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On Monotonicity of Nonoscillation

Properties of Dynamic Equations

in Time Scales

Elena Braverman and Başak Karpuz

Abstract. For equations on time scales, we consider the following problem: when
will nonoscillation on time scale T imply nonoscillation of the same equation on any
time scale T̃ including T as a subset? The main result of the paper is the following.
If nonnegative coefficients Ak(t) are nonincreasing and αk(t) ≤ t are nondecreasing
in t ∈ R, then nonoscillation of the equation

x∆(t) +
m∑

k=1

Ak(t)x(αk(t)) = 0 for t ∈ [t0,∞)T

yields nonoscillation of the same equation on any time scale T̃ ⊃ T.

Keywords. Nonoscillation, time scales, dependence of properties on time scales,
finite difference approximations on various grids
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1. Introduction

Most publications on time scales are either focused on the generalization of
results well known for either differential or difference equations (or both) to the
relevant models on time scales or develop the theory of equations on time scales
independently, thus contributing to the theory of both discrete and continuous
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equations. There are very few publications concerned with the relation between
different time scales for the same equation, or between ∆-integrals and usual
Lebesgue integrals, see, for example, [1–3].

On the other hand, there are many known facts on the connection of
nonoscillation properties of differential and difference equations. Let us compare
the sharp nonoscillation conditions

Aτ ≤
1

e
(1.1)

for the delay differential equation

x′(t) + Ax(t− τ) = 0 for t ∈ R
+
0 := [0,∞) (1.2)

and

Aτ ≤

(
k

k + 1

)k+1

(1.3)

for the delay difference equation

∆x(n) +
Aτ

k
x(n− k) = 0 for n ∈ N0 := N ∪ {0}, (1.4)

where ∆x(n) := x(n+1)−x(n) for n ∈ N0. Equation (1.4) can be considered as
a finite difference approximation of (1.2) with the time step τ . In fact, denoting
by y(t) the Euler approximation of x(t) in (1.2) at points nh, where h = τ

k

(τ = kh), we have

y((n+ 1)h)− y(nh)

h
= −Ay(nh− τ) = −Ay(h(n− k)) .

Further, assuming x(n) = y(nh), we obtain difference equation (1.4). We ob-
serve that

lim
k→∞

(
k

k + 1

)k+1

=
1

e
and

(
k

k + 1

)k+1

≤
1

e
.

In fact, the sequence
{(

k
k+1

)k+1}
n∈N0

is increasing, so it does not exceed its

limit. To justify that the function f(x) :=
(

x
x+1

)x+1
for x ∈ R

+
0 is increasing, it

is enough to demonstrate that

g(x) := − ln
(
f(x)

)
= (x+ 1) ln

(
1 +

1

x

)
for x ∈ R

+

is decreasing, which follows from the derivative estimation

g′(x) = ln

(
1 +

1

x

)
−

1

x
< 0 for all x ∈ R

+,
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as ln(1 + λ) < λ for any λ ∈ R
+.

Thus, the nonoscillation condition for difference equation (1.4) is more re-
strictive than for corresponding delay differential equation (1.2), and the con-
stant in the right hand side of (1.3) tends to 1

e
in (1.1) as the number (k + 1)

of grid points covering the segment [t− τ, t]R tends to infinity.
The main purpose of the present paper is to extend this result to a more

general class of delay equations than (1.2) (in particular, to equations with
variable delays and coefficients) and to more general grids than uniform grids
proportional to a single delay (any time scales).

Everywhere we will use the following definition of nonoscillation.

Definition 1.1. An equation is nonoscillatory if it has an eventually positive
or an eventually negative solution (with some initial condition for an ordinary
differential equation and some initial function for a delay differential equation).

Our paper is also concerned with ordinary differential equations and relevant
difference equations. Let us start with a simple observation. Consider the linear
differential equation

x′(t) + A(t)x(t) = 0 for t ∈ R
+
0 , where A : R → R

+
0 . (1.5)

Then all solutions of (1.5) (not identically equal to zero) are nonoscillatory.
Everywhere we assume that all coefficients are locally bounded.

The equation on time scales

x∆(t) + A(t)x(t) = 0 for t ∈ T, where A : T → R
+
0 , (1.6)

can be treated as a numerical approximation of (1.5); this equation can be
oscillatory or not. The objective of the present paper is to study the depen-
dency of nonoscillation properties of ordinary differential and delay differential
dynamic equations on time scales. In particular, for ordinary differential equa-
tions we explore the existence of a nonoscillatory analogue of the continuous
equation (1.5). For both delay and ordinary differential equations we investigate
conditions which imply that nonoscillation of an equation on time scale T im-
plies nonoscillation of the same dynamic equation on any finer time scale T̃ ⊃ T.

The paper is organized as follows. Section 2 explores the dependence of
nonoscillation properties on time scales for ordinary differential equations, Sec-
tion 3 is concerned with delay equations. Finally, Section 4 involves discussion
and outlines some open problems.

2. Linear ordinary differential equations

Let us start with equation (1.6). Since equation (1.5) is nonoscillatory, dynamic
equation (1.6) is considered as an approximation of (1.5) and we are trying to
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mimic the properties of the original equation, it is natural to consider nonoscil-
lation of (1.6) as a function of time scale T. In particular, we would like to
answer the following questions:

(Q1) Is nonoscillation property scale monotone, i.e., does nonoscillation of (1.6)

for scale T imply nonoscillation for any scale T̃ such that T ⊂ T̃?

(Q2) If the answer to the previous question is negative, can we find a scale T

such that under certain limitations on T nonoscillation of (1.6) over time

scale T implies nonoscillation over any time scale T̃ ⊃ T?

(Q3) If the answer to the first question is negative, can we modify (1.6) so that
the nonoscillation property is monotonic over time scales?

(Q4) Is it possible to modify (1.6) so that it preserves nonoscillation of (1.5)?

First, let us demonstrate that, generally, a scale refinement for a nonoscil-
latory equation does not imply that the equation over the refined time scale is
still nonoscillatory.

Example 2.1. Consider two time scales T = N0 and T̃ = N0/2 ⊃ T, where
N0/2 =

{
0,±1

2
,±1,±3

2
, · · ·

}
. Let the continuous coefficient be

A(t) :=

{
4(2t− 2⌊t⌋), t ∈

[
n, n+ 1

2

)
R
, n ∈ N0

4(2⌊t⌋+ 2− 2t), t ∈
[
n+ 1

2
, n+ 1

)
R
, n ∈ N0,

where ⌊·⌋ is the least integer function. Then A
(
n
2

)
= 4

(
1 − (−1)n

)
for any

n ∈ N0, equation (1.6) over time scale T is nonoscillatory since A(n) = 0 for

any n ∈ N0, so any solution is constant. However, on T̃ we have A
(
n+ 1

2

)
= 4

for n ∈ N0, thus

x∆

(
n+

1

2

)
= 2

[
x(n+1)−x

(
n+

1

2

)]
= −A

(
n+

1

2

)
x

(
n+

1

2

)
= −4x

(
n+

1

2

)

and x changes sign on each segment
[
n + 1

2
, n + 1

)
R

for all n ∈ N0, since

x(n+ 1) = −x
(
n+ 1

2

)
for all n ∈ N0.

Example 2.1 gives the negative answer to Question 1. Further, let us present
answers to Questions 2 and 3.

As we assumed, the coefficients A are locally bounded, thus the answer to
Question 2 is positive. Let us note that the following condition

1− A(t)µ(t) > 0 for all t ∈ T (2.1)

is necessary and sufficient for nonoscillation of (1.6) (see [4, Theorems 2.48
and 2.62]).

Theorem 2.2. If T is a time scale satisfying

1− A(s)µ(t) > 0 for all s ∈ [t, σ(t))R and all t ∈ T, (2.2)

then equation (1.6) is nonoscillatory for any T̃ ⊃ T.
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Proof. Let us prove that (2.1) is satisfied for any t ∈ T̃. We define the function
ρ∗ : R → T by

ρ∗(t) := max(−∞, t]T for t ∈ R, (2.3)

with the convention that max ∅ := −∞. Note that ρ∗(t) = t for all t ∈ T

and ρ∗(t) < t for all t ∈ T̃\T, in particular, ρ∗(t) ≤ t for all t ∈ T̃. Also

recall that σ̃(t) ≤ σ(t) for all t ∈ T since T ⊂ T̃. Now, let t ∈ T̃. If t ∈ T,

then (2.1) obviously holds due to (2.2). Let t ∈ T̃\T. It is clear that [t, σ̃(t))
T̃
⊂

[ρ∗(t), σ(ρ∗(t)))
T̃
. Then, we have σ(ρ∗(t)) ≥ σ̃(t), hence

µ̃(t) = σ̃(t)− t < σ(ρ∗(t))− ρ∗(t) = µ(ρ∗(t)).

By (2.2) and t ∈ [ρ∗(t), σ(ρ∗(t)))
T̃
, we conclude 1 − A(t)µ(ρ∗(t)) > 0, thus

1− A(t)µ̃(t) > 1− A(t)µ(ρ∗(t)) > 0, which completes the proof.

Remark 2.3. Let us note that if the coefficient A is bounded, then time scales
satisfying (2.1) and (2.2) exist. While T = R presents an obvious (and thus
not interesting example) since µ(t) ≡ 0 for all t ∈ R, the discrete scale with
a step hj on [tj, tj+1]R, where hj < 1

Mj
and Mj := supt∈[tj ,tj+1)R

A(t), satisfies

condition (2.2) of the theorem.

Remark 2.4. If the coefficient A is unbounded, then an adaptive time scale can
be constructed to have (2.2) satisfied, as the following examples demonstrate.

Example 2.5. The function A(t) = 0.4t is increasing and unbounded on
[1,∞)R. Consider the initial value problem

{
x∆(t) + 0.4t x(t) = 0 for t ∈ [1,∞)T

x(1) = x0.
(2.4)

If we introduce the time scale

T =

{
n+

k

n
: k ∈ [0, n)N0

and n ∈ N

}
,

then A(s)µ(1) ≤ 0.8 < 1 for s ∈ [1, σ(1))R = [1, 2)R, µ(t) =
1
⌊t⌋

for t ∈ [1,∞)T
and for s ∈ [t, σ(t)) we have

A(s)µ(t) ≤ A(⌊t⌋+ 1)
1

⌊t⌋
=

0.4(⌊t⌋+ 1)

⌊t⌋
< 1 for t ∈ [2,∞)T.

Thus the solution of equation (2.4) on the time scale T (and any T̃ ⊃ T) is
nonoscillatory and tends to zero at infinity. To demonstrate that any solution
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tends to zero, let us denote by I the identity function and note that −0.4 I is
positively regressive on T and thus on any T̃ ⊃ T. For all t ∈ [1,∞)

T̃
, we have

|x(t)|= |x0|̃e−0.4 I(t, t0)≤|x0| exp

{
− 0.4

∫ t

1

η∆̃η

}
≤|x0| exp

{
− 0.4(t−1)

}
. (2.5)

It should be noted that we have used [5, Lemma 2] while obtaining the first
inequality in (2.5) and that the generalized exponential function of a posi-
tively regressive function is positive [4, Theorem 2.44]. This proves the equality
limt→∞ x(t) = 0.

Example 2.6. The initial value problem




x′(t) +
1

(t− 5)2
x(t) = 0 for t ∈ [0, 5)R

x(0) = x0

(2.6)

has a nonoscillatory unbounded solution x(t) = x0 exp
{

1
t−5

+ 1
5

}
for t ∈ [0, 5)R,

which tends to zero as t → 5−, A(t) = 1
(t−5)2

is unbounded and increasing on

[0, 5)R. Let us choose the time scale

T := N ∪
{
5− 21−n + 2−2n−1k : k ∈ [0, 2n+1)N0

and n ∈ N0

}
.

Consider (2.6) on [0, 5)T. Then, we have

A(s)µ(j) =
1

(j − 4)2
< 1 for all s ∈ [j, σ(j))R = [j, j + 1)R,

where j = 0, 1, 2. For any n ∈ N0 and each s ∈ [5− 21−n, 5− 2−n)R, we get

µ(5− 21−n + 2−2n−1k) = 2−2n−1 and A(s) < A(5− 2−n) = 22n,

which implies A(s)µ(5−21−n+2−2n−1k) ≤ 22n2−2n−1 = 0.5 < 1 for any n ∈ N0,

any k ∈ [0, 2n+1)N0
and all s ∈ [5 − 21−n, 5 − 2−n)R. Thus the solution of

approximated equation (2.6) on time scale T (and any T̃ ⊃ T) is nonoscillatory

and tends to 0 as t → 5−.

To answer Question 3, let us introduce the following version of equation
(1.6) with an “averaged-coefficient”

x∆(t) + B(t)x(t) = 0 for t ∈ [1,∞)T, (2.7)

where

B(t) :=





A(t), if µ(t) = 0

1

µ(t)

∫ σ(t)

t

A(η) dη, otherwise.
(2.8)
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This model better matches a finite difference approximation for equations with
steeply changing coefficients. It should be noted here that for a continuous
coefficient A,

lim
s→t

1

t− s

∫ t

s

A(η) dη = A(t) for t ∈ R,

which shows that the coefficient B is closer to A if the step size (µ(t) = σ(t)− t)
between consecutive points (t and σ(t)) becomes smaller.

Theorem 2.7. If equation (2.7) is nonoscillatory on time scale T, where B(t)

is defined by (2.8), then it is also nonoscillatory on any time scale T̃ ⊃ T.

Proof. By (2.1), the necessary and sufficient nonoscillation condition for (2.7)
is B(t)µ(t) < 1 for all t ∈ T with σ(t) > t, which can be rewritten as

µ(t)

µ(t)

∫ σ(t)

t

A(η) dη =

∫ σ(t)

t

A(η) dη < 1 for any t ∈ T with µ(t) > 0. (2.9)

However, if T ⊂ T̃, then σ̃(t) ≤ σ(t) for any t ∈ T. If t ∈ T̃\T, then [t, σ̃(t))R ⊂
[ρ∗(t), σ(ρ∗(t)))R, where ρ∗ was defined in (2.3). Thus by (2.9) we have

∫ σ̃(t)

t

A(η) dη ≤

∫ σ(ρ∗(t))

ρ∗(t)

A(η) dη < 1 for any t ∈ T̃ with µ̃(t) > 0.

This means that (2.7) is nonoscillatory on time scale T̃.

Finally, let us comment on Question 4.

Theorem 2.8. All solutions of the equation

x∆(t) + A(t)x(σ(t)) = 0 for t ∈ T (2.10)

are nonoscillatory.

Proof. Using the so-called “simple formula” (see [4, Theorem 1.6(iv)]), we can

rewrite (2.10) in the form x∆(t) + A(t)
1+A(t)µ(t)

x(t) = 0 for t ∈ T. Condition (2.1)

for this equation can be rewritten as

1−
A(t)

1 + A(t)µ(t)
µ(t) =

1

1 + A(t)µ(t)
> 0 for all t ∈ T,

which implies that (2.10) is nonoscillatory since A : T → R
+
0 .

Theorem 2.8 can be compared to the well-known result on stability of im-
plicit finite difference schemes (in contrast to unstable explicit schemes).
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Remark 2.9. Let us note that equation (2.10) is always stable (we assume
A : T → R

+
0 and

∫∞
A(η)∆η = ∞). By Theorem 2.8 all solutions of (2.10) are

nonoscillatory, without loss of generality we consider positive solutions, which
are nonincreasing by (2.10) and the assumption A(t) ≥ 0. Any monotone
bounded function has a limit limt→∞ x(t) = ℓ, where x(t) ≥ ℓ for all t ∈ [t0,∞)T;
assuming ℓ > 0, we get

x(t) ≤ x(t0)− ℓ

∫ t

t0

A(η)∆η for all t ∈ [t0,∞)T,

which yields a contradiction since the right-hand side becomes negative for
all sufficiently large t. However, (1.6) can be stable or not: for example, the
equation

x∆(t) + 3x(t) = 0 for t ∈ N,

is unstable, since x(t + 1) = −2x(t) for t ∈ N, and a small deviation of the
initial condition can become infinitely large as n → ∞.

3. Delay equations

Consider the delay equation on a time scale T unbounded above

x∆(t) +
m∑

k=1

Ak(t)x(αk(t)) = 0 for t ∈ [t0,∞)T, where Ak : T → R
+
0 , (3.1)

which will also be treated as an approximation of the delay differential equation

x′(t) +
m∑

k=1

Ak(t)x(αk(t)) = 0 for t ∈ [t0,∞)R, where Ak : R → R
+
0 . (3.2)

Equations (3.1) and (3.2) will be considered with the initial conditions

x(t) = ϕ(t) for t ∈ (−∞, t0]T (3.3)

and

x(t) = ϕ(t) for t ∈ (−∞, t0]R, (3.4)

respectively.
The main result of the present paper is that as far as Ak are positive and

nonincreasing, any scale refinement will keep nonoscillation property of the
original equation. The proof is based on the reduction of an equation on time
scales to a delay differential equation with delays and coefficients of a special
form. This idea was, for instance, widely applied to reduce solutions of difference
equations to the values of solutions of delay differential equations with piecewise
constant delays at integer points. Below we present some auxiliary results as
lemmas.
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Lemma 3.1 (See [6, 7]). If Ak(t) ≥ Bk(t) ≥ 0 and αk(t) ≤ βk(t) ≤ t for all

t ∈ [t0,∞)R, then nonoscillation of (3.2) implies nonoscillation of the delay

equation

x′(t) +
m∑

k=1

Bk(t)x(βk(t)) = 0 for t ∈ [t0,∞)R.

For construction of a delay differential equation which has the same solution
at the points of T as the equation on the time scale, we introduce the following
notation:

Bk(t) = Ak(ρ
∗(t)) and βk(t) = αk(ρ

∗(t)) for t ∈ [t0,∞)R, (3.5)

where ρ∗ is defined in (2.3).

Lemma 3.2. A solution of the delay differential equation

x′(t) +
m∑

k=1

Bk(t)x(βk(t)) = 0 for t ∈ [t0,∞)R, (3.6)

at points t ∈ T coincides with the solution of (3.1), assuming that the initial

functions ϕ in (3.3) and (3.4) coincide at all points t ∈ T.

Proof. Let x be a solution of (3.6), then it is obvious that x satisfies (3.1) at
right-dense points in T. To complete the proof, we have to show that this is
also true for right-scattered points in T. Let t ∈ T with σ(t) > t, then it follows
from definitions (3.5), (3.6) and ρ∗(t) = t for t ∈ T that

x(σ(t)) = x(t) +

∫ σ(t)

t

x′(η) dη

= x(t)−
m∑

k=1

∫ σ(t)

t

Bk(η)x(βk(η)) dη

= x(t)−
m∑

k=1

∫ σ(t)

t

Ak(t)x(αk(t)) dη

= x(t)−
m∑

k=1

Ak(t)x(αk(t))
(
σ(t)− t

)

= x(t)− µ(t)
m∑

k=1

Ak(t)x(αk(t)),

which yields x∆(t) = x(σ(t))−x(t)
µ(t)

= −
∑m

k=1Ak(t)x(αk(t)). Therefore, x satisfies

(3.1) at right-scattered points too. Hence, the reference to the uniqueness of the

solution of initial problems (3.1), (3.3) and (3.6), (3.4) completes the proof.
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Further we consider only time scales and delays such that αk(t) ∈ T for any
t ∈ T.

Theorem 3.3. Suppose that Ak(t) ≥ 0 are nonincreasing functions for all

t ∈ R, αk(t) ≤ t are nondecreasing and equation (3.1) is nonoscillatory. Then

for any T̃ ⊃ T the equation

x∆(t) +
m∑

k=1

Ak(t)x(αk(t)) = 0 for t ∈ [t0,∞)
T̃

(3.7)

is also nonoscillatory.

Proof. We define ρ̃∗ : R → T̃ by ρ̃∗(t) := max(−∞, t]
T̃
for t ∈ R with the

convention that max ∅ := −∞. We also define B̃k(t) := Bk(ρ̃
∗(t)) and β̃k(t) :=

βk(ρ̃
∗(t)) for t ∈ [t0,∞)R. Then as T̃ is finer than T, i.e., T ⊂ T̃, we have

ρ̃∗(t) ≥ ρ∗(t) for all t ∈ [t0,∞)R. By Lemma 3.2, a nonoscillatory solution of

(3.1) at t ∈ T also satisfies (3.6). The definitions of B̃k, β̃k and the assumptions

of the theorem imply

Bk(t) ≥ B̃k(t) ≥ Ak(t) and βk(t) ≤ β̃k(t) ≤ αk(t) ≤ t for all t ∈ R.

Thus, by comparison Lemma 3.1, the equation

x′(t) +
m∑

k=1

B̃k(t)x(β̃k(t)) = 0 for t ∈ [t0,∞)R

has a nonoscillatory solution which (again, by Lemma 3.2) coincides at t ∈ T̃

with a solution of (3.7), which has the same initial function. Consequently, (3.7)
is also nonoscillatory.

Obviously the results of Theorem 3.3 are valid for equations with constant
delays (if relevant time scales allow) and coefficients. For differential and dif-
ference equations Theorem 3.3 immediately implies the following result.

Corollary 3.4. Assume that Ak : R
+
0 → R

+
0 are nonincreasing functions,

αk(t) ≤ t for t ∈ R
+
0 are nondecreasing, αk(n) ∈ Z for all n ∈ N0 and the

difference equation

∆x(n) +
m∑

k=1

Ak(n)x(αk(n)) = 0 for n ∈ N0 (3.8)

is nonoscillatory, then differential equation (3.2) is also nonoscillatory. If all

solutions of (3.2) are oscillatory then (3.8) is also oscillatory.
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Using some special construction which is similar to that applied above to
ordinary differential equations we can consider the case when Ak are not nec-
essarily nonincreasing.

Corollary 3.5. Suppose that Ak : R → R
+
0 are nonincreasing functions, αk are

nonincreasing with αk(t) ≤ t for t ∈ R
+
0 . Suppose also that the equation

x∆(t) +
m∑

k=1

Bk(t)x(αk(t)) = 0 for t ∈ [t0,∞)T,

where αk(t)∈T and Bk(t) :=sups∈[t,σ(t))R
Ak(s) for t∈ [t0,∞)T, is nonoscillatory.

Then for any T̃ ⊃ T equation (3.7) on the refined scale is also nonoscillatory.

Let us demonstrate sharpness of the conditions of Theorem 3.3. For sim-
plicity, we will everywhere below compare solutions of differential and difference
equations, i.e., T = Z and T̃ = R. The requirement that the coefficient A is non-
increasing (or that the supremum is taken as a coefficient of the approximating
equation, similar to Corollary 3.5) is necessary, as Example 3.6 demonstrates.

Let us note that in Example 3.6, we apply the following sufficient oscillation
condition [7, Theorem 3.4.3]: If A(t) is positive, α(t) ≤ t is nondecreasing with
limt→∞ α(t) = ∞, and lim supt→∞

∫ t

α(t)
A(η) dη > 1, then all solutions of the

equation

x′(t) + A(t)x(α(t)) = 0 for t ∈ R
+
0

are oscillatory.

Example 3.6. Consider the delay differential equation

x′(t) +
(
0.1 + 10 sin2(πt)

)
x(t− 2) = 0 for t ∈ R

+
0 . (3.9)

with a non-monotone coefficient. Since

∫ t

t−2

(
0.1+10 sin2(πη)

)
dη =

∫ t

t−2

(
5.1−5 cos(2πη)

)
dη = 10.2 > 1 for all t ∈ R

+
0 ,

equation (3.9) is oscillatory. However, for the time scale N0 ⊂ R we have the
difference equation

∆x(n)+
(
0.1+10 sin2(πn)

)
x(n−2)=∆x(n)+0.1x(n−2)=0, for n ∈ N0. (3.10)

Equation (3.10) is nonoscillatory since 0.1 < 22

33
= 4

27
. We recall that ∆x(n) +

Ax(n − k) = 0, where A ∈ R
+
0 and k ∈ N, is nonoscillatory if and only if

A ≤ kk

(k+1)k+1 [7, Theorem 7.2.1], compare to nonoscillation condition (1.3) of

equation (1.4).
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The following example demonstrates that the requirement of delay mono-
tonicity also cannot be omitted.

Example 3.7. The delay differential equation

x′(t) + 0.2x
(
t− 1− 100{t}(1− {t})

)
= 0 for t ∈ R

+
0 , (3.11)

where {t} is the fractional part of number t, is oscillatory. To prove it, let
us assume the contrary that x is a nonoscillatory solution. Without loss of
generality, we assume that x(t) > 0 for all t ∈ R

+
0 . Then x is decreasing and

satisfies x′(t) + 0.2x(t) ≤ 0 for all t ∈ R
+
0 . Then, by Grönwall’s inequality, we

have

x(t) ≤ x(s) e−0.2(t−s) for all t ∈ [s,∞)R, where s ∈ R
+
0 . (3.12)

We now consider the solution on the intervals of the form [n+ 0.25, n+ 0.75]R,
where n∈N0. If t∈ [n+0.25, n+0.75]R for some n∈N0, then t−1−100{t}(1−{t})
≤ n− 19.75 and

x′(t) = −0.2x
(
t− 1− 100{t}(1− {t})

)
≤ −0.2x(n− 19.75),

which yields by integrating from (n+ 0.25) to (n+ 0.75) and using (3.12) that

x(n+0.75) ≤ x(n+0.25)− 0.2 · 0.5x(n− 19.75) ≤
(
e−4 −0.1

)
x(n− 19.75) < 0

because of e−4 −0.1 ≈ −0.081 < 0. The contradiction proves that all the solu-
tions of (3.11) are oscillatory. However, the relevant difference equation

∆x(n) + 0.2x
(
n− 1− 10 sin2(πn)

)
= ∆x(n) + 0.2x(n− 1) = 0 for n ∈ N0

is nonoscillatory since 0.2 < 11

22
= 0.25.

4. Discussion and open problems

In the present paper, we have considered the dependency of oscillation proper-
ties on the time scale. Under certain conditions, we have demonstrated that if
the equation is nonoscillatory on time scale T, then this property is preserved
on any finer time scale. The main result of the paper is Theorem 3.3 and, as
Examples 3.6 and 3.7 illustrate, its conditions are sharp.

So far we have considered positive coefficients A only. Obviously, both delay
and nondelay equations with negative coefficients are nonoscillatory. Consider
the nondelay equation

{
x∆(t) + A(t)x(t) = 0 for t ∈ T

x(t0) = x0

(4.1)
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with a continuous oscillatory coefficient A : R → R. Then, picking up the
points of T such that A(t) < 0, −A(t)µ(t) > λ for some constant λ > 0 and
t ∈ [t0,∞)T (which is possible, since for any A(t) < 0, there are points exceeding
t− λ

A(t)
where the coefficient A is negative), we obtain for the solution of (4.1):

lim
t→∞
t∈T

x(t) = ±∞,

where the limit of∞ corresponds to x0 > 0 and −∞ is for any x0 < 0. Choosing
T ⊂ {t ∈ R : A(t) = 0}, we obtain a solution which is constant on [t0,∞)T.

Finally, let us present some relevant problems, exercises and topics for re-
search and discussion.

(P1) Under which condition on an oscillatory coefficient A, for any ℓ ∈ R will
there exist a time scale including t0 and x0 such that the solution of (4.1)
satisfies

lim
t→∞
t∈T

x(t) = ℓ ?

(P2) By Theorem 2.8, the modified equation

x∆(t) + A(t)x(σ(t)) = 0 for t ∈ T, where A : T → R
+
0 ,

is nonoscillatory on any time scale T. Consider the following equation

x∆(t) + A(t)
[
θ x(t) + (1− θ)x(σ(t))

]
= 0 for t ∈ T, (4.2)

where A : T → R
+
0 and θ ∈ [0, 1]R which can be obtained by the θ-

approximation of an ordinary differential equation. For θ = 0, equa-
tion (4.2) is nonoscillatory. For each A, compute the maximal θ such
that x is nonoscillatory.

(P3) Under which conditions will all nonoscillatory solutions on the time scales
considered in this paper tend to zero?

(P4) In Lemma 3.2 to each equation on time scales we matched a differential
equation such that the solution of the differential equation coincides with
the solution of the equation on time scale T for any t ∈ T. Solve the inverse
problem: for each differential equation, find (if possible) an unbounded
above time scale T such that the solutions of two equations coincide at
any t ∈ T. If, generally, the answer is negative, find sufficient conditions
and/or modify the coefficient such that this coincidence is possible.

(P5) Extend the results of Theorem 3.3 to the integrodifferential equation on
time scales

x∆(t) +

∫ t

h(t)

K(t, η)x(η)∆η = 0 for t ∈ [t0,∞)T
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and/or

x∆(t) +

∫ t

h(t)

K(t, σ(η))x(η)∆η = 0 for t ∈ [t0,∞)T.

(P6) Formulate conditions under which stability and global boundedness of
solutions is monotone in time scales.

(P7) Extend the results of the present paper to nonlinear equations with a
unique positive equilibrium. In addition to nonoscillation, consider sta-
bility, solution persistence and solution estimates.
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