Strong Solutions for Two-Sided Parabolic Variational Inequalities Related to an Elliptic Part of p-Laplacian Type

Loretta Mastroeni and Michele Matzeu

Abstract. A class of parabolic variational inequalities with two obstacles related to an elliptic part of p-Laplacian type is considered. A result of existence and uniqueness of strong solutions is given. Moreover some estimates of Lewy-Stampacchia's type are obtained for these solutions, which can be used in order to get regularity results.

Keywords. Variational inequalities, two obstacles, elliptic part of p-Laplacian type, elliptic regularization method, Lewy-Stampacchia's type estimates

Mathematics Subject Classification (2010). 49J40, 34G420, 06B30

1. Introduction

It is well known that in [6] J. L. Lions and G. Stampacchia studied some variational inequalities of parabolic type and prove existence and uniqueness results for solutions, in a suitable weak sense. In the following years, many celebrated authors obtained existence, uniqueness and regularity results also for strong solutions. In [2] the existence of a unique strong solution satisfying a pair of estimates of "Lewy-Stampacchia's type", which in some particular cases yield important regularity results, is proved. The main theorem in [2] is based on the use of some estimates given by Mosco in [7] for solutions of variational inequalities, in an abstract framework, which generalize the "classical" estimates of Lewy-Stampacchia (see [6] for classical solutions and [8] for weak solutions related to Dirichlet problems). The result in [2] is concerned with the linear case. In [3] this result is extended to some nonlinear case, where the elliptic part of the differential operator is of p-Laplacian type. Let us note that, either in [2] and in [3] the convex set of the variational inequality is related to a

L. Mastroeni: Dipartimento di Economia, Università degli Studi di Roma Tre, Via Silvio D'Amico, 77 - 00145 Roma; mastroen@eco.uniroma3.it

M. Matzeu: Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata, Viale della Ricerca Scientifica, 1 - 00133 Roma; matzeu@mat.uniroma2.it

one-sided constraint. The aim of this paper is to consider a two-sided parabolic variational inequality (i.e. in presence of a lower and an upper obstacle), still for cases where the elliptic part is of p-Laplacian type. Even in this case, a unique solution of the problem is obtained, satisfying a suitable pair of Lewy-Stampacchia's inequalities. The basic idea of the proof is based on a suitable extension of the theorem by Mosco [7] (which is related to one-sided constraint cases) to the cases of two-sided constraints. Then, a regularization method as in [3] is used again, but it's important to underline that the consideration of a two-obstacles problem (instead of one) creates some technical difficulties, which can be suitably overtaken. It is well known that, in the case p = 2, that refers to the case in which the elliptic operator is given by the standard Laplace operator. the solution u of the variational inequality is obtained as the value function of a suitable stochastic control problem (see [1]). More precisely, u is given by the min-max value of a cost functional among the pairs of stopping times of a suitable Brownian motion. This fact can also be generalized to the case of a more general stochastic process where also a drift coefficient is present. A main motivation of our research is to extend this kind of result to the case of p-Laplacian type operators, in such a way to give a possible financial interpretation of the result.

2. Preliminaries on Banach lattices

Let X be a partially ordered set and let us put, for every pair of elements a, b in X with $a \ge b$ (or $a \le b$)

$$a \lor b = \max(a, b), \quad a \land b = \min(a, b).$$

Obviously, if X is totally ordered then $a \vee b$, $a \wedge b$ are well defined for any $a, b \in X$.

A linear space X is said a *lattice vector space* if the following conditions are satisfied

$$\begin{array}{ll} x \leq y \ \Rightarrow x + z \leq y + z & \forall \ x, y, z \in X \\ x \leq y \ \Rightarrow \alpha x \leq \alpha y \ (\alpha x \geq \alpha y) & \forall \ \alpha \geq 0 \ (\forall \ \alpha \leq 0) \end{array}$$

Let us consider a Banach space X. A proper cone P of X is a subset of X s.t.

$$P + P \subset P, \quad \lambda P \subset P \quad \forall \lambda > 0, \quad P \cap (-P) = \{0\}$$

The partial order " \leq " induced by a proper cone P is defined as

$$x \leq y \iff y - x \in P$$

If P is closed then X is called an *ordered Banach space*. In that situation, the elements of P are called *positive*, and P is called the *positive cone* of the ordered Banach space X.

Let us remark that, if X is a Banach space and a lattice Banach vector space, it follows by definitions, that

$$\begin{cases} x + (x \lor y) = (z + x) \lor (z + y) \quad \forall x, y, z \in X \\ x + (x \land y) = (z + x) \land (z + y) \quad \forall x, y, z \in X \\ (-x) \lor (-y) = -(x \lor y) \qquad \forall x, y \in X \end{cases}$$
(1)

so that $(x \lor y) - x - y = -(x \land y)$ for all $x, y \in X$. Therefore

$$x + y = (x \lor y) + (x \land y) \quad \forall \ x, y \in X$$

$$\tag{2}$$

Then, putting y = 0 in (2), one gets

$$x = x^+ - x^-$$

where $x^+ = x \vee 0$ and $x^- = -(x \wedge 0)$ are called the *positive part* and the *negative part* of x respectively. Putting z = -x and z = -y in the first relation in (1), one easily gets

$$x \lor y = x + (y - x)^{+} = y + (x - y)^{+}$$
(3)

and, recalling the second relation in (1),

$$x \wedge y = x - (x - y)^{+} = y - (y - x)^{+}.$$
 (4)

A sublattice U of X is, by definition, a linear subspace of X which is a lattice w.r.t. the order given in X.

We shall call the *dual order space* of U, denoted by U^* , the subspace of the dual space U' of U, which is spanned by the positive cone of U', that is

$$P' = \{ v' \in U' : \langle v', v \rangle \ge 0 \quad \forall v \in P \},\$$

that is $U^* = P' - P'$. Generally, U^* is strictly contained in U'. Under the order induced on U^* by the closed positive cone P' (which we call the *dual order*) the space U^* is a vector lattice.

Finally, let X be a Banach space and a vector lattice. Then X is called a *lattice Banach space* if

$$|x| \le |y| \implies ||x|| \le ||y|| \quad \forall x, y \in X$$

$$(5)$$

where $|x| = x \lor (-x)$ is the *modulus* x and $\|\cdot\|$ denotes the norm in X.

By (5) and the lattice properties, it can be deduced that the maps $x \to |x|$, $x \to x^+$, $x \to x^-$ are all uniformly continuous from X into itself and the maps $(x, y) \to x \lor y$ and $(x, y) \to x \land y$ are uniformly continuous from $X \times X$ into X. As a consequence, it follows that the positive cone

$$P_X = \{x \in X : x \ge 0\} = \{x \in X : x^- = 0\}$$

is closed in X. Moreover, one can easily prove that X^* , the order dual space of X, coincides with the dual space X' in the case that X is a Banach lattice space.

3. The main result

Let us consider the following parabolic variational inequality with bilateral constraints

$$\begin{cases} u \in g + L^{p}(0,T;V), \ \frac{\partial u}{\partial t} \in L^{p'}(0,T;V'), \ \psi_{1} \leq u \leq \psi_{2} \text{ a.e. in } Q\\ \langle \frac{\partial u}{\partial t} + Au, v - u \rangle \geq \langle f, v - u \rangle \\ \forall v \in g + L^{p}(0,T;V), \ \psi_{1} \leq v \leq \psi_{2} \text{ a.e. in } Q, \ u(0) = u_{0} \end{cases}$$
(6)

where

- $Q = \Omega \times (0,T)$ with Ω open bounded subset of $\mathbb{R}^{\mathbb{N}}$ with C^{∞} -boundary $\partial \Omega$
- V is the subspace of the Sobolev space $H^{1,p}(\Omega)(p \ge 2)$ given by all the functions $v \in H^{1,p}(\Omega)$ s.t. $v \mid_{\partial_1\Omega} = 0$, where $\partial_1\Omega$ is a subset of $\partial\Omega$, which can possibly be empty
- $g \in L^p(0,T; H^{1,p}(\Omega))$ with g = 0 if $\partial_1 \Omega = \emptyset$
- $u_0 \in L^2(\Omega)$
- $\psi_1, \psi_2 \in L^p(0, T; H^{1,p}(\Omega))$
- $f \in L^{p'}(0,T;V')$, the dual space of $L^p(0,T;V)$ with $p' = \frac{p}{p-1}$
- $A: L^p(0,T; H^{1,p}(\Omega)) \longrightarrow L^{p'}(0,T;V')$ is bounded, continuous, strictly *T*-monotone w.r.t. $L^pP(0,T;V)$ in the sense that

$$\langle Au - Av, (u - v)^+ \rangle \ge 0 \qquad \forall u, v \in L^p(0, T; H^{1,p}(\Omega)) \langle Au - Av, (u - v)^+ \rangle = 0 \Leftrightarrow (u - v)^+ = 0 \quad \text{s.t.} \ (u - v)^+ \in L^p(0, T; V)$$

• A is coercive on $\in L^p(0,T;V)$ in the sense that

$$\exists \ \alpha > 0: \ \langle Av, v \rangle \ge \alpha \parallel v \parallel^p \quad \forall \ v \in L^p(0, T; V)$$

As an example of an operator A satisfying the previous conditions, one can choose the differential operator defined as

$$Av(x,t) = -\sum_{i=1}^{N} (a_i(x,t) \mid v_{x_i}(x,t) \mid^{p-2} v_{x_i}(x,t))_{x_i} + c(x,t) \mid v(x,t) \mid^{p-2} v(x,t)$$

for all $v = v(x,t) \in L^p(0,T; H^{1,p}(\Omega))$, a.e. $(x,t) \in Q$ where $a_i, c \in L^{\infty}(Q)$, with $a_i(x,t) \ge a_0 > 0$ and $c(x,t) \ge c_0 > 0$ a.e. in Q.

The aim of this paper is to prove the following result:

Theorem. Let the previous hypotheses and assumptions hold and let

$$\left(\frac{\partial\psi_i}{\partial t} + A\psi_i - f\right)^+ \in L^{p'}(0,T;V'), \quad i = 1,2$$
(7)

$$\frac{\partial \psi_i}{\partial t} \in L^{p'}(0,T;V'), \quad i = 1,2$$
(8)

 $\begin{cases} \psi_1 \leq g \leq \psi_2 \text{ a.e. on } \partial_1 \Omega \times (0,T), \text{ that is there exists two sequences} \\ \{\psi_{i,n}\}_{n \in \mathbb{N}} \subset L^p(0,T;C^1(\Omega)) \ (i=1,2) \text{ such that} \\ \psi_{1,n}|_{\partial_1 \Omega \times (0,T)} \leq 0 \leq \psi_{2,n}|_{\partial_1 \Omega \times (0,T)} \text{ with} \\ \psi_{i,n} \to \psi_i - g \text{ as } n \to +\infty \text{ in } L^p(0,T;H^{1,p}(\Omega)) \ (i=1,2) \end{cases}$ (9)

 $\psi_1(0) \le u_0 \le \psi_2(0).$

Then there exists a unique solution u of (6). Furthermore the following dual estimates of Lewy-Stampacchia's type hold in the space $L^{p'}(0,T;V')$

$$f - \left(\frac{\partial\psi_2}{\partial t} + A\psi_2 - f\right)^- \le \frac{\partial u}{\partial t} + Au \le f + \left(\frac{\partial\psi_1}{\partial t} + A\psi_1 - f\right)^+ \tag{10}$$

4. An extension of a theorem by Mosco

Here we state, as a preliminar result to be used in order to prove the Theorem, a suitable extension of a theorem by Mosco [7] which established some dual estimates of Lewy-Stampacchia's type for stationary variational inequalities with unilateral constraints. We extend this result to the case of bilateral constraints. The framework is the following:

X is a reflexive Banach space which is a lattice w.r.t. (11)the order induced by a positive cone $P_X = \{x \in X : x \ge 0\}.$

$$\mathcal{V}$$
 is a sublattice closed vector subspace of X. (12)

$$\begin{cases} A: X \to \mathcal{V}' \text{ is a strictly } T \text{-monotone operator w.r.t. } \mathcal{V}, \\ \text{i.e. } \langle Au - Av, (u - v)^+ \rangle \ge 0 \quad \forall \, u, v \in X \text{ s.t. } (u - v)^+ \in \mathcal{V} \\ \text{and } \langle Au - Av, (u - v)^+ \rangle = 0 \text{ iff } (u - v)^+ = 0. \end{cases}$$
(13)

The restriction of A on \mathcal{V} is coercive in the sense that (14) $\exists \alpha > 0 : \langle Av, v \rangle \ge \alpha \parallel v \parallel^p \quad \forall v \in \mathcal{V}.$

Furthermore, $\psi_1, \psi_2 \in X$ satisfy the following conditions

$$\psi_1 \lor v \in \mathcal{V}, \ \psi_2 \land v \in \mathcal{V} \quad \forall \ v \in \mathcal{V} \tag{15}$$

$$f \in \mathcal{V}'. \tag{16}$$

Then one can state the following result:

383

Proposition. Let (11)–(16) be satisfied and let $\psi_1 \leq \psi_2$, then there exists one unique solution u of the following variational inequality

$$\begin{cases} u \in \mathcal{V}, \quad \psi_1 \le u \le \psi_2 \\ \langle Au, v - u \rangle \ge \langle f, v - u \rangle \quad \forall v \in \mathcal{V}, \ \psi_1 \le v \le \psi_2 \end{cases}$$
(17)

Moreover one has

$$\begin{cases} h \le Au \le h' \text{ for every pair of elements } h, h' \text{ in } \mathcal{V}' \text{ s.t.} \\ h \le f, h \le A\psi_2, \quad h' \ge f, h' \ge A\psi_1. \end{cases}$$
(18)

Proof. First of all let us note that (15) implies that the closed convex set

$$K = \{ v \in \mathcal{V} : \psi_1 \le v \le \psi_2 \}$$

is not empty, since $\overline{v} = \psi_1 \vee (\psi_2 \wedge 0)$ belongs to K. Then the existence and uniqueness of the solution of (17) follows from the Hartmann-Stampacchia's theorem (see [4]).

Let $h \leq f$, $h \leq A\psi_2$ and let's show that the solution z of the auxiliary problem

$$\begin{cases} z \in \mathcal{V}, \ z \ge u \\ \langle Az, w - z \rangle \ge \langle h, w - z \rangle \quad \forall \ w \in \mathcal{V}, \ w \ge u \end{cases}$$
(19)

verifies $Az \ge h$.

Indeed, putting w = z + v with $v \ge 0$ in (19), on gets $\langle Az, v \rangle \ge \langle h, v \rangle$ for all $v \in \mathcal{V}, v \ge 0$, that is $Az \ge h$ in \mathcal{V}' . On the other side one can prove that z = u. In fact, one has

$$(z - \psi_2)^+ \in \mathcal{V} \tag{20}$$

$$\langle Az - A\psi_2, (z - \psi_2)^+ \rangle \le 0.$$
(21)

Actually (20) follows from the fact that z belongs to \mathcal{V} , $(z-\psi_2)^+ = z-\psi_2 \wedge z$, and that ψ_1 and ψ_2 satisfy (15). On the other hand (21) is a consequence of the fact that $w = \psi_2 \wedge z$ can be chosen in (19), thus $\langle Az, (z-\psi_2)^+ \rangle \leq$ $\langle h, (z-\psi_2)^+ \rangle$, but $A\psi_2 \geq h$, so $\langle A\psi_2, (z-\psi_2)^+ \rangle \geq \langle h, (z-\psi_2)^+ \rangle$. Therefore $\langle Az - A\psi_2, (z-\psi_2)^+ \rangle \leq 0$, that is relation (21).

At this point the strict *T*-monotonicity of *A* implies $z \leq \psi_2$. Then, putting v = z in (17) and taking into account that $h \leq f$ one gets $\langle Au, z - u \rangle \geq \langle h, z - u \rangle$; while, putting w = u in (19) one obtains $\langle Az, z - u \rangle \geq \langle h, z - u \rangle$, then $\langle Au - Az, z - u \rangle \geq 0$ which implies z = u, using the strict *T*-monotonicity of *A* and the fact that $z \geq u$.

Finally, recalling (21), one gets $h \leq Au$. In order to show that $h' \geq Au$ for every h' satisfying (18), one can argue in an analogous way.

It is now easy to state two corollaries of the Proposition.

Corollary 1. Under the assumptions of the Proposition putting \mathcal{V}^* as the order dual space of \mathcal{V} , the following estimates hold for the solution u of (17)

$$f \wedge A\psi_2 \le Au \le f \lor A\psi_1 \tag{22}$$

Corollary 2. Under the assumptions of the Proposition the following estimate for the solution of (17) holds:

$$|| Au ||_{\mathcal{V}} \leq || f \lor A\psi_1 ||_{\mathcal{V}} + || f \land A\psi_2 ||_{\mathcal{V}}$$
(23)

Proof of Corollary 2. By (22) one gets

$$\langle (f \wedge A\psi_2) - Au, -v^- \rangle \geq 0, \quad \langle Au - (f \vee A\psi_1), v^+ \rangle \leq 0$$

then

$$\begin{aligned} \langle Au, v \rangle &= \langle Au, v^+ - v^- \rangle \leq \langle f \wedge A\psi_2, -v^- \rangle + \langle f \vee A\psi_1, v^+ \rangle \\ &\leq \| f \wedge A\psi_2\|_{\mathcal{V}'} \|v^-\|_{\mathcal{V}} + \| f \vee A\psi_1\|_{\mathcal{V}'} \|v^+\|_{\mathcal{V}} \\ &\leq (\| f \wedge A\psi_2\|_{\mathcal{V}'} + \| f \vee A\psi_1\|_{\mathcal{V}'}) \|v\|_{\mathcal{V}}, \end{aligned}$$

so (23) follows.

Proof of the Theorem 5.

Let us proceed by steps.

Step I. If there exists a solution (6), then it is unique.

Proof. Let u_1, u_2 be two solutions of (6). Putting $v = u_2$ in (6) (with $u = u_1$), $v = u_1$ in (6) (with $u = u_2$), and adding the two inequalities, one gets $\left\langle \frac{\partial u_1}{\partial t} - \frac{\partial u_2}{\partial t} + Au_1 + Au_2, u_1 - u_2 \right\rangle \leq 0$ which yields

$$\langle Au_1 - Au_2, u_1 - u_2 \rangle \le 0 \tag{24}$$

due to the fact that

$$\left\langle \frac{\partial w}{\partial t}, w \right\rangle \ge 0 \quad \forall w \in L^p(0, T; V); \quad \frac{\partial w}{\partial t} \in L^{p'}(0, T; V'), \ w(0) = 0.$$
(25)

At this point, since the strict T-monotonicity of A w.r.t. $L^p(0,T;V)$ implies the strict monotonicity on the same space, then $u_1 = u_2$ follows from (24)

Step II. If the assumptions of Theorem 1 are satisfied with the choices

$$u_0 = 0 \tag{26}$$

$$g = 0 \tag{27}$$

then there exist two sequences in $L^p(0,T;H^{1,p}(\Omega))$ verifying the following relations

$$\psi_{1,n} \le \psi_{2,n}$$
 a.e. in $\partial_1 \Omega \times (0,T) \quad \forall \ n \in \mathbb{N}$ (28)

$$\psi_{1,n}(0) \le 0 \le \psi_{2,n}(0)$$
 a.e. in $\Omega \quad \forall n \in \mathbb{N}$ (29)

$$\psi_{i,n} \to \psi_i \text{ in } L^p(0,T; H^{1,p}(\Omega)), \ i = 1,2$$
(30)

$$\frac{\partial}{\partial t}\psi_{i,n} \in L^{p'}(0,T; H^{1,p}(\Omega)'), \quad i = 1,2$$
(31)

$$\frac{\partial}{\partial t}\psi_{i,n} \to \frac{\partial}{\partial t}\psi_i \in L^{p'}(0,T;V'), \, i = 1,2$$
(32)

$$\frac{\partial}{\partial t}\psi_{i,n}, \ \frac{\partial^2}{\partial t^2}\psi_{i,n}, \ A\psi_{i,n} \in L^2(Q), \qquad i=1,2.$$
(33)

As for the proof of Step II, one can argue in an analogous way as in [3].

Step III. If the assumptions of the Theorem are satisfied with (26) and (27), then any element $v \in L^p(0,T;V)$ such that $\psi_1 \leq v \leq \psi_2$ a.e. in Q, can be obtained as the strong limit of a sequence $\{v_n\}$ s.t.

$$\begin{cases} v_n \in L^p(0,T;V) \text{ with } \frac{\partial}{\partial t}v_n \in L^p(0,T;V) \\ \psi_{1,n} \le v_n \le \psi_{2,n} \text{ a.e. in } \mathbf{Q} \quad \forall \ n \in \mathbf{N} \end{cases}$$

with $\psi_{1,n}, \psi_{2,n}$ verifying (28)–(33).

Proof. For any $v \in L^p(0,T;V)$ by density arguments, there exists a sequence $\{\widetilde{v_n}\}_{n\in\mathbb{N}}$ in the space

$$\left\{ v \in L^p(0,T;V) : \frac{\partial}{\partial t} v \in L^p(0,T;V) \right\}$$
(34)

strongly converging to v. Let us note that the sequence $v_n = \psi_{1,n} \vee (\psi_{2,n} \wedge \tilde{v_n})$ belongs to the space defined in (34). Thus, the lattice property of $L^p(0,T;V)$ implies that for any $n \in \mathbb{N}$

$$\psi_{1,n} \le v_n = \psi_{1,n} \lor (\psi_{2,n} \lor \widetilde{v_n}) = \psi_{1,n} \lor \psi_{2,n} = \psi_{2,n}.$$

Therefore $v_n = \psi_{1,n} \vee (\psi_{2,n} \wedge \widetilde{v_n}) = \psi_{1,n} + (\psi_{2,n} \wedge \widetilde{v_n} - \psi_{1,n})^+$. From the continuity properties of the lattice operations it follows that

$$(\psi_{2,n} \wedge \widetilde{v_n} - \psi_{1,n})^+ \rightarrow (\psi_2 \wedge v - \psi_1)^+$$
 in $L^p(0,T; H^{1,p}(\Omega)).$

Then $v_n = \psi_{1,n} + (\psi_{2,n} \wedge \widetilde{v_n} - \psi_{1,n})^+ \to \psi_1 + (\psi_2 \wedge v - \psi_1)^+ = \psi_1 + (v - \psi_1)^+ = \psi_1 \vee v = v.$

Let us define now a differential operator A_n of "elliptic type" which approximates, when n goes to $+\infty$, the operator A. Precisely, one considers the space

$$Y = \left\{ v \in L^p(0, T; H^{1, p}(\Omega)) : \frac{\partial v}{\partial t} \in L^2(\mathbb{Q}) \right\}$$
(35)

$$W = \left\{ v \in L^p(0,T;V) : \frac{\partial v}{\partial t} \in L^2(\mathbf{Q}), \ v(0) = 0 \right\}$$
(36)

equipped with the graph-norms w.r.t. the operator $\frac{\partial}{\partial t}$ (let's note that in this case, Y and W are reflexive Banach spaces) and the operator $A_n : Y \to W'$ defined as

$$\langle A_n v, w \rangle = \varepsilon_n \left\langle \frac{\partial v}{\partial t}, \frac{\partial w}{\partial t} \right\rangle + \left\langle \frac{\partial v}{\partial t}, w \right\rangle + \langle A v, w \rangle \quad \forall v \in Y, \ \forall w \in W$$
(37)

with

$$\varepsilon_n = \begin{cases} \min\left\{\frac{1}{n}, \min_{i=1,2} \left\|\frac{\partial^2 \psi_{i,n}}{\partial t^2}\right\|_{L^2(\mathbf{Q})}^{-2}\right\} \text{ if } \left\|\frac{\partial^2 \psi_{i,n}}{\partial t^2}\right\|_{L^2(\mathbf{Q})} \neq 0, \ i = 1, 2\\ \frac{1}{n} \qquad \text{otherwise} \end{cases}$$
(38)

where $\{\psi_{i,n}\}_{n \in \mathbb{N}}$ (i = 1, 2) are functions satisfying the thesis of Step II.

Step IV. Let Y, W, A_n, ε_n defined as in (35)–(38). Then, for all $n \in \mathbb{N}$, A_n is a bounded continuous coercive operator, strictly *T*-monotone with respect to $L^p(0,T;V)$.

Proof. It is essentially a simple consequence of the properties of A and the obvious fact that

$$\left\langle \frac{\partial^2 y^-}{\partial t^2}, y^+ \right\rangle = -\left\langle \frac{\partial y^-}{\partial t}, \frac{\partial y^+}{\partial t} \right\rangle = 0, \quad \forall \ y \in Y \text{ s.t. } y^+ \in W.$$

Step V. Let us consider the following elements of $L^{p'}(0,T;V')$

$$g_1 = A\psi_1 + \frac{\partial\psi_1}{\partial t} - f, \quad g_2 = A\psi_2 + \frac{\partial\psi_2}{\partial t} - f.$$

Then there exist three sequences $\{\pi_{1,n}\}, \{\eta_{1,n}\}\$ and $\{\pi_{2,n}\}\$ contained in the positive cone of $L^2(\mathbf{Q})$ such that

 $\pi_{1,n} \to g_1^+, \quad \eta_{1,n} \to g_1^-, \quad \pi_{2,n} \to g_2^+$

strongly in $L^{p'}(0,T;V')$.

Furthermore, putting

$$\eta_{2,n} = A\psi_{1,n} + \frac{\partial\psi_{1,n}}{\partial t} - A\psi_{2,n} - \frac{\partial\psi_{2,n}}{\partial t} + \pi_{2,n} - (\pi_{1,n} - \eta_{1,n})$$

where $\psi_{1,n}, \psi_{2,n}$ are defined as in Step II, then $\eta_{2,n} \in L^2(Q), \eta_{2,n} \to g_2^-$ strongly in $L^{p'}(0,T;V')$ and $\eta_{2,n}^+ \to g_2^-$ strongly in $L^{p'}(0,T;V')$. Finally, putting

$$f_{1,n} = A\psi_{1,n} + \frac{\partial}{\partial t}\psi_{1,n} - (\pi_{1,n} - \eta_{1,n}), \quad f_{2,n} = A\psi_{2,n} + \frac{\partial}{\partial t}\psi_{2,n} - (\pi_{2,n} - \eta_{2,n})$$

one has that $f_{1,n}, f_{2,n}$ coincide and $f_n = f_{1,n} = f_{2,n}$ strongly converges to f in $L^p(0,T;V')$.

Proof. The first statement is a consequence of the density of the positive cone of $L^2(Q)$ in the positive cone of $L^{p'}(0,T;V')$. The other statements are implied by the properties of $\psi_{1,n}, \psi_{2,n}$ and some easy calculation.

Step VI. Let us consider the following variational inequality

$$\begin{cases} u_n \in W, \ \psi_{1,n} \le u_n \le \psi_{2,n} \\ \langle A_n u_n, w - u_n \rangle \ge \langle f_n, w - u_n \rangle \quad \forall \ w \in W, \ \psi_{1,n} \le w \le \psi_{2,n} \end{cases}$$
(39)

Then (39) admits a unique solution u_n , which verifies the estimates in W':

$$f_n - \left(-\varepsilon_n \left(-\frac{\partial^2 \psi_{2,n}}{\partial t^2}\right)\right)^+ - \eta_{2,n}^+ \le A_n u_n \le f_n + \varepsilon_n \left(-\frac{\partial^2 \psi_{1,n}}{\partial t^2}\right)^+ + \pi_{1,n}^+.$$
(40)

Proof. The existence and uniqueness of u_n are consequences of Step IV and the Hartmann-Stampacchia's theorem. The estimates (40) are deduced from the very definition of the operator A_n , from some properties of Banach lattice spaces (see Section 2) and from the Proposition.

Step VII. The sequence $\{A_n u_n\}$ is bounded in $L^{p'}(0,T;V')$.

Proof. Indeed, from the continuity of A, the definition of ε_n and the strong convergence of $\{\pi_{1,n}\}, \{\eta_{2,n}\}$ in $L^{p'}(0,T;V')$, we get that the three sequences

$$\{f_n\}, \ \left\{f_n - \left(-\varepsilon_n\left(-\frac{\partial^2\psi_{2,n}}{\partial t^2}\right)\right)^+ - \eta_{2,n}^+\right\}, \ \left\{f_n + \varepsilon_n\left(-\frac{\partial^2\psi_{1,n}}{\partial t^2}\right)^+ + \pi_{1,n}^+\right\}$$

are bounded in $L^{p'}(0,T;V')$. The estimates (40) hold also in the sense of $L^{p'}(0,T;V')$, as W is equipped with the graph norm of $\frac{\partial}{\partial t}$ and from the fact that $L^{p}(0,T;V)$ is dense in this space. Then it easily follows that $\{A_{n}u_{n}\}$ is a bounded sequence in $L^{p'}(0,T;V')$.

Step VIII. Let u_n be the solution of (39) for any $n \in \mathbb{N}$. Then there exists $u_n \in W$ and a subsequence of $\{u_n\}$, still named $\{u_n\}$, such that

$$u_n \rightharpoonup u \qquad \text{in } L^p(0,T;V)$$

$$\tag{41}$$

$$\frac{\partial u_n}{\partial t} \rightharpoonup \frac{\partial u}{\partial t} \quad \text{in } L^{p'}(0,T;V') \tag{42}$$

$$\varepsilon_n \frac{\partial^2 u_n}{\partial t^2} \to 0 \quad \text{in } L^{p'}(0,T;V')$$

$$\tag{43}$$

Proof. First of all, one has the following estimates for $\{u_n\}$

$$\varepsilon_n \left\| \frac{\partial u_n}{\partial t} \right\|_{L^2(Q)} \le c, \quad c > 0 \ \forall \ n \in \mathbb{N}$$
 (44)

$$|| u_n ||_{L^p(0,T;V)} \le c, \quad c > 0 \ \forall \ n \in \mathbb{N}.$$
 (45)

Indeed, using the coerciveness of A, (25) and the very definition of ε_n , one gets

$$\alpha \parallel u_n \parallel^p \leq \varepsilon_n \left\| \frac{\partial u_n}{\partial t} \right\|_{L^2(Q)}^2 + \langle Au_n, u_n \rangle$$

$$\leq \varepsilon_n \left\| \frac{\partial^2 u_n}{\partial t^2} \right\|_{L^2(Q)}^2 + \left\langle \frac{\partial u_n}{\partial t}, u_n \right\rangle + \langle Au_n, u_n \rangle$$

$$\leq \parallel A_n u_n \parallel_{L^p(0,T;V')} \parallel u_n \parallel .$$
(46)

Thus, (45) follows from Step VII. On the other hand, using againg (45) and Step VII one deduces $\varepsilon_n \left\| \frac{\partial u_n}{\partial t} \right\|_{L^2(Q)} \leq \|A_n u_n\|_{L^{p'}(0,T;V')} \|u_n\| \leq c$, so (44) follows.

Then, by a similar argument to that given in [5, Chapter 3, Theorem 7.1], it follows that the sequence $\{\frac{\partial u_n}{\partial t}\}$ is bounded in $L^p(0,T;V)$ and that $\{\frac{\partial^2 u_n}{\partial t^2}\}$ is contained in $L^{p'}(0,T;V')$. Therefore, there exists a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$, such that (41) and (42) hold. As for (43), one notes that

$$\varepsilon_n \frac{\partial^2 u_n}{\partial t^2} = A_n u_n - \frac{\partial u_n}{\partial t} - A u_n$$

so (43) follows, for a suitable subsequence of $\{u_n\}$, from the fact that $\varepsilon_n \langle \frac{\partial^2 u_n}{\partial t^2}, v \rangle$ converges to zero, for every $v \in \{v \in L^p(0,T;V) : \frac{\partial v}{\partial t} \in L^p(0,T;V), v(0) = 0\}$ which is a dense subspace of $L^p(0,T;V)$.

Step IX. The element $u \in W$ is the solution of problem (6) with $u_0 = 0, g = 0$.

Proof. Through the theory of pseudo-monotone operators (see [1]), it is easy to see that the T-monotonicity, boundedness and continuity of A imply, using (41), that

$$\liminf \langle Au_n, u_n - v \rangle \ge \langle Au, u - v \rangle \quad \forall \ v \in L^p(0, T; V).$$
(47)

On the other hand, the lower semicontinuity of $\frac{\partial}{\partial t}$ on the space

$$\left\{ v \in L^{p}(0,T;V) : \frac{\partial}{\partial t} \in L^{'}(0,T;V^{'}) \right\}$$

(deduced from its positivity) implies

$$\liminf\left\langle \frac{\partial u_n}{\partial t}, u_n - v \right\rangle \ge \left\langle \frac{\partial u}{\partial t}, u - v \right\rangle \quad \forall \ v \in L^p(0, T; V).$$
(48)

Moreover, choosing, for any $v \in L^p(0,T;V)$ with $\psi_1 \leq v \leq \psi_2$, the sequence $\{v_n\}$ as in Step III, then Step VIII, (47), (48) and the fact that the positive cone in $L^p(0,T;V)$ is weakly closed in this space, imply that u is the solution of (6).

Step X. The solution u of (6) with $u_0 = 0$ and g = 0, verifies the estimates (10).

Proof. It is a consequence of the passage to the limit as $n \to +\infty$ in (39), the convergences obtained in the proof of Step VII and that $\langle A_n u_n, v \rangle \to \langle \frac{\partial u}{\partial t} + A_u, v \rangle$ as it follows from Step VII and from (41).

Step XI - Conclusions. The general case without the restrictions $u_0 = 0$, g = 0.

Proof. Let us consider the solution \tilde{u} of the problem

$$\begin{cases} \widetilde{u} \in g + L^{p}(0,T;V), \ \frac{\partial \widetilde{u}}{\partial t} \in L^{p'}(0,T;V') \\ \frac{\partial \widetilde{u}}{\partial t} + A\widetilde{u} = 0, \ \widetilde{u}(0) = u_{0}. \end{cases}$$

For the existence and uniqueness of such a solution \widetilde{u} see [1] and replace the operator A with the operator $\widetilde{A}: L^p(0,T;V) \to L^{p'}(0,T;V')$ defined as

$$\widetilde{A}v = A(v + \widetilde{u}) - A(\widetilde{u}).$$

It is easy to check that A verifies the same conditions of A. Therefore, if \overline{u} is the unique solution of the problem

$$\begin{cases} \overline{u} \in L^p(0,T;V), & \frac{\partial \overline{u}}{\partial t} \in L^{p'}(0,T;V'), & \psi_1 - \widetilde{u} \le \overline{u} \le \psi_2 - \widetilde{u}, & \overline{u}(0) = 0\\ \langle \frac{\partial \overline{u}}{\partial t} + \widetilde{A}\overline{u}, v - \overline{u} \rangle \ge \langle f, v - \overline{u} \rangle & \forall v \in L^p(0,T;V), \ \psi_1 - \widetilde{u} \le v \le \psi_2 - \widetilde{u} \end{cases}$$

then it easy to verify that the element $u = \tilde{u} + \overline{u} \in g + L^p(0,T;V)$ solves (6). Furthermore, \overline{u} verifies the estimates in $L^{p'}(0,T;V')$

$$f - \left(\frac{\partial \psi_2}{\partial t} - \frac{\partial \widetilde{u}}{\partial t} + \widetilde{A}(\psi_2 - \widetilde{u}) - f\right)^- \leq \frac{\partial \overline{u}}{\partial t} + \widetilde{A}\overline{u}$$
$$\leq f + \left(\frac{\partial \psi_1}{\partial t} - \frac{\partial \widetilde{u}}{\partial t} + \widetilde{A}(\psi_1 - \widetilde{u}) - f\right)^+$$

Recalling that, for i = 1, 2,

$$\widetilde{A}(\psi_i - \widetilde{u}) = A\psi_i - A\widetilde{u}, \quad \widetilde{A}\overline{u} = Au - A\widetilde{u}, \quad \frac{\partial\widetilde{u}}{\partial t} + A\widetilde{u} = 0$$

one easily deduces the dual estimates (10). Therefore the statement of Theorem follows. $\hfill \Box$

References

- [1] Bensoussan, A. and Lions, J. L., *Application of Variational Inequalities in Stochastic Control.* Amsterdam: North-Holland 1982.
- [2] Charrier, P. and Troianiello, G. M., On strong solutions to parabolic unilateral problems with obstacle dependent on time. *Math. Anal. Appl.* 65 (1978)(1), 110-125.
- [3] Donati, F. and Matzeu, M., On the strong solution of some nonlinear evolution problems in ordered Banach spaces. Boll. Un. Mat. Ital. B (5) 16 (1979), 54 - 73.
- [4] Lewy, M. and Stampacchia, G., On the smoothness of superharmonics which solve a minimum problem. J. Anal. Math. 23 (1970), 227 236.
- [5] Lions, J. L. and Magenes, E., Non-Homogeneous Boundary Value Problems and Applications. Vol. I. New York: Springer 1972.
- [6] Lions, J. L. and Stampacchia, G., Variational inequalities. Comm. Pure Appl. Math. 20 (1967), 493 – 519.
- [7] Mosco, U., Implicit variational problems and quasi-variational inequalities. In: *Nonlinear Operators and the Calculus of Variations* (Summer School Brussels 1975, eds.: J. P. Gossez et al.). Lect. Notes Math. 543. Berlin: Springer 1976, pp. 83 – 156.
- [8] Mosco, U. and Troianiello, G. M., On the smoothness of solutions of unilateral Dirichlet problems. Boll. Un. Mat. Ital. (4) 8 (1973), 57 – 67.

Received February 22, 2011; revised November 16, 2011