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On the Unique Solvability of Certain Nonlinear
Singular Partial Differential Equations
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Abstract. We study the singular nonlinear equation tut = F (t, x, u, ux), where the
function F is assumed to be continuous in t and holomorphic in the other variables.
Under some growth conditions on the coefficients of the partial Taylor expansion of F ,
we show that if F (t, x, 0, 0) is of order O(µ(t)α) for some α ∈ [0, 1] as t→ 0 uniformly
in some neighborhood of x = 0, then the equation has a unique solution u(t, x) with
the same growth order.
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1. Statement of the problem

Given any r > 0, we denote by Br be the closed disc {x ∈ C; |x| ≤ r} and
by Dr the closed polydisc {x ∈ Cn; |x| ≤ r}, where |x| = max1≤i≤n |xi|. Let
T > 0, 0 < R < 1, ρ > 0 and set Ω = [0, T ]×DR ×Bρ ×Dρ.

We say that µ(t) is a weight function on [0, T ] if it is a continuous, nonneg-

ative, increasing function on (0, T ) such that µ(t)
t

is integrable on (0, T ). Note

that such a function must satisfy limt→0 µ(t) = 0. Examples of weight func-

tions are tδ, 1
(− log t)1+δ

and 1
(− log t)(log(− log t))δ

for any positive δ. We use the name

coined by Tahara in [12]. Similarly defined functions have been referred to as

Dini functions in [5, 11].

Let (t, x) ∈ R × Cn. We are interested in the singular nonlinear partial
differential equation

t
∂u

∂t
= F

(
t, x, u,

∂u

∂x

)
, (1)
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where the function F (t, x, u, v) is a continuous function on Ω and is holomorphic
in the variables (x, u, v) for any fixed t, and ∂u

∂x
=
(
∂u
∂x1
, . . . , ∂u

∂xn

)
. Gérard and

Tahara [3, 4] have conducted extensive investigations on this singular equation
which is modeled after the ordinary differential equation first studied by Briot
and Bouquet in 1856. Assuming that F (t, x, u, v) is holomorphic with respect
to all the variables, they have proved the unique existence of a holomorphic as
well as a type of singular solution to (1). They also provided extensions of their
results to higher order nonlinear singular equations.

Meanwhile, assuming holomorphy in x but only continuity in t, Nagumo
type existence and uniqueness theorems for linear singular equations of general
order have also been established by Baouendi and Goulaouic [1] in 1973. In
1999, Lope [8] extended their results using weight functions and showed that
the two essentially proved the case corresponding to µ(t) = tδ. It was also

pointed out in [8] that the integrability of µ(t)
t

is a crucial property as it turned
out to be almost necessary for the unique solvability of a class of higher order
linear Fuchsian equations.

In addition to the above-mentioned results, there are also results for non-
linear equations under different growth assumptions due again to Baouendi and
Goulaouic [2] and for nonlinear systems due to Koike [7]. In the former paper,
the weight function used was µ(t) = t, while in the latter, a stronger integra-
bility condition was imposed on the function µ(t).

We point out that in this work, we not only give an existence and uniqueness
theorem for nonlinear equations, we also provide a growth order estimate in
terms of µ(t)α, where the power α can be 0, 1 or anywhere in between. Work
is currently being undertaken to extend our results to higher order equations.

Now let µ(t) be any weight function and α ∈ [0, 1]. Set a(t, x) = F (t, x, 0, 0)
and λ(t, x) = Fu(t, x, 0, 0). We shall study (1) under the following assumptions:

(A1) a(t, x) and axi(t, x) for 1 ≤ i ≤ n are both bounded byAµ(t) on [0, T ]×DR

(A2) Fvi(t, x, 0, 0) = O(µ(t)) (as t→ 0) for 1 ≤ i ≤ n uniformly on DR

(A3) Reλ(t, x) ≤ −c on [0, T ]×DR for some c > 0

(A4) For all 1 ≤ i, j ≤ n, Fuvi(t, x, u, v) and Fvivj(t, x, u, v) are of order
O(µ(t)1−α) (as t→ 0) uniformly on DR ×Bρ ×Dρ.

Since µ(t) is a weight function, the function ϕ(t) =
∫ t

0
µ(τ) dτ

τ
is well-defined

on [0, T ]. For any r > 0, let the region Wr be given by

Wr =

{
(t, x); 0 ≤ t ≤ T and

ϕ(t)

r
+ |x| < R

}
. (2)

Note that the size of the region Wr also depends on T , although we will not
explicitly indicate this in our notation for the sake of simplicity. We define two
spaces on Wr: the space X0(Wr) is composed of all functions in C0(W ) that
are holomorphic in x for any fixed t, while the space X1(Wr) is composed of all
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functions in C1(Wr ∩{t > 0}) ∩ C0(Wr) that are also holomorphic in x for any
fixed t. Observe that if r1 < r2, then Wr1 ⊂ Wr2 and Xj(Wr2) ⊂ Xj(Wr1) for
j = 0, 1.

The following is our main result.

Theorem 1.1 (Main Theorem). Suppose (A1)–(A4) hold. If α ∈ (0, 1] and T
is sufficiently small, or if α = 0 and both T and A are sufficiently small, then
there exists an r > 0 such that (1) has a unique solution u(t, x) ∈ X1(Wr) that
satisfies

|u(t, x)| ≤ 4A

c
µ(t)α and max

1≤i≤n

{∣∣∣∣ ∂u∂xi (t, x)

∣∣∣∣} ≤ ρ

(
µ(t)

µ(T )

)α
on Wr. (3)

Remark 1.2. The modifier “sufficiently small” in the statement of the Main
Theorem will be made precise in Section 3.

Example 1.3. Let (t, x) ∈ R× C, µ(t) = t and consider the equation(
t
∂

∂t
+ 1

)
u+ tx2∂u

∂x
= (1 + tx2)u2 − x2u2∂u

∂x
. (4)

Note that F (t, x, 0, 0) ≡ 0, which is of order O(tα) for any α ∈ (0, 1] as t → 0.
Note further that u ≡ 0 and u(t, x) = 1 + tx are both solutions to (4) but
the unique solution being referred to in our theorem is the former, because the
latter is not of order O(tα) for any α ∈ (0, 1] as t→ 0.

Example 1.4. Let (t, x) ∈ R × C, µ(t) be any weight function and consider
the equation (

t
∂

∂t
+

5

8

)
u+ µ(t)

∂u

∂x
=

1

16
+ g(t, x) + u2,

where the function g(t, x) is continuous in t, holomorphic in x and is of order
O(µ(t)β) for some β ∈ (0, 1] as t → 0 uniformly in a neighborhood of x = 0.
Note that for small values of t, the quantity 1

16
+ g(t, x) is bounded by 1

8
. Our

theorem guarantees the unique existence of the solution u(t, x) whose magnitude

is no more than
4( 1

8
)

5
8

= 4
5
. This solution is in fact given by 1

8
+ w(t, x), where

w(t, x) is the unique solution with order O(µ(t)β) of the equation(
t
∂

∂t
+

3

8

)
w + µ(t)

∂w

∂x
= g(t, x) + w2.

The unique existence of such w(t, x) is guaranteed again by Theorem 1.1.
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2. Preliminaries

We rewrite (1) as(
t
∂

∂t
− λ(t, x)

)
u = a(t, x) +

n∑
i=1

bi(t, x)
∂u

∂xi
+ f(t, x, u) +G

(
t, x, u,

∂u

∂x

)
, (5)

where f(t, x, u)=
∑∞

m=2
∂mF
∂um

(t, x, 0, 0)u
m

m!
is holomorphic in (x, u) and G(t, x, u, v)

is the sum of terms in the partial Taylor expansion of F (t, x, u, v) whose degree
with respect to (u, v) is at least 2.

In view of the holomorphy of F (t, x, u, v) with respect to (x, u, v) and
Assumptions (A1)–(A4), there exist positive constants such that estimates
(B1)–(B3) hold:

(B1) max1≤i≤n{|bi(t, x)|}≤Bµ(t) on [0, T ]×DR

(B2)

∣∣∣∣∂λ∂x(t, x)

∣∣∣∣≤Λ on [0, T ]×DR

(B3)

∣∣∣∣ ∂2F

∂u∂vi

∣∣∣∣≤B1,1µ(t)1−α and

∣∣∣∣ ∂2F

∂vi∂vj

∣∣∣∣≤B0,2µ(t)1−α for 1≤ i, j≤n on Ω.

Here and in the following,
∣∣ ∂g
∂x

∣∣ denotes the quantity max1≤i≤n
∣∣ ∂g
∂xi

∣∣. The
constants appearing above shall not be used in any other context throughout
the manuscript so as to avoid confusion.

Given w ∈ X0(Wr), we define

Φ[w] =
n∑
i=1

bi(t, x)
∂w

∂xi
+G

(
t, x, w,

∂w

∂x

)
.

In view of (B1) and (B3), we have the following estimate for the modulus of the
difference Φ[w1]− Φ[w2].

Lemma 2.1. Let wj(t, x) (j = 1, 2) be in X0(Wr). If for some α ∈ [0, 1], both

|wj| and
∣∣∂wj
∂x

∣∣ are bounded by ρ
( µ(t)
µ(T )

)α
on Wr then

∣∣Φ[w1]− Φ[w2]
∣∣ ≤ n∑

i=1

Bµ(t)

∣∣∣∣∂w1

∂xi
− ∂w2

∂xi

∣∣∣∣+
nB1,1ρ

µ(T )α
µ(t) |w1 − w2|

+
n∑
i=1

(B1,1 + nB0,2)ρ

µ(T )α
µ(t)

∣∣∣∣∂w1

∂xi
− ∂w2

∂xi

∣∣∣∣ on Wr.

The following lemma provides a bound for the derivative of a holomorphic
function in terms of the function itself. Walter [13] attributes a lemma of this
type to Nagumo. It may be proved in the same way as Lemma 5.1.3 in [6].
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Lemma 2.2. Let w(t, x) ∈ X0(Wr) for some r > 0 and Ψ(t) be a nonnegative
function. If for j = 0 or 1, we have

|w(t, x)| ≤ Ψ(t)(R− |x|)j

R− |x| − ϕ(t)
r

on Wr,

then ∣∣∣∣∂w∂x (t, x)

∣∣∣∣ ≤ 4Ψ(t)(R− |x|)j(
R− |x| − ϕ(t)

r

)2 on Wr.

The next lemma states some elementary results on linear Fuchsian equa-
tions.

Lemma 2.3. Suppose (A3) holds. For any g(t, x) ∈ X0(Wr), the equation(
t
∂

∂t
− λ(t, x)

)
w = g(t, x) (6)

has a unique solution w(t, x) ∈ X1(Wr), and it is given by

w(t, x) =

∫ t

0

exp

(∫ t

τ

λ(s, x)
ds

s

)
g(τ, x)

dτ

τ
. (7)

Moreover, the following estimates hold on Wr given any nondecreasing, nonneg-
ative function ψ(t):

(a) If |g(t, x)| ≤Mψ(t), then |w(t, x)| ≤ M

c
ψ(t).

(b) If |g(t, x)| ≤ Mµ(t)ψ(t)(
R− |x| − ϕ(t)

r

)2 , then |w(t, x)| ≤ Mrψ(t)

R− |x| − ϕ(t)
r

.

(c) If |g(t, x)| ≤ Mµ(t)ψ(t)(R− |x|)(
R− |x| − ϕ(t)

r

)2 , then |w(t, x)| ≤ Mϕ(t)ψ(t)

R− |x| − ϕ(t)
r

.

Proof. The integral representation (7) of the solution is easily verified, and the

estimate in (a) follows from it. To prove (b), we use the fact that ϕ′(t) = µ(t)
t

and estimate as follows:

|w(t, x)| ≤
∫ t

0

(τ
t

)c Mµ(τ)ψ(τ)(
R− |x| − ϕ(τ)

r

)2

dτ

τ

≤Mψ(t)

∫ t

0

ϕ′(τ)(
R− |x| − ϕ(τ)

r

)2dτ

= Mrψ(t)

(
1

R− |x| − ϕ(t)
r

− 1

R− |x|

)

≤ Mrψ(t)

R− |x| − ϕ(t)
r

,
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after simply ignoring the nonnegative subtrahend. As for (c), we estimate as
in (b) but instead of dropping the subtrahend, we make use of the presence of
(R− |x|) to cancel the unwanted term in the denominator.

Let us now consider the semilinear version of (6) given by(
t
∂

∂t
− λ(t, x)

)
w = g(t, x) + h(t, x, w). (8)

The function h(t, x, w) is assumed to be continuous on ω = {(t, x, w) ∈
R × Cn × C; 0 ≤ t ≤ T, |x| ≤ R, |w| ≤ ρ} and holomorphic in (x,w) for
each t. Moreover, we will assume that there are constants L1, L2 > 0 such that
if on Wr, we have |w(t, x)| ≤ Jµ(t)α ≤ ρ for some J > 0 and α ∈ [0, 1], then
these must also hold on Wr:

(H1)
∣∣h(t, x, w(t, x)

)∣∣ ≤ L1 ·
[
Jµ(t)α

]2
;

(H2)

∣∣∣∣ ∂h∂w (t, x, w)

∣∣∣∣ ≤ L2 · Jµ(t)α.

The following proposition shows that, as in the linear case, this is uniquely solv-
able and its solution satisfies some estimates. It will be used in the construction
of approximate solutions to (1).

Proposition 2.4. Suppose (A3), (H1) and (H2) hold. Suppose further that
g(t, x) ∈ X0(Wr), and for some α ∈ [0, 1], we have |g(t, x)| ≤ Mµ(t)α on Wr.
If T or M is small enough so that

Mµ(T )α ≤ min

{
c2

4L1

,
c2

4L2

,
ρc

2

}
, (9)

then Equation (8) has a unique solution w(t, x) ∈ X1(Wr) that satisfies

|w(t, x)| ≤ 2M

c
µ(t)α on Wr. (10)

Proof. We construct approximate solutions to (8) as follows:(
t
∂

∂t
− λ(t, x)

)
w0 = g(t, x),(

t
∂

∂t
− λ(t, x)

)
wk = g(t, x) + h(t, x, wk−1) (k ≥ 1).

For k ≥ 1, we define vk(t, x) = wk(t, x)−wk−1(t, x). We claim that for all k ≥ 0,
the following hold:

|wk(t, x)| ≤ 2M

c
µ(t)α and |vk+1(t, x)| ≤ M

c

µ(t)α

2k+1
. (11)
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With these estimates, it is easy to see that the approximate solutions converge
to a solution w(t, x) of (8), and that, by construction, |w(t, x)| ≤ 2M

c
µ(t)α

on Wr. Note that (9) ensures that all the approximate solutions fall within the
domain of definition of h(t, x, w).

We now prove the estimates in (11) by induction. Let us consider the case
when k = 0. Since |g(t, x)| ≤ Mµ(t)α on Wr, we have |w0(t, x)| ≤ M

c
µ(t)α by

Lemma 2.3(a). To proceed to w1(t, x), we consider the difference v1 = w1−w0.
Note that

(
t ∂
∂t
− λ(t, x)

)
v1(t, x) = h(t, x, w0), where, by (H1) and (9), the right-

hand side is bounded by c
2
M
c
µ(t)α. Thus, by Lemma 2.3(a) again, we have

|v1(t, x)| ≤ M

2c
µ(t)α on Wr.

From this, we see that |w1(t, x)| ≤ |w0(t, x)|+ |v1(t, x)| ≤ 2M
c
µ(t)α on Wr.

Suppose the claim is true for all k = 0, 1, . . . , j. We now show that it is also
true when k = j + 1. The difference vj+1 = wj+1 − wj satisfies(

t
∂

∂t
− λ(t, x)

)
vj+1(t, x) = h(t, x, wj)− h(t, x, wj−1)

= vj(t, x) ·
∫ 1

0

∂h

∂w
(t, x, wj−1 + svj) ds.

(12)

Applying the induction hypothesis, we see that |wj−1+svj|≤(1−s)|wj−1|+s|wj|
≤ 2M

c
µ(t)α ≤ ρ. Thus, by (H2) and (9), the modulus of the right-hand side is

at most M µ(t)α

2j
on Wr. By Lemma 2.3(a), we see that

|vk+1(t, x)| ≤ M

c

µ(t)α

2j+1
on Wr.

This then leads to an estimate for |wk+1|, namely,

|wk+1(t, x)| ≤ |w0(t, x)|+
k+1∑
i=1

|vi(t, x)| ≤ 2M

c
µ(t)α on Wr.

This completes the induction, and also the construction of a solution w(t, x)
satisfying (10).

To prove the uniqueness of the solution, we suppose that w and u are two
solutions of (8) in X1(Wr) satisfying (10) on Wr. Using the same technique as
in (12), we have(

t
∂

∂t
− λ(t, x)−

∫ 1

0

∂h

∂w

(
t, x, u+ s(w − u)

)
ds

)
(w − u) = 0.

Note that Re
(
λ(t, x) +

∫ 1

0
hw
(
t, x, u+ s(w− u)

)
ds
)
≤ − c

2
on Wr, thanks again

to (H2). We finish off by applying Lemma 2.3 to obtain w ≡ u on Wr.
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3. Proof of Main Theorem

3.1. Existence of a solution. We will prove the existence of a solution by
the method of successive approximations. We define the approximate solutions
as follows: (

t
∂

∂t
− λ(t, x)

)
u0 = a(t, x) + f(t, x, u0) (13)

and for k ≥ 1,(
t
∂

∂t
− λ(t, x)

)
uk = a(t, x) + Φ[uk−1] + f(t, x, uk). (14)

In the following, we will establish their domains of existence and prove their
convergence to the desired solution using the method of Nirenberg [9] and
Nishida [10].

Recall that by definition, f(t, x, u) = u2f̃(t, x, u) where f̃ is also holomor-
phic with respect to (x, u), so (H1) and (H2) are obviously satisfied. We now
pose some restrictions on A and T in order to apply Proposition 2.4. Suppose
f̃ , f̃xi (1 ≤ i ≤ n) and f̃u are bounded by K1, K2 and K3, respectively, on ω.
We require that these hold: (

1 +
Λ

c

)
· 8A

c
µ(T )α ≤ ρ, (15)

max

{
K2

2
, 2K1 +K3ρ

}
· 4A

c
µ(T )α ≤ c

2
, (16)(

1 +
Λ

c

)
· 8C1

c
µ(T ) ≤ 1, (17)

where
C1 = nB + (2nB1,1 + n2B0,2)

ρ

µ(T )α
.

Condition (9) is implied by (15) and (16). Moreover, (15) ensures that the
constructed approximate solutions are in the domain of definition of f and G.
Note that if α ∈ (0, 1], choosing a small T will ensure that all three condi-
tions hold. However, if α = 0, we also have to choose a small A. With these
conditions, we have made precise what we meant by “sufficiently small” in the
statement of the main theorem.

Playing an essential role in the proof of convergence is a decreasing sequence
{rk}k≥0 of numbers tending to a positive limit r∞. Let K4 be a bound for the

holomorphic function ∂2f
∂u2

on ω. We define the sequence by

r0 <
1

2C
, (18)

rk = rk−1

(
1− (2Cr0)k

)
,
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where

C = C1

(
4 +

Λ +K4ρ
c
2

)
. (19)

By our choice of r0, the series
∑

k≥1(2Cr0)k is convergent, and so r∞ is well-
defined and positive.

Applying Proposition 2.4 to (13) and using the fact that |a(t, x)| ≤ Aµ(t)α

on [0, T ]×DR, we obtain a unique u0(t, x) ∈ X1(Wr0) satisfying

|u0(t, x)| ≤ 2A

c
µ(t)α on Wr0 . (20)

Differentiating (13) with respect to xi, we see that(
t
∂

∂t
− λ(t, x)− ∂f

∂u
(t, x, u0)

)
∂u0

∂xi
=

∂a

∂xi
+
∂λ

∂xi
w +

∂f

∂xi
(t, x, u0). (21)

In view of (16) and (20), we see that Re
(
λ(t, x) + fu(t, x, u0)

)
≤ − c

2
< 0, and

that
∣∣ ∂f
∂xi

(t, x, u0)
∣∣ ≤ c

2
2A
c
µ(t)α = Aµ(t)α. Applying Lemma 2.3(a) to (21), we

obtain∣∣∣∣∂u0

∂x
(t, x)

∣∣∣∣ ≤ A+ 2AΛ
c

+ A
c
2

µ(t)α =

(
1 +

Λ

c

)
4A

c
µ(t)α on Wr0 . (22)

Observe that by (15), both |u0| and
∣∣∂u0
∂x

∣∣ are bounded by ρ
2

on Wr0 .
As for the estimates of the succeeding approximate solutions, we have the

following proposition.

Proposition 3.1. For k ≥ 1, the following are true:

(a) There exists a unique uk ∈ X1(Wrk−1
) satisfying (14) and

|uk(t, x)| ≤ 4A

c
µ(t)α on Wrk−1

.

(b) On Wrk−1
, the difference uk − uk−1 is bounded by

|uk − uk−1| ≤
(Cr0)k−1C1ϕ

R− |x| − ϕ(t)
rk−1

· 4A

c
µ(t)α.

(c) On Wrk−1
, the partial derivatives of the difference are bounded by∣∣∣∣ ∂∂x(uk − uk−1)

∣∣∣∣ ≤ (Cr0)k−1C1ϕ

R− |x| − ϕ(t)
rk−1

(
4 +

Λ +K4ρ
c
2

)
· 4A

c
µ(t)α.
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(d) On Wrk , we have

max

{
|uk − uk−1|,

∣∣∣∣ ∂∂x(uk − uk−1)

∣∣∣∣} ≤ 1

2k
· 4A

c
µ(t)α

and thus

|uk| ≤
8A

c
µ(t)α and

∣∣∣∣∂uk∂x

∣∣∣∣ ≤ (1 +
Λ

c

)
8A

c
µ(t)α on Wrk .

Before proceeding to the proof, we note that the existence of a solution
follows from this proposition. Observe that

u(t, x) = lim
k→∞

uk(t, x) = u0(t, x) + lim
k→∞

k∑
j=1

(uj − uj−1)(t, x),

where the sum is convergent in Wr∞ because of the first set of estimates in (d).
Moreover, the limit function must also satisfy |u(t, x)| ≤ 4A

c
µ(t)α, since accord-

ing to (a) each term of the sequence does. This is sharper than the one in (d)
and is used in the statement of the theorem.

Similarly, we have the convergence of the sequence of partial derivatives
to ∂u

∂xi
(1 ≤ i ≤ n) with |∂u

∂x
| ≤ 8

(
1 + Λ

c

)
A
c
µ(t)α, in view again of (d) and (22).

Note that Condition (15) implies that both |u| and |∂u
∂x
| do not exceed ρ and

also yields the estimate for |∂u
∂x
| that is given in Theorem 1.1.

Finally, since each uk(t, x) may be expressed in the form

uk(t, x) =

∫ t

0

exp

(∫ t

τ

λ(s, x)
ds

s

) [
a(τ, x) + Φ[uk−1](τ, x) + f(τ, x, uk)

] dτ
τ
,

we simply take the limit as k → ∞ to we deduce that u(t, x) ∈ X1(Wr∞) and
that it does solve (5).

Proof of Proposition 3.1. The proof is by induction. Recall that u1 satisfies(
t
∂

∂t
− λ(t, x)

)
u1 = a(t, x) + Φ[u0] + f(t, x, u1). (23)

Using Lemma 2.1, the estimates in (20) and (22), and the condition on T in (17),

|a(t, x) + Φ[u0]| ≤ Aµ(t)α + C1µ(t) ·
(

1 +
Λ

c

)
4A

c
µ(t)α ≤ 2A

c
µ(t)α,

so by Proposition 2.4, there exists a unique u1 ∈ Wr0 satisfying (23) with
|u1(t, x)| ≤ 4A

c
µ(t)α. Thus (a) holds when k = 1.
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Subtracting (13) from (23) yields(
t
∂

∂t
− λ(t, x)−

∫ 1

0

∂f

∂u

(
t, x, u0 + s(u1 − u0)

)
ds

)
(u1 − u0) = Φ[u0]. (24)

Using the bounds for u0 and u1, we see that |u0+s(u1−u0)| ≤ (1−s)|u0|+s|u1| ≤
4A
c
µ(t)α, which, combined with (16), tells us that the modulus of the integral is

at most c
2
. Therefore, if we let λ̃ = λ(t, x) +

∫ 1

0
fu
(
t, x, u0 + s(u1 − u0)

)
ds, we

have Re λ̃(t, x) ≤ −c+ c
2

= − c
2
. The right-hand side satisfies

|Φ[u0]| ≤ 4A

c
C1µ(t)1+α · R− |x|

R− |x|
≤ 4A

c
· C1µ(t)1+α(R− |x|)

R− |x| − ϕ(t)
r0

on Wr0 , (25)

so by Lemma 2.3(c),

|u1 − u0| ≤
C1ϕ

R− |x| − ϕ(t)
r0

· 4A

c
µ(t)α on Wr0 . (26)

This proves (b).

To estimate the partial derivatives of the difference, we differentiate (13)
and (23) with respect to xi, and subtract the former from the latter to obtain(
t ∂
∂t
− λ(t, x)

) ∂(u1−u0)
∂xi

= (u1−u0) ∂λ
∂xi

+ ∂
∂xi

Φ[u0]+ ∂f
∂u

(t, x, u1)∂u1
∂xi
− ∂f
∂u

(t, x, u0)∂u0
∂xi
.

Dropping the variables t and x for brevity, we rewrite this as(
t
∂

∂t
− λ− ∂f

∂u
(u1)

)
∂(u1 − u0)

∂xi

=
∂

∂xi
Φ[u0] + (u1 − u0)

(
∂λ

∂xi
+
∂u0

∂xi

∫ 1

0

∂2f

∂u2

(
u1 + s(u0 − u1)

)
ds

)
.

Using the bound for u1 and (16), we see again that the real part of λ + fu(u1)
is no more than − c

2
. We bound the first term on the right-hand side by using

Lemma 2.2 on (25); we use (26) and the previously introduced constants for the
second term. Following the computations in Lemma 2.3, we see that∣∣∣∣ ∂∂x(u1−u0)

∣∣∣∣≤ 4AC1

c
µ(t)α

∫ t

0

(τ
t

)c
2

[
4(R−|x|)µ(τ)(
R−|x|− ϕ(τ)

r0

)2 +
(Λ+K4ρ)ϕ(τ)

R−|x|− ϕ(τ)
r0

]
dτ

τ

≤ C1ϕ(t)

R−|x|− ϕ(τ)
r0

(
4 +

Λ+K4ρ
c
2

)
· 4A

c
µ(t)α,

(27)

proving (c). Finally, to prove (d), we note that by our choice of C in (19), we
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may combine (26) and (27). Recalling (2), we see that on Wr1 ,

max

{
|u1 − u0|,

∣∣∣∣ ∂∂x(u1 − u0)

∣∣∣∣} ≤ Cϕ(t)

R− |x| − ϕ(t)
r0

· 4A

c
µ(t)α

≤ Cr1(R− |x|)
R− |x| − r1

R−|x|
r0

· 4A

c
µ(t)α

≤ Cr1

(2Cr0)1
· 4A

c
µ(t)α

≤ 1

2
· 4A

c
µ(t)α.

We then apply the triangle inequality to obtain bounds for |u1| and
∣∣∂u1
∂x

∣∣.
Suppose now that (a)–(d) hold when k = 1, 2, . . . , j. Let us show that they

remain valid when k = j + 1. By definition, uj+1 satisfies(
t
∂

∂t
− λ(t, x)

)
uj+1 = a(t, x) + Φ[uj] + f(t, x, uj+1). (28)

Since max
{
|uj|,

∣∣∂uj
∂x

∣∣} ≤ (
1 + Λ

c

)
8A
c
µ(t)α ≤ ρ

(
µ(t)
µ(T )

)α
on Wrj , Lemma 2.1

and (17) yield

|a(t, x) + Φ[uj]| ≤ Aµ(t)α + C1µ(t) ·
(

1 +
Λ

c

)
8A

c
µ(t)α ≤ 2Aµ(t)α.

By Proposition 2.4, there exists a unique uj+1 ∈ Wrj satisfying (28) with
|uj+1(t, x)| ≤ 4A

c
µ(t)α on Wrj , proving (a).

To prove (b), we note that the difference uj+1 − uj satisfies on Wrj the
equation(

t
∂

∂t
− λ−

∫ 1

0

∂f

∂u

(
uj + s(uj+1 − uj)

)
ds

)
(uj+1 − uj) = Φ[uj]− Φ[uj−1],

where we have temporarily dropped the variables t and x for brevity. From (a)
and the induction hypothesis, |uj+s(uj+1−uj)| ≤ (1−s)|uj|+s|uj+1| ≤ 4A

c
µ(t)α,

so by (16), the modulus of the integral is no more than c
2
. Therefore, the real

part of λ(t, x) +
∫ 1

0
fu
(
t, x, uj + s(uj+1− uj)

)
ds is no more than − c

2
. As for the

right-hand side, we use (b) and (c) of the induction hypothesis and Lemma 2.1
to obtain

|Φ[uj]− Φ[uj−1]| ≤ C1µ(t) · (Cr0)j−1C1ϕ

R− |x| − ϕ(t)
rj

(
4 +

Λ +K4ρ
c
2

)
4A

c
µ(t)α

≤ Cµ(t) · (Cr0)j−1C1ϕ

R− |x| − ϕ(t)
rj

4A

c
µ(t)α on Wrj ,

(29)
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where we have made use of the constant C in the second line. This holds on Wrj

because while the estimates in (b) and (c) hold on Wrj−1
, the assumptions of

Lemma 2.1 are satisfied only on Wrj . Applying now Lemma 2.3(b), recalling in
the process that R < 1, we get the desired estimate:

|uj+1−uj|≤
Crj(Cr0)j−1C1ϕ

R−|x|− ϕ(t)
rj

· 4A
c
µ(t)α≤ (Cr0)jC1ϕ

R−|x|− ϕ(t)
rj

· 4A
c
µ(t)α on Wrj . (30)

To establish (c), we do as in the case when k = 1, differentiating (14) with
respect to xi and taking the difference from the previous such equation. We
obtain(
t
∂

∂t
−λ− ∂f

∂u
(uj+1)

)
∂(uj+1−uj)

∂xi

=
∂

∂xi
(Φ[uj]−Φ[uj−1]) + (uj+1−uj)

(
∂λ

∂xi
+
∂uj
∂xi

∫ 1

0

∂2f

∂u2

(
uj+1+s(uj−uj+1)

)
ds

)
.

Using (16) and the bound for uj+1 in (a), we see again that the real part of
λ + fu(uj+1) is no more than − c

2
. We bound the first term on the right-hand

side by using Lemma 2.2 on (29); we use (30) and the previously introduced
constants for the second term. Following the computations in Lemma 2.3, we
see that∣∣∣∣ ∂∂x(uj+1 − uj)

∣∣∣∣
≤ 4A

c
µ(t)α(Cr0)j−1CC1ϕ(t)

∫ t

0

(τ
t

)c
2

[
4µ(τ)(

R−|x|− ϕ(τ)
rj

)2 +
r0(Λ+K4ρ)

R−|x|− ϕ(τ)
rj

]
dτ

τ

≤ (Cr0)j−1CC1ϕ(t)

R− |x| − ϕ(τ)
rj

(
4rj + r0

Λ +K4ρ
c
2

)
· 4A

c
µ(t)α

≤ (Cr0)jC1ϕ(t)

R− |x| − ϕ(τ)
rj

(
4 +

Λ +K4ρ
c
2

)
· 4A

c
µ(t)α.

(31)

Finally, to prove (d), we use (19) to combine (30) and (31). On Wrj+1
, we

have

max

{
|uj+1 − uj|,

∣∣∣∣ ∂∂x(uj+1 − uj)
∣∣∣∣} ≤ (Cr0)jCϕ(t)

R− |x| − ϕ(t)
rj

· 4A

c
µ(t)α

≤ (Cr0)jCrj+1(R− |x|)
R− |x| − rj+1

R−|x|
rj

· 4A

c
µ(t)α

≤ (Cr0)j+1

(2Cr0)j+1
· 4A

c
µ(t)α

≤ 1

2j+1
· 4A

c
µ(t)α.
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The other estimates are obtained by applying the triangle inequality. This
concludes the induction, the proof of Proposition 3.1, and the proof of the
existence.

3.2. Uniqueness of the solution. Suppose u(t, x) and v(t, x) are two solu-
tions of (1) in X1(Wr∞) satisfying (3). We claim that for k = 0, 1, 2, . . . and for
any 1 ≤ i ≤ n, we have

max

{
|u− v| ,

∣∣∣∣ ∂u∂xi − ∂v

∂xi

∣∣∣∣} ≤ 2ρ

µ(T )α
· (Cr∞)kµ(t)α

R− |x| − ϕ(t)
r∞

on Wr∞ .

Letting k approach infinity implies that u ≡ v on Wr∞ since Cr∞ < Cr0 <
1
2

by our choice of r0 in (18).
The case when k = 0 is clear from (3) and the fact that R < 1. Now suppose

the claim is true when k = j. Employing the same technique as in (24), we see
that(

t
∂

∂t
− λ(t, x)−

∫ 1

0

∂f

∂u

(
t, x, u+ s(v − u)

)
ds

)
(u− v) = Φ[u]− Φ[v],

where the real part of λ(t, x) +
∫ 1

0
fu
(
t, x, u+ s(v − u)

)
ds is at most − c

2
. This

is guaranteed because both u and v satisfy (3) and T has been chosen to sat-
isfy (16). Using Lemma 2.1, the induction hypothesis and R < 1 again, the
right-hand side may be bounded by

|Φ[u]− Φ[v]| ≤ 2ρ

µ(T )α
· (Cr∞)jC1µ(t)1+α

R− |x| − ϕ(t)
r∞

≤ 2ρ

µ(T )α
· (Cr∞)jC1µ(t)1+α(
R− |x| − ϕ(t)

r∞

)2 .

Thus, by Lemma 2.3(b), we obtain

max

{
|u−v|,

∣∣∣∣ ∂u∂xi− ∂v

∂xi

∣∣∣∣}≤ 2ρ

µ(T )α
· (Cr∞)jC1r∞µ(t)α

R−|x|− ϕ(t)
r∞

≤ 2ρ

µ(T )α
· (Cr∞)j+1µ(t)α

R−|x|− ϕ(t)
r∞

,

as desired.

Remark 3.2. The bound for the unique solution may be slightly improved if,
instead of (17), we first fix a δ > 0 and require T to satisfy

(
1+ Λ

c

)
· 8C1

c
µ(T ) ≤ δ.

Under this condition, the solution now satisfies

|u(t, x)| ≤ (1 + δ)
2A

c
µ(t)α.

It should be noted that δ comes from the nonlinear terms involving the partial
derivatives with respect to the “space” variable x. Thus in the special case of
Example 1.4 where there is no nonlinearity involving ∂u

∂x
, we may take δ = 0

and assert that the solution should be bounded by 2
5
.
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