Zeitschrift fiir Analysis und ihre Anwendungen (© European Mathematical Society
Journal for Analysis and its Applications

Volume 31 (2012), 357378

DOTI: 10.4171/ZAA /1464

Local Boundedness for Vector Valued
Minimizers of Anisotropic Functionals

Francesco Leonetti and Elvira Mascolo

Abstract. For variational integrals F(u) = [, f(z, Du) dx defined on vector valued
mappings v : @ C R® — RV, we estabhsh some structure conditions on f that enable
us to prove local boundedness for minimizers v € W1 (Q; RY) of F. These struc-
ture conditions are satisfied in three remarkable examples: f(z, Du) = g(z,|Du|),

f(xz,Du) = Zlgj(x,\uij and f(x,Du) = a(z, |(ugy, ..., Uz, ,)|) + b(z, |ug,|), for
]:
suitable convex functions t — g(x,t), t = g;(x,t), t = a(x,t) and t — b(x, ).
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1. Introduction

We are concerned with regularity of minimizers of integral functionals

= /Qf(x, Du(x)) dx (1)

where () is a bounded open set of R™, n > 2 and Du denotes the gradient of
a vector-valued function u : Q — RY. Moreover f : Q x RV*" — [0, +00)
is a Caratheodory function, that is, f(x,z) is measurable with respect to x
and continuous with respect to z. The study includes also weak solutions of
nonlinear elliptic systems

ZD ®(z,Du(z))) =0, a=1,...,N,
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where the vector field a = (a) : Q@ x RV*™ — RN*" is the gradient with respect
to z of the function f(z, z), i.e.,

We consider minimizers u : Q C R"® — R of (1), that is, u € W1(Q; RY) with
finite energy
F(u) < 400 (2)

and
F(u) < Flu+ ) (3)

for every ¢ € Wy (€; RY). In the vectorial case it is usual to look for bounded-
ness of minimizers by assuming some structure condition on f. In fact a coun-
terexample of De Giorgi shows that minimizers and weak solutions of systems
do not need to be bounded, [9]. See also Frehse [13], Necas [30] and Sverak-
Yan [32]. However, in the case where f(z,2) = |2|P, p > 2, Uhlenbeck proved
in [34] that minimizers are C\b%(;RY), a result that was later extended by
Tolksdorf [33], Fusco-Hutchinson [14], Giaquinta-Modica [18], Acerbi-Fusco [1],
Marcellini [24], Esposito-Leonetti-Mingione [12], Leonetti-Mascolo-Siepe [20],
Marcellini-Papi [25]. As a first step towards regularity we want to analize the
local boundedness of minimizers u. We assume the p, ¢g-growth condition: There
exist constants ¢y, c3 € (0,+00), ¢2,¢4 € [0,400), p,q € [1,4+00) with p < g,
such that

clzlP — e < flx,2) < cslz]? + eq (4)

for almost every x €  and for every z € RV*". Such a growth assumption is

not strong enough to ensure boundedness even in the scalar case N = 1, when ¢
is large with respect to p (see Giaquinta [17], Marcellini [22,23] and Hong [19]).
This leads to require that ¢ is not too far from p. The previous p, g-growth
arises in the study of

f(z, Du) = gz, | Dul) (5)

and in the anisotropic energy densities:

f(z, Du) Z 95(x, |ug,|), (6)

f(ZE, Du) = CL(J:? |(u$17 S 7u33n71>|> + b(‘r7 |u$n|)7 (7)

for suitable convex functions t — g¢(z,t), t — g¢;(z,t), t = a(z,t) and t —
b(x,t). In the last years the study of regularity under non standard growth con-
dition has increased. In the scalar case the local boundeness has been proved
by Moscariello-Nania [28] and Fusco-Sbordone [15, 16], by Mascolo-Papi [26]
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and Cianchi [5] with some techniques related with the Orlicz spaces, by Lieber-
man [21] and more recently by Cupini-Marcellini-Mascolo [6]. In the vectorial
case, Dall’Aglio-Mascolo in [8] proved the local boundedness of minimizers of
(5) when ¢ is a N-function with Ay-property. In this paper we give some struc-
ture assumptions in order to garantee the boundedness of minimizers. These
assumptions allow us to give a unified proof (see Theorem 2.1) of local bounde-
ness for (5), (6), and (7), with g, g;, a, b satisfying the Ay-property and growth
condition (4), provided p and ¢ are not too far apart. We remark that examples
(6) and (7) are interesting even in the isotropic case p = ¢ since they go away
from Uhlenbeck-structure (5). For the local boundedness of solutions to quasi-
linear systems see Cupini-Marcellini-Mascolo [7]. We remark that boundedness
of minimizers is an important tool in order to achieve higher integrability of Du
as in D’Ottavio [10], Esposito-Leonetti-Mingione [11], Bildhauer-Fuchs [3, 4].
See also Apushkinskaya-Bildhauer-Fuchs [2]. The plan of the paper is the fol-
lowing: In Section 2 we give precise assumptions and state the main theorem.
Section 3 contains preliminary results. In Section 4 we discuss examples (5),
(6) and (7). Section 5 is devoted to the proof of the theorem, which is based
on suitable Caccioppoli estimates and Moser iteration method, [29]. We thank
the referees for useful remarks.

2. Assumptions and result

We consider the functional (1) where u : @ C R*® — RY and Q is a bounded
open set, n > 2 and N > 1. Let f : Q x RV*" — [0, 4+00) be such that: for
almost every = € () we have

z— f(x,2) is CHRY*™) (8)
for every z € RV*" for any i € {1,...,n} and o € {1,..., N}, we have
r— f(z,z) and z — % (x,z) are measurable. (9)
i

In the sequel we will write “for a.e. 2”7 instead of “for almost every x”. Let us
assume:

(H1) Behaviour of g—ﬁ: There exist v, L € (0, +00), such that for a.e. z € 2, for
every z,v,w € RVM" and t € [~1, 1] we have

vf(z,z) < Z Z %(1’, 2)zf" (10)
and

f@,v) + Lf(z, w); (11)
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(H2) Monotonicity condition: There exists H € [1, +00) such that for a.e. z € {2
and for every z,w € RVM*" we have

2 <wi| Vi=1,....n = f(z,2) < Hf(z,w);  (12)
(H3) Sign condition:
n N 8f N
< =L « PP
0< ;; 5o (T ;y 2 (13)

for a.e. x € Q, for every z € RV*" and y € RY;
(H4) p, q growth: There exist ¢, c3 € (0,400), c2,¢4 € [0, +00), p,q € [1,+00)
with p < ¢, such that

|z’ — e < flx,2) < eslz|* + e, (14)

for a.e. z € Q and for every z € RV*",
Let us state our main result:

Theorem 2.1. Let f satisfy (H1)-(H4) and u € WEHQ; RY) be a minimizer

of F. If mo .
n—p_p

then w € L2 (Q;RYN).  Moreover, for every ball B(zg,0), with o < 1 and

loc

B(xg,0) C Q, it results that

p<n and ¢q<

*

FoD

" p*(p*—q

[l | (Beo,5)) < C </B( )(1 ¥ ul? )dx) (16)
x0,0

for a suitable constant C' € (1,400) depending only on o,n,p,q,v, L, cy1, ca, c3, ¢4

Remark 2.2. The right hand side in (13), called “indicator function” in the
framework of elliptic systems, seems to play an important role in deriving reg-
ularity properties (see [27] where the isotropic case p = ¢ has been dealt with).

3. Properties of f and Euler-Lagrange system

We first note that positivity of f and coercivity (10) give
f(z,0)=0 (17)

for a.e. x € ). We have the following
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Proposition 3.1. Let f: Q x RM*" — [0, +00) satisfy (8) and (11). Then

v+ tw) = f(.0)] < 3 (@) + L (@,w) (18)
and 5
flz,v+tw) < (5—1-1) f(x,v) + Lf(x,w) (19)

for a.e. x € Q, for every v,w € R¥*" for any t € [-1,1]. Moreover for
a.e. v € Q, for every w € RN*" for any t € R with |t| < k € N it results that

k+1
fltw) < 2f(@,w) 3 (L) (20)
where
f/:max{g%—l;[/}. (21)

Proof. Let us evaluate the difference

n N

1 1
f(x,v+tw)— f(z,v) :/0 %[f(:n,v—l—stw)]ds :/0 ZZ %(m,v%—stw}tw?ds

i=1 a=1 t

then, using (11) we get

ds

Y|
Q

-~ Of
Z (x,v + stw)tw;’

|
—
o

< /01 [gf(a:,v) +Lf(x,w)} |t]ds (22)
(

z,v) + Lf(zx, w)] |t]

Thus (18) holds true and (19) follows at once. Let L be as in (21), then (19)
gives
f(a,v+tw) < L{f(w,0) + f(z,w)] (23)
for a.e. x € Q, for every v,w € R¥*" for any t € [~1,1]. When v = 0, since
f(z,0) =0, we get
f(x, tw) < Lf(z,w), (24)

and for ¢ = —1 we have

fx, —w) < Lf(w,w) (25)
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for a.e. z € €, for every w € RV*". Assume that s € (1,2], then 0 < s —1< 1
and we can use (23) as follows

f(z, sw) = f(z,w+ (s — Dw) < L[f(z,w) + f(z,w)] = 2Lf(z,w).

[terating the procedure, for every k € N, for any s € (k, k + 1], for a.e. x € Q
and for every w € RV*" we have

flw, sw) < 2f(w,w) > (LY. (26)

j=1
Now, if k € Nand t € [-(k+1),—k), then —t € (k, k+ 1] and we can use (25),
(26) as follows f(z,tw) = f(z, —(—t)w) < Lf(z, (—t)w) < 2Lf(x,w) Z?Zl(i)j
— 2f(a,w) DALY s0 that

k+1
f( tw) < 2f(w,w) Y (L) (27)
if t € [—(k+1),—k). Inequalities (24), (26) and (27) merge into (20). O

Remark 3.2. Left hand side of (14) gives that

0< f(z,z) when |z|7 > ? (28)
1

for a.e. x € Q. By means of (28), (17) and (19) with v = 0 and t = 1, we get
0< f(z,2) < (¥+1) f(2,0)+ Lf(z,2) = Lf(z,z) so that 1 < L. On the other

2
hand (28), (10) and (11) with v =0, w = z and ¢t = 1 imply

n N
0<vf(r,2) £ 3000 $ 0w ) < L f0) + L2 2) = L (2, 2)

i=1 a=1
then
v < L. (29)

Previous properties of f allow us to show that minimizers of (1) satisfy the
Euler system as follows.

Theorem 3.3. Let f : Q x RVN*™ — [0,+00) satisfy (8), (9) and (11). Let
u € WHH(Q;RY) minimize F so that (2) and (3) hold true. Then u verifies the

FEuler system
n N
/ Z Z of (x, Du)Dv*dx =0 (30)
Q% Oz

i=1 a=1

for every v e Wy (RN with finite energy F(v) < +00.
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Proof. Note that both u and v have finite energy. Then assumptions (8)
and (11) give additivity property (19), so that

0 < f(z, Du(z) + tDu(x)) < (g + 1) F(z, Du(z)) + Lf(z, Dv(z))

thus u + tv has finite energy for every ¢t € [—1,1]. Moreover, assumption (11)
with ¢ = 0 ensures that

r — ZZ af (z, Du(z)) D™ (x) € LY(Q).

Let us set ¢(t) = F(u +tv). Then ¢ : [~1,1] — R and ¢(0) = min;_; 1) ¢. We
claim that

¢'(0) = /QZ Z é?az]; (x, Du)Dv® dz. (31)

If so, since ¢ achieves its minumum value at ¢ = 0, then ¢'(0) = 0 and (30)
follows at once. Let us prove claim (31). Observe that

¢(t)_¢(0)_ f(maDu—i_tDU)_f(x?Du)
and
P_{% f(z, Du(z) + tDvi:c)) — f(z, Du(z)) _ Z Z SZJ; (2, Du()) Do ().

i=1 a=1

On the other hand assumption (11) gives us (22) and we get

f(z, Du(z) + tDv(x)) — f(=x, Du(m))‘ < gf(x’ Du(z)) + Lf(x, Dv(x));

since * — f(z, Du(z)) € LY(Q) and z — f(x, Dv(x)) € L'(Q), then we can
pass to limit as ¢ — 0 under the integral sign in (32) and (31) is proved. This
ends the proof of Theorem 3.3. n
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4. Examples

In this section we give some densities f verifing assumptions (H1)—(H3).

4.1. Notations and preliminaries. We recall properties of generalized N-

functions of As-class ([31]). Let g : Q x [0,+00) — [0,+00) be a generalized
N-function, i.e., for a.e. x € ),

t — g(w,t) is convex, increasing and C*([0, +00)), (33)
dg .
a(:ﬂ,O) =0=g(x,0) <g(xz,t) if0<t. (34)
Moreover, for every t € [0, +00),
dg
r— g(z,t) and 1z — E(m,t) are measurable. (35)

In addition, we assume As-property uniformly with respect to x: There exists
a constant ko > 0 such that, for a.e. z € (),

g(x,2t) < kog(x,t) Vit > 0. (36)

Now we recall known properties of function g : Q2x [0, +00) — [0, +00) satisfying
(33), (34) and (36), see [31]. Fix z € . For every s and t in [0, +00) convexity
gives
g
g(ﬂ?,S) 29(95715)4‘5(%15)(5—75) (37)

We use s =0 in (37). Since g(z,0) = 0, it results that
g
g(x,t) < E(I’t)t Vit > 0. (38)
We use (37) with s = 2t and As-property. We get g(x,t) + %(m,t)(t) <
g(x,2t) < kog(x,t) then
99
ot

Inequalities (38), (39) and (34) show that 1 < ky—1, then 2 < ky;. A careful
inspection shows that 2=k, cannot happen under our assumptions, then 2 < k,.
By iterating inequality (36) we get, for every m € N,

(x,t)t < (kg — 1)g(z,t) Vt>0. (39)

g(x,2™t) < k3'g(x,t) Vit > 0.

Therefore o
g(x, M) < kA @ g(x,t) YA >1, VE>0
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and for every r,t € [0, +00)

In(kg)

g(z,rt) < ke max {1, ) }g(x, t).

Convexity (33) and As-property (36) imply that, for every t1, ¢y € [0, +00)

1 1 1 1 k
g(x, by +1t2) = g(x,2<§t1+§t2>) < kag (33, §t1+§t2> < 52(9(17>t1>+9(377t2>)-

Now we need the following inequality: Let h, f : I C R — [0, +00) be increasing,
then

h(t)f(s) < h(E)f(t) + h(s)f(s) Visel. (40)

Let us apply (40) with A(t) = g—i’(:c, t) and f(s) = s, so that, for t1,t; € [0, 4+00),
we have

0 0 9
ag (2, t1)ts < a—‘j(w,tl)tl n a—g

Moreover, (39) allows us to write

0 < (.le,tg)tg.

dg
ot

dg

(iL‘ tl)tl + = 8t

(2, t2)ts < (ko — 1)(g(x,t1) + g(x, ta)).

4.2. Example 1. Let us define

fx,2) = gz, |2])

where g : Q x [0, +00) — [0, +00) satisfies (33), (34) and (36). We obtain

—= f 0
o, o Gy o
Zi 0 if z=0,
so that, if z # 0,
L ag z dg
ZZa 2(@.2)5 =303 Gl el =5 Dl 2 gl o) =/ (@, 2)
i=1 a=1 i=1 a=1

where we used (38) in the inequality. If z = 0 then —(x z) =0 =g(z,0) =

f(z,z). Then (10) holds true with v = 1. In order to verify (11), assume that
z =v+tw # 0. By means of properties of g, |z| < |v| + |w|, provided e € (0, 1],
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we have
n N
of N
Zza—#(% z)w;
i=1 a=1
89
= 21;’2
dg
< =
< 8t<x,|z|>|w|
dg vl
= Ea(% |Z|)7
< elky — 1) |glo|2]) + g (x 'w—')] (41)

i w
< elhe = 1 oo, o]+ fol) 4.9 (2.2
In(ko)

k k 1\ =®
< elhe = 1) | Rl + otolul) + e (1) ot ful)

(k;g—l)k; flx,v) + 1+2(1>m<2) flz,w)

Since ko > 2 we take € = m € (0,1) and (41) becomes

n N 8
S5 I 2y

i=1 a=1

< % [f(x,v) + (1 Lo, :3553)) f(x,w)] 4

When z = v + tw = 0 easily (42) holds true. Then we checked (11) with
21n(kg)
=1 (1 + 2k, " ) Inequality (13) follows easily. Indeed, if z # 0 we have

n N N n N z- N
> 2Dy Yy Z z, "‘Zyﬁ&f
i=1 a=1 1 B=1 i=1 a=1 B=1
N
SRS 3 SED
at i=1 a=1 p=1
8g _

5t (& ||)| |Z(< )’

> 0.

Now we are going to verify (12). If |z;| < |w;| for every ¢, then |z| < |w].
Since t — g(z,t) is increasing, we get f(z,2) = g(z, |z]) < g(z, |w|) = f(z,w).
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Thus (12) holds true with H = 1. Note that (8) is verified. If g satisfies also (35)
then (9) is satisfied, too.

4.3. Example 2. Define
fla.2) =) g5, 1%])
j=1

where every g; : 2 x [0, +00) — [0, +00) satisfies (33), (34) and (36). Note that
Ag-property (36) holds true with the same constant ky for every g;. Then

90, o
of w2 £ 0,
W(%Z) =4 Ot i
& 0 if 2, = 0.

Similar arguments to those performed in the above Example 1 on each g; allow
21In(kg)

us to check (10) with v = 1, (11) with L = 1 (1 + 2k, " ) (13) and (12)
with H = 1. Note that (8) is verified. If, in addition, every g; satisfies also (35)

then (9) is satisfied, too.

4.4. Example 3. We take
fz,2) = alz, |[z]) + b(x, |27])

where a,b : Q x [0, +00) — [0, +00) satisfy (33), (34) and (36). Note that the
Ag-property (36) holds true for a and b with the same constant ky. Moreover, I,
and I* are not empty subsets of {1,...,n} with , N I* = @ and I, U I* =

{1,...,n}.

ze={2{1€l,anda=1,...,N}

and
Zr={rielanda=1,...,N}.
We get
(O o
a—j(m,\zq)é—’*l if i € I, and z, # 0,
of 0 ifiel, and z, =0,
%@’Z): ob 22
K E(w,\z*|)|;*| if i € I" and 2" # 0,
0 ifi e I"and 2" = 0.

By proceeding as in Example 1, separately on a and b, we obtain (10) with
21In(kg)

v=1,(11) with L = 1 (1 + 2k, " ) (13) and (12) with H = 1. Note that
(8) is verified. When a and b satisfy also (35) then (9) holds true.
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Remark 4.1. Now we show a “negative” example in which sign condition (13)
is not fulfilled. When N = n we take

Fla,2) = 2P+ (tr(2) = 3 () + (Z ) .

r,s=1 r=1
Then i—@(z) = 220 +2(>°"_, 2I) §io where 0, = 1 when ¢ = o and d;, = 0
when i # «. We take z to be a diagonal matrix and y to be the unit vector
in the first direction: z* = ¢;0,, for suitable constants ¢;,...,%, and y* = d1,.
Then we have

af a 8.8
. @—Z?(Z)y ;y z; =2t

tl—i—it?«] <0

r=1

provided t; =1, t, < =2 and t, =0 for r =3,...,n.

5. Proof of Theorem 2.1
Let u be a minimizer of (1). We split the proof into several steps.
Step 1. We construct a suitable test function v to be inserted into Euler sys-

tem (30). Let ¢ : [0, +00) — [0, +00) be increasing and C*(]0, +00)). Moreover
we assume that there exists a constant ¢ € [1,4+00) such that

0<¢(t) <¢ Vtel0,+oo) (43)
0<¢'(t) <¢ Vtell,+0) (44)
0<PWt<é Ytel0,+oo). (45)

Let B, = B(xo,p) and Bgr = B(xo, R) be open balls with the same center z,
and radii 0 < p < R < 1, with By C 2. We assume that n : R" — R,
ne€ Cy(Bg) with0<n<1inR", n=1on B,, |Dn| < ﬁ in R™. Note that
0O<R—-—p< R<1so0 % > 4. Let m > 1. We consider the test function
v= (vt ..., v") defined as follows

v® = ¢(lul)un™. (46)

It results that v € W' (Bg) € W, () and

/ Y uﬁ
Div® =™ (Ju])Lgjui>03 Zm(Diuﬁ)uaﬂﬁ(IU\)Diu“ +¢(lu)uTDi(n™)
p=1
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where 14(z) = 1 if 2 € A and 14(x) = 0if v ¢ A. We claim that 2 —
f(x, Dv(z)) € L*(2). Indeed, (45) gives

2

Z (ful) 1{|u|>0}z| | (Diu”yun™| < (¢)*| Diul®. (47)
Let us set
N
2 = ¢'(|u]) Lgjui>o01 Z n™ and w = éDu’.
B=

Since inequality (47) gives |z;| < |w;|, by assumption (12) and property (20)
with ¢ < k € N we get:

N U,’B
(20 el oy 3 (D) x ™) < Hf (e, 2Dw)
B=1

k+1 (48)

< 2H f(z, Du) Y (L)',

=1

Since u has finite energy (2), the positivity of f and inequality (48) ensure that

uP(z)

v = f (6 () Doy () 3 1o D6 @) X (@)™ () € L(@) (49
B=1

Moreover, (43) and properties of 7 give 0 < ¢(|u|)n™ < ¢ < k for a suitable
k € N. Then (20) implies f(z, ¢(|u])n™Du) < 2f(x, Du) ZkH( ) and then

v = f(z, ¢(Ju(z)))n™(z) Du()) € L'(Q). (50)

Finally, again by (43) and (20) we get f(z, ¢(|u|)ux D(n™)) < 2f(z,uxD(n™))

Zf?( )%. Since u has finite energy (2), the left hand side of (14) guarantees

that Du € LP(Q). Sobolev embedding and (15) give us u € LP" (Bg) C L(Bg).
We recall that 7 = 0 outside Bg. Since f(z,0) = 0, then

f(wau X D(nm)) = f(xau X D(Um))lBR-
Now we use the right hand side of (14) and the estimate for |Dn]:
4 q
o D071 < (eafu x D)+ ea) 1y, < (cam (R——p) [ul? + ) L,

Since g < p*, we have u € LY(Bg) and

v = f(z, ¢(Ju(z)])u(z) x D(n™(x))) € L'(Q). (51)
Inequality (19) and (49), (50), (51) give x — f(z, Dv(z)) € L*(Q).
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Step 2. For ¢ and 7 as in the previous step we prove that

2Lcs Am \1?
DulPo(|u|)n™ dx < <—> / ul?o(|ul) dx
|, 1pupeul (), et

(52)
- <2VL;4 + Zj) O(lul) de
By inserting v = ¢(Ju|)un™ into Euler System (30), we get
- [55%
/ZZ (z, Du)¢'(|u])11ju>0y Z N dx
i=1 a=1 B=
/Zzaa o (Jul) (Dsu® )™ da
» Z Sl D™ da
= (A1) + (A2) (As)-
Thus
(A1) + (A2) = —(A43). (53)

We can use assumption (13) with z = Du(z) and y = u(x) in such a way that
0 < (Ay). Coercivity assumption (10) with z = Du(z) gives:

v / F (@, Du)o(Jul)y"dz < (43).

We apply (11) with v = Du(z), t = 0 and w = [u(x) x Dn(z)]mn~'(z) as follows

0 il
= [ 3 e pwe oy maluas
{m>0} z

zlal

< §/§2f($7DU)¢(IU|)77mdw + L/ f(z, [u x Dnlmn ") é(|u|)n™dx.

{n>0}

These inequalities can be inserted into (53) and we get the following Caccioppoli
estimate

5 | Duour e <L [ g Do ou o
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The right hand side of growth assumption (14) allows us to write
|t lwx Dajmyojul o da
{n>0}
< [ eallu x Dyl )7+ el ful)” d
{n>0}

— [ feallult Dalomt ol + cad(ful)] d
{n>0}
= (As).
By choosing m = ¢+ 1, since 0 <7 < 1, we have

(A4)) < / s (2| Dftmg(ful) + ca(jul)q™ d.

The left hand side of growth assumption (14) allows us to get

/ 1| Dup — eol(jul)™de < / £(z, D) (ul)™ de.
Q Q

Thus Caccioppoli inequality (54) gives

v
5 [l Du—cio(luds < L [ lex(lult Dalrmto(ful) + cooul) "o
Q Q
so that
2Lczmd 2Lc c
[1arotunas < 22 upspaolude+ (22 + 2 [ ounras
Q vey Q vey c1/Ja
By the properties of n and |Dn|, we get (52).
Step 3. Let 5 € (1,+00) and assume that
lu| € LTPE-N(BpR). (55)

With a suitable choice of ¢ we are going to show that

)qﬁ” /B (1 + |u|rPP DY dz,  (56)

4dm

/ |Du|p5p|u|p(ﬁ—1)nm dr < cx <_
Br R—p

where c5 = w%cclﬁc“) Indeed, for every k € N, we consider ¢ : [0, +00) —
[0, +00) in C([0, +00)) such that there exists ¢ € [1,+oc) for which the fol-

lowing properties hold true:

Oi(t), 9 (1), 9 (t)t € [0,6] V't € [0, +00), (57)
0 < ¢p(t) < (BtP1yP Vte|0,+00), (58)
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Jim gu(t) = (571 V€ [0, +00). (59)

For instance, the construction of ¢, can be done as follows. We consider
o(t) = ct

where ¢ = 6 and o = (3 —1)p. Since ¢/ (t) = cat® ' and ¢ (t) = cala—1)t* 2,
we have to distinguish the case 0 < a < 1 from 1 < a. Indeed, when 0 < a < 1,
we see that ¢ is decreasing and lim,_,o+ ¢/(t) = +00. On the other hand, when
1 < a, then ¢’ is increasing and lim;_,o+ ¢'(¢) € R. Thus, when 0 < o < 1 we

consider )
& (%) for t € [O, %)
[

Or(t) = &(t) fort € %, k‘]

Gk k+1—t) forte (kk+1)
0 for t € [k + 1, +00).

When 1 < a it is not necessary to modify ¢’ (t) for small ¢t and we can consider

o' (t) for t € [0, k]
O(t) =< ¢'(k)(k+1—1t) forte (kk+1)
0 for t € [k + 1, +00).
We set ¢p(s fo O (t)dt and all the required properties are verified. Con-

sider (52) Wlth o) replaced by ¢r. Assumption (55) and property (58) allow us

to write
0<¢p(fu) < BV e LY(Bg),

0 < [ul?¢r(|ul) < 87[ul™*"" € L'(Bg).

So (52) becomes
| 1Dupen(iuly ds
Br

q
< 2Lcs < dm ) Bp’u‘qup(,Bfl) dr + (2LC4 n C2) ﬁp‘u’p
B 1481

vep, \R—p c
q
< Heraral () o [ ) ds
vey R—p Br
since ™ > 4m > 4 and (29) implies £ > 1. We set ¢5 = 2hleatestes) anq get

vey

4
/B Dupon(ulyde < e () 5 [ o) o

Fatou lemma and (59) allow us to let & go to oo and (56) follows.
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Step 4. Now we prove that
w e LPPD(BR)  forsome B>1 = wuc L (B, (60)

and the following estimate holds true

o 5
/ (1 + |u|ﬁp*)dx < 08B7’* (S_m) (/ (1 + |u|‘1+p(5—1))dx) (61)
B R—p Br

P

"

p
where cy = 9 (1 + |B1 _%) + 2L(c1+catc3+eq) <P(n—1)> )p c (1’+OO)' Indeed’

vey n—p

assumption (55) and Caccioppoli inequality (56) allow us to check that the

function w = |u|’y™ is in W, *(Bg) with
|Dw| < Blul" [Duly™ + |ulmn™ | Dy

and

/ \Dw\pdx§2p/ | DulP 8P |[ulPP~Yy™ da
Br

Br

4 p
4P (_m) / (1+ |u|q+p(6—1)) dx
R—p Br

4m \?
< e [ —— Bp/ 1+ |u|?t?B=DY de
(7)o [ s

4 p
4P (_m) / (1+ |u|q+p(ﬁ—1)) do.
R—p Br

Then fBR |Dw|Pdx < (1+c5) (;—Z)qﬂp fBR(1+ |lu|+P(B=1) dz. Since p < n, we

can use Sobolev embedding theorem and we get

P
%

* P _]_ P
( |w|P dx) < (p(n_ )> | Dwl|? dx
Br n—p Br

< (MDY e (52 ) o[ (fufr) ae

n—p R

so that

p% q
( / <|u|ﬁnm>p*dm) < coB? (8—’”) [l
Br R—p Br
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P
where ¢q = 2Eletertesten) (p(":1)> € (1,+00) since 1 = & < 24 Note that
vey n—mp Cc1 vey

b
*

()" - (], e

p 1
<1+ |B1|_”)m/3 ldx
R

8m

q
<(1+|B|™)p" (R—_p) /BR(l + [u| PO .

Then we obtain

(/B(l—l-(|u|577m)p*)dx)p < 21%(1—1—|B1\—%)ﬁp (;:_T_np) [9(1+|u|q+p(6—1))dx

R R

> 8m \*
+ 277 ¢ 87 (—mp) /B(1+]u|q+1’<5—1>)da:

R

8m \?
= c7 37 (—>/ 14 ||2PB=1)Y g
8 () [ @)

R

where ¢; = 21%((1 + |By|™") + ¢6) € (1,+00). Since n = 1 on B, and 0 < 7,
. 2 q
we have (pr(l + ul?P )dx) < 3P <I§—Tp> S5, (1 + |u|2+PB=1)) dz and (61)

follows.

Step 5. Now we use Moser’s iteration. Let us recall assumption (15): ¢ < p*.
Then

q+p(B—1)<pp

Let us define 8 such that g+p(f;—1) = p*. It turns out that f; = 1+(p*—q)/p.
Since ¢ < p*, then $; > 1 and (60) gives higher integrabilty. We iterate this
procedure as follows. Let B, be the open ball with radius ¢ < 1, centered at
xo, with B, C €. We define the radii pj, in this way

plza—% and pj+1:pj—# for j € N.
Then %0 < pp < %a. We define R;, as follows
Ri=0 and Rj;=p; forjeN.
Then Ry — pr = 5157. We define exponents (3 as follows

qg+p(fi—1)=p" and q+pBj—1)=pB; forjeNlN.
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It results that 3; € (1, +00) and
p b —q q—p
p p—pr D =P
We iterate (61) and, for every j € N, we get

[ ) de < (0 (1 g () )

By,

P\ 1Ti=h

(e (87m21+h)q<p) (/ngu\p*) dgc) (%)

where all balls have the same center xq. Since 3 < pg, taking the power of both
sides with exponent —— we obtain

p Bj
1
p*B;
()
sz—l(ﬁ)k L kg
< (o) 7 0L (Hi () (62)
L 1+J h 1 i)] )
P P p*B;
S (8_m21+h) </ |U‘P da:)
o
Bs
Note that for every j € N we have 1 < (Z’J) g =3
(es)75 f(5) < (ca) 7= (63)
2y 1 =N _p'-p _
and (f30(1+’u|p*)dx)<p)pﬁjg(fBo( p*)d) (J”B 7Vd )p(p =
Moreover . k
. P* M p*—p p* o »
m_,(5)(5) " F < B () Dimee) o
and
8 L(%)H'J hﬁl. ) )
., (S2r)’ o AEReE)SIE@ e
o o

We insert the previous estimates (63), (64) and (65) into (62). For every j € N
we obtain

1
p*Bj -
< ’U‘p*ﬁjdx> ]< (Cg)mep 7q< (%)) Z+oo k‘( )k
Bo
2

A (n(22)) 5% (;’*)hh( /B (1+|u\p*)dx><p;)jp*1ﬂj-
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Again by (15), ¢ < p*, we get

lim Bj =400 and lim (p_) — = *p - b
j—r+o0 ji—+oo \'p ) pB;  pr(p*—q)

So, taking the limit as j — 400 in (66), we get

||U||L°°(B%)

(e (n(5) S k(R

< 3B (n(2m)) D1 (#) " ( / (1+ Ju
B

o

*

p"—p
" p*(p*—q)
Py dx :

This ends the proof. O
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