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Abstract. A class of parabolic variational inequalities with two obstacles related to
an elliptic part of p-Laplacian type is considered. A result of existence and uniqueness
of strong solutions is given. Moreover some estimates of Lewy-Stampacchia’s type
are obtained for these solutions, which can be used in order to get regularity results.
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1. Introduction

It is well known that in [6] J. L. Lions and G. Stampacchia studied some varia-
tional inequalities of parabolic type and prove existence and uniqueness results
for solutions, in a suitable weak sense. In the following years, many celebrated
authors obtained existence, uniqueness and regularity results also for strong
solutions. In [2] the existence of a unique strong solution satisfying a pair of
estimates of “Lewy-Stampacchia’s type”, which in some particular cases yield
important regularity results, is proved. The main theorem in [2] is based on
the use of some estimates given by Mosco in [7] for solutions of variational in-
equalities, in an abstract framework, which generalize the ”classical” estimates
of Lewy-Stampacchia (see [6] for classical solutions and [8] for weak solutions
related to Dirichlet problems). The result in [2] is concerned with the linear
case. In [3] this result is extended to some nonlinear case, where the elliptic
part of the differential operator is of p-Laplacian type. Let us note that, ei-
ther in [2] and in [3] the convex set of the variational inequality is related to a
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one-sided constraint. The aim of this paper is to consider a two-sided parabolic
variational inequality (i.e. in presence of a lower and an upper obstacle), still
for cases where the elliptic part is of p-Laplacian type. Even in this case, a
unique solution of the problem is obtained, satisfying a suitable pair of Lewy-
Stampacchia’s inequalities. The basic idea of the proof is based on a suitable
extension of the theorem by Mosco [7] (which is related to one-sided constraint
cases) to the cases of two-sided constraints. Then, a regularization method as
in [3] is used again, but it’s important to underline that the consideration of a
two-obstacles problem (instead of one) creates some technical difficulties, which
can be suitably overtaken. It is well known that, in the case p = 2, that refers to
the case in which the elliptic operator is given by the standard Laplace operator,
the solution u of the variational inequality is obtained as the value function of
a suitable stochastic control problem (see [1]). More precisely, u is given by the
min-max value of a cost functional among the pairs of stopping times of a suit-
able Brownian motion. This fact can also be generalized to the case of a more
general stochastic process where also a drift coefficient is present. A main moti-
vation of our research is to extend this kind of result to the case of p-Laplacian
type operators, in such a way to give a possible financial interpretation of the
result.

2. Preliminaries on Banach lattices

Let X be a partially ordered set and let us put, for every pair of elements a, b
in X with a > b (or a < b)

aVb=max(a,b), aAb=min(a,b).

Obviously, if X is totally ordered then a V b, a A b are well defined for any
a,be X.
A linear space X is said a lattice vector space if the following conditions are

satisfied
r<y =2>rx+z2z<y+z Vz,y,2z€ X

<y =>ar<ay(ax>ay) Ya>0(Va<0)

Let us consider a Banach space X. A proper cone P of X is a subset of X s.t.
P+PCP, APCP VA>0, Pn(—P)={0}
The partial order “<” induced by a proper cone P is defined as
r<y & y—zekl

If P is closed then X is called an ordered Banach space. In that situation, the
elements of P are called positive, and P is called the positive cone of the ordered
Banach space X.
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Let us remark that, if X is a Banach space and a lattice Banach vector
space, it follows by definitions, that

r+(zVy =E=+x)V(z+y) Vz,yzeX
r+(xAy)=EF+2)AN(z+y) Vr,yz€X (1)
(=) V(=y) = =(xVy) VoyeX
so that (xVy) —x —y = —(x Ay) for all z,y € X. Therefore
r+y=(xVy +(@Ay VzyeX (2)
Then, putting y = 0 in (2), one gets

+

r=x" —x
where z+ = xV0 and 2~ = —(x A0) are called the positive part and the negative
part of x respectively. Putting z = —x and z = —y in the first relation in (1),
one easily gets
rVy=z+y—z) =y+@—y" (3)
and, recalling the second relation in (1),
tAy=z—(z—y) " =y—(y—a)*. (4)

A sublattice U of X 1is, by definition, a linear subspace of X which is a
lattice w.r.t. the order given in X.

We shall call the dual order space of U, denoted by U*, the subspace of the
dual space U’ of U, which is spanned by the positive cone of U’, that is

P={elU: (@ v)>0 Vve P}

that is U* = P’ — P’. Generally, U* is strictly contained in U’. Under the order
induced on U* by the closed positive cone P’ (which we call the dual order) the
space U™ is a vector lattice.

Finally, let X be a Banach space and a vector lattice. Then X is called a
lattice Banach space if

[z <yl = [zl<lyl VayeX (5)

where |z| = 2 V (—x) is the modulus x and || - || denotes the norm in X.

By (5) and the lattice properties, it can be deduced that the maps x — |z|,
x — o, x — = are all uniformly continuous from X into itself and the maps
(x,y) = zVyand (x,y) — z Ay are uniformly continuous from X x X into X.
As a consequence, it follows that the positive cone

Py={reX:2>0t={reX:2” =0}

is closed in X. Moreover, one can easily prove that X*, the order dual space
of X, coincides with the dual space X’ in the case that X is a Banach lattice
space.
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3. The main result

Let us consider the following parabolic variational inequality with bilateral con-
straints

u€eg+Lr0,T;V), 2 e LF(0,T;V'), ¢y <u < ae. in Q
<%+AU,U—U>Z<f,U—U> (6)

Voeg+LP0,T;V), 1 <v <)y ae. in Q, u(0) =ug

where

e Q=Q x (0,7) with Q open bounded subset of RY with C*-boundary 9

e 1 is the subspace of the Sobolev space H'(Q2)(p > 2) given by all the
functions v € H"(Q) s.t. v |9,0= 0, where 9,9 is a subset of dQ, which
can possibly be empty

e gc LP(0,T; H'?(Q)) with g =0if 0,Q = @

o uy € L*(Q)

o s € L2(0,T; H?(9)

o fc LP(0,T;V'), the dual space of LP(0,T;V) with p/ = ﬁ

o A : LP(0,T; H'"”(Q)) — L¥(0,T;V’) is bounded, continuous, strictly
T-monotone w.r.t. L?P(0,7;V) in the sense that

(Au— Av, (u —v)*) >0 Y u,v € LP(0,T; H"P(Q))
(Au—Av,(u—0)") =0 (u—v)T =0 st. (u—v)t € LP0,T;V)

e A is coercive on € LP(0,7;V) in the sense that
Ja>0: (Av,v) > a||v P Yoe LP0,T;V)

As an example of an operator A satisfying the previous conditions, one can
choose the differential operator defined as

Av(z,t) = — Z(ai(x,t) | v, (2, 8) P72 vy, (2, 1)), + e, t) | v(2,t) P2 v(a,t)

=1

for all v = v(z,t) € LP(0,T; H'*(Q)), a.e. (x,t) € Q where a;,c € L>=(Q), with
a;(x,t) > ag > 0 and c(z,t) > cg > 0 a.e. in Q.

The aim of this paper is to prove the following result:
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Theorem. Let the previous hypotheses and assumptions hold and let

+
(aad:%—Awi—f) e L7 (0,T;V"), i=1,2 (7)
a;;eL”(OTV) =12 (8)

1 < g <o a.e. on 0,2 x (0,T), that is there exists two sequences
{intnen C LP(0,T;CHQ)) (i = 1,2) such that

U1 nlovaxor) <0< Yaula0x01) with

Yin = i — g asn — +oo in LP(0,T; HP(Q)) (i =1,2)

¥1(0) < ug < 192(0).
Then there exists a unique solution u of (6). Furthermore the following dual
estimates of Lewy-Stampacchia’s type hold in the space L' (0,T; V")

(9)

- +
f— (aaﬁh,wg f) g%wxu f+<8¢1+A¢1 f) (10)

4. An extension of a theorem by Mosco

Here we state, as a preliminar result to be used in order to prove the Theorem,
a suitable extension of a theorem by Mosco [7] which established some dual es-
timates of Lewy-Stampacchia’s type for stationary variational inequalities with
unilateral constraints. We extend this result to the case of bilateral constraints.
The framework is the following:

X is a reflexive Banach space which is a lattice w.r.t. (11)
the order induced by a positive cone Py = {x € X : x > 0}.

V is a sublattice closed vector subspace of X. (12)

A: X — V' is a strictly T-monotone operator w.r.t. V,
ie. (Au— Av,(u—v)") >0 VuveXst (u—v)t eV (13)
and (Au — Av, (u —v)") =0 iff (u —v)t =0.

The restriction of A on V is coercive in the sense that

Ja>0: (Av,v) >allv|P VoveWV. (14)
Furthermore, 11,9y € X satisty the following conditions

ViVoEeEV, o ANveV YveV (15)

fev. (16)

Then one can state the following result:
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Proposition. Let (11)—(16) be satisfied and let 1y < 19, then there exists one
unique solution u of the following variational inequality

weV, Y <u< (17)
<AU,U—U>Z<f,U—U> VUEV: ¢1§U§¢2
Moreover one has
h < Au < K for every pair of elements h,h' in V' s.t. 8
h<f h< Abs, W > K> Ab, (18)

Proof. First of all let us note that (15) implies that the closed convex set
K:{’UE’VI’Lplgvgwg}

is not empty, since T = 1)1 V (¢ A 0) belongs to K. Then the existence and
uniqueness of the solution of (17) follows from the Hartmann-Stampacchia’s
theorem (see [4]).

Let h < f, h < Ay and let’s show that the solution z of the auxiliary
problem

(19)

z€V, z>u
(Az,w—2) > (h,w—2) YweV, w>u

verifies Az > h.

Indeed, putting w = z + v with v > 0 in (19), on gets (Az,v) > (h,v) for
all v € V, v > 0, that is Az > h in V'. On the other side one can prove that
z = u. In fact, one has

(z—1)" eV (20)
(Az — Ao, (2 — 9h9)*) <0 (21)

Actually (20) follows from the fact that z belongs to V, (z—5)" = z—1sAz,
and that v and 1 satisfy (15). On the other hand (21) is a consequence
of the fact that w = 19 A z can be chosen in (19), thus (Az, (z — ¥o)T) <
(h, (z = ¥2)7), but Ay > h, so (A, (2 — ¥2) ") = (h, (2 — ¢2)"). Therefore
(Az — Athg, (z — 1h9)T) <0, that is relation (21).

At this point the strict T-monotonicity of A implies z < 1)5. Then, putting
v = z in (17) and taking into account that h < f one gets (Au,z — u) >
(h, z — w); while, putting w = u in (19) one obtains (Az,z — u) > (h,z — u),
then (Au— Az, z—w) > 0 which implies z = u, using the strict T-monotonicity
of A and the fact that z > wu.

Finally, recalling (21), one gets h < Au. In order to show that h' > Au for
every h' satisfying (18), one can argue in an analogous way. ]

It is now easy to state two corollaries of the Proposition.
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Corollary 1. Under the assumptions of the Proposition putting V* as the order
dual space of V, the following estimates hold for the solution u of (17)

FA Ay < Au < fV Ay (22)

Corollary 2. Under the assumptions of the Proposition the following estimate
for the solution of (17) holds:

| Au lw<[[ fVAY1 [lv + || [ A AY [l (23)
Proof of Corollary 2. By (22) one gets
((f A AY2) = Au, —v7) 20, (Au—(fVA),0") <0
then

(Au,v) = (Au, vt —v7) < (f A Ahy, —v7) + (f V Ay, 0T

<
< N A Adsallwrllo™ Il + 11V A [l llo |
< (IF A Allv + [1FV Adhu[lv)[ollv,

so (23) follows. O

5. Proof of the Theorem

Let us proceed by steps.

Step I. If there exists a solution (6), then it is unique.

Proof. Let uy,us be two solutions of (6). Putting v = uy in (6) (with u = uy),
v = wu; in (6) (with u = wy), and adding the two inequalities, one gets

Ou 9 4 Awy + Aus, ug — up) < 0 which yields

<AU1 — AU,Q, Uy — UQ) S 0 (24)
due to the fact that
aw 8/1,0 / ’
oY >0 Ywe LP(0,T;V); n e LP (0, 7;V), w(0)=0. (25)

At this point, since the strict T-monotonicity of A w.r.t. LP(0,7; V') implies the
strict monotonicity on the same space, then u; = us follows from (24) O



386 L. Mastroeni and M. Matzeu

Step II. If the assumptions of Theorem 1 are satisfied with the choices
g=0 (27)

then there exist two sequences in LP(0,T; HYP(2)) verifying the following rela-
tions

V1 < oy a.e.in 01Q x (0,7) VneN (28)
1,(0) <0 < 1hg,(0) ae.inQ) VneN (29)
Vin — Vi in LP(0,T; HY(Q)), i = 1,2 (30)
%mmeLﬂaTﬂﬂﬂQﬂ, i=1,2 (31)
O in > e 17 0,12V, i = 1,2 (32)
8t ,M 815 ) 9 i I -
-Qw, éi¢- A € LA(Q) i=1,2 (33)
8t 1,1 8t2 1,1 ,Mn ) — by &

As for the proof of Step II, one can argue in an analogous way as in [3].

Step III. If the assumptions of the Theorem are satisfied with (26) and (27),
then any element v € LP(0,7;V) such that ¢y < v < 1)y a.e. in Q, can be
obtained as the strong limit of a sequence {v,} s.t.

v, € LP(0,T5 V) with 2v, € LP(0,T;V)
Vi <, <Popaein@Q VneN
with 1y, ¥, verifying (28)—(33).

Proof. For any v € LP(0,T;V) by density arguments, there exists a sequence
{Un }nen in the space

{"U e LP(0,T;V): %v e LP(0,T; V)} (34)

strongly converging to v. Let us note that the sequence v,, = 11, V (Y2, A Up)
belongs to the space defined in (34). Thus, the lattice property of LP(0,T;V)
implies that for any n € N

wl,n < v, = wl,n Vv (w2,n Vv 17;1) = wl,n \% w2,n = wZ,n-
Therefore v, = V1,V (V2,0 AVp) = Y15+ (V2,0 AV — 1) T. From the continuity
properties of the lattice operations it follows that

(V20 A O = 10)" = (Yo Av =)™ in LP(0, T H'P(Q)).

Then v, = V15 + (Vo AU — 1)t = D1+ (V2 AV =) T =1+ (v—11)" =
1 Vo =nu. O



Strong Solutions for Two-Sided Parabolic Variational Inequalities 387

Let us define now a differential operator A, of “elliptic type” which ap-
proximates, when n goes to 400, the operator A. Precisely, one considers the
space

Y = {v € LP(0,T; H?(Q)) : % € LQ(Q)} (35)
W = {v c LP(0,T;V) : % € L*(Q), v(0) = 0} (36)

equipped with the graph-norms w.r.t. the operator % (let’s note that in this

case, Y and W are reflexive Banach spaces) and the operator A, : Y — W'
defined as

(Anv,w>:5n<av 8w>+<8v >+(Av,w) VoeY, YVweW (37)

ot ot a0
with

1 82 ,n - 82 7,n

min{—, min % } if H 81#2’ #0,1=1,2
e = no =zl O g ol (38)

1 )
— otherwise
n

where {1 }nen (1 = 1,2) are functions satisfying the thesis of Step II.

Step IV. Let Y, W, A, €, defined as in (35)—(38). Then, for all n € N, A, is
a bounded continuous coercive operator, strictly T-monotone with respect to
LP(0,TV).

Proof. 1t is essentially a simple consequence of the properties of A and the
obvious fact that

o - +

Step V. Let us consider the following elements of L¥ (0,7 V’)

_ a,lvbl . O@ZJQ_
91—A¢1+W—fa 92—A¢2+E

Then there exist three sequences {my ,}, {n1.,} and {m,,} contained in the pos-
itive cone of L?(Q) such that

+ - +
Tin =91, Mmp 791, T2n G

strongly in LP'(0,T;V").
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Furthermore, putting

awl,n
ot

awln
ot

Mon = Awl,n + - AwQ,n - + Tom — (’/Tl,n - 771,71)

where 1 ,,, 12, are defined as in Step II, then 1y, € L*(Q),n2.n — g5 strongly
in L”(0,7; V") and n;n — g5 strongly in LP'(0,T; V). Finally, putting

0 0
fin =AY, + ai/fl,n — (Tim = Mn)s  fon = Athopn + awzn — (o — M2.n)

one has that fi,, f2, coincide and f, = fi1,, = fo, strongly converges to f in
LP(0,T; V7).

Proof. The first statement is a consequence of the density of the positive cone
of L*(Q) in the positive cone of L (0,T;V'). The other statements are implied
by the properties of ¥ ,,, %2, and some easy calculation. O

Step VI. Let us consider the following variational inequality

{un € W7 ?/11,71 S Uy S 1/)2,71

<Anun7 w — un> 2 <fna w — un) v w e W, 7v/}l,n S w S wQ,n <39>

Then (39) admits a unique solution w,,, which verifies the estimates in W

0?05, \\ " 01, \ "
fn— (—&?n (— 5@; )) — .y < Antin < fr +en <— (;i; > + 7, (40)

Proof. The existence and uniqueness of u, are consequences of Step IV and
the Hartmann-Stampacchia’s theorem. The estimates (40) are deduced from
the very definition of the operator A,, from some properties of Banach lattice
spaces (see Section 2) and from the Proposition. O

Step VII. The sequence {A,u,} is bounded in L¥'(0,T;V").

Proof. Indeed, from the continuity of A, the definition of ¢, and the strong
convergence of {my,}, {na,} in L' (0,T; V"), we get that the three sequences

2 + 2 +
{fn}7 {fn_ <_8” (_agi;n)> _n;,n}7 {fn+8n <_aa¢;;7”> +7T;r,n}

are bounded in LP(0,T;V’). The estimates (40) hold also in the sense of
L¥(0,T;V"), as W is equipped with the graph norm of % and from the fact
that LP(0,7;V) is dense in this space. Then it easily follows that {A,u,} is a

bounded sequence in L*' (0, T; V"). O
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Step VIII. Let w, be the solution of (39) for any n € N. Then there exists
u, € W and a subsequence of {u,}, still named {u,}, such that

u, —u in LP(0,T;V) (41)
Oun _ Ou 1 (0,1 V) (42)
ot ot T
02un . / /
e 0 in LP(0,7;V") (43)

Proof. First of all, one has the following estimates for {u,}

Ouy,
au <ec¢, ¢>0VneN (44)
tllz2q)
| wn [[zrorivy < e, ¢>0VneN. (45)

Indeed, using the coerciveness of A, (25) and the very definition of ¢,, one gets

ou,, 2
allun [P <en ) + (Auy, up)
t llr2 @
o0%u,, ||? <8un > (46)
+ ;) Un + <Aun7 Un>

< || Antn (o2 | -

Thus, (45) follows from Step VII. On the other hand, using againg (45) and
Step VII one deduces ¢, | Fun ||L2 <||Anun|]Lp/(07T;V,)Hun||§ ¢, so (44) follows.
Then, by a similar argument to that given in [5, Chapter 3, Theorem 7.1],
it follows that the sequence {24} is bounded in LP(0,7; V) and that {‘9622"} is
contained in LP'(0,T;V'). Therefore, there exists a subsequence of {u,}, still

denoted by {u,}, such that (41) and (42) hold. As for (43), one notes that

so (43) follows, for a suitable subsequence of {u, }, from the fact that €n< at2 U
converges to zero, for every v € {v € LP(0,T;V): 2 € L?(0,T;V), 0}
which is a dense subspace of LP(0,T;V).

Step IX. The element v € W is the solution of problem (6) with uy =0, g = 0.

Proof. Through the theory of pseudo-monotone operators (see [1]), it is easy to
see that the T-monotonicity, boundedness and continuity of A imply, using (41),
that

lim inf (Auy,, u, — v) > (Au,u —v) Yo e LP(0,T;V). (47)
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On the other hand, the lower semicontinuity of % on the space

{v e LP(0,T;V) : % e L'(0,T; v’)}
(deduced from its positivity) implies
ou ou
liminf { —= - >{( — u— LP(0,T:; V). 4
1m1n<at,un U>_<8t’u v> VoeLP(0,T;V) (48)

Moreover, choosing, for any v € LP(0,T;V) with ¢ < v < )9, the se-
quence {v,} as in Step III, then Step VIII, (47), (48) and the fact that the
positive cone in LP(0,7; V) is weakly closed in this space, imply that u is the
solution of (6). O

Step X. The solution u of (6) with uyp = 0 and g = 0, verifies the estimates (10).

Proof. 1t is a consequence of the the passage to the limit as n — 400 in (39),
the convergences obtained in the proof of Step VII and that (A,u,,v) —
(% + A,,v) as it follows from Step VII and from (41). O

Step XI - Conclusions. The general case without the restrictions uy = 0,
g=0.
Proof. Let us consider the solution u of the problem
{ Teg+LP0,T;V), & eLr(0,T;V)
98 + Au =0, u(0) = uo.
For the existence and uniqueness of such a solution w see [1] and replace the
operator A with the operator A : LP(0,T;V) — LP (0,T;V") defined as
Av = A(v+ 1) — A(T).

It is easy to check that A verifies the same conditions of A. Therefore, if uw is
the unique solution of the problem

ue LP(0,T;V), ZeLV(0,T;V), tr—u<u<yr—u, ul0)=0

(G4 Auv—7) 2 (fro—u) VoelX(O.T:V), ¢ —T<v<p—i

then it easy to verify that the element u = u+u € g + L?(0,T; V) solves (6).
Furthermore, @ verifies the estimates in L?' (0, T; V")

oy 0T~ - on o~
f—(E—E‘FA(%—U)—f) < 5 +AT
oy du  ~ - *
§f+<W—E+A(¢1—U)—f)
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Recalling that, for ¢ = 1, 2,

g(wi—ﬂ)IAi/Ji—Aﬁ, Eﬂ:Au—AH, %—1—/1”12:0

one easily deduces the dual estimates (10). Therefore the statement of Theorem
follows. o
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