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A Remark on Hausdorff Measure

in Obstacle Problems

Jun Zheng and Peihao Zhao

Abstract. In this paper, we consider the identical zero obstacle problem for the
second order elliptic equation

− div a(∇u) = −1 in D′(Ω),

where Ω is an open bounded domain of RN , N ≥ 2. We prove that the free boundary
has finite (N −1)-Hausdorff measure, which extends the previous works by Caffarelli,
Lee and Shahgholian for p-Laplacian equations with p = 2, p > 2 respectively and
contains the singular case of 1 < p < 2.
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1. Introduction

In this paper, we consider the identical zero obstacle problem for the second
order elliptic equation

− div a(∇u) = −1 in Ω, (1)

where Ω is an open bounded domain of RN , N ≥ 2, and the function a = a(η) :
R
N → R

N is continuous differentiable in η ∈ R
N \ {0}. Moreover, assume that

N
∑

i,j=1

∂ai

∂ηj
(η)ξiξj ≥ γ0|η|

p−2|ξ|2, (2)

∣

∣

∣

∣

∂ai

∂ηj
(η)

∣

∣

∣

∣

≤ γ1|η|
p−2, (3)
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for some positive constants γ0, γ1 > 0, all η ∈ R
N\{0}, and all ξ ∈ R

N , i, j =
1, . . . , N. The structural assumptions on a can be found in [6, 14, 16] etc.

Given functions g and ψ in the Sobolev Space W 1,p(Ω), 1 < p < ∞, we
define

Kg,ψ = {v ∈ W 1,p(Ω); v − g ∈ W
1,p
0 (Ω), v ≥ ψ, a.e. in Ω},

which is nonempty provided (ψ − g)+ ∈ W
1,p
0 (Ω).

A function u in Kg,ψ is a solution to the obstacle problem

− div a(∇u) = f in D′(Ω), (4)

if
∫

Ω

a(∇u) · (∇v −∇u)dx ≥

∫

Ω

f(v − u)dx, ∀ v ∈ Kg,ψ,

where f = f(x) is a given function in some Lq(Ω).
According to the known results (see [4, 5, 7, 10, 12–15]), any bounded solu-

tion u to (4) is C1,τ (Ω) for some τ ∈ (0, 1), when q > N . But there is only
little information regarding the free boundary. In 1998, Caffarelli proved that
the free boundary has locally finite (N − 1)-dimensional Hausdorff measure
for Laplacian equation with identical zero obstacle (see [1]). In 2000, Karp
et al. obtained a porosity result of the free boundary for p-obstacle problem
(p > 2) (see [8]). According to [11], a porous set has Hausdorff dimension not
exceeding N − CδN , where C = C(N) > 0 is some constant, δ is porosity con-
stant. Then Lee and Shahgholian obtained (N − 1)-Hausdorff measure for the
p-obstacle problem with p > 2 in 2003 (see [9]). But for p < 2, there is no any
result. We should note that an important work for A-Laplacian obstacle prob-
lem has been done by Challal and Lyaghfouri et al. in recent years. In 2009,
Challal and Lyaghfouri showed that porosity of free boundary remains valid in
A-obstacle problem(see [3]). Then they obtain a (N − 1)-Hausdorff measure
result in 2010 (see [2]). Recently, in [17], the authors also obtained the porosity
of free boundary for p-Laplacian type equations associated with the operator

Au = − div a(∇u) in D′(Ω).

In this paper, using an idea of [9] (see also [2]), we establish the
(N − 1)-Hausdorff measure for the elliptic equations associated with the oper-
ator Au = −div a(∇u). Our result is a natural extension of the same property
for p-obstacle problem obtained in [1, 9]. It is also an extension for the case
1 < p < 2.

To deal with our problem, assume that

∂Ω ∈ C1,α, g ∈ W 1,p(Ω) ∩ C1,α(∂Ω) for some α, 0 < α < 1.
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We will restrict ourselves to the solution in Kg,0. According to [14], there is a
unique solution u to (1) and u ∈ C1,β(Ω) for some β ∈ (0, 1).

However, we should note that for general f ∈ L∞(Ω) and ψ ∈ W 1,p(Ω) ∩
L∞(Ω), one can obtain the same result as in this paper.

2. Main result

Let u be the solution to (1). If ∂{u > 0}∩ ∂Ω 6= ∅, due to the regularity of ∂Ω,
it is trivial that the free boundary ∂{u > 0}∩∂Ω has finite (N−1)−dimensional
Hausdorff measure. So in this paper, we only consider the situation that
∂{u > 0} ∩ ∂Ω = ∅. In this case, there exists a ball BR(y) ⊂ Ω with u(y) = 0.
In order to describe the results obtained in this paper, we assume that Ω = B1,
where B1 = B1(0) is the unit ball in R

N , and without loss of generality, we
assume that 0 ∈ ∂{u > 0}.

For any x ∈ ∂{u > 0} ⊂ B1, since u attains its infimum , |∇u(x)| = 0 ≤

δ
p

p−1 (δ > 0), so x ∈ {|∇u| ≤ δ
p

p−1}. Basing on this, we will establish the volume

of the set {|∇u| ≤ δ
p

p−1} ∩ Br(x0) ∩ {u > 0}, for any x0 on the free boundary
∂{u > 0}, which, after then, will be used to estimate the (N − 1)-dimensional
Hausdorff measure for the free boundary. To do this, we use the same notations
as [2, 3, 9, 17],

Oδ =
{

x ∈ B1; |∇u(x)| ≤ δ
1

p−1

}

, and Oδi =
{

x ∈ B1; |uxi(x)| ≤ δ
1

p−1

}

.

According to [17], if x0 ∈ ∂{u > 0} ∩ B1−δ then there exist y0 ∈ {u > 0}
and c > 0 (c = c(N, p)) such that

Bcδ(y0) ⊂ Bδ(x0) ∩Oδ ∩ {u > 0}. (5)

Denote by LN the N -dimensional Lebesgue measure and by HN−1 the
(N − 1)-Hausdorff measure. The main result obtained in this paper is the
following theorem

Theorem 2.1. Let u be the solution to (1), then for any x0 ∈ ∂{u > 0} ∩ B 1

2

,

and 0 < r < 1
4
, there holds

HN−1(∂{u > 0} ∩Br(x0)) ≤ C0r
N−1,

for a nonegative constant C0 = C0(p,N, γ0, γ1, ‖∇u‖∞), ‖∇u‖∞ := ‖∇u‖L∞(B1)
.
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3. Main proofs

We use ideas of [2, 9] to give our proofs. First of all, to prove Theorem 2.1, we
need to introduce the following approximating equation (see [14])

−div a(∇uǫ) + ϑǫ(uǫ) = 0 in B1, uǫ = g on ∂B1. (6)

Here, for each ǫ > 0, ϑǫ : R → [0, 1] is the nondecreasing Lipschitz function
given by

ϑǫ(t) = 0, t < 0, ϑǫ(t) =
t

ǫ
, 0 < t ≤ ǫ, and ϑǫ(t) = 1, t > ǫ.

According to [14], there exists a unique solution uǫ to (6) which converges to
the solution u to (1) in C1,θ(B1) for some θ, 0 < θ < 1. Then we have

Proposition 3.1.
|ϑǫ(uǫ)|2

γ2
1

≤ [|∇uǫ|
p−2|D2uǫ|]

2
in B1.

Proof. Indeed, ϑǫ(uǫ) = div a(∇uǫ) =
∑N

i,j=1 a
i
uǫxj

uǫxjxi . The assumption (3)

gives that

|ϑǫ(uǫ)|
2 ≤

(

N
∑

i=1

N
∑

j=1

γ1|∇uǫ|
p−2|uǫxixj |

)2

= γ21
[

|∇uǫ|
p−2|D2uǫ|

]2
.

In the following proofs, we consider two cases, 1 < p ≤ 2 and p > 2.

Case I. Firstly, for 1 < p ≤ 2, we claim

Proposition 3.2. There is a positive constant M0 = M0(p,N, γ0, γ1, ‖∇u‖∞)
such that for small ǫ, there holds

∫

B r
2

[

|∇uǫ(x)|
p−2|D2uǫ(x)|

]2
dx ≤M0r

N−2, ∀ 0 < r < 1.

Proof. Let Gǫ(t) = (ǫ+ t2)
p−2

2 t, t ∈ (−∞,+∞). Further Φ = G(uǫxi)ϕ
2, where

ϕ ∈ D(B 3r
4

) satisfying














0 ≤ ϕ ≤ 1, in B 3r
4

,

ϕ = 1, in B r
2
,

|∇ϕ| ≤
4

r
, in B 3r

4

.

Now differentiating equation (6) with respect to xi, then multiplying it by Φ and
taking integrating over B 3r

4

, we get
∫

B 3r
4

[(−div a(∇uǫ))xi + (ϑǫ(uǫ))xi ] Φdx = 0.

Then we have
∫

B 3r
4

a(∇uǫ)xi · ∇Φdx = −

∫

B 3r
4

(ϑǫ(uǫ))xiΦdx. (7)
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The left hand of (7) becomes

I i=

∫

B 3r
4

N
∑

k=1

(

N
∑

j=1

akuǫxj
uǫxjxi

)

Φxkdx

=
N
∑

k=1

∫

B 3r
4

N
∑

j=1

akuǫxj
uǫxjxi

[

(p−2)u2ǫxi(ǫ+u
2
ǫxi
)
p−4

2 +(ǫ+u2ǫxi)
p−2

2

]

uǫxixkϕ
2dx

+
N
∑

k=1

∫

B 3r
4

2
N
∑

j=1

akuǫxj
uǫxjxi(ǫ+u

2
ǫxi
)
p−2

2 uǫxiϕϕxkdx

=:I i1+I
i
2.

(8)

By (2) and 1 < p ≤ 2, we get

I i1 ≥
N
∑

k=1

∫

B 3r
4

N
∑

j=1

akuǫxj
uǫxjxiuǫxixk(p− 1)(ǫ+ u2ǫxi)

p−2

2 ϕ2dx

≥ (p− 1)γ0

∫

B 3r
4

|∇uǫ|
p−2|∇uǫxi |

2(ǫ+ u2ǫxi)
p−2

2 ϕ2dx.

(9)

By (3) and Cauchy’s inequality with ǫ, we have

|I i2| ≤

∫

B 3r
4

2Nγ1|∇uǫ|
p−2|∇uǫxi |(ǫ+ u2ǫxi)

p−2

2 |uǫxi |ϕ|∇ϕ|dx

≤
γ0(p− 1)

2

∫

B 3r
4

|∇uǫ|
p−2(ǫ+ u2ǫxi)

p−2

2 |∇uǫxi |
2ϕ2dx

+
2N2γ21

(p− 1)γ0

∫

B 3r
4

|∇uǫ|
p−2(ǫ+ u2ǫxi)

p−2

2 |uǫxi |
2|∇ϕ|2dx

≤
γ0(p− 1)

2

∫

B 3r
4

|∇uǫ|
p−2(ǫ+ u2ǫxi)

p−2

2 |∇uǫxi |
2ϕ2dx

+
2N2γ21

(p− 1)γ0

∫

B 3r
4

|uǫxi |
p−2|uǫxi |

p−2|uǫxi |
2|∇ϕ|2dx

≤
γ0(p− 1)

2

∫

B 3r
4

|∇uǫ|
p−2(ǫ+ u2ǫxi)

p−2

2 |∇uǫxi |
2ϕ2dx

+
2N2γ21

(p− 1)γ0

∫

B 3r
4

|∇uǫ|
2(p−1)|∇ϕ|2dx.

(10)

The right hand of (7) becomes

I i = −

∫

B 3r
4

ϑ′
ǫ(uǫ)uǫxi(ǫ+ u2ǫxi)

p−2

2 uǫxiϕ
2dx ≤ 0. (11)
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By (7)–(11) and the choice of ϕ, we have

∫

B r
2

(ǫ+ u2ǫxi)
p−2

2 |∇uǫ|
p−2|∇uǫxi |

2dx ≤
64N2γ21

γ20r
2(p− 1)2

∫

B 3r
4

|∇uǫ|
2(p−1)dx.

Since p < 2, we have

∫

B r
2

(ǫ+ |∇uǫ|
2)

p−2

2 |∇uǫ|
p−2|∇uǫxi |

2dx ≤
64N2γ21

γ20r
2(p− 1)2

∫

B 3r
4

|∇uǫ|
2(p−1)dx. (12)

Summing up (12) from i = 1 to N , we get

∫

B r
2

[

(ǫ+ |∇uǫ|
2)

p−2

2 |D2uǫ|
]2

dx
64N2γ21

γ20r
2(p− 1)2

∫

B 3r
4

|∇uǫ|
2(p−1)dx. (13)

Since uǫ → u in C1,θ(B1), for small ǫ, there exists a positive constant
M ′ = M ′(‖∇u‖∞) such that |∇uǫ| ≤ M ′ in B 3

4

, which and (13) imply that

D2uǫ ∈ L2(B r
2
). Furthermore, we can deduce that D2u ∈ L2(B r

2
). Moreover, as

ǫ→ 0,

∫

B r
2

{

[

(ǫ+ |∇uǫ|
2)

p−2

2 |D2uǫ|
]2

− (|∇u|p−2|D2u|)2
}

dx→ 0,

∫

B r
2

{

[

|∇uǫ|
p−2|D2uǫ|

]2
− (|∇u|p−2|D2u|)2

}

dx→ 0.

Then we have

∫

B r
2

{

[

(ǫ+ |∇uǫ|
2)

p−2

2 |D2uǫ|
]2

− (|∇uǫ|
p−2|D2uǫ|)

2

}

dx→ 0. (14)

So for ǫ small enough, by (13) and (14), we can obtain the desired result.

Now we claim

Lemma 3.3. For any ball Br(x0) ⊂ B 1

2

, with x0 ∈ ∂{u > 0} ∩ B 1

2

and r < 1
2
,

there holds

∫ 1

0

LN(Oδ ∩ Brs(x0) ∩ {u > 0})ds ≤ C1δr
N−1,

where δ > 0 is arbitrary, C1 = C1(p,N, γ0, γ1, ‖∇u‖∞) is a constant.
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Proof. Firstly define Oǫ =
{

|∇uǫ| ≤ 2δ
1

p−1

}

and Oǫi =
{

|uǫxi | ≤ 2δ
1

p−1

}

. Then

we have

Oδ ∩ B 1

2

⊂ Oǫ ∩B 1

2

. (15)

Indeed, there exists ǫ0 such that for ǫ∈(0, ǫ0) there holds ‖∇uǫ−∇u‖∞,B 1
2

<δ
1

p−1.

On the other hand, |∇uǫ| ≤ |∇uǫ −∇u|+ |∇u| ≤ δ
1

p−1 + δ
1

p−1 = 2δ
1

p−1 .

Now differentiating equation (6) with respect to xi gives

− div

(

N
∑

j=1

auǫxjuǫxjxi

)

+ ϑ′
ǫ(uǫ)uǫxi = 0. (16)

Let

F (η) =















2δ
1

p−1 (ǫ+ 4δ
2

p−1 )
p−2

2 , η > 2δ
1

p−1 ,

(ǫ+ η2)
p−2

2 η, |η| ≤ 2δ
1

p−1 ,

− 2δ
1

p−1 (ǫ+ 4δ
2

p−1 )
p−2

2 , η < −2δ
1

p−1 .

Then F ′(η)=
[

(p− 2)η2(ǫ+ η2)
p−4

2 + (ǫ+ η2)
p−2

2

]

χ
{|η|<2δ

1
p−1 }

. Multiplying (16)

by F (uǫxi) and taking integrating over Brs(x0), we get

∫

Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

· ∇F (uǫxi)dx+

∫

Brs(x0)

ϑ′
ǫ(uǫ)uǫxiF (uǫxi)dx

=

∫

∂Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

F (uǫxi)νdS,

(17)

where ν is the unit outward normal vector.
On one hand, by (3) and Proposition 3.2, we have

∫ 1

0

∫

∂Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

F (uǫxi)νdSds

≤

∫

Br(x0)

N
∑

k=1

N
∑

j=1

|akuǫxj ||uǫxjxi |F (uǫxi)|dx

≤

∫

Br(x0)

Nγ1|∇uǫ|
p−2

N
∑

j=1

|uǫxjxi ||F (uǫxi)|dx

≤

∫

Br(x0)

Nγ1|∇uǫ|
p−2|D2uǫ||F (uǫxi)|dx

≤ Nγ1

(
∫

Br(x0)

[

|∇uǫ|
p−2|D2uǫ|

]2
dx

)
1

2

(
∫

Br(x0)

|F (uǫxi)|
2dx

)
1

2

≤ C2δr
N−1,

(18)
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where C2 is a positive constant depending on p,N, γ0, γ1, ‖∇u‖∞.
On the other hand, by (15) and (2) we have

N
∑

i=1

∫

Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

· ∇F (uǫxi)dx

=
N
∑

i=1

∫

Brs(x0)∩Oǫi

N
∑

k=1

[

N
∑

j=1

akuǫxj
uǫxjxiF

′(uǫxi)uǫxixk

]

dx

≥ (p− 1)
N
∑

i=1

∫

Brs(x0)∩Oǫi

N
∑

k=1

[

N
∑

j=1

akuǫxj
uǫxjxi(ǫ+ u2ǫxi)

p−2

2 uǫxixk

]

dx

≥ (p− 1)
N
∑

i=1

∫

Brs(x0)∩Oǫi

γ0|∇uǫ|
p−2|∇uǫxi |

2(ǫ+ u2ǫxi)
p−2

2 dx

≥ (p− 1)γ0

N
∑

i=1

∫

Brs(x0)∩Oǫi

(ǫ+ |∇uǫ|
2)

p−2

2 |∇uǫxi |
2(ǫ+ |∇uǫ|

2)
p−2

2 dx

≥ (p− 1)γ0

∫

Brs(x0)∩Oǫ

[

(ǫ+ |∇uǫ|
2)

p−2

2 |D2uǫ|
]2

dx (by Oǫ ⊂ Oǫi)

≥ (p− 1)γ0

∫

Brs(x0)∩Oδ

[

(ǫ+ |∇uǫ|
2)

p−2

2 |D2uǫ|
]2

dx.

(19)

Moreover,
∫

Brs(x0)

ϑ′
ǫ(uǫ)uǫxiF (uǫxi)dx ≥ 0. (20)

For ǫ small enough, by (14), (17)–(20), we get

∫ 1

0

∫

Brs(x0)∩Oδ

|∇uǫ|
2(p−2)|D2uǫ|

2dxds ≤ C1δr
N−1,

where C1 is a constant depending on p,N, γ0, γ1, ‖∇u‖∞. By Proposition 3.1,

we get
∫ 1

0

∫

Brs(x0)∩Oδ
|ϑǫ(uǫ)|

2dxds ≤ C1δr
N−1 Furthermore, we have

∫ 1

0

∫

Brs(x0)∩Oδ∩{u≥ǫ}

|ϑǫ(uǫ)|
2dxds ≤

∫ 1

0

∫

Brs(x0)∩Oδ

|ϑǫ(uǫ)|
2dxds ≤ C1δr

N−1.

According to [14, Theorem 2], uǫ ≥ u. By the definition of ϑǫ, we have

∫ 1

0

∫

Brs(x0)∩Oδ∩{u≥ǫ}

dxds ≤ C1δr
N−1.

Now letting ǫ→ 0 implies that
∫ 1

0
LN(Brs(x0)∩Oδ∩{u > 0})ds ≤ C1δr

N−1.

This completes the proof of Lemma 3.3.
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Case II. Secondly, when p > 2, as Proposition 3.2, we can prove

Proposition 3.4. There is a positive constant M1 = M1(p,N, γ0, γ1, ‖∇u‖∞)
such that for small ǫ, there holds

∫

B r
2

[

|∇uǫ(x)|
p−2

2 |D2uǫ(x)|
]2

dx ≤M1r
N−2, ∀ 0 < r < 1.

Proof. Let Φ = uǫxiϕ
2, where ϕ ∈ D(B 3r

4

) satisfying














0 ≤ ϕ ≤ 1, in B 3r
4

,

ϕ = 1, in B r
2
,

|∇ϕ| ≤
4

r
, in B 3r

4

.

Now differentiating equation (6) with respect to xi, then multiplying it by Φ
and integrating over B 3r

4

, we get
∫

B 3r
4

[(− div a(∇uǫ))xi + (ϑǫ(uǫ))xi ] Φdx = 0.

So we have
∫

B 3r
4

a(∇uǫ)xi · ∇Φdx = −

∫

B 3r
4

(ϑǫ(uǫ))xiΦdx. (21)

The left hand of (21) becomes

I i=

∫

B 3r
4

N
∑

k=1

(

N
∑

j=1

akuǫxj
uǫxjxi

)

Φxkdx

=
N
∑

k=1

∫

B 3r
4

N
∑

j=1

akuǫxj
uǫxjxi(uǫxixkϕ

2+2uǫxiϕϕxk)dx

=
N
∑

k=1

∫

B 3r
4

N
∑

j=1

akuǫxj
uǫxjxiuǫxixkϕ

2dx+2
N
∑

k=1

∫

B 3r
4

N
∑

j=1

akuǫxj
uǫxjxiuǫxiϕϕxkdx

=:I i1+I
i
2.

(22)

By (2), we have

I i1 ≥

∫

B 3r
4

γ0|∇uǫ|
p−2|∇uǫxi |

2ϕ2dx = γ0

∫

B 3r
4

[

|∇uǫ|
p−2

2 |∇uǫxi |ϕ
]2

dx. (23)

By (3) and Cauchy’s inequality with ǫ, we have

|I i2| ≤

∫

B 3r
4

N
∑

k=1

N
∑

j=1

2γ1|∇uǫ|
p−2|uǫxjxi ||∇uǫ|ϕ|∇ϕ|dx

≤

∫

B 3r
4

2Nγ1|∇uǫ|
p−2|∇uǫxi ||∇uǫ|ϕ|∇ϕ|dx

≤
γ0

2

∫

B 3r
4

[

|∇uǫ|
p−2

2 |∇uǫxi |ϕ
]2

dx+
2N2γ21
γ0

∫

B 3r
4

[

|∇uǫ|
p
2 |∇ϕ|

]2

dx.

(24)
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The right hand of (21) becomes

I i = −

∫

B 3r
4

ϑ′
ǫ(uǫ)uǫxiuǫxiϕ

2dx ≤ 0. (25)

By (21)–(25) and the choice of ϕ, we have

γ0

2

∫

B r
2

[

|∇uǫ|
p−2

2 |∇uǫxi |
]2

dx ≤
32N2γ21
γ0r2

∫

B 3r
4

|∇uǫ|
pdx. (26)

Since uǫ → u in C1,θ(B 3

4

), for small ǫ, there exists a positive constant

M ′ = M ′(‖∇u‖∞) such that |∇uǫ| ≤ M ′ in B 3

4

. Summing up (26) from i = 1
to N , we can obtain the desired result.

Now we claim

Lemma 3.5. For any ball Br(x0) ⊂ B 1

2

, with x0 ∈ ∂{u > 0} ∩ B 1

2

and r < 1
2
,

there holds
∫ 1

0

LN(Oδ ∩ Brs(x0) ∩ {u > 0})ds ≤ C ′
1δr

N−1,

where δ > 0 is arbitrary, C ′
1 = C ′

1(p,N, γ0, γ1, ‖∇u‖∞) is a constant.

Proof. Let F given by

F (η) =















2p−1δ, η > 2δ
1

p−1 ,

2p−2δ
p−2

p−1η, |η| ≤ 2δ
1

p−1 ,

−2p−1δ, η < −2δ
1

p−1 .

For small ǫ, as Lemma 3.3, we have

∫

Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

· ∇F (uǫxi)dx+

∫

Brs(x0)

ϑ′
ǫ(uǫ)uǫxiF (uǫxi)dx

=

∫

∂Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

F (uǫxi)νdS,

(27)

where ν is the unit outward normal vector.



Hausdorff Measure in Obstacle Problems 437

On one hand, by (3) and Proposition 3.4, we have

∫ 1

0

∫

∂Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

F (uǫxi)νdSds

≤

∫

Br(x0)

N
∑

k=1

N
∑

j=1

|akuǫxj ||uǫxjxi ||F (uǫxi)|dx

≤

∫

Br(x0)

Nγ1|∇uǫ|
p−2

N
∑

j=1

|uǫxjxi ||F (uǫxi)|dx

≤

∫

Br(x0)

Nγ1|∇uǫ|
p−2|D2uǫ||F (uǫxi)|dx

≤ 2p−1δNγ1

(
∫

Br(x0)

[

|∇uǫ|
p−2

2 |D2uǫ|
]2

dx

)
1

2

(
∫

Br(x0)

|∇uǫ|
p−2dx

)
1

2

≤ C ′
2δr

N−1,

(28)

where C ′
2 is a positive constant depending on p,N, γ0, γ1, ‖∇u‖∞.

On the other hand, by (2), (16) and the fact that {|∇uǫ| < 2δ
1

p−1} ⊂

{|uǫxi | < 2δ
1

p−1}, we have

N
∑

i=1

∫

Brs(x0)

(

N
∑

j=1

auǫxjuǫxjxi

)

· ∇F (uǫxi)dx

=
N
∑

i=1

∫

Brs(x0)∩Oǫi

N
∑

k=1

[

N
∑

j=1

akuǫxj
uǫxjxiF

′(uǫxi)uǫxixk

]

dx

=
N
∑

i=1

∫

Brs(x0)∩Oǫi

N
∑

k=1

(

N
∑

j=1

akuǫxj
uǫxjxiuǫxixk

)

2p−2δ
p−2

p−1dx

≥
N
∑

i=1

∫

Brs(x0)∩Oǫ

γ0|∇uǫ|
p−2|∇uǫxi |

2|∇uǫ|
p−2dx (by Oǫ ⊂ Oǫi)

= γ0

∫

Brs(x0)∩Oǫ

[

|∇uǫ|
p−2|D2uǫ|

]2
dx

≥ γ0

∫

Brs(x0)∩Oδ

[

|∇uǫ|
p−2|D2uǫ|

]2
dx,

(29)

where Oǫi , Oǫ, Oδ are defined as in Lemma 3.3. Moreover,

∫

Brs(x0)

ϑ′
ǫ(uǫ)uǫxiF (uǫxi)dx ≥ 0. (30)
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For ǫ small enough, by (14), (27)–(30), we get

∫ 1

0

∫

Brs(x0)∩Oδ

|∇uǫ|
2(p−2)|D2uǫ|

2dxds ≤ C ′
1δr

N−1,

where C ′
1 is a constant depending on p,N, γ0, γ1, ‖∇u‖∞. As in Lemma 3.3, we

can deduce that
∫ 1

0
LN(Brs(x0) ∩ Oδ ∩ {u > 0})ds ≤ C ′

1δr
N−1. This completes

the proof of Lemma 3.5.

Due to the above lemmas, we can exactly use the technique as [9] to prove
Theorem 2.1 with 1 < p <∞.

Proof of Theorem 2.1. Under the conditions of Lemma 3.3 (Lemma 3.5), firstly
we can conclude there exists a positive constant C3 = C3(p,N, γ0, γ1, ‖∇u‖∞)
such that

LN(Oδ ∩ Br(x0) ∩ {u > 0}) ≤ C3 δr
N−1 for all r <

1

4
.

If not, then there exists a ball Br(x0) with center on the free boundary such
that for any k ∈ R, LN(Oδ ∩ Br(x0) ∩ {u > 0}) ≥ kδrN−1. But by Lemma 3.3
(Lemma 3.5) we have

max{C1, C
′
1}δr

N−1 ≥

∫ 1

0

LN(Oδ ∩B2rs(x0) ∩ {u > 0})ds

≥
1

2
LN(Oδ ∩ Br(x0) ∩ {u > 0})

≥
1

2
kδrN−1,

which is a contradiction for large k.
Secondly, due to Besicovitch covering theorem, let {Bδ(x

i)}i∈I be finite
coverings of ∂{u > 0}∩Br(x0) with x

i ∈ ∂{u > 0}, with at most n overlapping
at each point, where n depends only on N . Then, by (5), we have

∑

i∈I

(Cδ)N ≤
∑

i∈I

LN(Oδ ∩Bδ(x
i) ∩ {u > 0})

≤ nCLN(Oδ ∩ Br(x0) ∩ {u > 0})

≤ C ′δrN−1.

where C,C ′ are positive constants. This proves Theorem 2.1.
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