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Korn-Type Inequalities in
Orlicz-Sobolev Spaces Involving the

Trace-Free Part of the Symmetric Gradient
and Applications to Regularity Theory

Dominic Breit and Oliver D. Schirra

Abstract. We prove variants of Korn’s inequality involving the trace-free part of the
symmetric gradient of vector fields v : Ω→ Rn (Ω ⊂ Rn), that is,

ˆ
Ω
h(|∇v|) dx 6 c

ˆ
Ω
h(|EDv|) dx

for functions with zero trace as well as some further variants of this inequality. Here, h
is an N -function of rather general type. As an application we prove partial C1,α-
regularity of minimizers of energies of the type

´
Ω h(|EDv|) dx, occurring, for example,

in general relativity.

Keywords. Generalized Korn inequalities in Orlicz-Sobolev spaces, variational prob-
lems, nonstandard growth, regularity
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1. Introduction and formulation of the main results

A cruicial tool in the mathematical approach for the behavior of Newtonian
fluids is Korn’s inequality: Given a bounded domain Ω ⊂ Rn (n > 2) with
Lipschitz boundary ∂Ω, we have for all v ∈ W̊ 1,2(Ω;Rn)

ˆ
Ω

|∇v|2 dx 6 2

ˆ
Ω

|Ev|2 dx, (1)

wherein Ev := 1
2
(∇v+∇Tv) denotes the symmetric part of the gradient ∇v of v.

For smooth vector fields v with compact support (1) follows by integration by
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parts, whereas in the general case (1) is proved by approximation. We note that
L2-variants of Korn’s inequality are due to Courant and Hilbert [11], Friedrichs
[19], Èidus [16] and Mihlin [36].

Many problems in mathematical theory of generalized Newtonian fluids and
mechanics of solids lead to the following question (compare, for example, the
monographs of Málek, Necǎs, Rokyta and Růžička [34], Duvaut and Lions [15]
as well as Zeidler [48]): Is it possible to control a certain energy depending on
∇v by the corresponding one depending just on Ev, that is, doesˆ

Ω

|∇v|p dx 6 c(p,Ω)

ˆ
Ω

|Ev|p dx (2)

hold for functions v ∈ W̊ 1,p(Ω;Rn)?
As shown by Gobert [30, 31], Necǎs [39], Mosolov and Mjasnikov [37],

Temam [46], and later by Fuchs [21] the inequality (2)is true for all 1 < p <∞.
(It should be emphasized that inequality (2)does not hold in case p = 1; see [40],
or [10].) We also like to remark that the case of Sobolev spaces W̊ 1,p(·)(Ω;Rn)
with variable exponents, which are the natural spaces for the study of electro-
rheological fluids (compare [43]), is considered in [12].

In order to generalize (2), we replace t 7→ tp by an N -function h (see, for
example, [1] for a definition) of rather general type and consider the inequalityˆ

Ω

h(|∇v|) dx 6 c(ϕ,Ω)

ˆ
Ω

h(|Ev|) dx (3)

for functions v ∈ W̊ 1,h(Ω;Rn). A first step is mentioned in [2]: Acerbi and
Mingione prove a variant of (3) (in the Luxemburg norm, and not in the integral

version) for the N -function h(t) = (1 + t2)
p−2
2 t2 with p > 1. Although, they just

consider a special case, they provide the necessary tools to deal with much more
general situation. Moreover, the more general result (3) is proved in [7,9,13,22]
with the result: (3) holds if h satisfies ∆2- and∇2-conditions (a precise definition
is given below). Later it was shown in [8] that this result is even sharp.

In this note we prove Korn inequalities of the above type, where Ev is
replaced by its trace-free part EDv := Ev − 1

n
(div v)I, that is, we prove an EDv-

version of (3) (and variants of this). Korn inequalities involving the trace-free
part of the symmetric gradient have applications in general relativity, Cosserat
elasticity, and geometry; compare [18, 27, 44], and the references therein. On
the other hand, since the kernel of the operator

W 1,p(Ω;Rn)→ Lp(Ω;Mn), v 7→ EDv

(Mn denoting the space of trace-free matrices of order n) is much larger than
the kernel of the operator

W 1,p(Ω;Rn)→ Lp(Ω;Rn×n), v 7→ Ev
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such Korn-type inequalities are also of great interest from the mathematical
point of view. Contributions to these issues can be found, for example, in
[42,44] as well as [45] with the result:ˆ

Ω

|∇v|p dx 6 c(p,Ω)

ˆ
Ω

|EDv|p dx

for all v ∈ W̊ 1,p(Ω;Rn) and all 1 < p <∞.
It should be emphasized that even the case p = 2 requires hard mathe-

matical arguments being totally different from those needed in situation of (1).
Moreover, the ideas from the Orlicz setting used to prove (3) are not applicable
here. Specifically, the proof of (3) presented in [13, Theorems 6.13 and 5.17] is
based on the inequality (and a generalization of Nečas’ lemma [39])

|∇2v| 6 c|∇Ev|,

which does not hold for n > 3 if we replace Ev by EDv on the right-hand side.
In [22] the main tool in the proof of (3) is a regularity theorem for elliptic
equations in Orlicz spaces (see [32]) and the representation Lv = div V with
an elliptic differential operator L of second order (here the Laplace operator)
and a suitable vector field V depending on elements of Ev. In case n > 3 this
technique is also not applicable to the situation, where Ev is replaced by EDv.

As an application of our new Korn-type inequalities we discuss the regularity
of local minimizers of functionals of the formˆ

Ω

h(|EDv|) dx,

defined on an appropriate Orlicz-Sobolev class, wherein h is an N -function of
rather general type. Corresponding results are shown by the first author and
Fuchs [9] in the context of the nonlinear Stokes problem, where the density of
the functional depends on the symmetric gradient (subject to the constraint
div v = 0).

Let us give a detailed formulation of our results: Assume that h : [0,∞)→
[0,∞) is a function of class C2 that satisfies the conditions

(H1) h is strictly increasing and convex

(H2) h′′(0) > 0 and lim
t↘0

h(t)

t
= 0

(H3)
h′(t)

t
6 h′′(t) 6 A(1 + t2)

ω
2
h′(t)

t

(H4) h(2t) 6 Kh(t)

for all t > 0 with constants A,K > 0 and an exponent ω > 0. Let us give some
remarks on the above conditions; the details can be found in [4, 9]. Examples
of functions h satisfying (H1)–(H4) are given in [24].
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Remark 1.1. i) Conditions (H1)–(H3) imply that h is an N -function (ac-
cording to the definition of Adams [1, Section 8.2]). In particular, h(0) =

0 = h′(0) and h′(t) > 0 for all t > 0. Note also h′′(0) = limt↘0
h′(t)
t

.

ii) Condition (H4) states that h fulfills a global ∆2-condition. In particular,

h(s+ t) 6
K

2

(
h(s) + h(t)

)
, h(λt) 6 Kλβh(t) (4)

for all λ > 1 and s, t > 0 with β := logK
log 2

. Note that for λ 6 1 we clearly have

h(λt) 6 λh(t). Moreover, (H3) implies that h fulfills a global ∇2-condition,
that is,

h(t) 6
1

2L
h(Lt)

for all t > 0 with some L > 1; compare [41, Section 2.3].

iii) From the lower bound in (H3) we deduce that the function t 7→ h′(t)
t

is
increasing and

h(t) >
h′′(0)

2
t2, h′(t) > h′′(0)t (t > 0). (5)

Moreover, from (H4) and the convexity of h it follows

h′(t)t

K
6 h(t) 6 h′(t)t (t > 0). (6)

iv) There is an exponent q > 2 such that

h(t) 6 c(1 + t2)
q
2 ,

h′(t)

t
6 c(1 + t2)

q
2
−1 (7)

for all t > 0.

Let us state our main results.

Theorem 1.2. Let (H1)–(H4) be fulfilled. For each v ∈ W̊ 1,h(Ω;Rn) we have
ˆ

Ω

h(|∇v|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|EDv|) dx.

For further variants of this inequality and some comments we refer the
reader to Theorem 2.1 and Remark 2.2 in the next section.

Let Ω ⊂ Rn (n > 2) denote a bounded Lipschitz domain, and let H : Mn →
[0,∞) be a function on the space Mn of trace-free matrices of order n. Assume
that H has the special structure H(σ) = h(|σ|) with a function h as above.
From (H3) we deduce the ellipticity condition

h′(|σ|)
|σ|

|τ |2 6 D2H(σ)(τ, τ) 6 A(1 + |σ|2)
ω
2
h′(|σ|)
|σ|

|τ |2 (8)
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for all σ, τ ∈Mn. Using (7) we conclude with q := q + ω (recall (5))

h′′(0)|τ |2 6 D2H(σ)(τ, τ) 6 Λ(1 + |σ|2)
q
2
−1|τ |2 (9)

for all σ, τ ∈Mn with a positive number Λ, which means that H is of anisotropic
(2, q)-growth.

We consider the functional

J [v] = J [v; Ω] :=

ˆ
Ω

H(EDv) dx (10)

among vector fields v from the class K := u0 + W̊ 1,h(Ω;Rn) with prescribed
Dirichlet boundary data u0 from the Orlicz-Sobolev space W 1,h(Ω;Rn) gener-
ated by h; see [1] for a definition. Then we have the following existence and
regularity theorem, which in the two-dimensional case is already proved by
Fuchs [21].

Theorem 1.3. Let (H1)–(H4) hold. Then:

a) The minimization problem J → min in K admits a unique solution u.

b) If n > 3 and ω < 4
n

, there is an open set Ω0 ⊂ Ω of full Lebesgue measure
such that u ∈ C1,α(Ω0;Rn) for each α ∈ (0, 1).

c) Let n = 2 and ω < 2. Then u ∈ C1,α(Ω;R2) for each α ∈ (0, 1).

Remark 1.4. i) In the proof of part b) of the above theorem we use a blow-up
argument, which generalizes the approach used in [9], where an E-version of
the above theorem is proved, but only in case n = 3. We are able to extend
this result to arbitrary dimensions owing to our Korn-type inequalities.

ii) Regularity results for functionals of this type for n > 3 are only known
if the density H behaves like a power of EDu [44], or in the anisotropic
case under restrictive assumptions concerning the growth rates [45]. In our
approach the range of anisotropy can be arbitrary high (remember (9)).

Corollary 1.5. Let (H1)–(H4) hold and suppose that u is a local J-minimizer,
that is, u ∈ W 1,h

loc (Ω;Rn) fulfills for each subdomain Ω′b Ω the conditions

J [u; Ω′] <∞ and J [u; Ω′] 6 J [v; Ω′]

for all v ∈ W 1,h
loc (Ω;Rn) such that spt(u − v) b Ω′. Then the statements b)

and c) of Theorem 1.3 continue to hold.

2. Generalized Korn-type inequalities in Orlicz-Sobolev
spaces

In this section we collect variants of Korn’s inequality in Orlicz-Sobolev spaces
involving the trace-free part of the symmetric gradient. Corresponding versions
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of these Korn-type inequalities for Sobolev functions are shown by the second
author in [45] and by Fuchs and the second author in [27].

We denote by KΩ the kernel of the operator

W 1,h(Ω;Rn)→ Lh(Ω;Mn), v 7→ EDv,

which for n > 3 is finite-dimensional and coincides with the space of the so-called
conformal Killing vectors (Möbius transformations). For a proof and a precise
characterization we refer to [45]; compare also [42]. In the two-dimensional
case, KΩ is infinite-dimensional and coincides with the space of holomorphic
functions on Ω.

Theorem 2.1. Let (H1)–(H4) be fulfilled. Then:

a) For each v ∈ W̊ 1,h(Ω;Rn) we have

ˆ
Ω

h(|∇v|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|EDv|) dx. (11)

b) Let ∂Ω be Lipschitz. For each v ∈ W 1,h(Ω;Rn) there exists χ ∈ KΩ such
that ˆ

Ω

h(|v − χ|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|EDv|) dx. (12)

c) Let ∂Ω be Lipschitz and suppose n > 3. Then for each v ∈ W 1,h(Ω;Rn) it
holds

ˆ
Ω

h(|∇v|) dx 6 c(n, h,Ω)

(ˆ
Ω

h(|v|) dx+

ˆ
Ω

h(|EDv|) dx

)
. (13)

Remark 2.2. i) When Ω is a ball BR = BR(x0) ⊂ Rn the constant c in
part a) of the above theorem is independent of R and x0, which follows by
a standard scaling argument; compare [44]. Moreover, the same argument
together with (4) shows that the inequalities in b) and c) take the form

ˆ
BR

h(|v − χ|) dx 6 cRγ

ˆ
BR

h(|EDv|) dx,

ˆ
BR

h(|∇v|) dx 6 c

(
1

Rγ

ˆ
BR

h(|v|) dx+

ˆ
BR

h(|EDv|) dx

)
, (14)

where γ := max(1, β) and c = c(n, h) with β as in (4).

ii) The last statement of the above theorem does not hold in the two-dimen-
sional case since the corresponding Korn-type inequality in Sobolev spaces
is not valid in this case; see [45]. However, we have the following variant
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of (14) for n = 2: Let v ∈ W 1,h
loc (Ω;Rn). Then for balls Br = Br(x0) and

BR = BR(x0) with Br b BR b Ω it holds

ˆ
Br

h(|∇v|) dx 6 c

(
1

(R− r)γ

ˆ
BR

h(|v|) dx+

ˆ
BR

h(|EDv|) dx

)
with c = c(n, h).

iii) In the two-dimensional case the proof of part b) requires different methods
since in this case KΩ is not finite-dimensional so that the representation
formula of Reshetnyak [42] used in case n > 3. Here, we can argue as in
the proof of the corresponding Korn-type inequality in Sobolev spaces, that
is, we combine the Cauchy-Pompeiu formula with a well-known estimate
for the Riesz potential; compare [21,45].

iv) Part a) of Theorem 2.1 holds for arbitrary bounded domains, whereas the
statements b) and c) hold if Ω is a bounded domain allowing a decomposi-
tion of the form Ω =

⋃L
`=1 Ω`, L ∈ N, with domains Ω` being star-shaped

with respect to a ball B` b Ω`. In particular, bounded domains satis-
fying the cone condition allow such a decomposition; see [35]. Moreover,
bounded domains with the cone property are decomposable in finitely many
Lipschitz domains.

v) Since |EDv| 6 |Ev|, the statements a) and c) are also valid with EDv replaced
by Ev. The corresponding versions of the Korn inequalities, which are
already proved in [7,9,13], are the essential tools in the study of variational
problems for generalized Newtonian fluids.

vi) Part b) is also true with EDv replaced by Ev if χ is a suitable rigid motion.
To the best of our knowledge, this Korn-type inequality (in the version
with Ev) is new. Note that [42] contains a representation formula for Ev,
which is also valid in case n = 2, so that similar arguments as in the proof
of b) yield the corresponding inequality with EDv replaced by Ev.

vii) From our proof of b) we see that the Killing vector χ is independet of h,
which means that (12) is true with the same function χ for each N -function
h satisfying the conditions (H1)–(H4).

The main tool in the proof of Theorem 2.1 is an interpolation argument due
to Koizumi [33]; see Lemma 2.4 below. If we use instead the theory of Torchinsky
[47], we can control the constant in a better way; compare [9, Appendix] for
details. The constant now only depends on the constant K from condition (H4).
But the argument only works in the Luxembourg norm and not in the integral
version.

Corollary 2.3. Let (H1)–(H4) be fulfilled. Then:

a) For each v ∈ W̊ 1,h(Ω;Rn) we have

‖∇v‖h 6 c(n,K,Ω)‖EDv‖h. (15)
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b) For each v ∈ W 1,h(Ω;Rn) there exists χ ∈ KΩ such that

‖v − χ‖h 6 c(n,K,Ω)‖EDv‖h. (16)

c) Suppose n > 3. Then for each v ∈ W 1,h(Ω;Rn) it holds

‖∇v‖h 6 c(n,K,Ω)
(
‖v‖h + ‖EDv‖h

)
. (17)

We begin with the proof of Theorem 2.1 now. The main tool in the proof
is the following lemma, which follows from an interpolation argument due to
Koizumi [33].

Lemma 2.4. Let (H1)–(H4) be fulfilled, and let T be a linear operator, which
is continuous from Lp(Ω)→ Lp(Ω) for every p ∈ (1,∞). Then T is continuous
from Lh(Ω)→ Lh(Ω). Moreover,

ˆ
Ω

h(|T v|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|v|) dx

for each v ∈ Lh(Ω).

Proof. According to [33, Theorem 4] it suffices to show that there are numbers
1 < a < b <∞ such that

h(2t) = O(h(t)), (18)ˆ ∞
t

h(s)

sb+1
ds = O

(
h(t)

tb

)
, (19)

ˆ t

1

h(s)

sa+1
ds = O

(
h(t)

ta

)
(20)

as t→∞ and

h(2t) = O(h(t)), (21)ˆ 1

t

h(s)

sb+1
ds = O

(
h(t)

tb

)
, (22)

ˆ t

0

h(s)

sa+1
ds = O

(
h(t)

ta

)
(23)

as t → 0. Clearly, (18) and (21) follow immediately from (H4). For the other
conditions, we choose a ∈ (1, 2), b > max(a,K) and observe (recall (6))

d

dt

(
h(t)

tb

)
=
h′(t)t− bh(t)

tb+1
6 0.
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We deduceˆ ∞
t

h(s)

sb+1
ds =

ˆ ∞
t

h(s)

sK
sK−b−1 ds 6

h(t)

tK

ˆ ∞
t

sK−b−1 ds = c
h(t)

tb
,

ˆ ∞
t

h(s)

sb+1
ds >

ˆ 2t

t

h(s)

sK
sK−b−1 ds >

h(t)

tK

ˆ 2t

t

sK−b−1 ds > c
h(t)

tb
.

On the other hand, using (6) and (H4), we find
ˆ t

1

h(s)

sa+1
ds 6

ˆ t

1

h′(s)

s
s1−a ds 6

h′(t)

t

ˆ t

1

s1−a ds 6 c
h(t)

ta
,

ˆ t

1

h(s)

sa+1
ds > c

h′(t)

t

ˆ t

t
2

s1−a ds > c
h(t)

ta
.

This proves (19) and (20). The remaining conditions (22) and (23) follow by
similar calculations.

Proof of Theorem 2.1. Assume n > 3 and that Ω is star-shaped with respect to
a ball B ⊂ Ω. Then, according to formula [42, (2.43)] each v ∈ C∞(Ω;Rn) can
be represented as

v(x) = χ(x) +R(EDv)(x), (24)

where χ = χ(v) is a suitable element of KΩ (compare (2.40) in [42]) and R is a
singular integral operator (compare [42, (2.41)]) given by

R(ϕ) := S(ϕ) + T (ϕ) (ϕ ∈ C∞(Ω;Rn×n)),

S i(ϕ)(x) :=

ˆ
Ω

ωikl(x, e)

|x− z|n−1
ϕkl(z) dz (i ∈ {1, . . . , n}),

T i(ϕ)(x) :=

ˆ
Ω

θikl(x, z)ϕ
kl(z) dz (i ∈ {1, . . . , n})

(25)

for x ∈ Ω with summation with respect to k, l ∈ {1, . . . , n}. Here, ωikl(x, e) are
smooth functions (e := x−z

|x−z|), and θikl(x, z) are bounded continuous functions;
see [42, after (2.38)]. (Note that the representation formulas from [42] are also
used in the paper [5] to proof Korn-type inequalities in Orlicz spaces but only
in the Luxemburg which is not so useful for regularity theory.)

Now, assume v ∈ C∞0 (Ω;Rn). Then we have χ ≡ α
ffl
B
v dz (compare

[26, (10)]) with a certain constant α = α(n) so that from (24) we deduce

∇v(x) = ∇R(EDv)(x) = ∇S(EDv)(x) +∇T (EDv)(x). (26)

After dropping all indices for notational simplicity we see that the operator S
in (25) is of the form (note that we can extend v to the hole space by setting
v = 0 outside Ω)

V (x) :=

ˆ
Rn
K(x− z)ϕ(z) dz (x ∈ Rn)
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with K being essentially homogeneous of degree 1−n in the sense of Morrey [38].
From part b) of [38, Theorem 3.4.2] and the subsequent remark we deduce

∂jV (x) = c(j)ϕ(x) + lim
ρ↘0

ˆ
Rn\Bρ(x)

(∂αK)(x− z)ϕ(z) dz (27)

for each j ∈ {1, . . . , n} and almost every x ∈ Rn. If we consider the right-
hand side of (27) as a function of ϕ, it is continuous from Lp(Ω) → Lp(Ω)
for each p ∈ (1,∞) according to the Calderon-Zygmund theory (compare [38,
Theorem 3.4.2 b]) so that from Lemma 2.4 we infer

ˆ
Ω

h(|∇S(EDv)|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|EDv|) dx. (28)

On the other hand, we have (compare [42, p. 325])

∂jT i(ϕ)(x) =

ˆ
Ω

(∂jθ
i
kl)(x, z)ϕ

klv(z) dz (29)

with ∂jθ
i
kl(x, z) being bounded and continuous when x 6= z. Therefore, the right-

hand side of (29) is also continuous from Lp(Ω)→ Lp(Ω) for each p ∈ (1,∞) so
that from Lemma 2.4 we obtainˆ

Ω

h(|∇T (EDv)|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|EDv|) dx. (30)

Hence, returning to (26), the latter estimate together with (28) shows

ˆ
Ω

h(|∇v|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|EDv|) dx

for every w ∈ C∞0 (Ω,Rn), which by approximation gives us part a) of the
theorem.

To prove part b), we assume v ∈ C∞(Ω;Rn). On account of (24) we have´
Ω
h(|v − χ|) dx =

´
Ω
h(|R(EDv)|) dx and since R is continuous from Lp(Ω) →

Lp(Ω) for each p ∈ (1,∞) we obtain by Lemma 2.4

ˆ
Ω

h(|v − χ|) dx 6 c(n, h,Ω)

ˆ
Ω

h(|EDv|) dx.

The continuity of R follows since the coefficients of T are smooth and bounded
(compare [42, after (3.38)]), whereas for S one can argue again by [38, Theorem
3.4.2]. Hence, b) is valid for smooth functions; in the general case it follows
from an approximation argument stated in [26, after (13)].

So far, we have established the first inequalities in a) and b) in case n > 3.
We remark that for n = 2 the proof of a) is outlined in [22]. To prove b) for
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n = 2, we argue as in the proof of [21, Lemma A.1] (compare also [45]): Assume
v ∈ C∞(Ω;C). Then there exists a holomorphic function χ : Ω→ C such that

|v(z)− χ(z)| 6 1

π

ˆ
Br

∂zv(ζ)

|ζ − z|
dL2(ζ),

wherein ∂zv is the Wirtinger derivative 1
2
(∂xv + i∂yv) of v = v(z) = v(x, y),

and
´
Br

has to be calculated with respect to the two-dimensional Lebesgue mea-

sure L2. Using |EDv| =
√

2 |∂zv| the right-hand side is bounded from above by

1

π
√

2

ˆ
Br

|EDv(ζ)|
|ζ − z|

dL2(ζ) =:
1

π
√

2
V 1

2
(|EDv|)(z).

Here, V 1
2
(|EDv|)(z) is the Riesz potential of |EDv| defined in [29, (7.31)], with the

choices µ = 1
2

and n = 2. Since the Riesz potential is continuous from Lp(Ω)→
Lp(Ω) for each p ∈ (1,∞) and since ‖V 1

2
(|EDv|)‖p 6 2

√
|B1||Ω| ‖EDv‖p (see [29,

Lemma 7.12]), the claim follows from Lemma 2.4 and a standard approximation
argument.

For c), we assume as before v ∈ C∞(Ω;Rn) and observe that according to

[42, (2.40’)] we have χi(x) =
∑

06|α|62 x
α
´

Ω
H i
αk(z)vk(z) dz with smooth func-

tions H i
αk. Hence, ‖∇χ‖p 6 c‖v‖p for all p ∈ (1,∞) so that Lemma 2.4

gives us
´

Ω
h(|∇χ|) dx 6 c(n, h,Ω)

´
Ω
h(|v|) dx. By combining (24) with the

estimates (28) and (30), we end up with

ˆ
Ω

h(|∇v|) dx 6 c(n, ϕ,Ω)

(ˆ
Ω

h(|v|) dx+

ˆ
Ω

h(|EDv|) dx

)

valid for all v ∈ C∞(Ω;Rn), from which c) follows by an approximation argu-
ment.

3. Existence of minimizers: proof of Theorem 1.3 a)

Let (um) ⊂ K be a J-minimizing sequence, that is,

J [um]
m−→ inf

K
J.

Since um−u0 ∈ W̊ 1,h(Ω;Rn), the Poincaré-type inequality from [25, Lemma 2.4]
in combination with the Korn-type inequality (15) yields

‖um − u0‖h 6 k‖∇um −∇u0‖h 6 k‖EDum − EDu0‖h.
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On the other hand, J [um] 6 c, which implies

‖EDum‖h 6
ˆ

Ω

h(|EDum|) dx+ 1 ≤ J [um] + 2 6 c

for all m � 1. By using (15) once more, we deduce that um is bounded in
W 1,h(Ω;Rn) so that we have um

m−⇁: u with a function u ∈ W 1,h(Ω;Rn) (at
least for a subsequence). Note that W 1,h(Ω;Rn) is reflexive since h satisfies
global ∆2- and ∇2-conditions (as a consequence of (H3) and (H4); compare
Remark 1.1 iii)); see [1]. Moreover, from um−u0 ∈ W̊ 1,h(Ω;Rn) we infer u−u0 ∈
W̊ 1,h(Ω;Rn) (compare [25, Theorem 2.1]) so that the lower semicontinuity of J
shows that u is a J-minimizer in the class K. Finally, the uniqueness of u is a
consequence of (H1).

4. Regularization and higher integrability

Let u be a (local) J-minimizer under the assumptions (H1)–(H4) with ω < 4
n

and let (u)ρ denote the mollification of u with radius ρ. As usual we consider
for a fixed ball BR = BR(x0) b Ω the more regular functional (compare [9])

Jδ[w] :=

ˆ
BR

Hδ(EDw) dx

among vector fields w ∈ (u)ρ + W̊ 1,q(BR;Rn), where

Hδ(σ) := H(σ) + δ(1 + |σ|2)
q
2 (σ ∈Mn)

with exponent q > 2 as in (9) and δ = δ(ρ) :=
(
1 + ρ−1 + ‖ED(u)ρ‖2q

q;BR

)−1
.

Then Hδ is strictly convex and of isotropic q-growth and Jδ admits a unique
minimizer uδ in the class (u)ρ + W̊ 1,q(BR;Rn). As in [45] we see that uδ enjoys
the regularity properties collected in the following lemma.

Lemma 4.1. Let (H1)–(H4) hold, and let Γδ := 1 + |EDuδ|2. Then:

a) uδ ∈ W 2,2
loc(BR;Rn) and τδ := DHδ(EDuδ) ∈ W

1, q
q−1

loc (BR;Mn).

b) Γ
q
4
δ ∈ W

1,2
loc(BR).

c) uδ ⇁ u in W 1,2(BR;Rn) as δ ↘ 0.

d)
´
BR
h(|EDuδ|) dx is uniformly bounded and δ

´
BR
Γ

q
2
δ dx→ 0 as δ ↘ 0.

The main aim in this section is the following theorem.
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Theorem 4.2. Let (H1)–(H4) be fulfilled with ω < 4
n

. Then:

a) h(|EDu|) ∈ L
n
n−2

loc (Ω).

b) ψ :=
´ |EDu|

0

√
h′(t)
t

dt ∈ W 1,2
loc(Ω).

In the proof we need the Caccioppoli-type inequality contained in the fol-
lowing lemma.

Lemma 4.3. Let (H1)–(H4) hold. Then for all η ∈ C∞0 (BR) and χ ∈ KBR we
have the estimate

ˆ
BR

η2D2Hδ(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6 c

ˆ
BR

|∇η|2Γ
ω
2
δ

h′(|EDuδ|)
|EDuδ|

|∇uδ −∇χ|2 dx+ cδ

ˆ
BR

|∇η|2Γ
q
2
−1

δ |∇uδ −∇χ|2 dx,

where c is independent of δ and R.

Proof. From [45, (5.7)] we deduce the starting inequality

ˆ
BR

η2D2Hδ(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6 −2

ˆ
BR

ηD2Hδ(EDuδ)(∂kEDuδ, (∇η � ∂k(uδ − χ))D) dx.

(31)

On the right-hand side of (31) we apply the Cauchy-Schwarz and Young’s in-
equality. After absorbing terms on the left-hand side (31) turns into

ˆ
BR

η2D2Hδ(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6 c

ˆ
BR

D2Hδ(EDuδ)((∇η � ∂k(uδ − χ))D, (∇η � ∂k(uδ − χ))D) dx

so that, using (8) on the right-hand side, the desired inequality follows.
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Proof of Theorem 4.2. We fix a ball Bρ(x) b BR and a function η ∈ C∞0 (BR),
η > 0, with η ≡ 1 in Bρ(x) for some radius ρ < r, η ≡ 0 outside Br(x), and

|∇η| 6 c
r−ρ . Since h(|EDuδ|)

1
2 ∈ W 1,2(BR), we get with κ := n

n−2

ˆ
Bρ(x)

h(|EDuδ|)κ dx

6 c

(ˆ
Br(x)

∣∣∣∇ [ηh(|EDuδ|)
1
2

]∣∣∣2 dx

)κ

6 c

(ˆ
Br(x)

|∇η|2h(|EDuδ|) dx+

ˆ
Br(x)

η2h
′(|EDuδ|)
|EDuδ|

|∇EDuδ|2 dx

)κ

6 c

(ˆ
Br(x)

|∇η|2h(|EDuδ|) dx+

ˆ
Br(x)

|∇η|2Γ
ω
2
δ

h′(|EDuδ|)
|EDuδ|

|∇uδ −∇χ|2 dx

+ δ

ˆ
Br(x)

|∇η|2Γ
q
2
−1

δ |∇uδ −∇χ|2 dx

)κ
=: c(I1 + I2 + δI3)κ,

where we used (6) as well as (8) combined with the Caccioppoli-type inequality

from Lemma 4.3. According to part d) of Lemma 4.1 we clearly have I1 6 c
(r−ρ)2

.

To estimate I2 we distinguish the cases x ∈ Br(x) ∩ [|EDuδ| 6 |∇uδ − ∇χ|]
and x ∈ Br(x) ∩ [|EDuδ| > |∇uδ − ∇χ|]. In the first case the monotonicity of

t 7→ h′(t)
t

together with the lower bound in (6) gives us Γ
ω
2
δ
h′(|EDuδ|)
|EDuδ|

|∇uδ−∇χ|2 6
Kh(|∇uδ − ∇χ|), where h(t) := (1 + t2)

ω
2 h(t). In the latter case we obtain

Γ
ω
2
δ
h′(|EDuδ|)
|EDuδ|

|∇uδ −∇χ|2 6 Kh(|EDuδ|) so that

I2 6
c

(r − ρ)2

(ˆ
Br(x)

h(|∇uδ −∇χ|) dx+

ˆ
Br(x)

h(|EDuδ|) dx

)
.

Now, we observe that h is an N -function that satisfies the conditions
(H1)–(H4) so that we may apply the Korn-type inequality (12), that is, we
may choose χ ∈ KBr(x) such that

ˆ
Br(x)

h(|uδ − χ|) dx 6 c

ˆ
Br(x)

h(|EDuδ|) dx, (32)

where c does not depend on δ. By combining (32) with the Korn-type inequal-
ity (13), we get

I2 6
c

(r − ρ)2

ˆ
Br(x)

h(|EDuδ|) dx.
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By applying Young’s inequality we can estimate

δI3 6 δ
c

(r − ρ)2

(ˆ
Br(x)

|∇uδ −∇χ|q dx+

ˆ
Br(x)

Γ
q
2
δ dx

)
.

For the first integral on the right-hand side we obtain

ˆ
Br(x)

|∇uδ −∇χ|q dx 6 c

(ˆ
Br(x)

|uδ − χ|2 dx+

ˆ
Br(x)

|EDuδ|q dx

)

6 c

(ˆ
Br(x)

h(|uδ − χ|) dx+

ˆ
Br(x)

Γ
q
2
δ dx

)

6 c

(ˆ
Br(x)

h(|EDuδ|) dx+

ˆ
Br(x)

Γ
q
2
δ dx

)
,

where we combined the interpolation inequality [45, (2.2)] (recall q > 2) with
(5) and (32). Summarizing the various estimates we have established:

ˆ
Bρ(x)

h(|EDuδ|)κ dx 6
c

(r − ρ)2κ

(
1 +

ˆ
Br(x)

h(|EDuδ|) dx+ δ

ˆ
Br(x)

Γ
q
2
δ dx

)κ
and since the last integral on the right-hand side is uniformly bounded according
to Lemma 4.1 d), we end up with

ˆ
Bρ(x)

h(|EDuδ|)κ dx 6
c

(r − ρ)2κ

[
1 +

(ˆ
Br(x)

h(|EDuδ|)|EDuδ|ω dx

)κ]
.

But now, we are exactly in the same situation as in [9, (2.7)], and we can proceed
as in [9] (recall ω < 4

n
) with the result:

h(|EDuδ|) ∈ L
n
n−2

loc (BR) uniformly with respect to δ. (33)

Going through the above calculations, we get from the Caccioppoli-type in-
equality from Lemma 4.3:

ˆ
Bρ(x)

D2H(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6
c

(r − ρ)2

[
1 +

ˆ
Br(x)

h(|EDuδ|)|EDuδ|ω dx

]
,

(34)

where the integral on the right-hand side is uniformly bounded on account (33)
and our assumption ω < 4

n
. Hence, from (8) we infer ∂kEDuδ ∈ L2

loc(BR;Rn)
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uniformly with respect to δ for each k ∈ {1, . . . , n} so that according to [45,
Theorem 2.1] (recall also Lemma 4.1 c)) uδ ∈ W 2,2

loc(BR;Rn) uniformly with
respect to δ. Therefore,

u ∈ W 2,2
loc(Ω;Rn)

uδ ⇁ u in W 2,2
loc(BR;Rn)

∇uδ → ∇u a.e. in BR as δ ↘ 0,

(35)

where the convergences hold after passing to a subsequence of uδ not being
relabeled. Hence, part a) of Theorem 4.2 follows by combining (35) with (33).

To prove b), we observe that on account of (34) and (8) the functions

ψδ :=
´ |EDu|

0

√
h′(t)
t

dt are bounded in W 1,2
loc(BR) uniformly with respect to δ so

that ψδ ⇁ ψ in W 1,2
loc(BR) as δ ↘ 0 (recall (35)).

Remark 4.4. From the Caccioppoli-type inequality stated in Lemma 4.3 we
deduce the following limit version by passing to the limit δ ↘ 0 (compare
[9, Remark 2.1], or the proof of [45, Lemma 6.3]): For each η ∈ C∞0 (BR) and
χ ∈ KBR it holdsˆ

BR

η2D2H(EDu)(∂kEDu, ∂kEDu) dx6
ˆ
BR

|∇η|2|D2H(EDu)||∇u−∇χ|2 dx. (36)

Alternatively, we may replace D2H(EDu)(∂kEDu, ∂kEDu) on the left-hand side of
(36) by |∇ψ|2 or |∇EDu|2 as a consequence of (8) and (9), respectively. Moreover,
on the right-hand side we may replace ∇χ by an arbitrary matrix Q ∈ Rn×n.

5. Partial regularity: proof of Theorem 1.3 b)

Following the lines of [9] and consider the excess

(Eu)x0,r :=

 
Br(x0)

|EDu− (EDu)x0,r|2 dx+

 
Br(x0 )̃

h(|EDu− (EDu)x0,r|) dx,

for balls Br(x0) b Ω, where h̃(t) := h(t)tω is an N -function. Note that (Eu)x0,r
is well-defined since u ∈ W 1,h̃

loc (Ω;Rn) as a consequence of Theorem 4.2 a) com-
bined with (11) (with h replaced by h defined in the proof of Theorem 4.2; note

h̃ 6 h) and Poincaré’s inequality in Orlicz spaces [25, Lemma 2.4].

Lemma 5.1. Let L > 0 be given. Then there is a positive constant c∗ = c∗(L)
with the property: To each τ ∈ (0, 1) there exists a positive number ε = ε(L, τ)
such that for every ball Br(x0) b Ω for which

|(EDu)x0,r| < L and (Eu)x0,r < ε

hold, we have

(Eu)x0,τr 6 c∗τ
2(Eu)x0,r.
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From the above lemma we deduce by a standard iteration procedure (com-
pare [28]) that EDu is of class C0,α on the set

Ω0 :=
{
x ∈ Ω : sup

r>0
|(EDu)x,r| <∞ and lim inf

r↘0
(Eu)x,r = 0

}
.

Moreover, Ω0 is an open set of full Lebesgue measure. On account of u ∈
W 2,2

loc(Ω;Rn) (recall (35)) we then can argue as in [45, Section 6] to obtain the
statement in part b) of Theorem 1.3.

Proof of Lemma 5.1. As usual (compare [9,45]) we argue by contradiction: As-
sume that for some τ ∈ (0, 1) there exists a sequence of balls Brm(xm) b Ω such
that

|(EDu)xm,rm| < L, (Eu)xm,rm =: λ2
m

m−→ 0, (Eu)xm,τrm > c∗τ
2λ2
m. (37)

We define

um(z) :=
u(xm + rmz)− rmAmz − χm(z)

λmrm
(z ∈ B1),

where Am := (EDu)xm,rm and χm ∈ KB1 is chosen according to Theorem 2.1 such
that (compare Remark 2.1, vii))

ˆ
B1

h(|λmum|) dz +

ˆ
B1

h(|λm∇um|) dz 6 c(h)

ˆ
B1

h(|λmEDum|) dz (38)

for all N -functions h satisfying the conditions (H1)-(H4).
Observing EDum = λ−1

m [EDu(xm + rmz)− Am], the definition of λm implies
 
B1

|EDum|2 dz + λ−2
m

 
B1̃

h(|EDum|) dz = 1, (39)

which together with (38) with h(t) = t2 and (39) leads to
ˆ
B1

|∇um|2 dz =λ−2
m

ˆ
B1

|λm∇um|2 dz 6 cλ−2
m

ˆ
B1

|λmEDum|2 dz =c

ˆ
B1

|EDum|2 dz 6 c.

Hence, we have boundedness of (um) in W 1,2(B1;Rn) and therefore (at least for
a subsequence being not relabeled)

um
m−⇁: u in W 1,2(B1;Rn)

λmEDum
m−→ 0 in L2(B1;Mn) and a.e. in B1.

(40)

Moreover, Am
m−→: A (for a subsequence) with a matrix A ∈Mn, |A| 6 L, and u

fulfills ˆ
B1

D2H(A)(EDu, EDϕ) dz = 0 (41)
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for all ϕ ∈ C1
0(B1;Rn), which can be shown as in [3, Proposition 5.1].

By virtue of (41) and [45, Lemma 4.1] u belongs to C∞(B1;Rn) and satisfies
 
Bτ

|EDu− (EDu)0,τ |2 dz 6 c∗τ 2

 
B1

|EDu− (EDu)0,1|2 dz 6 c∗τ 2 (42)

with a constant c∗ = c∗(L), where in the last step we used (EDu)0,1 = 0 (which
follows from (EDum)0,1 = 0 and (40)) as well as (39). Suppose that we can show

EDum
m−→ EDu in L2

loc(B1;Mn), (43)

λ−2
m

 
Br̃

h(λm|EDum|) dz
m−→ 0 for r < 1. (44)

Then (42) turns into

lim
m

(  
Bτ

|EDum − (EDum)0,τ |2 dz + λ−2
m

 
Bτ̃

h(|EDum − (EDum)0,τ |) dz

)
6 c∗τ 2.

But then, choosing c∗ = 2c∗, we get a contradiction to our assumption (37)
since the third condition in (37) is equivalent to

 
Bτ

|EDum − (EDum)0,τ |2 dz + λ−2
m

 
Bτ̃

h(|EDum − (EDum)0,τ |) dz > c∗τ
2.

Therefore, it remains to prove (43) and (44). For this purpose we use (36) in
the version with |∇EDu|2 on the left- and a matrix Q ∈ Rn×n on the right-hand
side. If we consider a radius 0 < t < 1 and choose η with η ≡ 1 in Btrm(xm)
and |∇η| 6 c

rm(1−t) in this version of (36), we obtain after scaling the inequality

(compare the proof of [45, Lemma 6.3] for similar calculations)
ˆ
Bt

|∇EDum(z)|2 dz6c(1−t)−2λ−2
m

ˆ
B1

|D2H(EDu(xm+rmz))||∇u(xm+rmz)−Q|2 dz,

from which we deduceˆ
Bt

|∇EDum|2 dz 6 c(1− t)−2

ˆ
B1

|D2H(Am + λm EDum)||∇um|2 dz (45)

by choosing Q := Am + r−1
m ∇χm. To estimate the right-hand side, we observe

that according to (8) and the monotonicity of t 7→ h′(t)
t

(recall |Am| < L) we

have |D2H(Am + λmEDum)||∇um|2 6 c(K) |∇um|2 on the set [λm|EDum| 6 M ],
whereas on the set [λm|EDum| >M ] it holds (for sufficiently large M)

|D2H(Am + λmEDum)||∇um|2 6 c(M)

[
1 + (λm|EDum|)ω

h′(λm|EDum|)
λm|EDum|

]
|∇um|2

6 c(M)λ−2
m h(λm|∇um|).



Korn-Type Inequalities and Regularity 353

Here, we abbreviated h(t) := (1 + t2)
ω
2 h(t), which is an N -function satisfying

the conditions (H1)–(H4). From (45) we infer (compare [23, (3.20)])ˆ
Bt

|∇EDum|2 dz 6 c(1− t)−2λ−2
m

ˆ
B1

h(λm|∇um|) dz

so that, using (38) together with (39), we obtainˆ
Bt

|∇EDum|2 dz 6 c(1− t)−2λ−2
m

ˆ
B1

h(λm|EDum|) dz

6 c(1− t)−2

(ˆ
B1

|EDum|2 dz + λ−2
m

ˆ
B1̃

h(λm|EDum|) dz

)
6 c(1− t)−2,

(46)

Note that in the second step we distinguished the cases λm|EDum| 6 1 and
λm|EDum| > 1, where in the first case we used h(t) 6 ct2 (valid for all t 6 1

according to (6) and (7)) and h(t) 6 ch̃(t) (valid for all t > 1) in the latter case.
Owing to (46) |∇EDum| is bounded in L2

loc(B1) uniformly with respect to m.
Consequently, by combining Theorem 2.1 a) (with h(t) = t2) with (40), we get
with respect to m uniform W 2,2

loc-bounds of um. Upon passing to a subsequence
(being not relabeled) we have um

m−⇁ u in W 2,2
loc(B1;Rn), which leads to the

desired local strong convergence (43) according to Kondrachov’s Theorem.
Now, we introduce the auxiliary functions

Ψm := λ−1
m

(ˆ |Am+λm EDum|

0

√
h′(t)

t
dt−

ˆ |Am|
0

√
h′(t)

t
dt

)
and observe that according to Remark 4.4 the estimate (45) remains valid if we
replace ∇EDum by ∇Ψm on the left-hand side. Hence, we also get a correspond-
ing variant of (46), from which we deduceˆ

Bt

|∇Ψm|2 dz 6 c(t). (47)

On the other hand, following the lines of [23, after (3.22)] with ∇ replaced by ED,
we obtain

´
B1
|Ψm|2 dz 6 c so that with (47) we end up with

‖Ψm‖1,2;Bt 6 c(t) <∞ for all t ∈ (0, 1).

But now we can argue exactly as in [23, after (3.23)] to get the desired local

strong convergence (44). Note that the condition tω 6 c
(
1 + h(t)

2
n−2

)
, t > 0,

required in [23] clearly is satisfied in our context as a consequence of the su-
perquadratic growth of h (recall (7)) and our hypothesis ω < 4

n
. This completes

the proof of the blow-up lemma Lemma 5.1, and thus of our partial regularity
result Theorem 1.3 b).
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