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Abstract. A class of parabolic variational inequalities with two obstacles related to
an elliptic part of p-Laplacian type is considered. A result of existence and uniqueness
of strong solutions is given. Moreover some estimates of Lewy-Stampacchia’s type
are obtained for these solutions, which can be used in order to get regularity results.
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1. Introduction

It is well known that in [6] J. L. Lions and G. Stampacchia studied some varia-
tional inequalities of parabolic type and prove existence and uniqueness results
for solutions, in a suitable weak sense. In the following years, many celebrated
authors obtained existence, uniqueness and regularity results also for strong
solutions. In [2] the existence of a unique strong solution satisfying a pair of
estimates of “Lewy-Stampacchia’s type”, which in some particular cases yield
important regularity results, is proved. The main theorem in [2] is based on
the use of some estimates given by Mosco in [7] for solutions of variational in-
equalities, in an abstract framework, which generalize the ”classical” estimates
of Lewy-Stampacchia (see [6] for classical solutions and [8] for weak solutions
related to Dirichlet problems). The result in [2] is concerned with the linear
case. In [3] this result is extended to some nonlinear case, where the elliptic
part of the differential operator is of p-Laplacian type. Let us note that, ei-
ther in [2] and in [3] the convex set of the variational inequality is related to a
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Silvio D’Amico, 77 - 00145 Roma; mastroen@eco.uniroma3.it
M. Matzeu: Dipartimento di Matematica, Università degli Studi di Roma Tor Ver-
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one-sided constraint. The aim of this paper is to consider a two-sided parabolic
variational inequality (i.e. in presence of a lower and an upper obstacle), still
for cases where the elliptic part is of p-Laplacian type. Even in this case, a
unique solution of the problem is obtained, satisfying a suitable pair of Lewy-
Stampacchia’s inequalities. The basic idea of the proof is based on a suitable
extension of the theorem by Mosco [7] (which is related to one-sided constraint
cases) to the cases of two-sided constraints. Then, a regularization method as
in [3] is used again, but it’s important to underline that the consideration of a
two-obstacles problem (instead of one) creates some technical difficulties, which
can be suitably overtaken. It is well known that, in the case p = 2, that refers to
the case in which the elliptic operator is given by the standard Laplace operator,
the solution u of the variational inequality is obtained as the value function of
a suitable stochastic control problem (see [1]). More precisely, u is given by the
min-max value of a cost functional among the pairs of stopping times of a suit-
able Brownian motion. This fact can also be generalized to the case of a more
general stochastic process where also a drift coefficient is present. A main moti-
vation of our research is to extend this kind of result to the case of p-Laplacian
type operators, in such a way to give a possible financial interpretation of the
result.

2. Preliminaries on Banach lattices

Let X be a partially ordered set and let us put, for every pair of elements a, b
in X with a ≥ b (or a ≤ b)

a ∨ b = max(a, b), a ∧ b = min(a, b).

Obviously, if X is totally ordered then a ∨ b, a ∧ b are well defined for any
a, b ∈ X.

A linear space X is said a lattice vector space if the following conditions are
satisfied

x ≤ y ⇒ x+ z ≤ y + z ∀ x, y, z ∈ X
x ≤ y ⇒ αx ≤ αy (αx ≥ αy) ∀ α ≥ 0 (∀ α ≤ 0)

Let us consider a Banach space X. A proper cone P of X is a subset of X s.t.

P + P ⊂ P, λP ⊂ P ∀ λ > 0, P ∩ (−P ) = {0}

The partial order “≤” induced by a proper cone P is defined as

x ≤ y ⇔ y − x ∈ P

If P is closed then X is called an ordered Banach space. In that situation, the
elements of P are called positive, and P is called the positive cone of the ordered
Banach space X.
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Let us remark that, if X is a Banach space and a lattice Banach vector
space, it follows by definitions, that

x+ (x ∨ y) = (z + x) ∨ (z + y) ∀ x, y, z ∈ X
x+ (x ∧ y) = (z + x) ∧ (z + y) ∀ x, y, z ∈ X

(−x) ∨ (−y) = −(x ∨ y) ∀ x, y ∈ X
(1)

so that (x ∨ y)− x− y = −(x ∧ y) for all x, y ∈ X. Therefore

x+ y = (x ∨ y) + (x ∧ y) ∀ x, y ∈ X (2)

Then, putting y = 0 in (2), one gets

x = x+ − x−

where x+ = x∨0 and x− = −(x∧0) are called the positive part and the negative
part of x respectively. Putting z = −x and z = −y in the first relation in (1),
one easily gets

x ∨ y = x+ (y − x)+ = y + (x− y)+ (3)

and, recalling the second relation in (1),

x ∧ y = x− (x− y)+ = y − (y − x)+. (4)

A sublattice U of X is, by definition, a linear subspace of X which is a
lattice w.r.t. the order given in X.

We shall call the dual order space of U , denoted by U∗, the subspace of the
dual space U ′ of U , which is spanned by the positive cone of U ′, that is

P ′ = {v′ ∈ U ′ : 〈v′, v〉 ≥ 0 ∀ v ∈ P},

that is U∗ = P ′−P ′. Generally, U∗ is strictly contained in U ′. Under the order
induced on U∗ by the closed positive cone P ′ (which we call the dual order) the
space U∗ is a vector lattice.

Finally, let X be a Banach space and a vector lattice. Then X is called a
lattice Banach space if

|x| ≤ |y| ⇒ ‖ x ‖≤‖ y ‖ ∀ x, y ∈ X (5)

where |x| = x ∨ (−x) is the modulus x and ‖ · ‖ denotes the norm in X.
By (5) and the lattice properties, it can be deduced that the maps x→ |x|,

x→ x+, x→ x− are all uniformly continuous from X into itself and the maps
(x, y)→ x∨ y and (x, y)→ x∧ y are uniformly continuous from X ×X into X.
As a consequence, it follows that the positive cone

PX = {x ∈ X : x ≥ 0} = {x ∈ X : x− = 0}

is closed in X. Moreover, one can easily prove that X∗, the order dual space
of X, coincides with the dual space X ′ in the case that X is a Banach lattice
space.
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3. The main result

Let us consider the following parabolic variational inequality with bilateral con-
straints

u ∈ g + Lp(0, T ;V ), ∂u
∂t
∈ Lp′(0, T ;V ′), ψ1 ≤ u ≤ ψ2 a.e. in Q

〈∂u
∂t

+ Au, v − u〉 ≥ 〈f, v − u〉
∀ v ∈ g + Lp(0, T ;V ), ψ1 ≤ v ≤ ψ2 a.e. in Q, u(0) = u0

(6)

where

• Q = Ω × (0, T ) with Ω open bounded subset of RN with C∞-boundary ∂Ω

• V is the subspace of the Sobolev space H1,p(Ω)(p ≥ 2) given by all the
functions v ∈ H1,p(Ω) s.t. v |∂1Ω= 0, where ∂1Ω is a subset of ∂Ω, which
can possibly be empty

• g ∈ Lp(0, T ;H1,p(Ω)) with g = 0 if ∂1Ω = ∅
• u0 ∈ L2(Ω)

• ψ1, ψ2 ∈ Lp(0, T ;H1,p(Ω))

• f ∈ Lp′(0, T ;V ′), the dual space of Lp(0, T ;V ) with p′ = p
p−1

• A : Lp(0, T ;H1,p(Ω)) −→ Lp′(0, T ;V ′) is bounded, continuous, strictly
T -monotone w.r.t. LpP (0, T ;V ) in the sense that

〈Au− Av, (u− v)+〉 ≥ 0 ∀ u, v ∈ Lp(0, T ;H1,p(Ω))

〈Au− Av, (u− v)+〉 = 0⇔ (u− v)+ = 0 s.t. (u− v)+ ∈ Lp(0, T ;V )

• A is coercive on ∈ Lp(0, T ;V ) in the sense that

∃ α > 0 : 〈Av, v〉 ≥ α ‖ v ‖p ∀ v ∈ Lp(0, T ;V )

As an example of an operator A satisfying the previous conditions, one can
choose the differential operator defined as

Av(x, t) = −
N∑
i=1

(ai(x, t) | vxi
(x, t) |p−2 vxi

(x, t))xi
+ c(x, t) | v(x, t) |p−2 v(x, t)

for all v = v(x, t) ∈ Lp(0, T ;H1,p(Ω)), a.e. (x, t) ∈ Q where ai, c ∈ L∞(Q), with
ai(x, t) ≥ a0 > 0 and c(x, t) ≥ c0 > 0 a.e. in Q.

The aim of this paper is to prove the following result:
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Theorem. Let the previous hypotheses and assumptions hold and let(
∂ψi

∂t
+ Aψi − f

)+

∈ Lp′(0, T ;V ′), i = 1, 2 (7)

∂ψi

∂t
∈ Lp′(0, T ;V ′), i = 1, 2 (8)

ψ1 ≤ g ≤ ψ2 a.e. on ∂1Ω× (0, T ), that is there exists two sequences
{ψi,n}n∈N ⊂ Lp(0, T ;C1(Ω)) (i = 1, 2) such that
ψ1,n|∂1Ω×(0,T ) ≤ 0 ≤ ψ2,n|∂1Ω×(0,T ) with
ψi,n → ψi − g as n→ +∞ in Lp(0, T ;H1,p(Ω)) (i = 1, 2)

(9)

ψ1(0) ≤ u0 ≤ ψ2(0).

Then there exists a unique solution u of (6). Furthermore the following dual
estimates of Lewy-Stampacchia’s type hold in the space Lp′(0, T ;V ′)

f −
(
∂ψ2

∂t
+ Aψ2 − f

)−
≤ ∂u

∂t
+ Au ≤ f +

(
∂ψ1

∂t
+ Aψ1 − f

)+

(10)

4. An extension of a theorem by Mosco

Here we state, as a preliminar result to be used in order to prove the Theorem,
a suitable extension of a theorem by Mosco [7] which established some dual es-
timates of Lewy-Stampacchia’s type for stationary variational inequalities with
unilateral constraints. We extend this result to the case of bilateral constraints.
The framework is the following:

X is a reflexive Banach space which is a lattice w.r.t.
the order induced by a positive cone PX = {x ∈ X : x ≥ 0}. (11)

V is a sublattice closed vector subspace of X. (12)
A : X → V′ is a strictly T -monotone operator w.r.t. V,
i.e. 〈Au− Av, (u− v)+〉 ≥ 0 ∀ u, v ∈ X s.t. (u− v)+ ∈ V

and 〈Au− Av, (u− v)+〉 = 0 iff (u− v)+ = 0.
(13)

The restriction of A on V is coercive in the sense that
∃ α > 0 : 〈Av, v〉 ≥ α ‖ v ‖p ∀ v ∈ V.

(14)

Furthermore, ψ1, ψ2 ∈ X satisfy the following conditions

ψ1 ∨ v ∈ V, ψ2 ∧ v ∈ V ∀ v ∈ V (15)

f ∈ V′. (16)

Then one can state the following result:
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Proposition. Let (11)–(16) be satisfied and let ψ1 ≤ ψ2, then there exists one
unique solution u of the following variational inequality{

u ∈ V, ψ1 ≤ u ≤ ψ2

〈Au, v − u〉 ≥ 〈f, v − u〉 ∀ v ∈ V, ψ1 ≤ v ≤ ψ2

(17)

Moreover one has{
h ≤ Au ≤ h′ for every pair of elements h, h′ in V′ s.t.

h ≤ f, h ≤ Aψ2, h′ ≥ f, h′ ≥ Aψ1.
(18)

Proof. First of all let us note that (15) implies that the closed convex set

K = {v ∈ V : ψ1 ≤ v ≤ ψ2}

is not empty, since v = ψ1 ∨ (ψ2 ∧ 0) belongs to K. Then the existence and
uniqueness of the solution of (17) follows from the Hartmann-Stampacchia’s
theorem (see [4]).

Let h ≤ f, h ≤ Aψ2 and let’s show that the solution z of the auxiliary
problem {

z ∈ V, z ≥ u

〈Az,w − z〉 ≥ 〈h,w − z〉 ∀ w ∈ V, w ≥ u
(19)

verifies Az ≥ h.
Indeed, putting w = z + v with v ≥ 0 in (19), on gets 〈Az, v〉 ≥ 〈h, v〉 for

all v ∈ V, v ≥ 0, that is Az ≥ h in V′. On the other side one can prove that
z = u. In fact, one has

(z − ψ2)+ ∈ V (20)

〈Az − Aψ2, (z − ψ2)+〉 ≤ 0. (21)

Actually (20) follows from the fact that z belongs to V, (z−ψ2)+ = z−ψ2∧z,
and that ψ1 and ψ2 satisfy (15). On the other hand (21) is a consequence
of the fact that w = ψ2 ∧ z can be chosen in (19), thus 〈Az, (z − ψ2)+〉 ≤
〈h, (z − ψ2)+〉, but Aψ2 ≥ h, so 〈Aψ2, (z − ψ2)+〉 ≥ 〈h, (z − ψ2)+〉. Therefore
〈Az − Aψ2, (z − ψ2)+〉 ≤ 0, that is relation (21).

At this point the strict T -monotonicity of A implies z ≤ ψ2. Then, putting
v = z in (17) and taking into account that h ≤ f one gets 〈Au, z − u〉 ≥
〈h, z − u〉; while, putting w = u in (19) one obtains 〈Az, z − u〉 ≥ 〈h, z − u〉,
then 〈Au−Az, z−u〉 ≥ 0 which implies z = u, using the strict T -monotonicity
of A and the fact that z ≥ u.

Finally, recalling (21), one gets h ≤ Au. In order to show that h
′ ≥ Au for

every h
′

satisfying (18), one can argue in an analogous way.

It is now easy to state two corollaries of the Proposition.
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Corollary 1. Under the assumptions of the Proposition putting V∗ as the order
dual space of V, the following estimates hold for the solution u of (17)

f ∧ Aψ2 ≤ Au ≤ f ∨ Aψ1 (22)

Corollary 2. Under the assumptions of the Proposition the following estimate
for the solution of (17) holds:

‖ Au ‖V′≤‖ f ∨ Aψ1 ‖V′ + ‖ f ∧ Aψ2 ‖V′ (23)

Proof of Corollary 2. By (22) one gets

〈(f ∧ Aψ2)− Au,−v−〉 ≥ 0, 〈Au− (f ∨ Aψ1), v+〉 ≤ 0

then

〈Au, v〉 = 〈Au, v+ − v−〉 ≤ 〈f ∧ Aψ2,−v−〉+ 〈f ∨ Aψ1, v
+〉

≤ ‖f ∧ Aψ2‖V′‖v−‖V + ‖f ∨ Aψ1‖V′‖v+‖V
≤ (‖f ∧ Aψ2‖V′ + ‖f ∨ Aψ1‖V′)‖v‖V,

so (23) follows.

5. Proof of the Theorem

Let us proceed by steps.

Step I. If there exists a solution (6), then it is unique.

Proof. Let u1, u2 be two solutions of (6). Putting v = u2 in (6) (with u = u1),
v = u1 in (6) (with u = u2), and adding the two inequalities, one gets〈
∂u1

∂t
− ∂u2

∂t
+ Au1 + Au2, u1 − u2

〉
≤ 0 which yields

〈Au1 − Au2, u1 − u2〉 ≤ 0 (24)

due to the fact that〈
∂w

∂t
, w

〉
≥ 0 ∀w ∈ Lp(0, T ;V );

∂w

∂t
∈ Lp

′

(0, T ;V
′
), w(0) = 0. (25)

At this point, since the strict T -monotonicity of A w.r.t. Lp(0, T ;V ) implies the
strict monotonicity on the same space, then u1 = u2 follows from (24)
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Step II. If the assumptions of Theorem 1 are satisfied with the choices

u0 = 0 (26)

g = 0 (27)

then there exist two sequences in Lp(0, T ;H1,p(Ω)) verifying the following rela-
tions

ψ1,n ≤ ψ2,n a.e. in ∂1Ω× (0, T ) ∀ n ∈ N (28)

ψ1,n(0) ≤ 0 ≤ ψ2,n(0) a.e. in Ω ∀ n ∈ N (29)

ψi,n → ψi in L
p(0, T ;H1,p(Ω)), i = 1, 2 (30)

∂

∂t
ψi,n ∈ Lp′(0, T ;H1,p(Ω)

′
), i = 1, 2 (31)

∂

∂t
ψi,n →

∂

∂t
ψi ∈ Lp

′

(0, T ;V
′
), i = 1, 2 (32)

∂

∂t
ψi,n,

∂2

∂t2
ψi,n, Aψi,n ∈ L2(Q), i = 1, 2. (33)

As for the proof of Step II, one can argue in an analogous way as in [3].

Step III. If the assumptions of the Theorem are satisfied with (26) and (27),
then any element v ∈ Lp(0, T ;V ) such that ψ1 ≤ v ≤ ψ2 a.e. in Q, can be
obtained as the strong limit of a sequence {vn} s.t.{

vn ∈ Lp(0, T ;V ) with ∂
∂t
vn ∈ Lp(0, T ;V )

ψ1,n ≤ vn ≤ ψ2,n a.e. in Q ∀ n ∈ N

with ψ1,n, ψ2,n verifying (28)–(33).

Proof. For any v ∈ Lp(0, T ;V ) by density arguments, there exists a sequence
{ṽn}n∈N in the space{

v ∈ Lp(0, T ;V ) :
∂

∂t
v ∈ Lp(0, T ;V )

}
(34)

strongly converging to v. Let us note that the sequence vn = ψ1,n ∨ (ψ2,n ∧ ṽn)
belongs to the space defined in (34). Thus, the lattice property of Lp(0, T ;V )
implies that for any n ∈ N

ψ1,n ≤ vn = ψ1,n ∨ (ψ2,n ∨ ṽn) = ψ1,n ∨ ψ2,n = ψ2,n.

Therefore vn = ψ1,n∨(ψ2,n∧ ṽn) = ψ1,n+(ψ2,n∧ ṽn−ψ1,n)+. From the continuity
properties of the lattice operations it follows that

(ψ2,n ∧ ṽn − ψ1,n)+ → (ψ2 ∧ v − ψ1)+ in Lp(0, T ;H1,p(Ω)).

Then vn = ψ1,n + (ψ2,n ∧ ṽn−ψ1,n)+ → ψ1 + (ψ2 ∧ v−ψ1)+ = ψ1 + (v−ψ1)+ =
ψ1 ∨ v = v.
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Let us define now a differential operator An of “elliptic type” which ap-
proximates, when n goes to +∞, the operator A. Precisely, one considers the
space

Y =

{
v ∈ Lp(0, T ;H1,p(Ω)) :

∂v

∂t
∈ L2(Q)

}
(35)

W =

{
v ∈ Lp(0, T ;V ) :

∂v

∂t
∈ L2(Q), v(0) = 0

}
(36)

equipped with the graph-norms w.r.t. the operator ∂
∂t

(let’s note that in this

case, Y and W are reflexive Banach spaces) and the operator An : Y → W
′

defined as

〈Anv, w〉 = εn

〈
∂v

∂t
,
∂w

∂t

〉
+

〈
∂v

∂t
, w

〉
+ 〈Av,w〉 ∀ v ∈ Y, ∀ w ∈ W (37)

with

εn =


min

{
1

n
, min

i=1,2

∥∥∥∥∂2ψi,n

∂t2

∥∥∥∥−2

L2(Q)

}
if

∥∥∥∥∂2ψi,n

∂t2

∥∥∥∥
L2(Q)

6= 0, i = 1, 2

1

n
otherwise

(38)

where {ψi,n}n∈N (i = 1, 2) are functions satisfying the thesis of Step II.

Step IV. Let Y,W,An, εn defined as in (35)–(38). Then, for all n ∈ N, An is
a bounded continuous coercive operator, strictly T -monotone with respect to
Lp(0, T ;V ).

Proof. It is essentially a simple consequence of the properties of A and the
obvious fact that〈

∂2y−

∂t2
, y+

〉
= −

〈
∂y−

∂t
,
∂y+

∂t

〉
= 0, ∀ y ∈ Y s.t. y+ ∈ W.

Step V. Let us consider the following elements of Lp′(0, T ;V
′
)

g1 = Aψ1 +
∂ψ1

∂t
− f, g2 = Aψ2 +

∂ψ2

∂t
− f.

Then there exist three sequences {π1,n}, {η1,n} and {π2,n} contained in the pos-
itive cone of L2(Q) such that

π1,n → g+
1 , η1,n → g−1 , π2,n → g+

2

strongly in Lp′(0, T ;V ′).
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Furthermore, putting

η2,n = Aψ1,n +
∂ψ1,n

∂t
− Aψ2,n −

∂ψ2,n

∂t
+ π2,n − (π1,n − η1,n)

where ψ1,n, ψ2,n are defined as in Step II, then η2,n ∈ L2(Q), η2,n → g−2 strongly
in Lp′(0, T ;V ′) and η+

2,n → g−2 strongly in Lp′(0, T ;V ′). Finally, putting

f1,n = Aψ1,n +
∂

∂t
ψ1,n − (π1,n − η1,n) , f2,n = Aψ2,n +

∂

∂t
ψ2,n − (π2,n − η2,n)

one has that f1,n, f2,n coincide and fn = f1,n = f2,n strongly converges to f in
Lp(0, T ;V ′).

Proof. The first statement is a consequence of the density of the positive cone
of L2(Q) in the positive cone of Lp′(0, T ;V ′). The other statements are implied
by the properties of ψ1,n, ψ2,n and some easy calculation.

Step VI. Let us consider the following variational inequality{
un ∈ W, ψ1,n ≤ un ≤ ψ2,n

〈Anun, w − un〉 ≥ 〈fn, w − un〉 ∀ w ∈ W, ψ1,n ≤ w ≤ ψ2,n
(39)

Then (39) admits a unique solution un, which verifies the estimates in W ′:

fn −
(
−εn

(
−∂

2ψ2,n

∂t2

))+

− η+
2,n ≤ Anun ≤ fn + εn

(
−∂

2ψ1,n

∂t2

)+

+ π+
1,n. (40)

Proof. The existence and uniqueness of un are consequences of Step IV and
the Hartmann-Stampacchia’s theorem. The estimates (40) are deduced from
the very definition of the operator An, from some properties of Banach lattice
spaces (see Section 2) and from the Proposition.

Step VII. The sequence {Anun} is bounded in Lp′(0, T ;V ′).

Proof. Indeed, from the continuity of A, the definition of εn and the strong
convergence of {π1,n}, {η2,n} in Lp′(0, T ;V ′), we get that the three sequences

{fn},

{
fn −

(
−εn

(
−∂

2ψ2,n

∂t2

))+

− η+
2,n

}
,

{
fn + εn

(
−∂

2ψ1,n

∂t2

)+

+ π+
1,n

}

are bounded in Lp′(0, T ;V ′). The estimates (40) hold also in the sense of
Lp′(0, T ;V ′), as W is equipped with the graph norm of ∂

∂t
and from the fact

that Lp(0, T ;V ) is dense in this space. Then it easily follows that {Anun} is a
bounded sequence in Lp′(0, T ;V ′).



Strong Solutions for Two-Sided Parabolic Variational Inequalities 389

Step VIII. Let un be the solution of (39) for any n ∈ N. Then there exists
un ∈ W and a subsequence of {un}, still named {un}, such that

un ⇀ u in Lp(0, T ;V ) (41)

∂un
∂t

⇀
∂u

∂t
in Lp′(0, T ;V ′) (42)

εn
∂2un
∂t2

⇀ 0 in Lp′(0, T ;V ′) (43)

Proof. First of all, one has the following estimates for {un}

εn

∥∥∥∥∂un∂t
∥∥∥∥
L2(Q)

≤ c, c > 0 ∀ n ∈ N (44)

‖ un ‖Lp(0,T ;V ) ≤ c, c > 0 ∀ n ∈ N. (45)

Indeed, using the coerciveness of A, (25) and the very definition of εn, one gets

α ‖ un ‖p ≤ εn

∥∥∥∥∂un∂t
∥∥∥∥2

L2(Q)

+ 〈Aun, un〉

≤ εn

∥∥∥∥∂2un
∂t2

∥∥∥∥2

L2(Q)

+

〈
∂un
∂t

, un

〉
+ 〈Aun, un〉

≤ ‖ Anun ‖Lp(0,T ;V ′)‖ un ‖ .

(46)

Thus, (45) follows from Step VII. On the other hand, using againg (45) and
Step VII one deduces εn

∥∥∂un

∂t

∥∥
L2(Q)

≤‖Anun‖Lp′ (0,T ;V ′)‖un‖≤ c, so (44) follows.

Then, by a similar argument to that given in [5, Chapter 3, Theorem 7.1],
it follows that the sequence {∂un

∂t
} is bounded in Lp(0, T ;V ) and that {∂2un

∂t2
} is

contained in Lp′(0, T ;V ′). Therefore, there exists a subsequence of {un}, still
denoted by {un}, such that (41) and (42) hold. As for (43), one notes that

εn
∂2un
∂t2

= Anun −
∂un
∂t
− Aun

so (43) follows, for a suitable subsequence of {un}, from the fact that εn〈∂
2un

∂t2
, v〉

converges to zero, for every v ∈
{
v ∈ Lp(0, T ;V ) : ∂v

∂t
∈ Lp(0, T ;V ), v(0) = 0

}
which is a dense subspace of Lp(0, T ;V ).

Step IX. The element u ∈ W is the solution of problem (6) with u0 = 0, g = 0.

Proof. Through the theory of pseudo-monotone operators (see [1]), it is easy to
see that the T -monotonicity, boundedness and continuity of A imply, using (41),
that

lim inf〈Aun, un − v〉 ≥ 〈Au, u− v〉 ∀ v ∈ Lp(0, T ;V ). (47)
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On the other hand, the lower semicontinuity of ∂
∂t

on the space{
v ∈ Lp(0, T ;V ) :

∂

∂t
∈ L′

(0, T ;V
′
)

}
(deduced from its positivity) implies

lim inf

〈
∂un
∂t

, un − v
〉
≥
〈
∂u

∂t
, u− v

〉
∀ v ∈ Lp(0, T ;V ). (48)

Moreover, choosing, for any v ∈ Lp(0, T ;V ) with ψ1 ≤ v ≤ ψ2, the se-
quence {vn} as in Step III, then Step VIII, (47), (48) and the fact that the
positive cone in Lp(0, T ;V ) is weakly closed in this space, imply that u is the
solution of (6).

Step X. The solution u of (6) with u0 = 0 and g = 0, verifies the estimates (10).

Proof. It is a consequence of the the passage to the limit as n → +∞ in (39),
the convergences obtained in the proof of Step VII and that 〈Anun, v〉 →〈
∂u
∂t

+ Au, v
〉

as it follows from Step VII and from (41).

Step XI - Conclusions. The general case without the restrictions u0 = 0,
g = 0.

Proof. Let us consider the solution ũ of the problem{
ũ ∈ g + Lp(0, T ;V ), ∂ũ

∂t
∈ Lp

′
(0, T ;V

′
)

∂ũ
∂t

+ Aũ = 0, ũ(0) = u0.

For the existence and uniqueness of such a solution ũ see [1] and replace the

operator A with the operator Ã : Lp(0, T ;V )→ Lp
′
(0, T ;V

′
) defined as

Ãv = A(v + ũ)− A(ũ).

It is easy to check that Ã verifies the same conditions of A. Therefore, if u is
the unique solution of the problem{

u ∈ Lp(0, T ;V ), ∂u
∂t
∈ Lp′(0, T ;V ′), ψ1 − ũ ≤ u ≤ ψ2 − ũ, u(0) = 0

〈∂u
∂t

+ Ãu, v − u〉 ≥ 〈f, v − u〉 ∀ v ∈ Lp(0, T ;V ), ψ1 − ũ ≤ v ≤ ψ2 − ũ

then it easy to verify that the element u = ũ + u ∈ g + Lp(0, T ;V ) solves (6).
Furthermore, u verifies the estimates in Lp′(0, T ;V ′)

f −
(
∂ψ2

∂t
− ∂ũ

∂t
+ Ã(ψ2 − ũ)− f

)−
≤ ∂u

∂t
+ Ãu

≤ f +

(
∂ψ1

∂t
− ∂ũ

∂t
+ Ã(ψ1 − ũ)− f

)+
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Recalling that, for i = 1, 2,

Ã(ψi − ũ) = Aψi − Aũ, Ãu = Au− Aũ, ∂ũ

∂t
+ Aũ = 0

one easily deduces the dual estimates (10). Therefore the statement of Theorem
follows.
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