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Strong Solutions of

Doubly Nonlinear Parabolic Equations

Aleš Matas and Jochen Merker

Abstract. The aim of this article is to discuss strong solutions of doubly nonlinear
parabolic equations

∂Bu

∂t
+Au = f,

where A : X → X∗ and B : Y → Y ∗ are operators satisfying standard assumptions
on boundedness, coercivity and monotonicity. Six different situations are identified
which allow to prove the existence of a solution u ∈ L∞(0, T ;X ∩ Y ) to an initial
value u0 ∈ X ∩ Y , but only in some of these situations the equation is valid in a
stronger space than (X ∩ Y )∗.
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1. Introduction

An abstract doubly nonlinear parabolic equation has the form

∂Bu

∂t
+ Au = f (1)

with operators A : X → X∗, B : Y → Y ∗ on Banach spaces X, Y and an
inhomogeneity (or nonlinearity) f .

In applications, doubly nonlinear parabolic equations occur as models of
physical phenomena like the filtration of non-Newtonian fluids through porous
media or the evolution of reaction-diffusion systems, and in many other fields
like e.g. population dynamics. Further, in many cases these equations are de-
generate or singular. Let us explicitly mention two examples.
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Example 1.1. The density ρ of a fluid in a homogeneous isotropic porous
medium is governed by the continuity equation ∂ρ

∂t
+div(ρv) = 0, where v is the

seepage velocity of the fluid. Assume that v depends only on the gradient of
the pressure π within the fluid, i.e., v = −a(grad π). For a Newtonian fluid a is
supposed to be linear (Darcy’s law), but for a non-Newtonian fluid a is allowed
to be a nonlinear monotone mapping. For simplicity, assume that a is the
derivative of the convex function φa(grad π) :=

1
p
| grad π|p, 1 < p < ∞, given

by a(grad π) = (grad π)p−1 := | grad π|p−2 grad π, where | · | is the Euclidean
norm and (·)p−1 denotes signed power (of vectors). Further, assume that the
pressure π satisfies the power law π(ρ) = Aργ with constants A > 0, γ > 1,
then

ρ a(grad π) =

(

γA

p′ + γ − 1
grad ρp

′+γ−1

)p−1

.

Thus, using m := p′+γ
p′+γ−1

= p+γ(p−1)
1+γ(p−1)

and u := ρp
′+γ−1 = ρm

′−1 the equation
governing the fluid reads as

∂um−1

∂t
= div

(

(

γA

m′ − 1
grad u

)p−1
)

.

This equation is doubly degenerate under the conditions γ > 1 and p > 2, while
in the case γ > 1 and 1 < p < 2 it is degenerate at points x with u(x) = 0 and
singular at points x with (grad u)(x) = 0.

Example 1.2. Assume that the kinetic energy of a non-Newtonian incompress-
ible fluid in a domain Ω ⊂ R

3 is modeled by
∫

Ω
φb(u) dx, where φb : R

3 → R is
the convex potential of the nonlinear momentum mapping b, and that the vis-
cous stress tensor is modeled by a(∇symu) with a nonlinear mapping a depending
only on the symmetric part of the (3× 3)-matrix ∇u. Then the velocity vector
field u of the fluid is governed by doubly nonlinear Navier-Stokes equations

∂b(u)

∂t
+ div(b(u)⊗ u) = −dπ + div(a(∇symu)),

where the pressure density π is implicitly determined by the incompressibil-
ity condition div(u) = 0. Note that these equations are up to the viscosity
term Lie-Poisson equations, and mathematically it is not prohibited to choose
a non-quadratic Hamiltonian in such equations. Thus, mathematically doubly
nonlinear Navier-Stokes equations make sense. Physically, at least the question
may be allowed whether it is justified to assume in every situation that particles
within a fluid have a quadratic kinetic energy, e.g. in the situation of a fluid
which flows in a porous medium so that the particles of the fluid interact with
the particles of the medium.
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Abstracting from these particular examples, in this article the abstract
equation (1) is studied under the following structural assumptions:

(A1) X and Y are reflexive Banach spaces with a dense and separable intersec-
tion X ∩ Y 1, which is compactly embedded into Y .

(A2) B : Y → Y ∗ is a continuous strictly monotone potential operator, which
is coercive and satisfies the growth condition ‖Bu‖Y ∗ ≤ C‖u‖m−1

Y with a
constant C < ∞ and a parameter 1 < m < ∞.

(A3) A : X → X∗ is a pseudomonotone operator, which satisfies the semicoer-
civity condition 〈Au, u〉 ≥ c1‖u‖

p
X − c2‖u‖X − c3‖Bu‖m

′

Y ∗ and the growth
condition ‖Au‖X∗ ≤ C(‖u‖Y )(1 + ‖u‖p−1

X ) for a parameter 1 < p < ∞
with constants c1 > 0, c2, c3 and an increasing function C : R+

0 → R
+
0 .

(A4) f ∈ Lp′(0, T ;X∗) is an inhomogeneity.

Under these assumptions there exists to every initial value u0 ∈ Y a weak
solution of equation (1) in the following sense.

Definition 1.3. A function u ∈ Lp(0, T ;X) ∩ L∞(0, T ;Y ) is called a weak
solution of equation (1) to the initial value u0 ∈ Y , if Bu ∈ L∞(0, T ;Y ∗) has
the initial value Bu0 ∈ Y ∗ and a weak derivative ∂Bu

∂t
∈ Lp′(0, T ;X∗) satisfying

equation (1) as an equation in X∗ for a.e. t ∈ (0, T ).

Like in [10], where the prototypical doubly nonlinear parabolic equation

∂um−1

∂t
−∆pu = f (2)

was considered, the existence of weak solutions can be proved under these struc-
tural assumptions by a Faedo-Galerkin method (for proofs using Rothe’s method
see [1–3,5, 7, 9] and the references therein).

In fact, similar to [14, 3.2] in Section 2 it is shown that the approximate
equation obtained by restricting (1) to a finite-dimensional subspace can be
solved under these assumptions with the help of the Leray-Schauder fixed point
theorem. All other steps – the derivation of a priori estimates by testing the ap-
proximate equation with u, the extraction of weakly convergent subsequences
and the proof that the weak limits are identical with their expected limits –
are in complete analogy with the proof given in [10] for the prototypical equa-
tion (2). Hence, under the structural assumptions (A1)–(A4) there exists a
weak solution of (1).

In a more general sense weak solutions even exist if (A4) is replaced by
weaker conditions. This observation is crucial in the following, where equa-
tion (1) is discussed for inhomogeneities and nonlinearities f = f(u) with
f ∈ L2(0, T ;Y ∗) or f ∈ L2(0, T ;H∗) for an intermediate Hilbert space H.

1More precisely, there are continuous linear embeddings of X and Y into a fixed complete
locally convex space Z such that their intersection X ∩ Y within Z is dense in X resp. Y

w.r.t. the norms ‖ ·‖X resp. ‖ ·‖Y , and that X ∩Y is separable w.r.t. the norm ‖ ·‖X +‖ ·‖Y .
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Remark 1.4. If f ∈ Lp′(0, T ;X∗) + L2(0, T ;Y ∗), then under the additional
assumption that B satisfies ‖u‖Y ≤ C(1 + ‖Bu‖m

′

Y ∗) with a constant C < ∞
there exists a weak solution in the more general sense that ∂Bu

∂t
∈ Lp′(0, T ;X∗)+

L2(0, T ;Y ∗) and equation (1) is satisfied as an equation in (X ∩ Y )∗ for a.e.
t ∈ [0, T ]. Moreover, if f = f(t, u) is a nonlinearity satisfying ‖f(t, u)‖Y ∗ ≤
C(γ(t)+‖u‖m−1

Y ) with a constant C < ∞ and a function γ ∈ L2(0, T ), then un-
der the stronger additional assumption that B satisfies ‖u‖Y ≤ C(1+‖Bu‖m

′−1
Y ∗ )

with a constant C < ∞ there exists a weak solution in the more general sense.

Remark 1.5. LetH be an intermediate Hilbert space such thatX∩Y ⊂ H ⊂ Y

is an interpolation triple, i.e., there is a θ ∈ [0, 1] and a constant C < ∞ such
that ‖u‖H ≤ C‖u‖θX∩Y ‖u‖

1−θ
Y for all u ∈ X∩Y , and assume p ≥ 2 or 1

2
≤ θ ≤ p

2
.

If f ∈ Lp′(0, T ;X∗) + L2(0, T ;H∗), then under the additional assumption
that B satisfies ‖u‖Y ≤ C(1 + ‖Bu‖m

′

Y ∗) with a constant C < ∞ there exists a
weak solution in the more general sense that ∂Bu

∂t
∈ Lp′(0, T ;X∗)+L2(0, T ;H∗)

and equation (1) is satisfied as an equation in (X ∩H)∗ for a.e. t ∈ [0, T ].
Moreover, if f = f(t, u) is a nonlinearity satisfying ‖f(t, u)‖H∗ ≤

C(γ(t) + ‖u‖
(m−1)(1−θ)
Y ) with a constant C < ∞ and a function γ ∈ L2(0, T ),

then under the stronger additional assumption that B satisfies ‖u‖Y ≤ C(1 +
‖Bu‖m

′−1
Y ∗ ) with a constant C < ∞ there exists a weak solution in the more

general sense.

The question arises whether weak solutions have better properties than
those mentioned in Definition 1.3. Here we are interested in strong solutions,
i.e., we ask ourselves whether it is possible to derive additional a priori estimates
by testing the approximate equation with ∂u

∂t
under the additional assumptions

that A : X → X∗ is a potential operator, f has values in Y ∗ or H∗, and
u0 ∈ X ∩ Y . Contrary to nonlinear parabolic equations ∂u

∂t
+ Au = f , in the

case of doubly nonlinear parabolic equations it makes sense to distinguish six
different types of strong solutions. These types of strong solutions are explored
in Section 3.

The first three types of strong solutions are derived under the condition
that the derivative dB−1 of the inverse B−1 of B exists. The solution types are
named so that solutions of first type are stronger than solutions of second type,
and these again are stronger than solutions of third type. Let us start with the
weakest type of strong solutions. The following theorem about the existence
of what we call strong solutions of third type is proved in Section 3.1. It is
applicable to the operator Bu = um−1 on Y := Lm(Ω) in the case 1 < m ≤ 2.

Theorem 1.6. Additionally to the structural assumptions (A1)–(A3) require

that

• B−1 : Y ∗ → Y is C1, satisfies dB−1(0) = 0 and is uniformly monotone

in the sense that 〈v∗, dB−1(u∗)v∗〉 ≥ c(‖u∗‖Y ∗)‖dB−1(u∗)v∗‖2Y holds for

every u∗, v∗ ∈ Y ∗, u∗ 6= 0, with a decreasing function c : R+ → R
+,
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• A : X → X∗ is a potential operator,

• f ∈ L2(0, T ;Y ∗).

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of

equation (1) in the sense that u is a weak solution which additionally satis-

fies u ∈ L∞(0, T ;X), has the initial value u0 ∈ X ∩ Y and a weak derivative
∂u
∂t

∈ L2(0, T ;Y ).

As a consequence, u ∈ C(0, T ;Y ) and also u ∈ C(0, T ; (X,weak)) because
of u ∈ L∞(0, T ;X). In fact, u(sn) → u(t) in Y as sn → t and boundedness of
u(sn) in X implies weak convergence of u(sn) in X at least for a subsequence.
But due to denseness of X∗ ∩Y ∗ in X∗ the weak limit has to coincide with u(t)
for every subsequence, so that really u(s) ⇀ u(t) weakly in X as s → t. Further,
by continuity of B also Bu ∈ C(0, T ;Y ∗). However, it can not be concluded
that equation (1) holds in a better space than (X ∩ Y )∗.

The assumptions of the following theorem guarantee the existence of solu-
tions for which equation (1) is valid in a better function space. The correspond-
ing solutions are called strong solutions of second type. This theorem is applica-
ble to operators B on the space Y := Lm(Ω) with potential ΦB(u) :=

∫

Ω
b(u) dx

for a convex C2-function b which behaves like 1
2
|u|2 as |u| → 0 and like a mul-

tiple of |u|m as |u| → ∞ for 1 < m ≤ 2, The proof of the theorem is given in
Section 3.2.

Theorem 1.7. Additionally to the structural assumptions (A1)–(A3) assume

that X ∩ Y ⊂ H ⊂ Y is an interpolation triple and p ≥ 2 or 1
2
≤ θ ≤ p

2
as in

Remark 1.5, and that

• B−1 : Y ∗ → Y is C1, satisfies ‖u‖Y ≤ C(1 + ‖Bu‖m
′−1

Y ∗ ) with a constant

C < ∞, and is strongly monotone in the sense that 〈v∗, dB−1(u∗)v∗〉 ≥
c‖v∗‖2H∗ for all u∗, v∗ ∈ Y ∗ with a constant c > 0 2,

• A : X → X∗ is a potential operator such that the intersection of Y and

the domain D(A) := {u ∈ X |Au ∈ H∗} of A w.r.t. H∗ is dense in X∩Y ,

• f = f(u) is a nonlinearity such that g := dB−1(Bu)∗f(u) ∈ L2(0, T ;H)
is independent of u.

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of

equation (1) in the sense that u is a weak solution which additionally satisfies

u ∈ L∞(0, T ;X), and Bu ∈ L∞(0, T ;Y ∗) has the initial value Bu0 ∈ Y ∗ and a

weak derivative ∂Bu
∂t

∈ L2(0, T ;H∗).

As a consequence of this theorem Au = f − ∂Bu
∂t

∈ L2(0, T ;H∗), and equa-
tion (1) is valid as an equation in H∗. An analogous result is valid if B−1 is C1

2Note that this condition is equivalent to strong monotonicity of B−1 as an operator
B−1 : Y ∗ ⊂ H∗ ∼= H → Y , i.e., to the condition 〈u∗ − v∗, B−1u∗ − B−1v∗〉 ≥ c‖u∗ − v∗‖2

H∗

for arbitrary u∗, v∗ ∈ Y ∗.
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and strongly monotone as an operator B−1 : Y ∗ → Y , i.e.,

〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖2Y ∗ (3)

or equivalently 〈u∗−v∗, B−1u∗−B−1v∗〉 ≥ c‖u∗−v∗‖2Y ∗ is valid for all u∗, v∗ ∈ Y ∗

with a constant c > 0. Then ∂Bu
∂t

∈ L2(0, T ;Y ∗), and equation (1) is even valid
as an equation in the space Y ∗. The corresponding theorem about these so-
called strong solutions of first type is formulated in Section 3.3.

Finally, also the case is handeled where not B−1 but B is a continously
differentiable operator, and in this case there again are three different types of
strong solutions. But before we begin with a discussion of strong solutions, let
us give a short summary how the existence of weak solutions of equation (1)
can be proved by a Faedo-Galerkin method.

2. Weak solutions

To prove the existence of weak solutions by a Faedo-Galerkin method, let us
consider the restriction of equation (1) to a finite-dimensional subspace Wk ⊂
X ∩ Y . More precisely, denote by ιk : Wk → X ∩ Y the inclusion of Wk, by
Ak := ι∗k ◦ A ◦ ιk, Bk := ι∗k ◦ B ◦ ιk and fk := ι∗k ◦ f the restriction of A, B and
f to Wk, and consider the approximate equation

∂Bkuk

∂t
+ Akuk = fk . (4)

We want to show that the integral form of this equation, i.e., the equation

Bkuk(t) = Bkuk(0) +

∫ t

0

(fk(s)− Akuk(s)) ds,

has locally in time a solution uk to the initial value uk(0) ∈ Wk.
Note that the operator Bk : Wk → W ∗

k has a continuous inverse, as Bk is
continuous, bounded, strictly monotone and coercive due to assumption (A2).
Thus, the integral equation can equivalently be written as

uk(t) = B−1
k

(

Bkuk(0) +

∫ t

0

(fk(s)− Akuk(s)) ds

)

.

Consider the right hand side as an operator B−1
k ◦Kk on C([0, T ],Wk), and recall

that on the finite-dimensional space Wk all norms are equivalent. Let r > 0 be
given, then there is a Tk such that the distance of (B−1 ◦ Kk)(uk)(t) to uk(0)
is smaller than r for every t ∈ [0, Tk] provided that uk satisfies the inequality
sups∈[0,Tk]

‖uk(s)− uk(0)‖ ≤ r.
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In fact, by continuity of B−1
k there is a r̃ > 0 such that if vk ∈ Wk and

‖vk −Bkuk(0)‖ < r̃, then ‖B−1
k (vk)− uk(0)‖ < r. Further,

∥

∥

∥

∥

∫ t

0

(fk(s)−Akuk(s)) ds

∥

∥

∥

∥

≤

∫ t

0

‖Akuk(s)‖ ds+

∫ t

0

‖fk(s)‖ ds

≤

∫ Tk

0

C(‖uk‖)(1+‖uk‖
p−1) ds+

(
∫ Tk

0

‖fk(s)‖
p′ds

)

1
p′

T
1
p

k

≤ MkTk + ‖f‖Lp′ (0,T ;X∗)T
1
p

k ,

where Mk := max{C(‖uk‖)(1+ ‖uk‖
p−1) | ‖uk − uk(0)‖ ≤ r}. Thus for small Tk

and t ∈ [0, Tk] the norm ‖(Kkuk)(t) − Bkuk(0)‖ becomes smaller than r̃ , and
hence the distance of (B−1

k ◦ Kk)(uk)(t) and uk(0) is smaller than r for all
t ∈ [0, Tk].

Moreover, Kk : C(0, Tk;Wk) → C(0, Tk;W
∗
k ) is a compact operator, as

bounded subsets of C(0, Tk;Wk) ⊂ Lp(0, Tk;Wk) are mapped by Kk to bounded
subsets of W 1,p′(0, Tk;W

∗
k ), which is compactly embedded into C(0, Tk;W

∗
k ).

Because B−1
k is continuous, also B−1

k ◦Kk is a compact operator on C(0, Tk;Wk).
Thus, Id−B−1

k ◦Kk is a compact perturbation of the identity, so that there is
a fixed point by the Leray-Schauder fixed point theorem (see e.g [6, 11.4]).
This shows the local existence in time of a solution uk ∈ C(0, Tk;Wk) of the
approximate equation.

Note further that if fk is not merely the restriction of f ∈ Lp′(0, T ;X∗) to
Wk, but fk ∈ C(0, T ;W ∗) is a continuous approximation of f in the sense that
fk ⇀ f in Lp′(0, T ;X∗) as k → ∞, then uk ∈ C1(0, Tk;Wk) is valid, because by
demicontinuity of A the function s 7→ Akuk(s) is continuous for a continuous
uk ∈ C(0, Tk;Wk). This observation will be important in the next section, where
strong solutions are considered.

All other steps – the derivation of a priori estimates by testing the ap-
proximate equation with uk, the extraction of a weakly convergent subsequence
which among others satisfies uk ⇀ u in Lp(0, T ;X), uk

∗
⇀ u in L∞(0, T ;Y ) and

Buk
∗
⇀ (Bu)ex in L∞(0, T ;Y ∗), and the proof that weak limits and expected

limits are identical (e.g. (Bu)ex = Bu) – are in complete analogy with the
proof for the prototypical case in [10]. Thus, under the assumptions (A1)–(A4)
existence of weak solutions of the doubly nonlinear parabolic equation (1) in
the sense of Definition 1.3 can be proved for initial values u0 ∈ Y .

3. Strong solutions

To prove the existence of strong solutions, we would like to test the approximate
equation (4) by ∂u

∂t
(hereby, we suppress the index k of approximate solutions

to make the following calculations better readable).
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However, the existence of ∂u
∂t

is not at all obvious, because only the existence
of ∂Bu

∂t
is known from the approximate equation. But if the approximation fk

of f is a continuous function fk ∈ C(0, T ;W ∗) then due to demicontinuity of A
the function t 7→ fk(t)− Au(t) is continuous for u ∈ C(0, T ;W ), and from the
approximate equation

Bu(t) = Bu(0) +

∫ t

0

(f(s)− Au(s)) ds

we can conclude that ∂Bu
∂t

= f − Au exists and is a continuous function.
Therefore, let us assume that B−1 is continuously differentiable, then the

existence of ∂Bu
∂t

implies by the chain rule the existence of the time derivative
of (B−1 ◦B)(u) = u, and the formula

∂u

∂t
= dB−1(Bu)

∂Bu

∂t
(5)

is valid.

3.1. Strong solutions of third type. For continuously differentiable B−1 the
approximate equation (4) can be tested by ∂u

∂t
to obtain

〈

∂Bu

∂t
,
∂u

∂t

〉

+

〈

Au,
∂u

∂t

〉

=

〈

f,
∂u

∂t

〉

.

Now d
dt
ΦA(u) = 〈Au, ∂u

∂t
〉 due to A = dΦA and 〈f, ∂u

∂t
〉 ≤ ‖f‖Y ∗‖∂u

∂t
‖Y , but to

obtain an a priori estimate, we also have to estimate the first term from below.
Therefore, assume dB−1(0) = 0 and

〈v∗, dB−1(u∗)v∗〉 ≥ c(‖u∗‖Y ∗)‖dB−1(u∗)v∗‖2Y (6)

for all u∗, v∗ ∈ Y ∗, u∗ 6= 0, where c : R+ → R
+ is a decreasing function of

‖u∗‖Y ∗ . Put u∗ := Bu and v∗ := ∂Bu
∂t

in this inequality, then

〈

∂Bu

∂t
,
∂u

∂t

〉

≥ c(‖Bu‖Y ∗)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

Y

by equation (5). Thus, because we already know from the discussion of weak
solutions that ‖Bu‖Y ∗ is uniformly bounded in time, there is a constant c > 0
such that

c

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

Y

+
d

dt
ΦA(u) ≤ ‖f‖Y ∗

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

Y

≤
1

2ǫ2
‖f‖2Y ∗ +

ǫ2

2

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

Y

,

and by choosing ǫ > 0 so small that c > ǫ2

2
, an a priori estimate of ∂u

∂t
in

L2(0, T ;Y ) and of u in L∞(0, T ;X) can be derived. Recall that we spoke the
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whole time about solutions of the approximate equations (we only suppressed
the index k for better readability, but now we are going to mention it again).

Due to the a priori estimates of ∂uk

∂t
in L2(0, T ;Y ) and of uk in L∞(0, T ;X)

for the approximates solutions uk, we are able to extract a subsequence of
the approximate solution uk such that additionally to the weak convergences
mentioned in Section 2 also uk

∗
⇀ (u)ex in L∞(0, T ;X) and ∂uk

∂t
→ (∂u

∂t
)ex in

L2(0, T ;Y ).

It is easy to verify that these weak limits are identical with their expected
values. In fact, as uk

∗
⇀ u in L∞(0, T ;Y ), on the one hand (u)ex = u by

denseness of X∗ ∩ Y ∗ in X∗. On the other hand, as
∫ T

0
〈∂v
∂t
, uk − uk(0)〉 dt =

−
∫ T

0
〈v−v(T ), ∂uk

∂t
〉 dt holds for all v ∈ L2(0, T ;W ∗

k ) with final value v(T ) ∈ W ∗
k

and weak derivative ∂v
∂t

∈ L1(0, T ;W ∗
k ), let k → ∞ to obtain by density of

⋃

k Wk in Y the equation

∫ T

0

〈

∂v

∂t
, u− u(0)

〉

Y

dt = −

∫ T

0

〈

v − v(T ),

(

∂u

∂t

)

ex

〉

dt

for all v ∈ L2(0, T ;Y ∗) with final value v(T ) ∈ Y ∗ and weak derivative ∂v
∂t

∈
L1(0, T ;Y ∗). Therefore, the weak derivative ∂u

∂t
of u is identical with (∂u

∂t
)ex.

Thus, we proved Theorem 1.6 and obtained what we call a strong solution
of third type. Finally, let us show that in the case of the prototypical equation
the required inequality (7) is valid.

Example 3.1. Consider the prototypical equation (2), where Y = Lm(Ω) and
Bu = um−1. Thus, if m ≤ 2, then B−1 has the Frechet-derivative dB−1(u∗) =

1
m−1

|u∗|
2−m
m−1 at u∗. Therefore, by Hölder inequalities

‖dB−1(u∗)v∗‖mm =
1

(m− 1)m

∫

Ω

(|u∗|
2−m
m−1 |v∗|)mdx

=
1

(m− 1)m

∫

Ω

(|u∗|
2−m
m−1 |v∗|2)

m
2 |u∗|

m(2−m)
2(m−1) dx

≤
1

(m− 1)m

(
∫

Ω

|u∗|
2−m
m−1 |v∗|2dx

)
m
2
(
∫

Ω

|u∗|
m

m−1 dx

)
2−m

2

and due to 〈v∗, dB−1(u∗)v∗〉 = 1
m−1

∫

Ω
|u∗|

2−m
m−1 |v∗|2dx hence

〈v∗, dB−1(u∗)v∗〉 ≥ (m− 1)‖dB−1(u∗)v∗‖2m‖u
∗‖

m−2
m−1

m′ .

Thus inequality (6) holds with the function c(‖u∗‖m′) = (m− 1)‖u∗‖
m−2
m−1

m′ .
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3.2. Strong solutions of second type. Assume that additionally to the
spaces X, Y a Hilbert space H is given such that X ∩ Y ⊂ H ⊂ Y is an
interpolation triple, i.e., there is a θ ∈ [0, 1] and a constant C < ∞ such that
‖u‖H ≤ C‖u‖θX∩Y ‖u‖

1−θ
Y for every u ∈ X ∩ Y . Further, assume p ≥ 2 or

1
2
≤ θ ≤ p

2
. Strong solutions of second type correspond to the validity of an

inequality
〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖2H∗ (7)

for all u∗, v∗ ∈ Y ∗ with a constant c > 0.
For the approximate equation consider finite-dimensional subspaces W ⊂

D(A) ∩ Y ⊂ X ∩ Y , and assume further that f = f(u) is a nonlinearity such
that g := dB−1(Bu)∗f(u) ∈ L2(0, T ;H) is – for simplicity – an inhomogeneity,
i.e., g does not depend on u. Note that like in Remark 1.5 in this case f(u)
satisfies a growth assumption such that weak solutions of equation (1) exists.
In fact, apply inequality (7) to u∗ := Bu, v∗ := f(u), to obtain

c‖f(u)‖2H∗ ≤ 〈f(u), dB−1(Bu)f(u)〉 = 〈f(u), g〉 ≤ ‖f(u)‖H∗‖g‖H .

Thus ‖f(u)‖H∗ ≤ 1
c
‖g‖H , is dominated uniformly in u by a function in L2(0, T ).

Especially, f(u) ∈ L2(0, T ;H∗) for every u ∈ L∞(0, T ;Y ), and weak solutions
satisfying ∂Bu

∂t
∈ Lp′(0, T ;X∗) + L2(0, T ;H∗) exist due to Remark 1.5.

Due to W ⊂ D(A) and f ∈ L2(0, T ;H∗) a solution u ∈ W of the ap-
proximate equation ∂Bu

∂t
+ Au = f satisfies ∂Bu

∂t
∈ H∗ for a.e. t. Especially,

inequality (7) can be applied to v∗ = ∂Bu
∂t

to obtain

〈

∂Bu

∂t
,
∂u

∂t

〉

≥ c

∥

∥

∥

∥

∂Bu

∂t

∥

∥

∥

∥

2

H∗

.

Further, as g := dB−1(Bu)∗f(u) ∈ L2(0, T ;H) is an inhomogeneity,

〈

f,
∂u

∂t

〉

Y

=

〈

f, dB−1(Bu)
∂Bu

∂t

〉

Y

=

〈

∂Bu

∂t
, g

〉

H

≤

∥

∥

∥

∥

∂Bu

∂t

∥

∥

∥

∥

H∗

‖g‖H

≤
ǫ2

2

∥

∥

∥

∥

∂Bu

∂t

∥

∥

∥

∥

2

H∗

+
1

2ǫ2
‖g‖2H

for all ǫ > 0. Thus, by choosing ǫ > 0 so small that c > ǫ2

2
, we obtain from

c

∥

∥

∥

∥

∂Bu

∂t

∥

∥

∥

∥

2

H∗

+
d

dt
ΦA(u) ≤

ǫ2

2

∥

∥

∥

∥

∂Bu

∂t

∥

∥

∥

∥

2

H∗

+
1

2ǫ2
‖g‖2H
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a priori estimates of ∂Bu
∂t

in L2(0, T ;H∗) and of u in L∞(0, T ;X).

Therefore, we are able to guarantee weak∗ convergence of a subsequence of
the approximate solutions uk in L∞(0, T ;X) and weak convergence of ∂Buk

∂t
in

L2(0, T ;H∗). Again, it is easy to verify that the weak limits of these sequences
are identical with their expected values. Hence, Theorem 3.3 has been proved,
i.e., there exist what we call strong solutions of second type.

Especially, because ∂Bu
∂t

and f lie in L2(0, T ;H∗), also Au = f − ∂Bu
∂t

lies in
L2(0, T ;H∗), so that equation (1) holds as an equation in H∗ for a.e. t ∈ [0, T ],
and thus u(t) ∈ D(A) for a.e. t ∈ [0, T ].

As another consequence, Bu ∈ W 1,2(0, T ;H∗) ⊂ C(0, T ;H∗) due to Bu ∈
L∞(0, T ;Y ∗) ⊂ L2(0, T ;H∗) and ∂Bu

∂t
∈ L2(0, T ;H∗). Therefore, strong solu-

tions of second type are very similar to strong solutions of nonlinear parabolic
equations ∂u

∂t
+Au = f . Finally, let us give an example of an operator B where

the required inequality (3) is valid, and let us discuss which nonlinearities f(u)
are allowed in this case.

Example 3.2. Let Y := Lm(Ω) for a bounded domain Ω, 1 < m < 2, so that
H := L2(Ω) is continuously embedded into Y . Consider the potential operator
B = dΦB : Y → Y ∗ induced by the functional ΦB(u) :=

∫

Ω
b(u) dx on Y , where

u 7→ b(u) is a convex C2-function which behaves like 1
2
|u|2 as |u| → 0 and like

a multiple of |u|m as |u| → ∞. For example, we may choose b(u) = |u|2+m

2|u|m+m|u|2
.

Then b′(u) behaves like u as |u| → 0 and like um−1 as |u| → ∞. Thus,
(b′)−1(u) behaves like u as |u| → 0 and like um′−1 as |u| → ∞, so that ((b′)−1)′(u)

behaves like 1 as |u| → 0 and like 1
m−1

|u|
2−m
m−1 as |u| → ∞. Especially, pointwisely

((b′)−1)′(u) ≥ c for a constant c > 0.

Therefore,

c‖v∗‖22 =

∫

Ω

c|v∗|2dx ≤

∫

Ω

((b′)−1)′(u∗)|v∗|2dx,

and as a consequence 〈v∗, dB−1(u∗)v∗〉 ≥ c‖v∗‖22 for all u∗, v∗ ∈ Y ∗, so that
inequality (3) is valid.

Further, every nonlinearity f with f(u) ∈ L2(0, T ;H∗) for u ∈ L∞(0, T ;Y )
such that g := dB−1(Bu)∗f(u) ∈ L2(0, T ;H) is an inhomogeneity has the form

f(t, u) =
g(t)

((b′)−1)′(u)

with a pregiven g ∈ L2(0, T ;H). In fact, note that u 7→ ((b′)−1)′(u) is a func-
tion which is bounded away from zero and stays bounded for bounded u, and
dB−1(Bu)∗f(u) = g holds because dB−1(Bu) is merely a multiplication opera-
tor.
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3.3. Strong solutions of first type. Strong solutions of first type correspond
to the validity of an inequality (3) for all u∗, v∗ ∈ Y ∗ with a constant c > 0.
This assumption is stronger that (7), and it allows to prove the existence of
solutions with even better properties by a minor modification of the proof of
Theorem 1.7.

Theorem 3.3. Additionally to the structural assumptions (A1)–(A3) require

that

• B−1 : Y ∗ → Y is C1, satisfies ‖u‖Y ≤ C(1 + ‖Bu‖m
′−1

Y ∗ ) with a constant

C < ∞, and is strongly monotone in the sense that 〈v∗, dB−1(u∗)v∗〉 ≥
c‖v∗‖2Y ∗ for all u∗, v∗ ∈ Y ∗ with a constant c > 0 3,

• A : X → X∗ is a potential operator such that the intersection of Y and

the domain D(A) := {u ∈ X |Au ∈ Y ∗} of A w.r.t. Y ∗ is dense in X∩Y ,

• f = f(u) is a nonlinearity such that g := dB−1(Bu)∗f(u) ∈ L2(0, T ;Y )
is independent of u.

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of

equation (1) in the sense that u is a weak solution which additionally satisfies

u ∈ L∞(0, T ;X), and Bu ∈ L∞(0, T ;Y ∗) has the initial value Bu0 ∈ Y ∗ and a

weak derivative ∂Bu
∂t

∈ L2(0, T ;Y ∗).

However, while this theorem even guarantees the validity of equation (1) as
an equation in Y ∗ for a.e. t∈ [0, T ] – and especially Au=f− ∂Bu

∂t
∈L2(0, T ;Y ∗),

so that u(t) lies in the domain D(A) of A w.r.t. Y ∗ for a.e. t ∈ [0, T ] – it is not
directly applicable to nonlinear superposition operators B due to lack of strong
monotonicity. In contrast, Theorem 3.3 seems to be applicable to the situation
where Y is a Sobolev-Slobodetskii space and B−1 is a fractional differential
operator.

3.4. Strong solutions of sixth type. While differentiability of B−1 was re-
quired to prove existence of strong solutions of first, second and third type,
strong solutions of fourth, fifth and sixth type are related to differentiability
of B. However, in this case the existence of ∂u

∂t
can not be concluded from

the approximate equation (4). Therefore, the approximate equation should be
changed to

dBk(uk)
∂uk

∂t
+ Akuk = fk (8)

(again, in the following we suppress the index k). Provided that dB(u) :
W → W ∗ is invertible for every u ∈ W , this equation can be written as
∂u
∂t

= (dB(u))−1(f − Au) or in integral form as

u(t) = u(0) +

∫ t

0

(dB(u(s)))−1(f(s)− Au(s)) ds.

3Note that this condition is equivalent to strong monotonicity of B−1 : Y ∗ → Y , i.e., to
the condition 〈u∗ − v∗, B−1u∗ −B−1v∗〉 ≥ c‖u∗ − v∗‖2

Y ∗ for arbitrary u∗, v∗ ∈ Y ∗.
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By continuity of dB, continuity of the approximations of f and demicontinuity of
A this integral equation has locally in time a continuously differentiable solution
u(t) ∈ W . Further, by the chain rule also Bu is continuously differentiable w.r.t.
time and ∂Bu

∂t
= dB(u)∂u

∂t
. Especially, the approximate equation can be written

as ∂Bu
∂t

+ Au = f , so that existence of a weak solution follows in the same way
as before.

Again, to obtain existence of a certain kind of strong solutions, test the
new approximate equation (8) by ∂u

∂t
. Assume that additionally to X, Y a

Hilbert space H is given such that Y ⊂ H ∼= H∗ ⊂ Y ∗ is a Gelfand triple, let
f ∈ L2(0, T ;H∗) and assume the validity of

〈dB(u)v, v〉 ≥ c‖v‖2H (9)

for all u, v ∈ Y with a constant c > 0. Note that this inequality expresses that
dB(u) is uniformly coercive in u, so that dB(u) : W → W ∗ is invertible for
every u ∈ W . Therefore, the new approximate equation (8) is solvable, and
testing it by v = ∂u

∂t
gives

c

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

H

+
d

dt
ΦA(u) ≤

1

2ǫ2
‖f‖2H∗ +

ǫ2

2

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

H

.

Thus, a priori estimates of ∂u
∂t

in L2(0, T ;H) and of u in L∞(0, T ;X) can be
obtained. Hence, the following theorem about the existence of strong solutions
of sixth type has been proved.

Theorem 3.4. Additionally to the structural assumptions (A1)–(A3) require

that there is a Hilbert space H such that Y ⊂ H ∼= H∗ ⊂ Y ∗ is a Gelfand triple

and that

• B : Y ∗ → Y is C1 and satisfies 〈dB(u)v, v〉 ≥ c‖v‖2H for all u, v ∈ Y with

a constant c > 0.

• A : X → X∗ is a potential operator,

• f ∈ L2(0, T ;H∗)

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of

equation (1) in the sense that u is a weak solution which additionally satis-

fies u ∈ L∞(0, T ;X), has the initial value u0 ∈ X ∩ Y and a weak derivative
∂u
∂t

∈ L2(0, T ;H).

As a consequence, u ∈ C(0, T ;H) and hence also u ∈ C(0, T ; (X,weak)),
but equation (1) is not valid in a better space than (X ∩ Y )∗.

Example 3.5. Let Y := Lm(Ω) for a bounded domain Ω, 1 < m < 2, so that
Y is continuously embedded into H := L2(Ω). Consider the potential operator
B = dΦB : Y → Y ∗ induced by the functional ΦB(u) :=

∫

Ω
b(u) dx, where b is
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a convex C2-function which behaves like 1
2
|u|2 as |u| → 0 and like a multiple

of 1
m
|u|m as |u| → ∞.
Then b′(u) behaves like u as |u| → 0 and like um−1 as |u| → ∞, thus b′′(u)

behaves like 1 as |u| → 0 and like (m − 1)|u|m−2 as |u| → ∞. Especially,
pointwisely b′′(u) ≥ c for a constant c > 0. Therefore,

c‖v‖22 =

∫

Ω

c|v|2 dx ≤

∫

Ω

b′′(u)|v|2dx,

and as a consequence 〈dB(u)v, v〉 ≥ c‖v‖22 for all u, v ∈ Y , so that inequality (9)
is valid.

3.5. Strong solutions of fifth type. Without an intermediate Hilbert space
assume the validity of

〈dB(u)v, v〉 ≥ c‖v‖2Y

for all u, v ∈ Y with a constant c > 0, then the following theorem about the so-
called strong solutions of fifth type can be proved in a similar way as Theorem
3.4.

Theorem 3.6. Additionally to the structural assumptions (A1)–(A3) require

that

• B : Y ∗ → Y is C1 and satisfies 〈dB(u)v, v〉 ≥ c‖v‖2Y for all u, v ∈ Y with

a constant c > 0.

• A : X → X∗ is a potential operator,

• f ∈ L2(0, T ;Y ∗).

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of

equation (1) in the sense that u is a weak solution which additionally satis-

fies u ∈ L∞(0, T ;X), has the initial value u0 ∈ X ∩ Y and a weak derivative
∂u
∂t

∈ L2(0, T ;Y ).

3.6. Strong solutions of fourth type. Strong solutions of the fourth type
are related to differentiable operators B satisfying dB(0) = 0 and

〈dB(u)v, v〉 ≥ c(‖u‖Y )‖dB(u)v‖2Y ∗ (10)

for all u, v ∈ Y , u 6= 0, with a decreasing function c : R+ → R
+ of ‖u‖Y .

However, this inequality does not guarantee that dB(u) has an inverse, so
that local solvability in time of the approximate equation (8) has to be shown
by a different method, namely by discretization in time like in [13, 11.2]. To use
this method we additionally require that A is a monotone p-coercive potential
operator. But before we discretize, let us first discuss the right hand side f ,
which in this case should be a nonlinearity like in the case of strong solutions
of first type.
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Let us assume that f is a nonlinearity induced by an inhomogeneity g ∈
L2(0, T ;Y ) via f(u) := dB(u)g. Note that dB(u) = dB(u)∗, because dB is the
second order derivative of the C2-function ΦB. Further, f(u) ∈ L2(0, T ;Y ∗)
holds for every u ∈ L∞(0, T ;Y ), because u ∈ L∞(0, T ;Y ) implies dB(u) ∈
L∞(0, T ;L(Y, Y ∗)) due to

c(‖u‖Y )‖dB(u)v‖2Y ∗ ≤ 〈dB(u)v, v〉 ≤ ‖dB(u)v‖Y ∗‖v‖Y

for all v ∈ Y by inequality (10), i.e., the inequality ‖dB(u)v‖Y ∗ ≤ 1
c(‖u‖Y )

‖v‖Y

and hence ‖dB(u)‖L(Y,Y ∗) ≤
1

c(‖u‖Y )
is valid.

Moreover, if the function c(‖u‖Y ) from inequality (10) does not decrease

faster than 1
1+‖u‖m−2

Y

as ‖u‖Y → ∞, then f(u) automatically satisfies assump-

tions similar to those of Remark 1.4, so that weak solutions of equation (1)

exist. Indeed, apply inequality (10) to v = g to obtain

c(‖u‖Y )‖f(u)‖
2
Y ∗=c(‖u‖Y )‖dB(u)g‖2Y ∗≤〈dB(u)g, g〉=〈f(u), g〉≤‖f(u)‖Y ∗‖g‖Y

and thus ‖f(u)‖Y ∗ ≤ C‖g‖Y (1 + ‖u‖m−2
Y ).

Now let us consider the time-discretization

dB(ul−1)
ul − ul−1

h
+ Aul = f(ul−1) = dB(ul−1)gl (11)

of the new approximate equation (8) inW . By p-coercivity of A a solution of the
time-discretized equation exists for every step size h > 0. In fact, inequality (10)
guarantees 〈dB(ul−1)v, v〉 ≥ 0, and hence the operator on the left hand side of
the equation (hA+ dB(ul−1))ul = dB(ul−1)(hgl + ul−1) is p-coercive due to

〈(hA+ dB(ul−1))v, v〉 ≥ h〈Av, v〉 ≥ h‖v‖pX .

Denote by uh the piecewise affine interpolant to the points ul, by ūh the
piecewise constant interpolant and by ūR

h the retarded piecewise constant inter-
polant. Then uh is bounded in L∞(0, T ;Y ) due to the discrete analogon

Φ̂B(ul)− Φ̂B(ul−1)

h
≤ 〈dB(ul−1)

ul − ul−1

h
, ul〉+ 〈Aul, ul〉

= 〈f(ul−1), ul〉

≤ C‖gl‖Y (1 + ‖ul−1‖
m−2
Y )‖ul‖Y

of testing the new approximate equation by u, where Φ̂B denotes the Legendre
transform of a convex potential ΦB ofB in dependence of u. Here Φ̂B(u)≥c‖u‖mY
is satisfied for a constant c > 0, and hence ‖ul‖Y ≤ C holds for all l with a
constant C < ∞.
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Moreover, if A is additionally assumed to be monotone, then uh is bounded
in L∞(0, T ;X) and dB(ūR

h )
∂uh

∂t
is bounded L2(0, T ;Y ∗), as is shown by the

discrete analogon

c(‖ul−1‖Y )

∥

∥

∥

∥

dB(ul−1)
ul − ul−1

h

∥

∥

∥

∥

2

Y ∗

+
ΦA(ul)− ΦA(ul−1)

h

≤

〈

dB(ul−1)
ul − ul−1

h
,
ul − ul−1

h

〉

+

〈

Aul,
ul − ul−1

h

〉

=

〈

f(ul−1),
ul − ul−1

h

〉

=

〈

dB(ul−1)g,
ul − ul−1

h

〉

≤
ǫ2

2

∥

∥

∥

∥

dB(ul−1)
ul − ul−1

h

∥

∥

∥

∥

2

Y ∗

+
1

2ǫ2
‖gl‖

2
Y .

of testing the new approximate equation by ∂u
∂t
. Note that uh ∈ L∞(0, T ;Y )

implies dB(ūR
h ) ∈ L∞(0, T ;L(Y, Y ∗)), hence also ∂uh

∂t
is bounded in L2(0, T ;Y ).

Thus, there is a subsequence of uhn
such that uhn

∗
⇀ u in L∞(0, T ;X ∩ Y )

and
∂uhn

∂t
⇀ (∂u

∂t
)ex in L2(0, T ;Y ) as hn → 0 (in the following we suppress the

index n), and it is easy to verify that (∂u
∂t
)ex = ∂u

∂t
.

Let us write the discretized equation (11) as

dB(ūR
h )

∂uh

∂t
+ Aūh = f(ūR

h ) = dB(ūR
h )ḡh .

It remains to verify, that we can form the limit h → 0 in this equation.

By uh ∈ L∞(0, T ;X ∩ Y ), compactness of X ∩ Y ⊂ Y and Aubins-Lions’
lemma a subsequence of uh convergences strongly to u in Lq(0, T ;Y ) for an
arbitrary index q < ∞. Because ‖ūR

h − uh‖L2(0,T ;Y ) ≤ Ch‖∂uh

∂t
‖L2(0,T ;Y ) and

∂uh

∂t

is uniformly bounded in L2(0, T ;Y ) w.r.t. h, also ūR
h → u in L2(0, T ;Y ). Thus

even ūR
h → u in Lq(0, T ;Y ) by interpolation, and in a similar way ūh → u in

Lq(0, T ;Y ).

Now u 7→ dB(u) is a mapping from Lq(0, T ;Y ) to L
q

m−2 (0, T ;L(Y, Y ∗)) due
to the validity of ‖dB(u)‖L(Y,Y ∗) ≤ 1

c(‖u‖Y )
≤ C(1 + ‖u‖m−2

Y ), and dB(ūR
h ) →

dB(u) in L
q

m−2 (0, T ;L(Y, Y ∗)) by continuity of dB : Y → L(Y, Y ∗) and com-
pactness of X ∩ Y ⊂ Y . Further, ∂uh

∂t
⇀ ∂u

∂t
weakly in L2(0, T ;Y ), so that

dB(ūR
h )

∂uh

∂t
⇀ dB(u)∂u

∂t
weakly in L

2q
q−2(m−2) (0, T ;Y ) provided that q is cho-

sen so large that 2q ≥ q − 2(m − 2). By construction ḡh ⇀ g, and by
(pseudo)monotonicity of A also Aūh ⇀ Au. Thus, every term in the discrete
version of the new approximate equation converges to the expected limit, and
hence u ∈ W 1,p(0, T ;W ) solves the new approximate equation (8).
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Further, although dB is not bounded, the function dB(u) is bounded in
time, and therefore the chain rule ∂Bu

∂t
= dB(u)∂u

∂t
holds, i.e., Bu ∈ L∞(0, T ;Y ∗)

has a weak derivative ∂Bu
∂t

∈ L2(0, T ;Y ∗) and the former formula holds. There-
fore, u satisfies also the original approximate equation (4), i.e., ∂Bu

∂t
+Au = f(u)

holds. However, the former calculations additionally proved the existence of ∂u
∂t

and ∂Bu
∂t

= dB(u)∂u
∂t
.

Thus, as in the other cases it is possible to test the approximate equation
by ∂u

∂t
to conclude

c

∥

∥

∥

∥

∂Bu

∂t

∥

∥

∥

∥

2

Y ∗

+
d

dt
ΦA(u) ≤

ǫ2

2

∥

∥

∥

∥

∂Bu

∂t

∥

∥

∥

∥

2

Y ∗

+
1

2ǫ2
‖g‖2Y ,

and hence a priori estimates of ∂Bu
∂t

in L2(0, T ;Y ∗) and of u in L∞(0, T ;X) are
valid. Therefore, the following theorem about the existence of strong solutions
of fourth type holds.

Theorem 3.7. Additionally to the structural assumptions (A1)–(A3) require

that

• B : Y ∗ → Y is C1, satisfies ‖u‖Y ≤ C‖Bu‖m
′−1

Y ∗ with a constant C < ∞,

and is uniformly monotone in the sense that dB(0) = 0 and 〈dB(u)v, v〉 ≥
c(‖u‖Y )‖dB(u)v‖2Y ∗ holds for all u, v ∈ Y , u 6= 0, with a decreasing func-

tion c : R+ → R
+ of ‖u‖Y which does not decrease faster than 1

1+‖u‖m−2
Y

as ‖u‖Y → ∞,

• A : X → X∗ is a monotone p-coercive potential operator,

• f(u) := dB(u)g for a g ∈ L2(0, T ;Y ).

Then there exists to every initial value u0 ∈ X ∩ Y a strong solution u of

equation (1) in the sense that u is a weak solution which additionally satisfies

u ∈ L∞(0, T ;X) and ∂Bu
∂t

∈ L2(0, T ;Y ∗).

Due to ∂Bu
∂t

, f ∈ L2(0, T ;Y ∗) also Au = f − ∂Bu
∂t

lies in L2(0, T ;Y ∗),
and equation (1) holds as an equation in Y ∗ for a.e. t ∈ [0, T ]. Especially,
u(t) ∈ D(A) for a.e. t ∈ [0, T ], where the domain of A w.r.t. Y ∗ is defined by
D(A) := {u ∈ X |Au ∈ Y ∗ }.

Another consequence is that Bu ∈ W 1,2(0, T ;Y ∗) ⊂ C(0, T ;Y ∗). Thus,
if B−1 is continuous, then also u ∈ C(0, T ;Y ), and u ∈ L∞(0, T ;X) implies
u ∈ C(0, T ; (X,weak)).

Example 3.8. Consider the prototypical equation (2), where Y = Lm(Ω)
and Bu = um−1. Thus, if m ≥ 2, then B has the Frechet-derivative
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dB(u) = (m− 1)|u|m−2 at u. Therefore, by Hölder inequalities

‖dB(u)v‖m
′

m′ = (m− 1)m
′

∫

Ω

(|u|m−2|v|)m
′

dx

= (m− 1)m
′

∫

Ω

(|u|m−2|v|2)m
′/2|u|(m−2)m

′

2 dx

≤ (m− 1)m
′

(
∫

Ω

|u|m−2|v|2dx

)
m′

2
(
∫

Ω

|u|m dx

)
m−2

2(m−1)

and due to 〈dB(u)v, v〉 = (m− 1)
∫

Ω
|u|m−2|v|2 dx hence

〈dB(u)v, v〉 ≥
‖dB(u)v‖2m′

(m− 1)‖u‖m−2
m

.

Thus 〈dB(u)v, v〉 ≥ c(‖u‖m)‖dB(u)v‖2m′ holds with the function c(‖u‖m) =
1

m−1
‖u‖2−m

m . Since X := W
1,p
0 (Ω) is compactly embedded into Y = Lm(Ω) for a

bounded domain iff m < p∗, in the case 2 ≤ m < p∗ the prototypical equation
(2) admits a strong solution of fourth type.

4. Conclusion

The aim of this article was to discuss existence of strong solutions of doubly
nonlinear parabolic equations. Six different situations have been identified,
and in each of these situations it has been shown that there are solutions of
equation (1) which satisfy u ∈ L∞(0, T ;X) and have other better properties
than ordinary weak solutions. The most important types of strong solutions
are what we call the first, second and fourth type, as these imply the validity
of equation (1) in Y ∗ (resp. H∗).

As a consequence, for a given operator A higher regularity of solutions may
be proved by embedding the domain D(A) ⊂ X of A : D(A) → Y ∗ (resp.
H∗) into an appropriate space. Further, uniqueness of strong solutions may be
proved in an elementary way by the method of [8] (see also [13, 11.2.3] and [11]),
while it is much harder to prove uniqueness of weak solutions, see [12].
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