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Abstract. In this paper we consider an n-dimensional system of visco-thermoelas-
ticity with second sound, where a viscoelastic dissipation is acting on a part of the
boundary. We prove some decay results for solutions with specific regular initial data.
In this regard, polynomial and general decay results are established.
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1. Introduction

In the classical thermoelasticity, the heat flux is given by Fourier’s law. As a re-
sult, this theory predicts an infinite speed of heat propagation. This means that
any thermal disturbance at one point has an instantaneous effect elsewhere in
the body. Experiments showed that heat conduction in some dielectric crystals
at low temperatures is free of this paradox and disturbances, which are almost
entirely thermal, propagate in a finite speed. This phenomenon in dielectric
crystals is called second sound (see [5]). To overcome this physical paradox,
many theories have merged. One of these theories suggests that Fourier’s law
be replaced by so called Cattaneo’s law. For results concerning existence, blow
up, and asymptotic behavior of smooth, as well as weak solutions in heat con-
duction with second sound, we refer the reader to [5, 7-9, 11, 13, 15].
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For thermoelasticity with second sound, many results have been established
over the past three decades. Tarabek [26] treated problems related to

Ut — @ (ufm (97 Q> Ugy + b (uasa 67 Q) 9:1: = Q3 (u:ta 9) 44z
0r + g (U, 0, q) @ + d (Ug, 0, q) Ue = 2 (s, 0) qq; (1.1)
T(uxae)qt+q+k<ur70)8x :OJ

in both bounded and unbounded-domain situations and established global ex-
istence results for small initial data. He also showed that these “classical”
solutions tend to equilibrium as ¢ tends to infinity; however, no rate of decay
has been discussed. In his work, Tarabek used the usual energy argument and
exploited some relations from the second law of thermodynamics to overcome
the difficulty arising from the lack of Poincaré’s inequality in the unbounded
domains.

Concerning asymptotic behavior, Racke [21] discussed (1.1) and established
exponential decay results for several linear and nonlinear initial boundary value
problems. In particular he studied (1.1), with ay = ay = 0, and for a rigidly
clamped medium with temperature hold constant on the boundary, i.e.,

w(t0)=u(t,1) =0, 0(t0)=0(t1) =0, t>0

and showed that, for small enough initial data, classical solutions decay expo-
nentially to the equilibrium state. Messaoudi and Said-Houari [14] extended the
decay result of [21] to the case when a; # 0, as # 0. Recently, Qin et al. [17]
considered a one-dimensional nonlinear system of thermoelasticity with thermal
memory and second sound and proved global existence and exponential decay
of solution provided that the initial data are close to equilibrium and the re-
laxation function decays exponentially. Also, Racke and Wang [23] considered
a nonlinear one-dimensional Cauchy problem of thermoelasticity with second
sound, discussed the well-posedness and described the long-time behavior of
the global small solutions, obtaining a polynomial decay rate.

For the multi-dimensional case (n = 2,3), Racke [22] established an exis-
tence result for the following n-dimensional problem

( g — pAu — (p+ A)V(divu) + VO =0 in Q x (0,400)
cby + rdiv g + fdivu, =0 in Q x (0, 4+00)
Toqt + ¢+ kVO =0 in Q x (0,400) (1.2)
u(.,0) = ug, u(.,0) =wuq, 0(.,0) =0, ¢(.,0) =qp in Q
L u=60=0 on d x [0,+00),

where 2 is a bounded domain of R", with a smooth boundary 99, u = u(z,t),
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qg = q(z,t) € R", and p, A, B,7,9, 7,k are positive constants, where p, A are
Lame moduli and 7y is the relaxation time, a small parameter compared to
the others. In particular if 7y = 0, (1.2) reduces to the system of classical
thermoelasticity, in which the heat flux is given by Fourier’s law instead of
Cattaneo’s law. He also proved, under the conditions rotu = rotq = 0, an
exponential decay result for (1.2). This result applies automatically to the
radially symmetric solution, since it is only a special case. Messaoudi [10]
considered (1.2), in the presence of a source term in the first equation, and
proved a local existence, as well as, a blow up result for solutions with negative
initial energy. This result was later extended to certain solutions with positive
initial energy by Messaoudi and Said-Houari [12].

Concerning Timoshenko systems of thermoelasticity with second sound, we
quote the work by Messaoudi et al. [16], in which several linear and nonlinear
problems have been treated and different exponential decay results have been
established in the presence of an extra frictional damping. Fernandez Sare
and Racke [6] showed that, in the absence of the extra frictional damping,
the coupling via Cattaneo’s law causes loss of the exponential decay usually
obtained in the case of coupling via Fourier’s law [19]. This surprising property
holds even for systems with history.

In this paper we are concerned with the following system

( Uy — pAu — (p+ A)V(divu) + V0 =0 in 2 x (0, 400)
ey + kdiv g + Bdivu, =0 in Q x (0, +00)
T0q: + ¢+ kVO =0 1in Q x (0, +00)

u(.,0) = ug, u(.,0) =wuq, 0(.,0) =0, ¢(.,0) =¢qp in Q
u=0 on Ty x|[0,+00)

u(z,t) = —/Og(t—s)(u%+(u+)\)(divu)u) (s)ds on I'y x [0,400)
=0 ondQx][0,+00)

(1.3)

where {T'g,T'1} is a partition of 0, v is the outward normal to 92 and the
kernel g is the relaxation function, which is positive and of general decay. The
boundary condition on I'y is the nonlocal boundary condition responsible for
the memory effect.

Our goal is to obtain a general uniform stability for the solution energy
of (1.3) under suitable conditions on the boundary and for kernels of general-
type decay.
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2. Notations and transformation

In this section we introduce some notations and prove some lemmas. In order
to establish our result we shall make the following assumption:
(H) There exists zq in R™, for which m(z) = x — x satisfies

m(z)-v>60>0, Veely and m(z)-v <0, Vzel,.

First, we will use the boundary condition

u(z,t) = — /Otg(t —3) <u% + (1 + A)(div u)l/) (s)ds, zeTly, t>0 (2.1)

to estimate the boundary term u% + (¢ + A)div u. Defining the convolution
product operator by

(g% )(t) = / g(t — $)p(s)ds,

and differentiating equation (2.1), we obtain

g (“+)‘)(dw“)’/+i(9/*<M%+(#+>\)(divu)u)>: g1

9(0) 0)"
on Fl x R*. Applying Volterra’s inverse operator, we get u +(p+N)(divu)ry =
_g(O) (u+ k*ut) where the resolvent kernel k satisfies k + — (0) (¢'xk) = —ﬁg’
Taking n = ( 7, We arrive af
0
M(‘?_Z + (p+ N (divu)r = —n(us + k(0)u — k(t)ug + k' *u) on 'y x RT. (2.2)

Since we are interested in relaxation functions of more general decay, we
would like to know if the resolvent kernel k, involved in (2.2), inherits some
properties of the relaxation function ¢ involved in (1.3);. The following Lemma
answers this question.

Let h : [0,+00) — RT be continuous. Let k be its resolvent, that is

k(t) = h(t) + (k= h)(t). (2.3)
It is well known that & is continuous and positive (see [4, 18]).

Lemma 2.1 ([17]). Suppose that h(t) < coeJo 7 O%L for 4 : [0, +00) — R*, a
nonincreasing function satisfying, for some positive constant € < 1,

“+oo R 1
o = / o i ©ic gy - L
0 Co

Then k satisfies

k(t) < —0 e n(©Od
- 1- CoCq
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Proof. Let §(t) = evy(t) and denote K(t) = k(zf)ef(;5 0Qde H(t) = h(t)efot JOLS
Multiplying (2.3) by e/o 394 we obtain

t
K(t) = H(t) + / [edo 2(QdC o= Jo oS ¢ (1 — s)h(s)]ds
0
t
:H(t)—i—/ [eff_s5(C)dce—f57(4)d<[((t_S)€f§v(C)dCh<S)]d8
0

t
< ¢o + ¢y sup K(T’)/ e Joh©O=er(CHt=s)ldC .

0<r<t 0
Using the fact that « is nonincreasing we arrive at

t
K(t) < cy+co sup K(r)/ o~ Jo (1=e)7(O)d¢ g o
0

0<r<t

which gives supg<,<; K(r) < cp + cosupg<,<; K(r) f0+oo e~ s 1= g5 hence
K(t) < SUDPp<r<t K<7‘) < lfco Therefore

oc1’

k() < —0 e~ Ji (O 0
- 1- CoC1

Remark 2.2. The result of [18] is only a special case. See also [17] for more
details.

Example 2.3. If we take v(() = a(?, —1 < p < 0 and assume that A(t) <

__a _4p+1 . . . .
coe 71" then with an appropriate choice of @ > 0, one can easily see that,
for some positive constant € < 1,

O a0 i 1
c = e pH ds < —.
0 Co

Consequently, we get
€a tp+1

k(t) < e vt

Based on Lemma 2.1, we will use the boundary relation (2.2) instead
of (1.3)4. Let’s define

(go9)(t) = / gt — 5)|olt) — ()2 ds
0 (2.4)
(go@)(t) = / ot — )(p(t) — (s))ds.

By using Holder’s inequality, we have

(o)W < ( / !g(s)!ds) (lgl o @) (0). (25
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Lemma 2.4 ([1, 2, 18]). If g, € CY(RT) then

(@ hoc= 590 o0 + 3500 - 35000~ ([ a9 e ) . 20
If we define
V={weH(Q):w=0o0nTy},

the well-posedness of system (1.3) is presented in the following theorem, which
can be proved, using the “standard” Galerkin method. See [1, 3] and the refer-
ence therein.

Theorem 2.5. Let k € W*HRT)NWI(RY), ug € (H*(Q)NV), 6y € Hi(Q),
q € HY(Q), and uy € V, with

ou
a—VO +nu; =0 onTy. (2.7)

Then there exists a unique strong solution u of system (1.3) such that

ue CRYH*(QQNV), u € CRT;V), uy € C(RT; L*(Q))
0 € C(R"; Hy(), 0, € C(RT; L*(Q))
g € C(R"; H'()), ¢ € C(RY; L*(2)).

3. General decay

In this section we discuss the asymptotic behavior of the solutions of system
(1.3) when the resolvent kernel k satisfies

K0)>0, Kk(t)>0, K@) <0, K'(t)>~)(—K 1), (3.1)

where 7 : Rt — R* is a function satisfying the following conditions
+oo
y(t) >0, +'(t) <0, and / y(t)dt = +o0. (3.2)
0

Example 3.1. Let k(t) = t > 0. Direct computations show that

1
In(2+t)”

10) = AR 0) with 20 = 15 + G

It is clear that 7 is decreasing (hence 7/(t) < 0). Moreover,

t
/ v(s)ds = In(t + 2) + 2In(In(t + 2)) —In2 — 2In(In2) — 0o as t — oo.
0
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It is a routine procedure to define the first-order energy of system (1.3) by
(see Lemma 3.4 below)

1 .
EN(t) = 5/9 (el + 1V uf? + (1 + A)(divu)® + 6% + 10’

n/kIOU 77/ 2
- = + = k(t)|ul®.
L[ wourd [ hom

Now, we differentiate (1.3), with respect to ¢, to obtain

Ut — AUy — (+ A)V(divug) + VO =0 in Q x (0,400)
by + kdiv g + Bdivu, =0 in Q x (0, +00) (3.4)
Toqu + ¢ + kVO; =0 in Q x (0,4+00)

and the boundary condition (2.2) to get

/’L% + (,u + )\)(le ut)V = —n(utt —+ k(O)Ut —+ ]{j, * ut) on F]. % R'i“ (35)

Consequently, similar computations yield the second-order energy of system

(1.3):

2

_g/rl k/out—i-g/rl k(t)|ut|2

Theorem 3.2. Given (ug,us,6,q) € (H*(Q)NV) x V x H}(Q) x H(Q).
Assume that (H), (3.1), and (3.2) hold, with

1 .
Eﬂﬂ:—/Umf+MVmP+w+Ammmf+cf+mﬁ
Q

lim k() =0. (3.6)

t——4o00

Then, for some ty large enough, we have

H t
a@gjf——+ﬁ/mf/ﬁ@@,wzm
fo y(s)ds 2 Jr to

where 11 is a positive constant.
Remark 3.3. Assumption (3.6) can be replaced by ||k||~ small enough as in [4].

The main idea of proof is to construct an appropriate Lyapunov func-
tional £, using the multiplier techniques. The proof of Theorem 3.2 will be
achieved with the help of two lemmas.
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Lemma 3.4. Under the assumptions of Theorem 3.2, the energies of the solu-
tion of (1.3) satisfy

< flar =5 [+ G [l = [wous G [l 3)
2 r 2 Jr,
—/qutﬁ <. (3.8)

Proof. By multiplying equation (1.3); by wu;, (1.3)2 by 6, and (1.3)3 by ¢ and
integrating over (), using integration by parts, the boundary condition (2.2),
and Lemma 2.4, one can easily find that

—/ ]q[Z—n/ ]ut\z—i-ﬁk'(t)/ ]u|2—ﬂ/ k”ou+77/k(t)utu0
Q r, 2 r, 2 Jr, r

holds for strong solutions. By using Young’s inequality, (3.7) is obtained. Esti-
mate (3.8) is established in a similar way using (3.4) and (3.5). O

Remark 3.5. a) If ug = 0 on I'y, then F is dissipative and E(t) < FE(0).
b) If ug # 0 on I'y, then

B <EO)+ [ o JGCEE (3.9)

Lemma 3.6. Under the assumptions of Theorem 3.2, the solution of (1.3) sat-
isfies, for any e > 0,

for some A > 0.

d

pr Qut-[M+(n—1)u]

§—/|ut|2—,u/|Vu|2—'u—+)\/(divu)2+0/|vg|2
Q Q 2 Q Q

s 1 (3.10)
qu|2 (4o [ (divu)® + C<1 + —) | |2
2 Fl € 1—‘1

C 1
+C’k:2(t) |u|2——/k'<>u—|—5 |u|2+0<1+—)k2(t)/|u0|2,
I € Jn I € r

where M = (M, M, . .. ,Mn)T such that M; = 2m - Vu' and m = (z — xy),
and C' is a “generic” positive constant independent of €.

Proof. We multiply “scalarly” equation (1.3); by M + (n — 1)u to obtain

/[utt — pAu — (p+ ANV (divu) + V] - [M + (n — 1)uldz = 0. (3.11)
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Now, we estimate the terms of (3.11) as follows

/Qutt-[MHn—l)u]:%/ﬂut-wﬂn—nu]—/Qut-Mt—(n—n/thP.

But fQut'Mt = Z?:l fQU,’f(QmVuf:) = Z?:l meV|u;§|2 == Z?:l fQIU%P divm
+ 20 JeluiPm - v) = —n folul® + [i Jw]?(m - v), hence

d
/utt«[M—i-(n—l)u] :—/ut'[MvL(n—l)u]—l—/ 2= [ Juomev). (3.12)
Q dt Jq Q r,
To estimate the second term of (3.11), we start with
- A _ n ) _ n O’
— [ Au-M=— /Au’ 2m-Vu') = /VUZ'V 2m-Vu')—2 /m-Vu’ )
/ > [auenvu) =3 [vit vianvi)-23 v g

Using Vu' - V(2m Vu') = 2|Vu'|> + m - V (|[Vu'|?) we get

_ Ao N 2\ ' 2y o N
/QAUM—2ZZ:;/Q|VU|+;/QWLV(|VU|) 2;£(mVu)ay

2 2 : . B13)
:—(n—2)/ﬂ|Vu| +/F|Vu| (m-y>—2;/r(m-vm) A8
By exploiting | |
2;‘; — ?;5 on T, (3.14)

we estimate the last term of (3.13)

n

i=1

Therefore, we arrive at

- [ar su=—u-2) [ [vup+ [ [Fupn -y
—2g/rl(m-Vui>g—lZ—2§;/ro(

It is straightforward to see that

ou ou
— u-Au:/Vu2—/u-—:/Vu2—/u~—. 3.16
/ [wup = [ St= [ [ 028 @)

ou
ov ) (m-v)



450 S. A. Messaoudi and A. Al-Shehri
Combining (3.15) and (3.16) we obtain

/Au[M+ (n—1)u /’VU’Q /\Vu\ mV—Q/\Vu\ m-v)
0

(3.17)

Next, we estimate the third term of (3.11) as follows

—/QV(divu)-[M—i—(n—l)u]
—(n—1)/Qu-V(divu)—/QM-V(divu)
:(n—1)/{2(divu)2—(n—1)A(u-y)divu—/ﬂM-V(divu)

_22/0% [mjax}dlvu—22/dlvu <mja )m

3,j=1 4,j=1

/dlvu +22/m]8$8% (div u) —QZ/ (div w) (mjax])ui.

2,7=1

We then use Green’s formula to evaluate
ZZ;/m]8$ (axz)dWU—Z/m]a% ((divu)?)
= —Z/ ﬂ(divu)2 + zn:/(divu)Q(mq/-)
X O &%] . T 7
7j=1 7j=1
= —n/(divu)2 + /(div u)?(m - v)
Q r
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Hence — [, V(divu)M = —(n —2) [ (divu)* =237 [i(divu) (mj gg ) vi +
Jr(divu)?(m - v). Again, use of (3.14) yields

n

) ou’ " _ ou’
2 Z /Fo(dlvu) (mj (()_:L‘]) v, =2 Z /Fo(dlvu) (mjauj) v;

27]71 Z’J:]‘

=2 Z/ (m - v)div uaa—uyyi

i

So, — [, M-V (divu) = —(n—2) [, (div u)2+fro(div u)z(m-l/)—i—frl(divu)Q(m-y)
-2 fro(div u*(m-v) =230, fFl(div u)(m - Vu')y;. Consequently, we have

_/deivu)-[MHn—l)u]
_/Q(divu)Q—(n—l) /F divu(u - v) —/Fo(diVU)Q(m'W (3.18)
/(dlvu m-v —22/ (divu)(m - Vu' )y

Finally, to estimate the fourth term of (3.11), we proceed as follows

ou’
Jorwo= 3 fam G =23 [og ()

2,j=1

ORIk
_—2/9dlvu—22/m] Jz: 07,
2,j=1
) 0 ou’
:—2/{10dlvu+22/a—%(mj8)8_%
00
:—2/0d1vu+22/ (divu) [ ]9+ 835]}

zz(n_1)/Qedivwz/g(divu)(m.ve).

By noting that (n — 1) [yu- V60 = —(n—1) [, 0divu, we easily conclude

/QV0~ M + (n—1)u] = (n—1)/96divu—|—2/9(divu)(m-V9). (3.19)
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A combination of (3.12), (3.17)—(3.19) leads to

d

a ). w - [M+ (n— 1)yl

/|ut| o [ vy [ 19 = [ 190 -)
" Fl\w?(mw—;/n e
() {/Qmm);: =) [ @vagio-w
—/Fo(divu)( V) + /(dlvu mev _22/ (div u)( m-Vui)Vi]
_ 3 {(n—1)/Qedivu+2/ﬂdivu(m-ve)] |

2m - Vu' + (n — 1)u)]

Now, we use the fact m - v < 0 on Iy, to get

i ¢ [M+ (n— 1)y

/ il = [ 1V + [ fuf
1N

—(/L—i—)\)/ﬂ(dlvu) — B(n—1) /Hdlvu—Qﬁ/(divu)(m-Vﬁ)
(3.20)

|Vu| (m-v —l—,uz 2m Vu' + (n —1)u’)

T 8V

—i—(n—l)(,u—l—)\)/ (dlvu)(l/-u)—(,u—l—)\)/F (divu)?*(m - v)

I'1

+ Z(A + 1) /F (divu)(2m - Vu')y;.

By exploiting the boundary condition (2.2), we obtain

hs, + (u+ N (divu)y; = —nlul + k(0)u’ — k(t)u + k' * ']

= —y {u; + k(0)u’ + /t E(t— s)u'(s) — ui(t)]ds]

—1 {k(t)% + /0 K(t = s)ui(t)ds]
= — n[ui — ko u+ k(t)ul — /{Z(t)u(z)] on I'y.
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By using the assumption the assumption m - v > § > 0 on I';, estimate (3.20)
reduces to

% Qut-[M+(n—1)u]

<= [P = [ 190 = ) [ (@i
—(n—1)5/Hdivu—Qﬁ/Q(divu)(m-VH)—,ud/rl |Vul?

- T]Z/ (2m - Vu') (uj — k' o v’ — k(t)uf + k(t)u') — (n+ /\)5/ (div u)?

I

—(n— 1)7]Z/F u (up — K o ' — k(t)uh + k(t)u') +/ lu|*(m - v).

I

By using (2.5), Young’s inequality, and the boundedness of ||m||~, one can
easily have

| ) (= Ko k(e + ko)

<1 |w|2+0[/ il = [ o ut 0 (/ [ |u3|2)]'
2 Iy Iy Iy Iy I

Similarly, we obtain
—(n— 1)7}/ u (v — K o u' + k(t)u' — k(t)u)
I't

5/ |ui\2+€ [/ \uff—/ ko ui+k2(z€)/ \ué]Q]
I € Iy Iy I

Also, using Poincaré’s inequality, we have

—(n—1)5/99divu—26/9(divu)(m~V«9) < (’“‘JQFM /Q(divu)2+c/g|v9|2.

By combining all the above, the assertion of the lemma is established. O]

Proof of Theorem 3.2. Let

L(t) = N (E\(t) + Ex(t)) + / e [M+ (n— 1), (3.21)
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Therefore, from (3.7), (3.8), and (3.10) we obtain

) < _N/|Q|2 N/|Qt|2 Nn |Ut| ——77/ K ou
1_‘1 Fl
/ wl? — / [Vl — 2+ A / (div )’
Q

g - (u+)\)(5/(divu)2+(] g |?
'

2 Fl Fl
C C

e |u|2——/ Koudte |u|2+c/|ve|2
€ I € Jr, r Q

1
+C (1 + —) kQ(t)/ |uo|® + NﬁkQ(t)/ |ug .
€ Fl 2 1—\1

By using (1.3)3 and [i. [u]* < ¢, [ [Vul? [ 101> < ¢, [o VO], for ¢, c, >0,
we arrive at

L)< — (N - cl/|q|2 =) [l = [ Juf - / (1) uf
—(u—sc ——k:()—ck: )/|Vu|2
=5 [z~ (Fo-¢) [

e Flk’ou—/g|@|2 {NU+C<1+ )]kZ()/Fl|u0|2.

At this point, we choose our constants carefully. We first, fix € so small that
e, = %u and pick N large enough so that

(3.22)

N
alzgn—CZO and as=N-—-C; >0.

Thus, (3.22) simplifies to

L) < —/Q|ut|2— (g—ng(t)—cok(t))/Q|Vu|2—%(u+)\)/g(divu)2

—/ k:(t)]u|2—a2/]q|2—/|9|2—0/ k’ou+0k2(t)/ |u0|2.
r, Q Q r, r

Using the fact that lim k(t) = 0 we get

t——+o0

L'(t) < —aBEy(t) — 01/ K ou+ CE () [ |ul®, Yt>to, (3.23)

Fl 1—‘1
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for some %, large enough and positive constants a and ¢;.
We multiply both sides of (3.23) by ~(¢) to obtain

w@ﬂwg—m@a@—qwq/wowuwwﬁw o, Wi 1.

Fl 1_‘1

A simple calculation, using the boundedness and nonincreasingness of ~(t),
yields v(t)L'(t) < —ay(t)Er(t) +¢1 [r, K" o u+ CR*(t) [1. [uo|*. Using (3.7) we
easily see that v(t)L'(t) < —ay(t)Er(t) — cE(t) + CkA(t) fl“l lug|?, for all t > t,
where ¢ is some positive constant. Thus, we get, using the fact that v/(¢) <0,

d

L L) + 1 1) < ~ar (B + CR(D) [ Tl

I'1

or

1d
HOB) <~ 8 (L) +eBu(e) + R0 [ ol i (329
Iy
By setting o(t) := f; ~v(s)ds, we easily see, using (3.7),

(e(t)Ei(t) = (1) Ev(t) + o (t) By (t)

1d
< = QOO + cBx(0) + OB | o + Zo 0k (0) [ Juof
adt r, 2 r
for all t > to. A simple integration over (o, t) leads to
1 1
o(t)Ei(t) <o(to)Er(to) + ~ (v(to)L(to) + cEr(to)) — o (Y()L(t) + cEA(t))
t t
—I—C/ ]u0|2/ K (s)ds + 1 \u0|2/ o(s)k*(s)ds
Iy to 2 Iy to
T] t
<II+ —/ |u0]2/ o(s)k*(s)ds.
2 I to
This implies that
Ei(t) < £+ﬁ/ lu |2/1t 7)o 9)ds, Wi >t (3.25)
! - U(t) 2 I ° to U(t) ’ = .

By noting that Z((g < 1 for all s <, the claim of theorem is established. O]

Remark 3.7. Note that, if &' decays exponentially (y(t) = a) and uy € H(Q),
then (3.25) reduces to

DO

11
a

i.e., Fy decays polynomially. However, if k' decays polynomially (y(t) = 1L+t)
and uy € H}(Q), then (3.25) reduces to

Ei(t) <

—_— t>t 2

i.e., F; decays logarithmically.
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4. Polynomial decay

In this section we show that, in the polynomial case, we can obtain a better
estimate than the one derived from the general case. In other words, we will dis-
cuss the asymptotic behavior of the solutions of system (1.3) when the resolvent
kernel k satisfies

KO)>0, k(t)>0, K@) <0, K(t)>al—K@®)y, 1<p< g (4.1)
Remark 4.1. Condition 1 < p < % is made so that
+00 +oo 1
/ (—k'(s))* P ds < +o0  and / (—K'(s))2 ds < 4o0. (4.2)
0 0

The main result in this section is

Theorem 4.2. Given (ug,us,6,q) € (H*(Q)NV) x V x H}(Q) x H(Q).
Assume that (H) and (4.1) hold with

lim k(t) =0.

t——+o0

Then, for some ty large enough, we have

il t 1
— +11 (/ |u0|2/ kQ(S)d8> , Vit >tp, (4.3)
2p—1 Fl to

where 11 is a positive constant.

Ei(t) <

t

In order to prove this theorem, we need the following

Lemma 4.3. Under the assumption of Theorem 4.2 we have

(/F —k’<>U> T /F1 ) ou. m

for some constant Cy > 0.

Proof. By using Holder’s inequality, with ¢ = 2= and ¢’ = 2p — 1, and Re-

2p—2
mark 3.3, we get
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(fr/ (1 =5) () - u(s))2d8d0>2§_1
([ [eresrn- u(S))stdg)Qpl_l
) 200/0}_,4 / [Vu(®)*+|Vuls )|)d:z:d5)2p2

( 1
< remaoryin) ()

< (100 [1r-ptmoras) ([ ryen) ™
( 1

2p—2

()

=
o)
o
s
o\,.
T
a2
—~
V)
~
N
N}
IS8
V)
N—
&

Also, similar calculations gives

K oul? < </Ot (=K (s))>" ds) (=K o u). (4.5)

Lemma 4.4. Under the assumptions of Theorem 4.2, the solution of (1.3) sat-
isfies, for any e > 0,

d
p Qut-[M—l—(n—l)u]

< / wf? — / VP — B2 / (divu)?
Q 2 Q
1) C
/ v - 0 / VP = (4 + ) / (diva) + & / 2
2 r 'y 1% I

+C’k2(t)/ |u|2+% (—k:’)p<>u+5/ |u|2+0k2(t)/ luo|?,
Iy I Iy

(4.6)

where C' is a “generic” positive constant.
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Proof. The proof goes exactly like that of Lemma 3.6, using (4.4) and (4.5). O

Proof of Theorem 4.2. Let L(t) be given as in (3.21). Similar calculations lead
to

1
ﬁvms—/Wwﬁ—ﬁ/nmﬁ—+u+m/kmﬂf—m s
(9] I
—a1/!q| /]9] —ag/ KV ou+ CE(t) luol?, VYt >t.
F1 Fl

for some % large enough. Thus, we obtain, for a positive constant «,

‘(t) < —04{/9|ut\2+/Q]Vu]2+/ﬂ(divu)2+/Fl k(t)\utH/Q\qF
+/Q|0|2+/r1 (—k’)p<>u}+0k2(t) [ JuoP

Next, by using (3.3), (3.9) and (4.4), we get

g < o { [up+ [ 1ver+ [ [ ko [ o
+/Q|9|2+}+c(/m —k:’<>u)2p1
<o{/mPL/ww [t [ ko + [ o8
/|e|2 /F (— kY ou}

By combining (4.7) and (4.8), we arrive at £'(t) < —co B~ (t)+Ck(t) (t) Jr, luol®
for co > 0. Therefore, recalling (3.7),

uﬁ“%W:E”%>+MWW?%w

< —— [ﬁ’( ) — C’k:Q(t)/ |u0|2} + gAzp—thQ(t) |uol?,
'y

Co r

for all t > to. A simple integration over (tg,t) gives

tEP Nt < — = {z'( )= L'(to) +C [ |uo |2/ k(s ]

Co

I to
+toE 2p1 77A2p 2/]u|2/sk2
T to

<C+”A2p 2/ o |2/ sk2(s)ds,
Iy to
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hence .
C
E¥ () < = + ”A2p2/ u y?/ Sk (s)ds
t 2 r, o ¢
Therefore,
1
I1 t -1
Ey(t) < — +H(/\WP/Aﬂ@m> . Vit >t (4.9)
t2r—1 Iy to
This completes the proof of Theorem 4.2. O]

Remark 4.5. Note that, if p = 1 then (3.25) and (4.9) give the same result.
Moreover, E; decays at the rate t~! when k' decays exponentially and ug €
H}(Q). However, if 1 < p < % then (4.9) gives a better decay estimate than
(3.25).

Remark 4.6. If k'’ satisfies

1

k(1) = a(=K'(1))",

N W

<p<2
then the best rate we may obtain is the logarithmic decay if ug € Hy(€2).
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