

= sup
‖f‖

W1
p (Si)

≤1

(γp|Si|)p ‖f ′‖pp,Si
,
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and then ‖[f ] − PT[f ]‖Lp(T)/ sp{1} = ‖f − PTf‖Lp(T)/ sp{1} ≤ γp
2π
n+1

‖f ′‖p,T. Thus
an(ET) ≤ γp

2π
n+1

.
To prove the lower estimate for in(ET), we introduce a sequence space

ln+1
p / sp{1} with norm

‖ [{ci}] ‖ln+1
p / sp{1} := inf

c∈R

{
n+1∑

i=1

|ci − c|p
} 1

p

.

Note that dim ln+1
p / sp{1} = n.

Define a map A : ln+1
p / sp{1} → W 1

p (T)/ sp{1} by:

A[{ci}n+1
i=1 ] =

[
n+1∑

i=1

(ci − c)χIi(x) sinp

(
(x− ai)

(n+ 1)πp

2π

)]
,

where c is a number for which

‖ [{ci}] ‖ln+1
p / sp{1} =

{
n+1∑

i=1

|ci − c|p
} 1

p

.

Similarly, a map B : Lp(T)/ sp{1} → ln+1
p / sp{1} is defined by

B[g] =








∫
Ii
(g(x)− c)

(
sinp

(
(x− ai)

(n+1)πp

2π

))
(p)

dx
∥∥∥sinp

(
(· − ai)

(n+1)πp

2π

)∥∥∥
p

p,Ii





n+1

i=1


 ,

where c is a constant such that ‖[g]‖Lp(T)/ sp{1} = ‖g − c‖p,T.
Since ET[g] = [g] we have ET(A [{ci}n+1

i=1 ] ) = A [{ci}n+1
i=1 ]. Thus using the

definition of B we obtain

B
(
ET

(
A
[
{ci}n+1

i=1

]))
=







ci

∫

Ii

∣∣∣sinp

(
(x− ai)

(n+1)πp

2π

)∣∣∣
p

∥∥∥sinp

(
(· − ai)

(n+1)πp

2π

)∥∥∥
p

p,Ii

dx





n+1

i=1


=

[
{ci}n+1

i=1

]
,

which means that BETA is the identity on ln+1
p / sp{1}.

Moreover,
∥∥B : Lp(T)/ sp{1} → ln+1

p / sp{1}
∥∥p equals the supremum, over

all [g] ∈ Lp(T)/ sp{1} with ‖[g]‖Lp(T)/ sp{1} ≤ 1, of

n+1∑

i=1

∣∣∣∣∣∣∣

∫
Ii
(g(x)− c)

(
sinp

(
(n+1)πpx

2π

))
(p)

dx
∥∥∥sinp

(
(n+1)πp ·

2π

)∥∥∥
p

p,Ii

∣∣∣∣∣∣∣

p

,
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where c depends on g in such a way that ‖[g]‖Lp(T)/ sp{1} = ‖g− c‖p,T. Note that
then the supremum is attained only when g(x)−c =

∑n+1
i=1 ciχIi(x) sinp

(
(n+1)πpx

2π

)

where c depends on g as above and ‖ [{ci}n+1
i=1 ] ‖ln+1

p / sp {1} = ‖{ci}n+1
i=1 ‖ln+1

p
. Then

∥∥B : Lp(T)/ sp{1} → ln+1
p / sp{1}

∥∥

≤ sup
{ci}∈ln+1

p

(∑n+1
i=1 |ci|p

) 1
p

∥∥∥
∑n+1

i=1 ciχIi(·) sinp

(
(n+1)πp ·

2π

)∥∥∥
p,T

= sup
{ci}∈ln+1

p

(∑n+1
i=1 |ci|p

) 1
p

{∑n+1
i=1

∫
Ii

∣∣∣ciχIi(x) sinp

(
(n+1)πpx

2π

)∣∣∣
p

dx
} 1

p

= sup
{ci}∈ln+1

p

(∑n+1
i=1 |ci|p

) 1
p

(∑n+1
i=1 |ci|p

) 1
p

{∫
I1

∣∣∣sinp

(
(n+1)πpx

2π

)∣∣∣
p

dx
} 1

p

=

{∫

I1

∣∣∣∣sinp

(
(n+ 1)πpx

2π

)∣∣∣∣
p

dx

}− 1
p

,

and
∥∥A : ln+1

p / sp {1} → W 1
p (T)/ sp{1}

∥∥ equals

sup
‖[{ci}]‖ln+1

p / sp {1}
≤1

{∫

I

n+1∑

i=1

∣∣∣∣(ci − c)χIi(x)
d

dx

[
sinp

(
(x− ai)

(n+ 1)πp

2π

)]∣∣∣∣
p

dx

}1
p

= sup
‖[{ci}]‖ln+1

p / sp {1}
≤1

{
n+1∑

i=1

|ci − c|p
∫

Ii

∣∣∣∣cosp
(
(x− ai)

(n+ 1)πp

2π

)
(n+ 1)πp

2π

∣∣∣∣
p

dx

}1
p

=
(n+ 1)πp

2π

{∫

I1

∣∣∣∣cosp
(
(x− a1)

(n+ 1)πp

2π

)∣∣∣∣
p

dx

}1
p

.

Thus

in(T ) ≥ ‖A‖−1 ‖B‖−1 =
2π
(∫

I1

∣∣∣sinp

(
(x− a1)

(n+1)πp

2π

)∣∣∣
p

dx
) 1

p

(n+ 1)πp

(∫
I1

∣∣∣cosp
(
(x− a1)

(n+1)πp

2π

)∣∣∣
p

dx
) 1

p

,

which completes the proof.
When n is even then by using the above techniques we obtain

in(ET) ≥ γp
2π

n+ 1
.
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Now we focus on the Sobolev embedding EI on an interval I = [a, b].

Theorem 4.3. Let n ∈ N and let s̃n stand for any strict s-number. Then

s̃n(EI) = γp
|I|
n
,

where γp is as in Theorem 2.6.

Proof. Let S(n) = {Si}ni=1 be a partition of I = [a, b] (see 2.10) with Si = [ai, bi],

a1 = a, bn = b and ai+1 = bi. Clearly |Si| = |I|
n

for i = 1, . . . , n. We define an
operator Pn : W 1

p (I)/ sp{1} → Lp(I)/ sp{1} by:

Pn[f ] :=

[
n∑

i=1

f

(
ai + bi

2

)
χSi

(.)

]
,

and we can see that rankPn = n− 1. Thus using Theorem 2.6 we have

(an(EI))
p ≤ sup

[f ]∈W 1
p (I)/ sp{1}

‖ (EI − Pn)[f ] ‖pLp(I)/ sp{1}

‖f ′‖Lp(I)

= sup
f∈W 1

p (I)/ sp{1}
inf
c∈R

‖(EI − Pn)(f)− c‖pLp(I)

‖f ′‖Lp(I)

≤ sup
f∈W 1

p (I)/ sp{1}

‖(EI − Pn)(f)‖pLp(I)

‖f ′‖Lp(I)

≤ sup
‖f ′‖Lp(I)≤1

(
n∑

i=1

∥∥∥∥f(.)− f

(
ai + bi

2

)∥∥∥∥
p

p,Si

)

≤ sup
‖u‖p,I≤1




n∑

i=1

∥∥∥∥∥

∫ .

ai+bi
2

u(t)dt

∥∥∥∥∥

p

p,Si




≤ sup
‖u‖p,I≤1

(
n∑

i=1

(γp|Ii|)p‖u‖pp,Si

)

≤
(
γp

|I|
n

)p

,

so that an(EI) ≤ γp
|I|
n
.

Now we shall prove the lower estimate for in(E1). Let n ∈ N. We denote by
I(n) = {Ii}ni=0 a partition of I (see (2.11)) where Ii = (ai, bi), a0 = a, ai+1 = bi
and bn = b. Note that 2|I0| = 2|In| = |Ii| = |I|

n
when i = 1, . . . , n − 1. By

lnp,w/ sp{1} we denote the n-dimensional sequence space with the norm

‖{ci}ni=0‖lnp,w/ sp{1} := inf
c∈R

{
n−1∑

i=1

2 |ci − c|p + |c0 − c|p + |cn − c|p
} 1

p

.
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Maps A : lnp,w/ sp{1} → W 1
p (I)/ sp{1} and B : Lp(I)/ sp{1} → lnp,w/ sp{1} are

defined by

A[{ci}ni=0]=

[
n∑

i=1

(ci−c)χIi(x) sinp

(
(x−ai)

nπp

|I|

)
+(c0−c)χI0(x) sinp

(
(b0−x)

nπp

|I|

)]
,

where c is a number for which

‖ [{ci}ni=0] ‖lnp,w/ sp{1} =

{
n−1∑

i=1

2 |ci − c|p + |c0 − c|p + |cn − c|p
} 1

p

and

B[g] =








∫
Ii
(g(x)− c)

(
sinp

(
(x− ai)

nπp

|I|

))
(p)

dx
∥∥∥sinp

(
(· − ai)

nπp

|I|

)∥∥∥
p

p,Ii





n

i=1

∪





∫
Ii
(g(x)− c)

(
sinp

(
(b0 − x)nπp

|I|

))
(p)

dx
∥∥∥sinp

(
(b0 − ·)nπp

|I|

)∥∥∥
p

p,Ii





i=0


 ,

where c is a number for which ‖g‖Lp(I)/ sp{1} = ‖g− c‖Lp(I). Obviously as in the
previous proof we have

B (EI (A [{ci}ni=0])) =







ci

∫

Ii

∣∣∣sinp

(
(x− ai)

nπp

|I|

)∣∣∣
p

∥∥∥sinp

(
(· − ai)

nπp

|I|

)∥∥∥
p

p,Ii

dx





n

i=1

∪




ci

∫

Ii

∣∣∣sinp

(
(b0 − x)nπp

|I|

)∣∣∣
p

∥∥∥sinp

(
(b0 − ·)nπp

|I|

)∥∥∥
p

p,Ii

dx





i=0




= [{ci}ni=0] ,

which means that BEIA is the identity on lnp,w/ sp{1}.
Note that ‖B[g]‖lnp,w/ sp{1}=

∥∥B : Lp(I)/ sp{1} → lnp,w/ sp{1}
∥∥ ‖[g]‖Lp(I)/ sp{1}

is true only when

g(x)− c =
n∑

i=1

ciχIi(x) sinp

(
(x− ai)

nπp

|I|

)
+ c0χI0(x) sinp

(
nπp(b0 − x)

|I|

)

where c is a constant such that ‖{ci − c}‖lnp,w = ‖ [{ci}] ‖lnp,w/ sp{1}.
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Hence
∥∥B : Lp(I)/ sp{1} → lnp,w/ sp{1}

∥∥ equals

sup
{ci}∈lnp,w

(
2
∑n−1

i=1 |ci|p + |c0|p + |cn|p
) 1

p

∥∥∥
∑n

i=1 ciχIi(·) sinp

(
(· − ai)

nπp

|I|

)
+ c0χI0(·) sinp

(
(b0 − ·)nπp

|I|

)∥∥∥
p,I

= sup
{ci}∈lnp,w

(
2
∑n−1

i=1 |ci|p + |c0|p + |cn|p
) 1

p

(
2
∑n−1

i=1 |ci|p + |c0|p + |cn|p
) 1

p

{∫
In

∣∣∣sinp

(
(x− an)

nπp

|I|

)∣∣∣
p

dx
} 1

p

=
1

{∫
In

∣∣∣sinp

(
(x− ai)

nπp

|I|

)∣∣∣
p

dx
} 1

p

,

and
∥∥A : lnp,w/ sp{1} → W 1

p (I)/ sp{1}
∥∥ equals

sup
‖ [{ci}] ‖lnp,w/ sp{1}≤1

{∫

I

[
n∑

i=1

∣∣∣(ci − c)χIi(x)
d

dx

[
sinp

(
(x− ai)

nπp

|I|

)]∣∣∣
p

+
∣∣∣(co − c)χI0(x)

d

dx

[
sinp

(
(b0 − x)

nπp

|I|

)]∣∣∣
p
]
dx

} 1
p

= sup
‖ [{ci}] ‖lnp,w/ sp{1}≤1

{
n∑

i=1

|ci − c|p
∫

Ii

∣∣∣ cosp
(
(x− ai)

nπp

|I|

)(
nπp

|I|

) ∣∣∣
p

dx

+ |c0 − c|p
∫

I0

∣∣∣ cosp
(
(b0 − x)

nπp

|I|

)(
nπp

|I|

) ∣∣∣
p

dx

} 1
p

= sup
‖ [{ci}] ‖lnp,w/ sp{1}≤1

(
2

n−1∑

i=1

|ci − c|p + |c0 − c|p + |cn − c|p
) 1

p

×
(∫

In

∣∣∣∣cosp
(
(x− an)

nπp

|I|

)(
nπp

|I|

)∣∣∣∣
p

dx

) 1
p

=
nπp

|I|

(∫

In

∣∣∣∣cosp
(
(x− an)

nπp

|I|

)∣∣∣∣
p

dx

) 1
p

.

Thus

in(T ) ≥ ‖A‖−1 ‖B‖−1 =
|I|
(∫

In

∣∣∣sinp

(
(x− an)

nπp

|I|

)∣∣∣
p

dx
) 1

p

nπp

(∫
In

∣∣∣cosp
(
(x− an)

nπp

|I|

)∣∣∣
p

dx
) 1

p

,

which completes the proof.



Coincidence and Calculation of some Strict s-Numbers 179

Theorem 4.4. Let n ∈ N and s̃n stand for any strict s-number. Then

s̃n(E0) = γp
|I|
n
,

where γp is as in Theorem 2.6.

Proof. Let I(n) = {Ii}ni=0 be a partition of I = [a, b] (see 2.11) with Ii = [ai, bi],

a0 = a, bn = b and ai+1 = bi. Clearly 2|I0| = 2|In| = |Ii| = |I|
n
for i = 1, . . . , n−1.

We define an operator Pn−1 :
0

Wp
1(I) → Lp(I) with rank(Pn−1) = n− 1 by:

Pn−1f(x) := 0χI0(x) + 0χIn +
n−1∑

i=1

f

(
ai + bi

2

)
χIi(x).

Thus using Theorem 2.6 we have

(an(E0))
p≤ sup

f∈
0

Wp
1(I)

‖(E0 − Pn−1)(f)‖pLp(I)

≤ sup

f∈
0

Wp
1(I)

([
n−1∑

i=1

∥∥∥∥f(.)− f

(
ai + bi

2

)∥∥∥∥
p

p,Ii

]
+ ‖f‖pp,I0 + ‖f‖pp,In

)

≤ sup
‖u‖p,I≤1






n−1∑

i=1

∥∥∥∥∥

∫ ·

ai+bi
2

u(t)dt

∥∥∥∥∥

p

p,Ii


+

∥∥∥∥
∫ ·

a

u(t)dt

∥∥∥∥
p

p,I0

+

∥∥∥∥
∫ b

·
u(t)dt

∥∥∥∥
p

p,In




≤ sup
‖u‖p,I≤1

([
n−1∑

i=1

(γp|Ii|)p‖u‖pp,Ii

]
+(2γp|I0|)p‖u‖pp,I0+(2γp|In|)p‖u‖pp,In

)

≤
[
γp

|I|
n

]p
,

and then an(E0) ≤ γp
|I|
n
.

Now we shall prove the lower estimate for in(E0). The map A : lnp →
0

Wp
1(I)

is defined by:

A ({ci}ni=1) =
n∑

i=1

ciχSi
(x) sinp

(
(x− ai)

nπp

|I|

)
,

where {Si}ni=1 is a partition of I (see (2.10)) with Si = [ai, bi] and |Si| = |I|
n
.

The map B : Lp(I) → lnp is defined by

Bg(x) =





∫
Si
g(x)

(
sinp

(
(x− ai)

nπp

|I|

))
(p)

dx
∥∥∥sinp

(
(· − ai)

nπp

|I|

)∥∥∥
p

p,Si





n

i=1

.
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Obviously we have E0(A({ci}ni=1)) = A({ci}ni=1) and then

B (E0 (A ({ci}ni=1))) =




ci

∫

Si

∣∣∣sinp

(
(x− ai)

nπp

|I|

)∣∣∣
p

∥∥∥sinp

(
(· − ai)

nπp

|I|

)∥∥∥
p

p,Si

dx





n

i=1

= {ci}ni=1 ,

which means that BE0A is the identity on lnp .

Note that
∥∥B : Lp(I) → lnp

∥∥ equals the supremum of ‖Bg|lnp‖ over all

g ∈ Lp(I) with ‖g‖Lp(I)
≤ 1, and the supremum is attained only when g(x) =

∑n
i=1 ciχSi

(x) sinp

(
nπpx

|I|

)
. Then we have

∥∥B : Lp(I) → lnp
∥∥ ≤ sup

{ci}∈lnp

(
∑n

i=1 |ci|
p)

1
p

∥∥∥
∑n

i=1 ciχSi
(·) sinp

(
nπp ·
|I|

)∥∥∥
p,I

=

{∫

S1

∣∣∣∣sinp

(
nπpx

|I|

)∣∣∣∣
p

dx

}− 1
p

,

and

∥∥∥∥A : lnp →:
0

Wp
1(I)

∥∥∥∥ equals

sup
‖{ci}‖lnp ≤1

{∫

I

n∑

i=1

∣∣∣∣ciχSi
(x)

d

dx

[
sinp

(
(x− ai)

nπp

|I|

)]∣∣∣∣
p

dx

} 1
p

= sup
‖{ci}‖lnp ≤1

{
n∑

i=1

|ci|p
∫

Si

∣∣∣∣cosp
(
(x− ai)

nπp

|I|

)(
nπp

|I|

)∣∣∣∣
p

dx

} 1
p

=
nπp

|I|

{∫

S1

∣∣∣∣cosp
(
(x− a1)

nπp

|I|

)∣∣∣∣
p

dx

} 1
p

.

Thus

in(E0) ≥ ‖A‖−1 ‖B‖−1 =
|I|
(∫

S1

∣∣∣sinp

(
(x− a1)

nπp

|I|

)∣∣∣
p

dx
) 1

p

nπp

(∫
S1

∣∣∣cosp
(
(x− a1)

(n+1)πp

2π

)∣∣∣
p

dx
) 1

p

,

which completes the proof.

Remark 4.5. The above results show that for the integral operators Ta+b
2

and
Ta, viewed as maps from Lp(I) to itself, all strict s-numbers coincide; their exact

value is given. The same holds for certain Sobolev embeddings. Moreover, for

Ta+b
2

and Emid the strict s-numbers are not strictly decreasing. It is natural to

ask whether such behaviour is exhibited by other integral operators, such as the

weighted Hardy operator.
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cially on the work of Göran Dillner and his influence on Lundberg. Mem. Isti-
tuto Lombardo, Accad. Sci. Lett., Classe Sci. Mat. Nat. XXXI, Fasc. 1. Milano
2004.

[10] Lindqvist, P., Peetre, J. and Borwein, J. M., Generalized trigonometric func-
tions: 10744. Amer. Math. Monthly 108 (2001)(5), 473 – 474.
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