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Spectral Gaps for

Self-Adjoint Second Order Operators

Denis Borisov and Ivan Veselić

Abstract. We consider a second order self-adjoint operator in a domain which can
be bounded or unbounded. The boundary is partitioned into two parts with Dirich-
let boundary condition on one of them, and Neumann condition on the other. We
assume that the potential part of this operator is non-negative. We add a localized
perturbation assuming that it produces two negative isolated eigenvalues being the
two lowest spectral values of the resulting perturbed operator. The main result is a
lower bound on the gap between these two eigenvalues. It is given explicitly in terms
of the geometric properties of the domain and the coefficients of the perturbed opera-
tor. We apply this estimate to several asymptotic regimes studying its dependence on
various parameters. We discuss specific examples of operators to which the bounds
can be applied.
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1. Introduction

Estimates on eigenvalues of lower bounded self-adjoint Hamilton operators are
a classical object of study in mathematical physics and geometry. Among them
lower bounds for the distance between successive eigenvalues play an important
role. Apart from one-dimensional situations mostly low lying eigenvalues have
been studied in the literature. This concerns both Schrödinger operators [6–8,
10, 14–16, 18] as well as Laplace operators on general Euclidean domains and
manifolds [13,17,19,20]. While such questions have been considered already in
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the eighties [7, 8, 17], they are attracting the attention of various authors even
in recent time [10,13,18–20].

Note that already the Perron-Frobenius theory gives one the information
that the lowest eigenvalue for the operators under consideration cannot be de-
generate and thus the distance between the lowest two eigenvalues is positive.
This means that lower bounds on this distance are interesting only if one has
information on the specific dependence on the parameters of the model under
consideration.

The typical result of this genre gives a lower bound on the distance between
the lowest and the second lowest eigenvalue in terms of some quantity which is
considered as known. This might be the potential of the Schrödinger operator,
or more specifically, the distance between two potential wells. In geometric
situations one may be interested in the dependence of the gap length in terms
of the shape of the underlying domain.

We present a lower bound of the distance between the first and second
eigenvalue of a selfadjoint second order differential operator in divergence form
on a subdomain of n dimensional Euclidean space. The main features of our
result are the following:

• The lower bound is explicit in its dependence on the coefficients of the
differential operator, the potential and the geometric data of the domain.

• The explicit estimates allow to deduce interesting results in various asymp-
totic regimes studied before.

• The result is formulated in terms of a non negative comparison opera-
tor and a localized perturbation. The perturbation does not need to be
necessarily a potential, but may be itself a differential operator.

• The considered self-adjoint operator and the perturbation are quite gen-
eral, covering a variety of previously considered as well as new examples.

While the strategy of the proof of our main result is not completely new, we
need to develop new tools to deal with the more abstract form of the operator
under consideration. This applies in particular for a a quantitative version of
a Harnack inequality (cf. Section 6) and lower bounds for positivity regions
of eigenfunction derivatives (cf. Section 8). One more new ingredient is using
Hölder continuity of the eigenfunctions and the estimates for their Hölder norms
(cf. Lemma 7.2). It allows us to minimize the restrictions for the smoothness of
the eigenfunctions, and therefore, for the coefficients of the studied operators.
In addition, all our estimates are explicit, since we are aiming for a quantitative
lower bound on the spectral gap in the final result.

In the next section we formulate the main result and discuss the conse-
quences in various asymptotic regimes. It is followed by Section 3 devoted to
the discussion of examples which are covered by our general model. Section 4
establishes some preliminary results about the properties of the quadratic forms
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of the operators under consideration. In Section 5 we show that a classical for-
mula for the spectral gap holds for our model. The following section is devoted
to a quantitative version of a Harnack inequality. Section 7 deals with pointwise
and Lp-estimates for eigenfunctions, and Section 8 concludes the proof of the
main theorem.

2. Formulation of the problem and the main result

We introduce the notation used in the paper and formulate the assumptions for
our main theorem.

Properties of the quadratic form. Let n > 2 and Ω ⊆ R
n be a connected

open set with C1 boundary. Let 0 < ν < µ < ∞ and Aij : Ω → R, i, j ∈
{1, . . . , n} be bounded functions such that the ellipticity condition

Aij(x) = Aji(x), ν|ξ|2 6
n∑

i,j=1

Aij(x)ξiξj 6 µ|ξ|2,

holds for all x = (x1, . . . , xn) ∈ R
n, ξ = (ξ1, . . . , ξn) ∈ R

n.

(1)

For V : Ω → R set V +(x) := max{V (x), 0}, V −(x) := −min{V (x), 0}. We
assume that V − ∈ L q

2
(Ω) for some q > n and that V + ∈ L q

2
(Ω′) for each

bounded open set Ω′ ⊆ Ω. Here we do not exclude the case ∂Ω′ ∩ ∂Ω 6= ∅.
We introduce the sesquilinear form

h[u, v] :=
n∑

i,j=1

(
Aij

∂u

∂xi
,
∂v

∂xj

)

L2(Ω)

+ (V u, v)L2(Ω) (2)

on L2(Ω) with the domain

D(h) := W̊ 1
2 (Ω,Γ) ∩ L2(Ω;V

+),

L2(Ω;V
+) :=

{
u ∈ L2(Ω) :

∫

Ω

|u|2(V + + 1) dx <∞
}
,

where Γ is a (possibly empty) subset of the boundary ∂Ω, and W̊ 1
2 (Ω,Γ) consists

of the functions in W 1
2 (Ω) vanishing on Γ. This form is symmetric. We will

show below (see Lemma 4.1) that it is also lower-semibounded and closed.

The associated selfadjoint operator. By H we denote the self-adjoint op-
erator associated with the form h. We observe that this operator has Dirichlet
boundary conditions on Γ and Neumann ones on the remainder of the boundary.

We denote the spectrum of an selfadjoint operator by the symbol σ(·), by
λ0 := inf σ(H) the infimum of the spectrum of H, and by λ := inf σ(H) \ {λ0}
the second lowest spectral value. The aim of this paper is to estimate the
spectral gap between λ and λ0, in situations where both of these numbers are
eigenvalues.
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Figure 1: Relation between the sets Ω0 ⊆ Ω̂ ⊆ Ω and an admissible cylinder.

Geometric assumptions and the comparison operator. For any Ω0 ⊆ Ω
denote by H0 the self-adjoint operator associated with the same form as in (2),

but considered on L2(Ω \Ω0) with the domain W̊ 1
2 (Ω \Ω0, Γ̃)∩L2(Ω \Ω0;V

+),

where Γ̃ := ∂Ω0 ∪ Γ. This domain corresponds to the Dirichlet condition on Γ̃.
We assume that there exists open and bounded subsets Ω0 ⊆ Ω̂ of Ω such

that

• dist(Ω0, ∂Ω) = d > 0, (3a)

• ∂Ω0 is C1-smooth, (3b)

• λ0 < λ < 0 6 inf σ(H0), (3c)

• V − ≡ 0 on Ω \ Ω0, (3d)

• dist{Ω̂, ∂Ω} >
3

4
d, (3e)

• Ω̂ is path-connected. (3f)

We observe that if ∂Ω = ∅, (3a) holds true with any d > 0, and that (3c)
excludes the case V − ≡ 0, since in this case the operator H is non-negative.

Admissible cylinders. Given x, y ∈ Ω0, consider a C
2-curve connecting these

points and lying in Ω̂. At each point x̂ of this curve we consider a (n − 1)-
dimensional disk of radius r having x̂ as the center and being orthogonal to
the tangential vector of the curve, where r is a small number. As a result, we
obtain a curved cylinder or tube along the curve. Since the curve is smooth,
we can choose r small enough so that the cylinder does not overlap with itself.
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Since the curve is a closed set it has a positive distance to the boundary of the
open set Ω̂. Thus for r small enough the cylinder corresponding to the curve is
a subset of Ω̂. We call a cylinder with the two mentioned properties admissible.

In Lemma 4.5 we will show that there exist L, r0 ∈ (0,∞) such that any
two points of Ω0 can be connected by an admissible cylinder of length at most
L and of radius at least r0. The parameter L plays a role of the linear size of
the domain Ω0. If Ω0 is a convex domain, then L is the diameter of Ω0, and all
admissible cylinders can be chosen straight.

Potential strength parameter. By Θn = π
n
2

Γ(n
2
+1)

and θn = 2π
n
2

Γ(n
2
)
we denote

the volume of the unit ball and the area of the unit sphere in R
n, respec-

tively. Here Γ denotes the gamma function. Let Ω0,t := {x : dist(x,Ω0) < t},
Ω̂t := {x : dist(x, Ω̂) < t}, Br(a) := {x ∈ R

n | |x− a| < r} and

q̂ :=
q

q − 2

p :=





n

n− 2
, for n > 2

q̂ + 1, for n = 2

V̂ := sup
a∈Ω̂ d

4

‖V ‖L q
2
(B d

4
(a))

+Θ
2
q
n

(
d

2

)nq
2

(
8ν

d2
+ 3

nq
q−n

(
2(p+ 1)

ν

) n
q−n(

sup
a∈Ω0

‖V −‖L q
2
(B d

2
(a))

) q
q−n

)
.

(4)

We observe that V̂ 6= 0.

Remark 2.1. In the case Γ = ∂Ω, i.e., once one has the Dirichlet condition on
the whole boundary ∂Ω for the operator H, it is possible to replace by zero the
term 8ν

d2
in the definition of V̂ .

Now we are in the position to formulate our main result. It is a bound for
the relative size of the first spectral gap λ−λ0

|λ|
.

Theorem 2.2. The spectral gap between λ and λ0 obeys the following lower

bound

λ− λ0
|λ| >

Θn−1c
n−1
1 ν

9L|Ω0, d
4
|
((

p+1
ν

) n
q−n ‖V −‖

q
q−n

L q
2
(Ω0)

+ 4µr−2
1

)
c

8L
d

2

, (5)

where the constants c1 = c1(µ, ν, n, q, L, d, r0, V̂ ), c2 = c2(µ, ν, n, q, d, V̂ ) are
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defined by

c1 = min

{
r1

(
3c3c

8L
d

2

)− 1
α

,
d

8
, r0

}
,

c2 = 2
pq̂
p−q̂

+ pq̂+q̂2

(p−q̂)2
−

2(n−1)
c7

(
p

q̂

) p2q̂

c7(p−q̂)2
(
1 +

2p2

q̂2

) q̂
2(p−q̂)

·max
{
(Θnd

n)
2
c7,(Θnd

n)
p+q̂
c7q̂

}
max

{
c

q̂
2(p−q̂)

8 , c
q̂2

2p(p−q̂)

8

}
max

{
c

pq̂
c7(p−q̂)

9 , c
p2

c7(p−q̂)

9

}

r1 = min



Θ

− 1
n

n

(
ν

12(p+ 1)2V̂

) q
2(q−n)

,
d

4



 ,

α = min

{
− log4

(
1− 2−c4

)
, 1− n

q

}
,

c3 = 4αmax

{
2,

2c4+2ν

9
√
6µ(p+ 1)Θ

1
n
n

}
,

c4 = 3 + 81 · 2n+9(θn + 1)2n−2µ2ν−2c
2(n−1)

n

5 ,

c5 = max

{
22n+1Θ−1

n , 4
q2n2

(q−n)2 c
qn
q−n

6

}
,

c6 = 9 · 22n+9Θ
1−q
q

n n−1(θn + 1)µν−1,

c7 =
Θ

1
2
nν

1
2

2n+1eC9

(
2n+4µΘn + 2n(1+

2
q )−3V̂Θ

1
q̂
nd

2(1−n
q
)

)− 1
2

,

c8 =
(p+ 1)4

p


211

(
1 +

4µ

ν

)
Θ

2
q
nd

2n
q
−2

4
2n
q

+ 4
V̂

ν




211

(
1 +

µ

ν

) Θ
2
q
nd

2n
q
−2

4
2n
q

+
V̂

ν


,

c9 =
4(p+ 1)2pq̂V̂

(p− q̂)2ν

(
1 +

c7
q̂

)
+ 211−

4n
q (p+ 1)2q̂Θ

2
q
nd

2n
q
−2

·
(
1

p
+

4p

(p− q̂)2
µ

ν

)
log2p

q̂

2p3

c7q̂2
.

Remark 2.3. 1. Note that |λ| is the distance of λ to zero. Hence, the
distance between λ and λ0 can not be much smaller than that from λ
to zero. In particular, it means that λ0 can not be an accumulation point
for the eigenvalues of H.

2. Let us note that if there exists a further eigenvalue λ̃ ∈ (λ, 0) we could

give a lower bound similar to (5) for the distance λ̃ − λ0. It turns out

however, that the trivial comparison λ̃ − λ0 > λ − λ0 gives us a better
estimate.
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3. The estimate (5) is invariant under the multiplication of the operator H
by a constant.

One of the main advantages of Theorem 2.2 is that the size of the lower
bound is given explicitly. Although the formulae look quite bulky, it is possible
to study effectively the dependence of the right hand side in (5) w.r.t. to various
parameters. This is demonstrated in the next theorems.

Theorem 2.4. For L large enough the spectral gap between λ and λ0 satisfies

the estimate
λ− λ0
|λ| > c10 L

−n−1e−c11L, (6)

where c10 > 0 depends on µ, ν, n, q, d, V̂ , ‖V −‖L q
2
(Ω), and c11 > 0 depends on

µ, ν, n, q, d, V̂ .

Here the phrase “for L large enough” should be understood as: if we keep
all parameters except L fixed, there exists some L0, depending on these other
parameters, such that for L > L0 the claimed estimate holds true.

As it was said above, the parameter L characterizes the linear size of the
domain Ω0. Theorem 2.5 shows how our estimate depends on L; it turns out
that the dependence is very simple. We also observe that the estimate is expo-
nentially small as L→ +∞.

Theorem 2.5. For V̂ small enough the spectral gap between λ and λ0 satisfies

the estimate
λ− λ0
|λ| > c12 L

−n−1e−c13L, (7)

where c12>0 depends on n, q, µ, ν, d, r0, and c13>0 depends on n, q, µ, ν, d.

This theorem addresses the case of a small potential, which can be consid-
ered as a weak coupling regime. As it is well known, in this case the eigenvalues,
if they exist, are close to the threshold of the unperturbed spectrum, in our
case, to zero. This fact is reflected by the estimate (7), since |λ| tends to zero

as V̂ → +0.

Theorem 2.6. For ν small enough and µ

ν
= constant, the spectral gap between

λ and λ0 satisfies the estimate

λ− λ0
|λ| > c14 L

−n−1(c15ν)
c16

L√
ν , (8)

where c14 > 0 depends on d, n, q, c15 > 0 depends on d, n, q, V̂ , µ

ν
, and c16 > 0

depends on d, n, q, µ

ν
.



480 D. Borisov and I. Veselić

This theorem treats the semiclassical regime. In this regime the func-
tions Aij read as follows Aij = ~

2Ãij , where ~ → +0. Hence, both the pa-
rameters µ and ν tend to zero, while µ

ν
remains constant. It is known that in

certain semiclassical situations the distance between the first two eigenvalues is
exponentially small with respect to ~ ≈ √

ν, see e.g. [14]. Theorem 2.6 gives a
lower bound which decreases slightly faster than exponentially w.r.t.

√
ν → 0.

Theorem 2.7. For ν small enough and µ = constant, the spectral gap between

λ and λ0 satisfies the estimate

λ−λ0
|λ| > c18L

−n−1ν1+
q(n+1)
2(q−n) exp

(
−c19c20ν−

2(n−1)q
q−n

)(
c21ν

−1 log p
q̂
ν
)−c22c20 L√

ν, (9)

where c20 = exp
(
c23ν

−
2(n−1)q

q−n

)
, c18 = c18(n, d, µ, V̂ ) > 0, ci = ci(n, q, µ) > 0 for

i = 19, 23, and ci = ci(n, q, d, µ, V̂ ) > 0 for i = 21, 22.

Theorem 2.7 is adapted to the models of the photonic crystals, see Exam-
ple 3 in Section 3.

3. Applications

In this section we give a series of the examples illustrating possible applications
of our results.

3.1. Second order differential operator with localized perturbation.

Let A
(0)
ij = A

(0)
ij (x) be bounded real-valued functions defined on Ω such that

A
(0)
ij (x) = A

(0)
ji (x), ν0|ξ|2 6

n∑

i,j=1

A
(0)
ij (x)ξiξj 6 µ0|ξ|2, x ∈ Ω,

where 0 < ν0 < µ0 are constants. By V (0) we denote a non-negative function
defined on Ω, so that V (0) ∈ L q

2
(Ω′) for each bounded domain Ω′ ⊆ Ω. We

introduce the self-adjoint operator H(0) associated with the form

h(0)[u, v] :=
n∑

i,j=1

(
A

(0)
i,j

∂u

∂xi
,
∂v

∂xj

)

L2(Ω)

+ (V (0)u, v)L2(Ω)

on L2(Ω) with the domain W̊ 1
2 (Ω,Γ)∩L2(Ω;V

+), where Γ has the same mean-
ing as above. Let Ω0 be a bounded subdomain of Ω with C1-boundary and
separated from ∂Ω by a positive distance, and A

(1)
ij = A

(1)
ij (x), V

(1) = V (1)(x)
be bounded real-valued functions defined on Ω with supports in Ω0, and such
that the functions Aij := A

(0)
ij +A

(1)
ij , V := V (0)+V (1) satisfy the conditions (1),
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V − ∈ L q
2
(Ω) for some q > n, and V + ∈ L q

2
(Ω′) for each bounded domain

Ω′ ⊆ Ω. Then we can consider the operator H defined via the coefficients Aij
and V .

We also suppose that λ0 = inf σ(H) < 0 and λ < 0 are two isolated eigenval-

ues of H. Then the domain Ω0 satisfies the assumption (3). Indeed, in this case

the operator H0 is determined only by A
(0)
ij and V (0) and is independent of A

(1)
ij ,

V (1). It remains to suppose that the domain Ω0 satisfies the assumptions (3e)

and (3f), and then one can apply Theorems 2.2–2.7 to the operator H.

A particular choice of the domain Ω would be a waveguide-type domain, as
depicted in Figure 2. It allows us to apply our results to such domains which
are of interest in the physical theory of quantum waveguides. One more possi-
ble choice is a perforated domain with a perturbation localized on a bounded
subdomain, cf. Figure 3.

Figure 2: Waveguide

3.2. Perturbation by a singular surface measure. Although the results
of the paper are formulated only for usual differential operators, they can be
applied to a more general class of operators. Namely, if some operator can be
transformed by a unitary transformation to the above considered differential
operator, one can apply our results to such operators as well. An example
for such an operator would be the negative Laplacian plus a singular potential
which equals the Hausdorff measure supported on a manifold of codimension
one. Such operators can be transformed to the above considered differential
operators, see Example 5 in [1].
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3.3. Photonic crystals. Photonic crystals are periodic dielectric media with
the property that the electromagnetic waves with certain frequencies cannot
propagate in it. To achieve this property one uses high contrast materials. An
instance would be the case where the dielectric constant of the material takes
on two positive values whose quotient is very large. We refer for more details
to the review [11] and the references therein.

Figure 3: Perforated domain

Mathematical models which describe photonic crystals are elliptic differen-
tial operators. The high contrast properties of the medium are described by
the coefficients of the differental operator. In terms of our notation these prop-
erties can be formulated as follows. The set Ω equals R

n, the coefficients Aij
and V are introduced in the same way as in Example 1. The functions A

(0)
ij

are bounded, periodic with respect to the lattice Zn, and each of them takes on
only two values 0 < νij ≪ µij <∞.

The potential V (0) is Zn-periodic as well. The coefficients A
(1)
ij , V

(1) of the
perturbation are bounded, compactly supported functions. In this case we think
of µ as a fixed positive real, while ν is positive, but very close to zero. Hence,
one can apply in this case Theorem 2.2, or Theorem 2.7.

3.4. Distant perturbations. Distant perturbations are perturbations which
are localized on a finite number of bounded domains with large distances be-
tween them. More precisely, let Ω = R

n, and let Qk ⊂ R
n be a finite number

of bounded domains such that the distance between Qk and Qm for k 6= m is
at least l > 0. Define the operator H(0) and its coefficients A

(0)
ij , V

(0) as in

Example 1. Assume that the coefficients A
(1)
ij , V

(1) are supported in
⋃
kQk.

The resulting differential operator H describes a model for distant or separated
perturbations. Such models were formulated and studied in their most general
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form in the references [1] and [2]. There one can also find a review of earlier
results.

Our theorems apply to such problems, too. For Ω0 one chooses the union⋃
kQk. Then the main feature of Ω0 is that the parameter L > l is large, since l is

assumed large. In this case Theorem 2.4 says that the spectral gaps are bounded
from below by an exponentially small quantity w.r.t. L. Such situations have
been studied in previous literature, see for instance, [1,2,6,7,10]. Let us discuss
the results of the two most recent papers in more detail. The main results of the
[1,2] are asymptotic expansions for the eigenvalues of the operators with distant
perturbations. These asymptotics imply that the spectral gap we consider here
is exponentially small w.r.t. to L. In this respect the result of Theorem 2.4 is in
a good agreement with that of [1, 2]. However, in general the constants in the
estimate in Theorem 2.4 are not optimal. In this respect the results in [1,2] are
better than Theorem 2.4.

4. Preliminaries

In this section we prove that the operator H is well-defined and we study certain
properties of its ground state. We also prove the existence of bounds L and r0
for the admissible cylinders connecting the points in Ω0.

In the space D(h) we introduce the scalar product given by

(u, v)D(h) = (u, v)W 1
2 (Ω) + (u, v)L2(Ω;V +), (u, v)L2(Ω;V +) :=

∫

Ω

(1 + V +)uv dx.

¿From [9, Chapter 10, Section 37.2, Theorem 5’] it follows that D(h) equipped
with the scalar product forms a Hilbert space.

Lemma 4.1. The form h is lower semibounded and closed. The inequality

h[u, u] > −C1‖u‖2L2(Ω),

C1 :=
8ν

d2
+ 3

nq
q−n

(
2(p+ 1)

ν

) n
q−n
(
sup
a∈Ω0

‖V −‖L q
2
(B d

2
(a))

) q
q−n

,
(10)

holds true.

Proof. Let us prove first that the form is lower semibounded and closed. Given

a point a ∈ Ω0, consider a ball B d
2
(a). Let ζ = ζ(t) be a function equalling

one as t 6 d
2
and 2 − 2t/d as t > d

2
. Then for any function u ∈ D(h) we have

ζ(| · −a|)u ∈ W̊ 1
2 (Bd(a)). It follows from the definition of V −, the Hölder and
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Young inequalities, and [12, Chapter II, Section 2, Inequality (2.11)] that
∣∣(V −u, u)L2(B d

2
(a))

∣∣

6 ‖V −‖L q
2
(B d

2
(a))‖u‖2L 2q

q−2
(B d

2
(a))

6 (p+ 1)
n
q ‖V −‖L q

2
(B d

2
(a))‖∇ζu‖

2n
q

L2(Bd(a))
‖ζu‖2(1−

n
q )

Bd(a)

6
(p+ 1)

n
q

q
‖V −‖L q

2
(B d

2
(a))

(
nε‖∇ζu‖2L2(Bd(a))

+(q − n)ε−
n

q−n‖u‖2L2(Bd(a))

)

6
(p+ 1)

n
q

q
‖V −‖L q

2
(B d

2
(a))

·
(
2nε‖∇u‖2L2(Bd(a))

+
(
(q − n)ε−

n
q−n + 8nεd−2

)
‖u‖2L2(Bd(a))

)
,

(11)

where ζ = ζ(| · −a|), and ε > 0 is arbitrary. It is clear that the set Ω0 can be
covered by a finite set of balls B d

2
(a) with a ∈ Ω0, such that each point of Ω0

belongs at most to 3n such balls. Then by the last estimate we have
∣∣(V −u, u)L2(Ω0)

∣∣=
∑

a

∣∣(V −u, u)L2(B d
2
(a))

∣∣

6 3n
(p+1)

n
q

q
sup
a∈Ω0

‖V −‖L q
2
(B d

2
(a))

·
(
2nε‖∇u‖2L2(Ω

+
(
(q−n)ε− n

q−n +8nεd−2
)
‖u‖2L2(Bd(a))

)
.

We choose
ε :=

qν

2 · 3nn(p+ 1)
n
q supa∈Ω0

‖V −‖L q
2
(B d

2
(a))

and obtain
∣∣(V −u, u)L2(Ω)

∣∣ 6 ν‖∇u‖2L2(Ω0)
+ ε1‖u‖2L2(Ω0)

,

ε1 :=
8ν

d2
+ 3

nq
q−n

(
1− n

q

)(
2n

qν

) n
q−n

(p+ 1)
n

q−n

(
sup
a∈Ω0

‖V −‖L q
2
(B d

2
(a))

) q
q−n

.

This inequality and the definition of the form h imply that this form is lower-
semibounded. Substituting the obtained inequalities into the definition of h,

taking into account (3d), and applying the estimate t
t

1−t (1 − t) 6 1, t ∈ [0, 1]
with t = n

q
, we arrive at (10). It also follows from (11) with

ε :=
qν

4 · 3nn(p+ 1)
n
q supa∈Ω0

‖V −‖L q
2
(B d

2
(a))

that ν
2
‖∇u‖2L2(Ω)−C‖u‖2L2(Ω)+‖u‖2L2(Ω;V +) 6 h(u, u) 6 µ‖∇‖2L2(Ω)+‖u‖2L2(Ω;V +).

Employing these inequalities, one can check by the definition that the form h

is closed.
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Remark 4.2. In the case of the Dirichlet condition on ∂Ω for the operator H
(Γ = ∂Ω) the term 8ν

d2
in the definition of C1 can be replaced by zero. Indeed,

it appeared just due to the using of the cut-off function ζ in the proof. The
presence of this function gave the possibility of applying the results of [12,
Chapter II, Section 2, Inequality (2.11)]. Once we have the Dirichlet condition
on ∂Ω, it is possible to these results directly to the function u without using ζ.

Lemma 4.3. There exists an eigenfunction ψ0 of H associated with λ0 such

that ψ0(x) > 0 for all x ∈ Ω. For any compact Ω′ ⊂ Ω there exist constants

C, C̃ ∈ (0,∞) such that

C ≤ inf
Ω′
ψ0 ≤ sup

Ω′
ψ0 ≤ C̃.

Proof. By the assumption, λ0 is an eigenvalue and consequently there exists a
ψ0 ∈ D(H) with Hψ0 = λ0ψ0. Then |ψ0| is still in the domain of h and is a
weak solution of

H|ψ0| = λ0|ψ0|, (12)

since h[|ψ0|, |ψ0|] = h[ψ0, ψ0] = λ0. Moreover, λ0|ψ0| < 0. In view of equa-
tion (12) we can apply the Harnack inequality to |ψ0| (see [5, Section 8.8]),
which shows that on any Ω′ ⋐ Ω there is are uniform positive lower and upper
bounds on ψ0.

Lemma 4.4. The set of the functions in C∞(Ω) vanishing in a neighbourhood

of Γ is dense in D(h) in the topology induced by (·, ·)D(h).

This lemma follows from Theorems 1.8.1 and 1.8.2 in [3].

Lemma 4.5. There exists two positive numbers L and r0 such that any two

points in Ω0 can be connected by an admissible cylinder of the length at most L
and of the radius at least r0.

Proof. We fix a point y ∈ Ω0 and introduce the sets Ξm,k, m, k ∈ N, consisting

of all x ∈ Ω̂ such that x can be connected with y by an admissible cylinder of

the length less than m and the radius less than 1
k
. One can see easily that Ξm,k

are open sets, and Ξm,k ⊂ Ξ
m̃,k̃

if m < m̃, k < k̃. By the assumption (3e) we

conclude that for each x ∈ Ω̂ there exists a curve connecting x and y lying in

the open set Ω̂. Due to (3f) it is possible to chose a sufficiently small radius such
that the corresponding cylinder connecting x and y is admissible. Therefore,

Ω0 ⊆ ⋃
m,k Ξm,k. The set Ω0 being compact, we conclude that there exists a

finite cover of Ω0 by the sets Ξm,n. In view of monotonicity of these sets w.r.t.

m, n it implies that there exists K such that Ω0 ⊂ ΞK,K . Hence, each point

in Ω0 can be connected with y by an admissible cylinder of the length at most K
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and of the radius at least 1
K
.

Let us prove that any two points x1, x2 ∈ Ω0 can be connected by an admis-
sible cylinder of the length at most 3K and the radius at least 1

4K
. It is true,

if they can connected by an admissible cylinder of the length at most K and
the radius at least 1

K
. If not, we connect them with y by admissible cylinder

of the length at most K and of the radius at least 1
K
. As a result, we have a

cylinder connecting x1, x2, having the length 2K and the radius 1
K
. Denote

this cylinder by T . The corresponding curve connecting x1 and x2 is piecewise
C2-smooth, with possible non-smoothness at y. It is clear that we can replace
by a C2-smooth curve of the length at most 3K so that there exists an ad-
missible cylinder corresponding to this curve, having the radius 1

4K
and lying

inside T .

5. A formula for spectral gaps

In this section we use a ground state transformation to establish a formula for
the lowest spectral gap. For this purpose we will need the next lemma which
follows directly from [12, Chapter III, Section 13, Theorem 13.1] and [12, Chapter
III, Section 14, Theorem 14.1].

Lemma 5.1. Let λ be an eigenvalue of H. Then every eigenfunction ψ associ-

ated to λ is continuous in Ω up to the boundary.

Our next aim is to derive a formula for expressions of the form h[uψ0, uψ0],
where ψ0 denotes as before the ground state. Let u ∈ C∞

0 (Ω). One can easily
check that uψ0 ∈ D(h), u2ψ0 ∈ D(h). Hence, h[uψ0, uψ0] is well-defined. Taking
into account the symmetry of Aij (see (1)) and the definition of ψ0, we check by

direct calculation
∑n

i,j=1

(
Ai,j

∂uψ0

∂xi
, ∂uψ0

∂xj

)
L2(Ω)

=
∑n

i,j=1

(
Ai,jψ0

∂u
∂xi
, ψ0

∂u
∂xj

)
L2(Ω)

+
∑n

i,j=1

((
Ai,jψ0

∂u
∂xi
, u∂ψ0

∂xj

)
L2(Ω)

+
(
Ai,ju

∂ψ0

∂xi
, ∂uψ0

∂xj

)
L2(Ω)

)
and

n∑

i,j=1

((
Ai,jψ0

∂u

∂xi
, u
∂ψ0

∂xj

)

L2(Ω)

+

(
Ai,ju

∂ψ0

∂xi
,
∂uψ0

∂xj

)

L2(Ω)

)

=
n∑

i,j=1

((
Ai,j

∂ψ0

∂xi
, uψ0

∂u

∂xj

)

L2(Ω)

+

(
Ai,j

∂ψ0

∂xi
, u
∂uψ0

∂xj

)

L2(Ω)

)

=
n∑

i,j=1

(
Ai,j

∂ψ0

∂xi
,
∂u2ψ0

∂xj

)

L2(Ω)

= λ0‖uψ0‖2L2(Ω) − (V ψ0, u
2ψ0)L2(Ω).
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We substitute these identities into the definition of h to obtain

h[uψ0, uψ0] =
n∑

i,j=1

(
Ai,jψ0

∂u

∂xi
, ψ0

∂u

∂xj

)

L2(Ω)

+ λ0‖uψ0‖2L2(Ω).

Let ψ be an eigenfunction associated to the eigenvalue λ. Let Ω′ be an arbitrary
bounded subdomain of Ω separated from ∂Ω by a positive distance. The last
relation and (1) imply

h[uψ0, uψ0]− λ0‖uψ0‖2L2(Ω)

‖ψ‖2
L2(Ω)

>
1

‖ψ‖2
L2(Ω)

n∑

i,j=1

(
Ai,jψ0

∂u

∂xi
, ψ0

∂u

∂xj

)

L2(Ω′)

>
ν‖ψ0∇u‖2L2(Ω′)

‖ψ‖2
L2(Ω)

.

(13)

We would like to apply the last formula to u = ψ

ψ0
. However, since we do not

know whether ψ

ψ0
is in u ∈ C∞

0 (Ω), we use an approximation argument. Let

vm ∈ C∞
0 (Ω) be a sequence approximating ψ in D(h). Such a sequence exists

by Lemma 4.4. We take u = um := vm
ψ0

and pass to the limit as m → +∞
in (13). Then the left hand side converges to

h[ψ,ψ]−λ0‖ψ‖2L2(Ω)

‖ψ‖2
L2(Ω)

= λ − λ0. Using

Lemma 4.3 and Lemma 4.4 we see that the functions um converge to ψ

ψ0
in

W 1
2 (Ω

′). Therefore,

λ− λ0 >
ν

‖ψ‖2
L2(Ω)

∥∥∥ψ0∇
ψ

ψ0

∥∥∥
2

L2(Ω′)
>
ν infΩ′ ψ2

0

‖ψ‖2
L2(Ω)

∥∥∥∇ ψ

ψ0

∥∥∥
2

L2(Ω′)
.

It follows from the Cauchy-Schwarz inequality that
∥∥∥∇ ψ

ψ0

∥∥∥
2

L1(Ω′)
6 |Ω′|

∥∥∥∇ ψ

ψ0

∥∥∥
2

L2(Ω′)
.

Hence,

λ− λ0 >
ν infΩ′

2 ψ0

|Ω′|‖ψ‖2
L2(Ω)

∥∥∥∇ ψ

ψ0

∥∥∥
2

L1(Ω′)
. (14)

The last identity is the basic formula we use to estimate the spectral gaps.
Before we give the proof of (5), we need to establish additional properties of
the functions ψ0 and ψ. This is the subject of the next two sections. The proof
of (5) is given in Section 6.



488 D. Borisov and I. Veselić

6. Quantitative Harnack inequality

In this section we prove the estimate

sup
Ω̂ d

8

ψ0 6 C2 inf
Ω̂ d

8

ψ0 (15)

with certain C2 > 0. The constant C2 depends only on the differential operator
under consideration, and not on the particular non-negative (sub-) solution; see
for instance the monographs [5, 12] for a proof of this statement.

In our context we need to know the explicit dependence of the constant C2

on the parameters entering the definition of the differential operator. In the
variants of Harnack’s inequality (15) given in [5, 12] an explicit bound for C2

is not obtained. We provide below a proof of Harnack’s inequality along the
lines of previos arguments, but which allows explicit control of the constants as
functions of the various model paramters.

Theorem 6.1. Assume that ϕ ∈ D(h) satisfies the inequalities

(ϕ, φ)L2(Ω) ≥ 0, h[ϕ, φ] ≤ λ(ϕ, φ)L2(Ω) (16)

for all φ ∈ D(h) which are non-negative almost everywhere. Then there exists

a constant C2 such that

sup
Ω̂ d

8

ϕ 6 C2 inf
Ω̂ d

8

ϕ.

The constant C2 is given explicitly in (39).

Corollary 6.2. Let C > 0 and q > n be fixed. Let V : Rn → R be any potential

such that for all a ∈ R
n

‖V ‖L q
2
(B1(a)) ≤ C.

For L ∈ N and x ∈ R
n denote by HΛ = −∆ + V the Schrödinger operator

on Λ := ΛL(x) =
[
− L

2
, L
2

]n
+ x with periodic boundary conditions, by hΛ the

associated quadratic form, and by λΛ := inf σ(HΛ). Then there exists a constant

0 < CH < ∞, which depends on q and C, but not on the particular choice of

V , nor L ∈ N, nor x ∈ R
n such that for any ϕ ∈ D(hΛ) satisfying

(ϕ, φ)L2(Λ) ≥ 0, and h[ϕ, φ] ≤ λΛ(ϕ, φ)L2(Λ)

for all φ ∈ D(hΛ) which are non-negative a.e.,

we have

sup
Λ1(y)

ϕ 6 CH inf
Λ1(y)

ϕ for any unit box Λ1(y) ⊂ ΛL(x).
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The remainder of this section is devoted to the proof of the theorem. The
proof of the Harnack inequality in [5] is based on the Moser-iteration method.
To make this iteraton work one needs first to provide a gradient estimate. This
can be derived from the subsolution property. We present these arguments
which lead up to the inequalities (17) and (18).

Let χ ∈ C∞
0 (Ω) be a cut-off function taking values in [0, 1]. We introduce

an auxilliary quadratic form

h̃[u, v] :=
n∑

i,j=1

(Aijui, vj)L2(Ω), h̃[u] := h̃[u, u],

where u = (u1, . . . , un), v = (v1, . . . , vn), ui, vi ∈ D(h). In the second inequality
of (16) we choose φ = ϕβχ2 with β ∈ R \ {0} and obtain

h̃
[
ϕ

β−1
2 χ∇ϕ

]
= − 2

β
h̃
[
ϕ

β−1
2 χ∇ϕ, ϕβ+1

2 ∇χ
]
+

1

β

(
W0χϕ

β+1
2 , χϕ

β+1
2

)
L2(Ω)

,

where W0 := λ0 − V . By the Cauchy-Schwarz inequality and the symmetry of
the matrix (Aij) we have

∣∣∣2h̃
[
ϕ

β−1
2 χ∇ϕ, ϕβ+1

2 ∇χ
]∣∣∣ 6 2

(
h̃
[
ϕ

β−1
2 χ∇ϕ

]) 1
2
(
h̃
[
ϕ

β+1
2 ∇χ

]) 1
2

6
|β|
2
h̃
[
ϕ

β−1
2 χ∇ϕ

]
+

2

|β| h̃
[
ϕ

β+1
2 ∇χ

]
.

The combination of the two last estimates yields

h̃
[
ϕ

β−1
2 χ∇ϕ

]
6

4

|β|2 h̃
[
ϕ

β+1
2 ∇χ

]
+

2

|β|
(
|W0|χϕ

β+1
2 , χϕ

β+1
2

)
L2(Ω)

.

It is convenient to introduce the following auxiliary function,

u :=

{
ϕ

β+1
2 , β 6= −1,

lnϕ, β = −1.

Then the last inequality and (1) imply

‖χ∇u‖2L2(Ω) 6 C3(β)

(
‖u∇χ‖2L2(Ω) +

|β|
2µ

(|W0|χu, χu)L2(Ω)

)
, if β 6= −1,

C3(β) :=
(β + 1)2

β2

µ

ν
, (17)

‖χ∇u‖2L2(Ω) 6
4µ

ν
‖∇χ‖2L2(Ω) +

2

ν
(|W0|χ, χ)L2(Ω) , if β = −1. (18)
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An interpolation inequality for Sobolev spaces (see e.g. [12, Chapter II, (2.9)])
implies ‖χu‖2L2p(Ω) 6 (p+ 1)2‖∇(χu)‖2L2(Ω). Now estimate (17) yields

‖χu‖2L2p(Ω)62(p+1)2
(
‖χ∇u‖2L2(Ω)+‖u∇χ‖2L2(Ω)

)

62(p+1)2
(
1+C3(β)

)
‖u∇χ‖2L2(Ω)+

(p+1)2C3(β)|β|
µ

(
|W0|χu, χu

)
L2(Ω)

where, we remind, the number p was introduced in (4). Denote q̂ := q

q−2
. We

employ the Hölder inequality and arrive at the estimate

‖χu‖2L2p(Ω) 62(p+ 1)2
(
1 + C3(β)

)
| suppχ| 2q ‖u∇χ‖2L2q̂(Ω)

+
(p+ 1)2C3(β)|β|

µ
‖W0‖L q

2
(suppχ)‖χu‖2L2q̂(Ω).

Now we choose the function χ more specifically. Let 0 < γ1 < γ2 <
1
4
, a ∈ Ω̂,

and let

χ ≡ 1 in Bγ1d(a), χ ≡ 0 outside Bγ2d(a), ‖∇χ‖∞ 6
2

(γ2 − γ1)d
.

Then

‖u‖2L2p(Bγ1d
(a))6C4(γ2−γ1, β)‖u‖2L2q̂(Bγ2d

(a)), (19)

C4(γ2−γ1, β) :=
8(p+1)2

(
1+C3(β)

)
Θ

2
q
nd

2n
q
−2

4
2n
q (γ2−γ1)2

+
(p+1)2C3(β)|β|

µ
‖W0‖L q

2
(B d

4
(a)).

Thanks to the abbreviation

Φ[b, γ] :=

(∫

Bγd(a)

|ϕ|b dx
) 1

b

, b ∈ R \ {0}, γ ∈
(
0,

1

2

)
,

inequality (19) can be rewritten as

Φ[p(β + 1), γ1] 6 C
1

β+1

4 (γ2 − γ1, β)Φ[q̂(β + 1), γ2], if β + 1 > 0, (20)

and

Φ[q̂(β + 1), γ2] 6 C
− 1

β+1

4 (γ2 − γ1, β)Φ[p(β + 1), γ1], if β + 1 < 0. (21)

Now we can start the iteration procedure mentioned above. For this pur-
pose we fix a positive number t and choose a sequence of length scales τm and
exponents βn,m ∈ N, as follows

τm :=
1

8
+

1

2m+2
, β := βm :=

(
p

q̂

)m
t

p
− 1, m ∈ N. (22)
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Recall that by definition p > q̂ and choose t > 2p. This ensures that βm > 1
for all m ∈ N. The last inequality, Lemma 4.1 and the definitions of p, C3, C4,
and V̂ imply

p

q̂
6 3, |β| 6 3mt

p
, C3(β) 6

4µ

ν
, C4(τm+1 − τm+2, βm) 6

4mt

p
C5, (23)

where

C5 := (p+ 1)2


211

(
1 +

4µ

ν

)
Θ

2
q
nd

2n
q
−2

4
2n
q

+ 4
V̂

ν


 .

Hence, inequality (20) yields

Φ

[
t

(
p

q̂

)m
, τm+2

]
6

(
4mC5t

p

) p
t (

q̂
p)

m

Φ

[
t

(
p

q̂

)m−1

, τm+1

]

6

m∏

i=1

(
4iC5t

p

) p
t (

q̂
p)

i

Φ[t, τ2],

(24)

for all m > 1. Direct calculations show
∑∞

i=1

(
q̂

p

)i
= q̂

p−q̂
,
∑∞

i=1 i
(
q̂

p

)i
= pq̂

(p−q̂)2
,

max[2p,+∞)
ln t
t

6 max[2,+∞)
ln t
t

= e−1, t
1
t 6 e−

1
e < 2. We pass in (24) to the

limit m → +∞. Then [5, Problem 7.1] and the monotonicity of Φ[b, γ] with

respect to the radius γ imply

sup
B d

8
(a)

ϕ = lim
m→+∞

Φ

[
t

(
p

q̂

)m
, τm+2

]
6 C6Φ

[
t,

3

16

]
, (25)

C6 := 2
pq̂
p−q̂

+ pq̂

(p−q̂)2

(
C5

p

) pq̂
t(p−q̂)

. (26)

Thus we are able to bound the supremum of ϕ in a small ball by some Lp-norm
with a finite exponent on a larger ball. Similarly, it is possible to give a lower
bound on the infimum of ϕ by some Lp-norm. For this purpose we consider now
the parameter range β + 1 < 0. In this case two last estimates in (23) remain
true. We chose a different sequence of scales than in (22). More precisely, fix
an arbitrary positive t and set

β := βm := − t

q̂

(
p

q̂

)m
− 1, m ∈ Z+.

We observe that by (19) and the first estimate in (23)

C4(τm+1− τm+2, βm)64m
(
1+

t

q̂

)
C7, C7 :=(p+1)2


211

(
1+

µ

ν

)Θ
2
q
nd

2n
q
−2

4
2n
q

+
V̂

ν


.
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Then estimate (21) implies

Φ[−t, τ1] 6
(
40C7 ·

(
t

q̂
+ 1

)) q̂
t

Φ

[
− pt

q̂
, τ2

]

6

(
40C7 ·

(
t

q̂
+ 1

)) q̂
t
(
41C7 ·

(
t

q̂
+ 1

)) q̂2

pt

Φ

[
− p2t

q̂2
, τ3

]

6

m∏

i=1

(
4i−1C7

(
t

q̂
+ 1

)) q̂
t (

q̂
p)

i−1

Φ

[
− pmt

q̂m
, τm

]
.

Again we pass to the limit m → +∞ and use [5, Problem 7.1] to arrive at the
identity

Φ

[
−t, 1

4

]
6 C8(t) inf

B d
8
(a)
ϕ, C8(t) := 2

q̂2

(p−q̂)2

(
C7

(
t

q̂
+ 1

)) pq̂
t(p−q̂)

. (27)

Now we have to cover the intermediate parameter region 0 < b ≤ 2p for the
exponent in Φ[b, γ]. For this purpose let us return back to inequality (18). We

fix a ∈ Ω̂, ρ 6 d
4
, and choose χ such that χ ≡ 1 in Bρ(a), χ ≡ 0 outside B2ρ(a),

and ‖∇χ‖∞ 6 2ρ−1. It follows from (18) and Hölder inequality that

‖∇u‖2L2(Bρ(a)) 6 2n+4µν−1Θnρ
n−2 + 21+

n
q̂ ν−1Θ

1
q̂
nρ

n
q̂ ‖W0‖L q

2
(B2ρ(a)),

‖∇u‖2L1(Bρ(a)) 6 Θnρ
n‖∇u‖2L2(Bρ(a)).

Thus we have established that

‖∇u‖L1(Bρ(a)) 6 C9ρ
n−1, C9 := Θ

1
2
nν

− 1
2

(
2n+4µΘn + 2n(1+

2
q )−3V̂Θ

1
q̂
nd

2(1−n
q
)

)1
2

.

If we take any ρ̃ ≤ ρ and a ball Bρ̃(ã) contained in Ω, then ‖∇u‖L1(Bρ(a)∩Bρ̃(ã)) 6

C9ρ̃
n−1. This shows that the function |∇u| is in the Morrey class, cf. [5, Sec-

tion 7.9], and that the corresponding norm is bounded by C9.
Using this estimate, [5, Chapter 7, Section 7.8, Lemma 7.16], the inequal-

ities 1 < n
n−1

6 2,
∑∞

j=1
jj

j!(2e)j
< 1

3
, and analysing the proof of [5, Chapter 7,

Section 7.9, Lemma 7.20], one can make sure that

∫

Bρ(a)

exp
(
C10|u(x)− uρ|

)
dx 6 C11ρ

n,

uρ :=
1

|Bρ(a)|

∫

Bρ(a)

u(x) dx, C10 =
Θn

2n+1eC9

, C11 = 2n+1Θn.
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Hence,
∫

Bρ(a)

exp
(
± C10u(x)

)
dx 6 C11ρ

n exp(±C10uρ),

∫

Bρ(a)

exp
(
C10u(x)

)
dx

∫

Bρ(a)

exp
(
− C10u(x)

)
dx 6 C2

11ρ
2n

that yields

∫

Bρ(a)

exp
(
C10u(x)

)
dx 6 C2

11ρ
2n

(∫

Bρ(a)

exp
(
− C10u(x)

)
dx

)−1

.

We replace u by lnϕ and obtain Φ[C10,
ρ

d
] 6

(
C11ρ

n
) 2

C10Φ[−C10,
ρ

d
]. The rele-

vance of the last estimate is that it relates Φ[b, γ] with positive and negative
values of b each to other. The problem is however that we know only that
b = C10 is positive, but a close look reveals that it smaller than 2p, the param-
eter value for which inequality (25) is valid. Indeed, p > 1, and

C9 > 2
n
2
+2Θn(

µ

ν
)
1
2 > 2

n
2
+2Θn, C10 < 2−

3n
2
−3 < 1. (28)

For this reason we have to bridge the gap between the parameter value C10

and 2p.
We let ρ = d

4
, and use (27) with t = C10. This implies

Φ

[
C10,

1

4

]
6

(
C11d

n

4n

) 2
C10

C8(C10) inf
B d

8
(a)
ϕ. (29)

We introduce a sequence

zk :=
2q̂2

p+ q̂

(
q̂

p

)k
, k > 0. (30)

Let l be the minimal index in this sequence such that zl 6 C10, i.e., l is the
minimal nonnegative integer greater than or equal to − log p

q̂

C10(p+q̂)
2q̂2

. The rela-

tions (4) and (28) imply

C10(p+ q̂)

2q̂2
<

2q̂ + 1

27q̂2
<

3

27
, n = 2

C10(p+ q̂)

2q̂2
< C10p <

n

2
3n
2
+3(n− 2)

<
3

2
3n
2
+3

6
3

27
, n > 2.

Hence, − log p
q̂

C10(p+q̂)
2q̂2

> 0, and it follows from the definition of l that

l = − log p
q̂

C10(p+ q̂)

2q̂2
+ η, (31)
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where η ∈ [0, 1). Thus,

C10
q̂

p
< zl 6 C10. (32)

By Hölder inequality we obtain

Φ

[
zl,

1

4

]
6

(
Θnd

n

4n

)C10−zl
C10zl

Φ

[
C10,

1

4

]
. (33)

Our next aim is to estimate Φ[t, 3
16
] by Φ[zl,

1
4
] for some t > 2p. This will

be again done by an interation, but this time it will have only a finite number
of steps. We introduce the number N as the minimal integer greater than or
equal to

log p
q̂

2p

zl
= l + 1 + log p

q̂

p+ q̂

q̂
. (34)

The identity (31) implies the upper bound for N ,

N 6 l+ 2+ log p
q̂

p+ q̂

q̂
6 log p

q̂

p+ q̂

q̂
− log p

q̂

C10(p+ q̂)

2q̂2
+ 3 6 log p

q̂

2p3

C10q̂2
. (35)

It follows from the definition of zl that

max
m∈N

∣∣∣∣
zl
q̂

(
p

q̂

)m
− 1

∣∣∣∣
−1

=

∣∣∣∣∣
zl
q̂

(
p

q̂

)l
− 1

∣∣∣∣∣

−1

=
p+ q̂

p− q̂
(36)

This time it turns out to be convenient to choose the sequences of length
scales τ̃m and exponents βm, m ∈ N, according to

τ̃m =
1

4
− m

16N
, β := βm :=

zl
q̂

(
p

q̂

)m
− 1.

By (28), (32), (34)–(36) and the definition of C3 and C4 we obtain

C3(β) 6
(|β|+ 1)2

|β|2
µ

ν
=

(
1 +

1

|β|

)2
µ

ν
6

4p2

(p− q̂)2
µ

ν
,

C4(τ̃m − τ̃m−1, βm) 6 C12

(
p

q̂

)m
,

C12 :=
4(p+ 1)2p2

(p− q̂)2
V̂

ν

(
1 +

C10

q̂

)

+ 211−
4n
q (p+ 1)2Θ

2
q
nd

2n
q
−2

(
1 +

4p2

(p− q̂)2
µ

ν

)
log2p

q̂

2p3

C10q̂2
.
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Taking these relations and (32) into account, we apply the estimates (20),

Φ

[
zl

(
p

q̂

)N
,
3

16

]
= Φ

[
zl

(
p

q̂

)N
, τ̃N

]

6

(
C12

(
p

q̂

)N−1
) q̂

zl
( q̂
p)

N−1

Φ

[
zl

(
p

q̂

)N−1

, τ̃N−1

]

6

(
C12

q̂

p

(
p

q̂

)N) p
zl
( q̂
p)

N (
C12

q̂

p

(
p

q̂

)N−1
) p

zl
( q̂
p)

N−1

Φ

[
zl

(
p

q̂

)N−2

, τ̃N−2

]

6

N∏

i=1

(
C12

q̂

p

(
p

q̂

)i) p
zl
( q̂
p)

i

Φ[zl, τ̃0] 6

(
p

q̂

) p2q̂

zl(p−q̂)2
(
C12

q̂

p

) pq̂
zl(p−q̂)

Φ

[
zl,

1

4

]

6

(
p

q̂

) p2q̂

C10(p−q̂)2
(
C12

q̂

p

) pq̂
zl(p−q̂)

Φ

[
zl,

1

4

]
.

Note that zl(
p

q̂
)N ≥ 2p by (34). We choose t = zl(

p

q̂
)N and combine the obtained

inequality with (25), (29), and (33),

sup
B d

8
(a)

ϕ 6 C13 inf
B d

8
(a)
ϕ, (37)

C13 :=2
pq̂
p−q̂

+ pq̂+q̂2

(p−q̂)2
−

2(n−1)
C10

(
p

q̂

) p2q̂

C10(p−q̂)2
(
1 +

2p2

q̂2

) q̂
2(p−q̂)

max
{
(Θnd

n)
2

C10 , (Θnd
n)

p+q̂
C10q̂

}

·max





(
C5C7

p

) q̂
2(p−q̂)

,

(
C5C7

p

) q̂2

2p(p−q̂)



max





(
C12q̂

p

) pq̂
C10(p−q̂)

,

(
C12q̂

p

) p2

C10(p−q̂)





for all a ∈ Ω̂, where we have used that by (28), (32), (35), (30), and t > 2p

2p 6 t = zl

(
p

q̂

)N
6

2q̂2

p+q̂

(
p

q̂

)N−l

6
2p2

q̂
,

(
Θnd

n

4n

)C10−zl
C10zl

(
C11Θnd

n

4n

) 2
C10

=
(Θnd

n)
1

C10
+ 1

zl

2
2n
zl

− 2
C10

6 2
−

2(n−1)
C10 max

{
(Θnd

n)
2

C10 , (Θnd
n)

p+q̂
C10q̂

}
,

(
C5C7

p

) pq̂
t(p−q̂)

6 max





(
C5C7

p

) q̂
2(p−q̂)

,

(
C5C7

p

) q̂2

2p(p−q̂)



 ,

(
C12q̂

p

) pq̂
zl(p−q̂)

6 max





(
C12q̂

p

) pq̂
C10(p−q̂)

,

(
C12q̂

p

) p2

C10(p−q̂)



 .
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We observe that

C13 > 1, (38)

otherwise inequality (37) is impossible.

Let xmax ∈ Ω̂ d
8
be the point of global maximum of ϕ in Ω̂ d

8
, and xmin be

the point of global minimum in the same domain. Then there exists two points
a± ∈ Ω̂ such that xmax ∈ B d

8
(a+), xmin ∈ B d

8
(a−). We connect the points a+

and a− by an admissible cylinder of the length at most L; the corresponding
curve lies in Ω̂. We cover the corresponding curve by balls of radius d

8
; the balls

should have at least common boundary points, and two of these balls must be
B d

8
(a±). It is clear that it is possible to cover the mentioned curve by at most 4L

d

balls. We apply estimate (37) to each of these balls and proceed as in the proof
of [5, Chapter II, Section 2.3, Theorem 2.5], that leads us to the estimate (15),
where

C2 = C
4L
d

13 . (39)

7. Estimates for the second eigenfunction ψ

In this section we study properties of an eigenfunction ψ associated to an eigen-
value λ ∈ (λ0, 0). In particular, we establish a relation between the supremum-,
the Hölder- and L2-norms of ψ.

Lemma 7.1. There exist a point x− ∈ Ω0 such that ψ(x−) = 0.

Proof. We prove the existence by contradiction. Suppose that such a point x−
does not exist and consider the domain Ω− := {x ∈ Ω : ψ(x) 6 0}. Lemma 5.1
yields that this domain is closed and by the assumption Ω− ∩Ω0 = ∅. Now we
restrict the quadratic form h to the subspace W̊ 1

2 (Ω−,Γ ∩ ∂Ω−) ∩ L2(Ω−;V
+).

This form is closed, symmetric and lower-semibounded. By H− we denote
the associated self-adjoint operator in L2(Ω−). It follows from the identity
Ω− ∩ Ω0 = ∅ and the definition of the function ψ that it belongs to
W̊ 1

2 (Ω−,Γ ∩ ∂Ω−) ∩ L2(Ω−;V
+) and is a generalized solution to the equation

(
−

n∑

i,j=1

∂

∂xi
Aij

∂

∂xj
+ V − λ

)
ψ = 0 in Ω−

satisfying Dirichlet boundary condition on Γ∩∂Ω−, and the Neumann condition
on the rest of the boundary. Therefore, it is an eigenfunction of this operator as-
sociated with an eigenvalue λ < 0. By Dirichlet-Neumann bracketing and (3c) it
follows that inf σ(H−) > inf σ(H0) > 0,which yields a contradiction. Therefore,
Ω− ∩ Ω0 6= ∅, i.e., there exists x− ∈ Ω0 such that ψ(x−) = 0.
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Having Lemma 5.1 in mind and, if needed, changing the sign of ψ, we
normalize the function ψ by the requirement

max
Ω0

|ψ| = max
Ω0

ψ = 1. (40)

The function ψ is a generalized solution to the equation
(
−

n∑

i,j=1

∂

∂xi
Aij

∂

∂xj
+ V + − λ

)
ψ = 0 in Ω \ Ω0.

Due to (3c) we have V +−λ > 0 in Ω\Ω0. Together with the fact that ψ vanishes
on ∂Ω, by the weak maximum principle (see [5, Chapter 8, Section 8.1, Theorem
8.1]) and (40) we have the estimate |ψ(x)| 6 max∂Ω0 |ψ| 6 1, x ∈ Ω \ Ω0. By (40)
it yields

max
Ω

|ψ| = 1. (41)

Lemma 7.2. For each ball Br(a), a ∈ Ω0, r 6 r1, the inequality

|ψ(x)− ψ(y)| 6 C14r
α

rα1
, x, y ∈ Br(a) (42)

holds true, where

r1 :=



Θ

− 1
n

n

(
ν

12(p+ 1)2V̂

) q
2(q−n)

,
d

4



 ,

α = min

{
− log4

(
1− 2−C15

)
, 1− n

q

}
,

C14 = 4αmax

{
2,

2C15+2ν

9
√
6µ(p+ 1)Θ

1
n
n

}
,

C15 := 3 + 81 · 2n+9(θn + 1)2n−2µ2ν−2C
2(n−1)

n

16 ,

C16 := max

{
22n+1Θ−1

n , 4
q2n2

(q−n)2C
qn
q−n

17

}
,

C17 := 9 · 22n+9Θ
1−q
q

n n−1(θn + 1)µν−1.

Proof. The statement of this lemma was proven in [12, Chapter III, Section 13,
Theorem 13.1], but the explicit formulae for α, r1 and C14 were not given. For
this reason we partially reproduce the proof to obtain the explicit formulae
for the mentioned constants. The idea of the proof is to estimate the norm
of the gradient of ψ on some special sets. The resulting estimates guarantee
that ψ belongs to a certain class of functions which can be embedded into a
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Hölder space. The Hölder norm and exponent can be expressed explicitly via
the constants in the estimates for the norm of the gradient.

We choose ã ∈ Ω0. We are going to prove that for an appropriate choice of
the constants C and C̃ the function ψ belongs to the special class of functions
B2(B d

4
(ã), 1, C, C̃, 1, 1

q
) defined in [12, Chapter II, Section 6]. It was shown in

[12, Chapter II, Theorem 6.1] that this class is embedded in a Hölder space.
Moreover, an explicit formula for the Hölder exponent and the estimate for the
norm were given. This is why we need to estimate the constants C, C̃ explicitly
to apply the cited theorem.

Given any number k > −2 and any ball Br(a) ⊂ B d
4
(ã), we consider the set

Mk,r := {x : ψ(x) > k} ∩ Br(a). We only need to consider k > −2, since this
is a superset of the values of k which satisfy inequality (6.2) in [12, Chapter II],
namely

k > max
x∈Br(a)

±ψ(x)− 1.

We note that this inequality forms part of the definition of the functional class
B2(B d

4
(ã), 1, C, C̃, 1, 1

q
).

Let χ ∈ C∞(Br(a)) be a cut-off function taking values in (0, 1) and vanishing
outside Br(a). The function v(x) := χ(x)2max{ψ(x) − k; 0} belongs to D(h)
and since ψ is a weak solution we have h[ψ, v]−λ(ψ, v)L2(Ω) = 0. We substitute
this relation and the definition of vinto the formula for h,

n∑

i,j=1

∫

Mk,r

Aij
∂ψ

∂xi

∂ψ

∂xj
χ2 dx =− 2

n∑

i,j=1

∫

Mk,r

Aij
∂ψ

∂xi

∂χ

∂xj
(ψ − k)χ dx

+

∫

Mk,r

W (ψ − k)ψχ2 dx,

where W := λ−V . Employing (1) and Cauchy-Schwarz inequality, we continue
the calculations,

ν‖χ∇ψ‖2L2(Mk,r)
6
ν

2
‖χ∇ψ‖2L2(Mk,r)

+ 2µ2ν−1‖(ψ − k)∇χ‖2L2(Mk,r)

+

∫

Mk,r

|W ||ψ|(ψ − k)χ2 dx,

‖χ∇ψ‖2L2(Mk,r)
64µ2ν−2‖(ψ − k)∇χ‖2L2(Mk,r)

(43)

+ 2ν−1

∫

Mk,r

|W ||ψ|(ψ − k)χ2 dx.

To estimate the last term in this inequality, we apply the Hölder inequality and
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Lemma 4.1,
∫

Mk,r

|W ||ψ|(ψ − k)χ2 dx 6 ‖W‖L q
2
(Mk,r)‖ψ|ψ − k|χ2‖Lq̂(Mk,r)

6 ‖W‖L q
2
(Mk,r)‖(|ψ − k|2 + k|ψ − k|)χ2‖Lq̂(Mk,r)

6 ‖W‖L q
2
(B d

4
(ã))‖3|ψ − k|2χ2 + 2k2‖Lq̂(Mk,r)

6 V̂
(
3‖(ψ − k)χ‖2L2q̂(Mk,r)

+ 2k2|Mk,r|
1
q̂

)
.

Now we employ inequality [12, Chapter I I, Section 2, (2.12)] that implies

‖(ψ − k)χ‖2L2q̂(Mk,r)
6 C4|Mk,r|2(

1
n
− 1

q
)‖∇(ψ − vk)χ‖2L2(Mk,r)

6 C4Θ
2( 1

n
− 1

q
)

n r2(1−
n
q
)

·
(
‖χ∇ψ‖2L2(Mk,r)

+ ‖(ψ − vk)∇χ‖2L2(Mk,r)

)
.

(44)

We substitute two last inequalities into (43) and take into account that the

definition of r1 and the inequality r 6 r1 imply 3C4Θ
2( 1

n
− 1

q )
n r2(1−

n
q )ν−1V̂ 6

1
4
.

We also bear in mind that since Mk,r = ∅ for k > 1, we can restrict our

consideration to the case −2 6 k 6 1. In this case |k| 6 2. By (43), (44) it

leads us to the estimate

‖χ∇ψ‖2L2(Mk,r)
6 (8µ2ν−2 + 1)‖(ψ − k)∇χ‖2L2(Mk,r)

+ 32ν−1V̂ |Mk,r|
1
q̂

6 9µ2ν−2‖(ψ − k)∇χ‖2L2(Mk,r)
+ 32ν−1V̂ |Mk,r|

1
q̂ ,

where we have used that µ

ν
> 1. Now we take any δ ∈ (0, 1) and assume that

χ ≡ 1 in Br(1−δ)(a) and |∇χ| 6 3(δr)−1 in Br(a). Then we obtain

‖∇ψ‖2L2(Mk,r(1−δ))
6

(
81Θ

2
q
nµ

2ν−2δ−2r−2(1−n
q ) max

Mk,r

|ψ − k|2 + 32ν−1V̂
)
|Mk,r|

1
q̂ .

This inequality means that the function ψ belongs to the aforementioned class

B2(B d
4
(ã), 1, C, C̃, 1, 1

q
) with C = 81Θ

2
q
nµ2ν−2, C̃ = 32ν−1V̂ .

Note that [12, Theorem 6.1] implies that the estimate (42) holds. To obtain
explicit expressions for the exponent α and the constsnt C14, one has to trace
the dependence of the various constants trough the proof of [12, Theorem 6.1].
More precisely, one uses formula (6.36) in [12, Chapter II,Theorem 6.1], the
choice δ0 =

1
2
given right after formula [12, Chapter II, (6.34)], formulae (6.24),

(6.26) in the proof of [12, Chapter II, Lemma 6.3], formulae (6.16), (6.17) in
the proof of [12, Chapter II, Lemma 6.2], and the formula established at the
very end of the proof of [12, Chapter II, Lemma 3.8] for the constant β which
is introduced in [12, Chapter II, Inequality (3.4)].



500 D. Borisov and I. Veselić

The final result of this section provides an upper bound on the L2-norm of
ψ, given the normalization (40).

Lemma 7.3. The estimate

‖ψ‖2L2(Ω) 6
C18

|λ| , C18 :=

(
C1 +

4µ

r21

)
|Ω0, d

4
|, (45)

holds true.

Proof. Let χ ∈ C∞(Ω) be a cut-off function vanishing in Ω0 and equalling one
in Ω \ Ω0,r1 . It is clear that ψχ

2 ∈ D(h). In view of this fact and the definition
of ψ we have

h[ψ, ψχ2] = λ‖ψχ‖2L2(Ω). (46)

Direct calculations using the symmetry of Aij yield

h̃[∇ψ,∇ψχ2] = h̃[χ∇ψ,∇ψχ] + h̃[χ∇ψ, ψ∇χ]
= h̃[∇χψ,∇χψ]− h̃[ψ∇χ,∇χψ] + h̃[ψ∇χ, χ∇ψ]
= h̃[∇χψ,∇χψ] h̃[ψ∇χ, ψ∇χ]

We substitute this identity into (46) and obtain

h[ψχ, ψχ]− λ‖ψχ‖2L2(Ω) = h̃[ψ∇χ, ψ∇χ].

The function ψχ vanishes on Ω0 and this is why it belongs to the domain of
the quadratic form associated with H0. The value of this quadratic form on ψχ
equals h[ψχ, ψχ], and by assumptions (3c) and (3d) we obtain that λ < 0 and
h[ψχ, ψχ] > 0. These inequalities and (1) imply |λ|‖ψχ‖2L2(Ω) 6 µ‖ψ∇χ‖2L2(Ω).

We choose χ so that it takes values in [0, 1] and satisfies |∇χ| 6 2r−1
1 on Ω0,r1\Ω0.

Hence,

‖ψ‖2L2(Ω\Ω0,r1 )
6

4µ

r21|λ|
‖ψ‖2L2(Ω0,r1 )

,

‖ψ‖2L2(Ω) 6 |λ|−1

(
|λ|+ 4µ

r21

)
‖ψ‖2L2(Ω0,r1 )

.

(47)

We know by (41) that |ψ| 6 1 in Ω0,r1 . It also follows from the definition of r1
that |Ω0,r1 | 6 |Ω0, d

4
|. Substituting these estimates into (47) and employing the

inequality |λ| < C1 which is valid due to (10), we arrive at the statement of the

lemma.
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8. Proof of main results

Proof of Theorem 2.2. Let x+ ∈ Ω0 be the point where the function ψ attains
the maximum, i.e., ψ(x+) = 1. Such a point exists due to (40). Due to
Lemma 7.1, there exist a point x− in Ω0 such that ψ(x−) = 0. We connect
the points x+ and x− by an admissible cylinder and choose it as the domain Ω′.
We fix the radius of the cylinder Ω′ setting it equal to

r2 := min

{
r1(3C14C2)

− 1
α ,
d

8
, r0

}
,

where the constant C2 is taken from Theorem 6.1 (Harnack inequality). We
denote the bases of Ω′ by S+, S− (so that x+ ∈ S+ and x− ∈ S−). In this cylinder
we introduce new coordinates: the arc length s of the C2-curve corresponding
to Ω′ connecting x+ and x−, and the coordinates on the cross-section. Since
the cylinder is admissible, these coordinates are well-defined. We also observe
that Ω′ ⊆ Ω̂ d

8
.

Lemma 7.2 and the definition of r2 imply that

ψ(x) > 1− (3C2)
−1 for x ∈ S+ and ψ(x) 6 (3C2)

−1 for x ∈ S−.

We employ this inequality and the obvious estimate
∣∣∣∂ψ∂s
∣∣∣ 6 |∇ψ|, x ∈ Ω′, to

obtain

inf
Ω′

ψ0 ·
∥∥∥∇ ψ

ψ0

∥∥∥
L1(Ω′)

> inf
Ω̂ d

8

ψ0 ·
∫

Ω′

∂

∂s

ψ

ψ0

dx

= inf
Ω̂ d

8

ψ0 ·
(∫

S+

ψ

ψ0

dS+ −
∫

S−

ψ

ψ0

dS−

)

> S0




infΩ̂ d
8

ψ0

supΩ̂ d
8

ψ0

(
1− (3C2)

−1
)
− (3C2)

−1




>
S0(2C2 − 1)

3C2
2

>
S0

3C2

,

(48)

where S0 := |S+| = |S−|. Recall that the cylinder Ω′ is defined with the help of
a curve connecting the points x− and x+. Let ℓ be the length of the C2-curve
connecting x− and x+. To estimate the volume of Ω′ we will need the following
auxiliary

Lemma 8.1. The equality |Ω′| = S0ℓ holds true.
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Proof. Let R(s) be the vector-function describing the C2-curve connecting x−
and x+, where s is the arc length, T (s) be the tangential vector to this curve,
and Ni(s), i = 1, . . . , n−2 be the continuously differentiable vectors orthogonal
to T (s). We assume that Ni are orthonormalized, so, the vectors T and Ni(s)
form a Frenet frame attached to the curve. The vectors Ni form an orthonor-
malized basis in the (n− 1)-dimensional disk attached to the same point of the
curve as Ni. As the corresponding Cartesian coordinates y we choose the ones
associated with the vectors Ni. As a result we have

x = R(s) +
n−1∑

i=1

yiNi(s).

By J(s, y) we denote the Jacobian

J(s, y) =
D(x)

D(s, y)
= detMJ , where MJ :=




T (s) +
∑n−1

i=1 yiN
′
i(s)

N1(s)
...

Nn−1(s)


 .

Since the vectors T and Ni are orthonormalized, the matrix (T,N1, . . . , Nn−1)
is unitary and up to a renumbering of Ni we can assume that its determinant
equals one. Hence, if we multiply MJ by this matrix, we do not change the
value of J . It gives

J(s, y) = det




1 +
∑n−1

i=1 yiki(s) ∗ ∗ . . . ∗
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




= 1 +
n−1∑

i=1

yiki(s), (49)

where the symbol ∗ indicates unspecified functions, ki(s) = (T (s), N ′
i(s))Rn .

Since for each s the vectors (T,N1, . . . , Nn−1) form a basis the map s 7→ J(s, y)
never vanishes. As J(s, y) = 1 for y = 0, we conclude that J(s, y) is a positive
function. Employing this fact and (49), we can calculate the volume of Ω′:

|Ω′| =
∫ ℓ

0

ds

∫

|y|<r2

J(s, y) dy = |S0|ℓ+
∫ ℓ

0

ds
n−1∑

i=1

ki(s)

∫

|y|<r2

yi dy.

By parity arguments
∫
|y|<r2

yi dy = 0. Together with the previous identity this

completes the proof of the auxiliary lemma.

Now we continue the proof of Theorem 2.2. For this purpose we substitute
the proved identity |Ω′| = S0ℓ and (48)into (14), and arrive at the estimate

λ− λ0 >
S2
0ν

9C2
2 |Ω′|‖ψ‖2

L2(Ω)

>
S0ν

9C2
2L‖ψ‖2L2(Ω)

, (50)



Spectral Gaps for Self-Adjoint Second Order Operators 503

where we have used that ℓ 6 L. The (n − 1)-dimensional volume of the discs
S+, S− equals S0 = Θn−1r

n−1
2 .We substitute this identity and (45) into (50) and

arrive at (5). In this inequality we changed the notations, namely, we denoted
c1 := r2, c2 := C13, c3 := C14, c4 := C15, c5 := C16, c6 := C17, c7 := C10,
c8 := C5

C7

p
, c9 := C12

q̂

p
.

Proof of Theorem 2.4. Let us prove the estimate (6). The parameter L appears
only explicitly in the right hand side of (5), and also in the definition of c1. We
also observe that |Ω0, d

4
| is bounded by ΘnL

n. The constants ci, i = 2, . . . , 10

are independent of L. It follows from (38) and the formula for c3 that c2 > 1,

c3 > 1. Hence, for L large enough c1 = r1(3c3c
8L
d

2 )−
1
α . We substitute this identity

into (5) and arrives at (6), where c11 := 8d−1(1 + (n− 1)α−1) ln c2 > 0.

Proof of Theorem 2.5. It is clear that for V̂ small enough all the constants re-
main bounded from above and below. We also note that ‖V −‖L q

2
(Ω0) is small,

too. The mentioned facts imply (7).

Proof of Theorem 2.6. In the case considered the constants α, c3–c6 remain con-
stant and depend on n, q, and µ

ν
. The constants c7–c10 satisfy the relations

c−1
7 6 C19ν

− 1
2 , c8 6 C20ν

−2, c9 6 C21ν
−1. (51)

where Ci = Ci(n, q, d, V̂ ), i = 19, 20, 21. Hence,

c2 6 C22ν
− q̂

p−q̂

(
C23 log

2
p
q̂
ν
)C24ν

− 1
2

, r1 = C25ν
q

2(q−n), c1 = C26ν
q

2(q−n) c
− 8L

αd

2 ,

where Ci = Ci(n, q, d, V̂ ), i = 22, . . . , 26, C24 > 0, C25 6= 0, C26 6= 0. We
substitute these relations into (5) and obtain (8).

Proof of Theorem 2.7. The proof of (9) is more complicated in comparison with
the previous proof. Namely, in this case the estimates (51) for c7, c8, remain

true, where Ci = Ci(n, q, d, µ, V̂ ). The estimates for c9 and c2 read as follows,

c9 6 C27ν
−1 log2p

q̂
ν, c2 6 (C28ν

−1 log2p
q̂
ν)C29ν

− 1
2 ,

Ci = Ci(n, q, d, µ, V̂ ), i = 27, 28, 29. The main difference with the previous case
is that now the constants c3–c6 and α depend on ν in a singular way. Namely,

c6 6 C30ν
−1, c5 6 C31ν

− qn
q−n , c4 6 C32ν

−
2(n−1)q

q−n .

where Ci = Ci(n, q, µ), i = 30, 31, 32. Thus, α = − log4(1− 2−c4), and

C33 exp
(
−C34ν

−
2(n−1)q

q−n

)
>α>C35 exp

(
−C34ν

−
2(n−1)q

q−n

)
, c36C37 exp

(
C38ν

−
2(n−1)q

q−n

)
,
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where Ci = Ci(n, q, µ), i = 34, 36, 37, C34 > 0, C38 > 0, C33 and C35 are

some absolute constants. We also observe that r1 ∼ ν
q

2(q−n) , c1 = r1(3c3c
8L
d

2 )−
1
α .

Bearing in mind the obtained relations, we estimate the right hand side of (5)

from below that gives the following inequality

λ− λ0 > |Ω0, d
4
|−1C39|λ|L−1νcn−1

1 r21c
− 8L

d

2

> C39|λ|L−n−1νrn+1
1 3−

n−1
α c

−n+1
α

3 c
− 8Ln

αd

2

> C40|λ|L−n−1ν1+
q(n+1)
2(q−n) exp

(
−C41α

−1ν−
2(n−1)q

q−n

) (
C28ν

−1 log2p
q̂
ν
)− 8C24Ln

αd
√

ν ,

where C39 = C39(n, d, µ), C40 = C40(n, d, µ, V̂ ), C41 = C41(n, q, µ). We substi-
tute into the obtained inequality the estimate for α that implies (9).
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