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Abstract. The present paper deals with the inverse problem for degenerate elliptic
systems of first order equations in multiple connected domains with Riemann-Hilbert
type map. Firstly the formulation and the complex form of the problem for the
degenerate elliptic systems of first order are given, and then the coefficients of the
above systems are constructed by a new complex analytic method. As an application
of the above results, we can derive the corresponding results of the inverse problem
for degenerate elliptic equations of second order in multiple connected domains from
Dirichlet to Neumann map.
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1. Formulation of the inverse problem for degenerate ellip-
tic complex equations of first order

In [1–4, 6–8, 13, 14], the authors posed and discussed the inverse problem of
second order elliptic equations without degenerate line. In this paper, by using
the complex analytic method, the existence of solutions of the inverse problem
for elliptic complex equations of first order with degenerate curve in multiple
connected domains with Riemann-Hilbert type map is discussed.

Let D be an N+1-connected bounded domain in the complex plane C with
the boundary ∂D = Γ = ∪N

j=0Γj ∈ C1
µ (0 < µ < 1), where Γj (j = 0, 1, . . . , N)

are inside of Γ0 (= ΓN+1), and we can assume that the point z = 0 ∈ D.
Consider the linear degenerate elliptic systems of first order equations{

H(ŷ)ux − vy = au+ bv

H(ŷ)vx + uy = cu+ dv
in D, (1.1)
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in which ŷ = y − x2, H(ŷ) =
√

|K(ŷ)|, G(ŷ) =
∫ ŷ

0
H(t)dt, G′(ŷ) = H(ŷ),

K(ŷ) = |ŷ|m is continuous in D, where m is a positive number, and a, b, c, d
(j = 1, 2) are functions of x+iy (∈ D) satisfying the condition a, b, c, d ∈ L∞(D),
which is called Condition C. The following degenerate elliptic system is a special
case of system (1.1) with H(ŷ) = |ŷ|m2 :

{ |ŷ|
m
2 ux − vy = au+ bv

|ŷ|
m
2 vx + uy = cu+ dv

in D. (1.2)

We can discuss equation (1.2), and equation (1.1) can be similarly discussed.
From the ellipticity condition [12, Chapter I], we have

J = 4K1K4 − (K2 +K3)
2 = 4H2(ŷ) > 0 in D\γ

and J = 0 on γ = D ∩ {ŷ = y − x2 = 0}, hence system (1.1) or (1.2) is elliptic
system of first order equations in D\γ with the parabolic degenerate curve γ

(see [12]). Setting Y = G(ŷ) =
∫ ŷ

0
H(t)dt, Z = x + iY in D, if H(ŷ) = |ŷ|m2 ,

Y =
∫ ŷ

0
H(t)dt = 2

m+2
|ŷ|m+2

2 , then its inverse function is ŷ =
[
(m+ 2)Y

2

] 2
m+2 =

JY
2

m+2 . Denote

W (z)=u+ iv,

Wz̃ =
1

2
[H(ŷ)Wx + iWy]=

H(ŷ)

2
[Wx + iWY ]=H(ŷ)Wx−iY =H(ŷ)WZ ,

then the system (1.1) can be written in the complex form

Wz̃ = H(ŷ)WZ = −A(z)W −B(z)W in D

A = −1

4
[a+ ic− ib+ d]

B = −1

4
[a+ ic+ ib− d],

(1.3)

in which DZ is the image domain of D with respect to the mapping Z = Z(z) =
x+iY = x+iG(ŷ) in D, and denoted by D again for simplicity. For convenience
we only discuss the complex equation (1.2) about the number Z replaced by z
later on.

Introduce the modified Riemann-Hilbert boundary condition for the equa-
tion (1.3) as follows:

Re[λ(z)W (z)] = r(z) + f(z) = f1(z), z ∈ Γ (1.4)
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where

f(z) =



0, z ∈ Γ, if K ≥ N

gj, z ∈ Γj, j = 1, . . . , N −K

0, z ∈ Γj, j = N −K + 1, . . . , N + 1

}
if 0 ≤ K < N

gj, z ∈ Γj, j = 1, . . . , N

g0 +Re
−K−1∑
m=1

(g+m + ig−m)[z(ζ)]
m, z∈Γ0

 if K < 0

in which λ(z) ( ̸= 0), r(z) ∈ Cα(Γ), α
(
≤ p−2

p

)
is a positive constant, gj

(j = 0, 1, . . . , N), g±m (m = 1, . . . ,−K − 1, K < 0) are unknown real constants
to be determined appropriately, and z = z(ζ) is a conformal mapping from the
unit disk |ζ| < 1 onto the bounded domain D0 bounded by Γ0. In addition, for
K ≥ 0 the solution W (z) is assumed to satisfy the point conditions

Im[λ(zj)W (zj)] = qj, j ∈ J =

{
1, . . . , 2K −N + 1, if K ≥ N

N −K + 1, . . . , N + 1, if 0 ≤ K < N,

in which zj ∈ Γj (j = 1, . . . , N), zj ∈ Γ0 (j = N+1, . . . , 2K−N+1, K ≥ N) are
distinct points, and qj(j ∈ J) are all real constants where K = 1

2π
∆Γ arg λ(z)

is called the index of λ(z) on Γ. The above boundary value problem is called
Problem RH1 for equation (1.3). Under Condition C, we can find the unique
solution W (z) of Problem RH1 for equation (1.3) in D. In fact, we can only
choose any index, for instance the index K = N − 1, in this case, f(z) = 0
on Γ\Γ1 and f(z) = g1 on Γ1, g1 is an undetermined real constant, and there
are N point conditions Im[λ(zj)W (zj)] = qj, zj ∈ Γj, j = 2, . . . , N + 1.

It is clear that the above solution W (z) satisfies the following Riemann-
Hilbert type boundary condition for the equation (1.3):

Im[λ(z)W (z)] = f2(z) on Γ, (1.5)

and then the boundary conditions of modified Riemann-Hilbert to Riemann-
Hilbert type map can be written as follows

λ(z)W (z) = f1(z) + if2(z) on Γ, i.e.

W (z) = h1(z) =
f1(z) + if2(z)

λ(z)
on Γ,

which will be called Problem R1 for the complex equation (1.3) (or (1.1)), where
h1(z) ∈ Cα(Γ) is a complex function, and denote by {h1(z)} the set of above
all functions.
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For the further requirement, we give the modified Riemann-Hilbert problem
(Problem RH2) for the equation (1.3). Herein we only choose the modified
boundary conditions with the index K = N − 1, namely

Re[iλ(z)W (z)] = Im[λ(z)W (z)] = r(z) + f(z) = f̃1(z), z ∈ Γ (1.6)

where λ(z), r(z) on Γ are the similar to before, f(z) =

{
g1 on Γ1

0 on Γ\Γ1,
and

assume that the solution W (z) satisfies the N point conditions

Re[λ(zj)W (zj)] = qj, zj ∈ Γj, j = 2, . . . , N + 1,

in which g1 is an undetermined real constant, and qj (j = 2, . . . , N + 1) are N
real constants. Under Condition C, Problem RH2 for equation (1.3) in D has
a unique solution. It is clear that the solution W (z) satisfies

Re[λ(z)W (z)] = f̃2(z) on Γ. (1.7)

Thus we have

λ(z)W (z) = f̃2(z) + if̃1(z), W (z) = h2(z) =
f̃2(z) + if̃1(z)

λ(z)
on Γ,

which will be called Problem R2 for the complex equation (1.3) (or (1.1)), where
h2(z) ∈ Cα(Γ) is a complex function. It is not difficult to see that the function
h2(z) is also a function of the set {h1(z)}.

On the basis of the above discussion, we see that for any function f1(z) (or
f̃1(z)) of the set Cα(Γ) in the modified Riemann-Hilbert boundary condition
(1.4) (or (1.6)), there is a set {f2(z)} (or f̃2(z)) of the functions of Riemann-
Hilbert type boundary condition (1.5) (or (1.7)), furthermore we obtain h1(z)
(or h2(z)). Denote by Rh the set of {h(z)} including {h1(z)} and {h2(z)}, our
inverse problem is to determine the coefficient a, b, c and d of equation (1.1) (or
A(z), B(z) in (1.3)) from the set Rh, which will be verified later on.

We mention that if A = B = 0, H = H(ŷ) in the ε-neighborhood Dε =
D ∩ {|ŷ| < ε} of D ∩ {ŷ = 0}, and the above coefficients A(z), B(z) weakly
converge to A(z), B(z) in D as ε → 0, then on the basis of Lemma 4.1 below,
we see the Hölder continuity of solution W (Z) and TWZ = −T

[
AW+BW

H

]
of

the complex equation (1.3) with above coefficients and TWZ = −T
[
AW+BW

H

]
(see [9,10,12]), hence from {W (z)} and TWZ , we can choose the subsequences
which uniformly converges the Hölder continuous functions in D respectively.
From this, we can also obtain the corresponding Pompeiu and Plemelj-Sokhotzki
formulas about W (z) in D.
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2. Existence of solutions of the inverse problem for degen-
erate elliptic complex equations of first order

According to [9] introduce the notations

T̃ f(z) = T

[
f

H

]
= − 1

π

∫∫
D

f(ζ)
H(ŷ)

ζ − Z
dσζ ,

in which |ŷ|τf(z) ∈ L∞(D), where τ = max
(
1−m

2
, 0
)
. Suppose that f(z) = 0 in

C\D. Then |ŷ|τf(z) ∈ L∞(C), from Lemma 4.1 below, it follows (T̃ f)z̄ = f(z)
H

in C. We consider the first order complex equation with singular coefficients

Wz −
A(z)

H
W − B(z)

H
W = 0, i.e.

[g(z)]z −
A(z)g(z)−B(z)g(z)

H(ŷ)
= 0 in C,

(2.1)

where Z = x+ iG(ŷ), G(ŷ) =
∫ ŷ

0
H(ŷ)dŷ, g(z) = W (z). Applying the Pompeiu

formula (see [9, Chapters I, III]), the corresponding integral equation of the
complex equation (2.1) is as follows

g(z) + T

[
Ag +Bg

H

]
=

1

2πi

∫
Γ

g(ζ)

ζ − z
dζ in D. (2.2)

For simplicity we can only consider the following integral equation

g(z) + T

[
Ag +Bg

H

]
= 1 or = i in D

later on. On the basis of Lemma 4.1 below, we know that the integral in (2.2)
is a completely continuous operator, hence by using the similar method as in
[9, Section 5, Chapter III] and the proof of [14, Lemma 2.2], we can verify that
the above integral equation has a unique solution.

We first prove the following lemma (see [2]).

Lemma 2.1. The function g(z) = hj(z) (j = 1, 2) is a solution of the integral
equation

g(z) + T

(
A

H

)
g + T

(
B

H

)
g =

{
1

i
in D, g(z) =

{
h1(z)

h2(z)
on Γ, (2.3)

if and only if it is a solution of the integral equation

1

2
g(z) +

1

2πi

∫
Γ

g(ζ)

ζ − z
dζ =

{
1

i
, g(ζ) =

{
h1(ζ)

h2(ζ)
, i.e.

h1(z)

2
+

1

2πi

∫
Γ

h1(ζ)

ζ − z
dζ = 1,

h2(z)

2
+

1

2πi

∫
Γ

h2(ζ)

ζ − z
dζ = i on Γ,

(2.4)

respectively.
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Proof. It is clear that we can only discuss the case of h1. If g(z) is a solution
of the first integral equation in (2.3), then gz = −Ag

H
− Ag

H
. On the basis of the

Pompeiu formula

g(z)=
1

2πi

∫
Γ

g(ζ)

ζ−z
dζ + T [g(ζ)]ζ=

1

2πi

∫
Γ

g(ζ)

ζ−z
dζ − T

[
Ag

H
+
Bg

H

]
in D (2.5)

(see [9, Chapters I, III]), we have

g(z, k) + T

[
Ag

H

]
+ T

[
Bg

H

]
= 1 =

1

2πi

∫
Γ

g(ζ)

ζ − z
dζ in D,

where g(ζ) = h1(ζ) on Γ. Moreover by using the Plemelj-Sokhotzki formula for
Cauchy type integral (see [5, 11])

1 =
1

2πi

∫
Γ

g(ζ)

ζ − z
dζ +

1

2
g(z), g(ζ) = h1(ζ) on Γ,

this is the first formula in (2.4).
Inversely if the first integral equation in (2.4) is true, then there exists a

solution of equation gz = −Ag
H

− Bg
H

in D with the boundary values g(ζ) =

h1(ζ) on Γ, thus we have (2.5), where the integral 1
2πi

∫
Γ

g(ζ)
ζ−z

dζ in D is analytic,
whose boundary value on Γ is

lim
z′(∈D)→z(∈Γ)

1

2πi

∫
Γ

g(ζ)

ζ − z′
dζ =

1

2
g(z) +

1

2πi

∫
Γ

g(ζ)

ζ − z
dζ = 1,

hence 1
2πi

∫
Γ

g(ζ)
ζ−z

dζ = 1 in D, and the first formula in (2.3) is true.

Lemma 2.2. Under the above conditions, the functions h1(z), h2(z) as stated
in Section 1 are the solutions of the system of integral equations

1

2
(1− iS)h1 = 1, Sh1 =

1

π

∫
Γ

h1(ζ)

ζ − z
dζ,

1

2
(1− iS)h2 = i, Sh2 =

1

π

∫
Γ

h2(ζ)

ζ − z
dζ.

(2.6)

Proof. On the basis of the theory of integral equations (see [5, 7, 14]), we can
obtain the solutions h1(z) and h2(z) of (2.6). In fact, from Lemma 2.1 we can
define the functions

w1(z) =


1− 1

2πi

∫
Γ

h1(ζ)

ζ − z
dζ, z ∈ C\D

1 +
1

π

∫∫
C

Aw1(ζ) + Bw1(ζ)

(ζ − z)H
dσζ , z ∈ D,

w2(z) =


i− 1

2πi

∫
Γ

h2(ζ)

ζ − z
dζ, z ∈ C\D

i+
1

π

∫∫
C

Aw2(ζ) + Bw2(ζ)

(ζ − z)H
dσζ , z ∈ D,
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which are analytic in C\D with the boundary values h1(z), h2(z) on Γ respec-
tively, and satisfy the formula (2.6).

Theorem 2.3. For the above inverse problem of the equation (1.2) with Con-
dition C, we can reconstruct the coefficients a(z), b(z), c(z) and d(z).

Proof. We shall find two solutions ϕ1(z) = W1(z) and iϕ2(z) = W2(z) of the
complex equation

[ϕ]z̄ −
A

Hϕ
− Bϕ

H
= 0 in C

with the conditions ϕ1(z) → 1 and iϕ2(z) → i as z → ∞. In fact the above so-
lutions F (z) = ϕ1(z), G(z) = iϕ2(z) are also the solutions of integral equations

F (z) + T

[
AF +BF

H

]
= 1

G(z) + T

[
AG+BG

H

]
= i

in C.

As stated in Lemmas 2.1, 2.2, we can require that the above solutions satisfy the
boundary conditions F (z) = h1(z), G(z) = h2(z) on Γ where h1(z), h2(z) ∈ Rh.

Note that F (z), G(z) satisfy the complex equations
Fz̄ −

AF +BF

H
= 0

Gz̄ −
AG+BG

H
= 0

in C. (2.7)

Moreover on the basis of Lemma 2.4 below, we have

Im[F (z)G(z)] =
F (z)G(z)− F (z)G(z)

2i
̸= 0 in D. (2.8)

Thus from (2.7), the coefficients A
H

and B
H

can be determined as follows

A

H
=

Fz̄G−Gz̄F

FG− FG
,

B

H
= −Fz̄G−Gz̄F

FG− FG
in D, i.e.

A = H
Fz̄G−Gz̄F

FG− FG
, B = −H

Fz̄G−Gz̄F

FG− FG
in D.

From the above formulas, the coefficients a(z), b(z), c(z) and d(z) of the equa-
tion (1.1) are obtained, i.e.

a(z) + ic(z) = 2[A(z) +B(z)], d(z)− ib(z) = 2[A(z)−B(z)] in D.
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Lemma 2.4. For the solutions F (z), G(z) of equations (2.7), we can get the
inequality (2.8).

Proof. Suppose that (2.8) is not true, then there exists a point z0 ∈ D such
that Im[F (z0)G(z0)] = 0, i.e.∣∣∣∣ ReF (z0) ImF (z0)

ReG(z0) ImG(z0)

∣∣∣∣ = 0.

Thus we have two real constants c1, c2, which are not all equal to 0, such that
c1F (z0) + c2G(z0) = 0.

In the following, we prove that the equality of c1F (z0) + c2G(z0) = 0
is not true. If W (z0) = c1F (z0) + c2G(z0) = 0, then W (z) = Φ(z)eϕ(z) =
(z − z0)Φ0(z)e

ϕ(z), where Φ(z), Φ0(z) are analytic functions in D, and

(z−z0)Φ0(z)e
ϕ(z)− 1

π

∫∫
D

(ζ−z0)Φ0(ζ)e
ϕ(ζ)[AW (ζ) + BW (ζ)]

HW (ζ)(ζ − z)
dσζ=c1+c2i.

Letting z → z0, we have − 1
π

∫∫
D
Φ0(ζ)e

ϕ(ζ)
[
A
H
+ BW (ζ)

HW (ζ)

]
dσζ = c1 + c2i, and then

c1+c2i = (z−z0)Φ0(z)e
ϕ(z)− 1

π

∫∫
D

(ζ−z0)Φ0(ζ)e
ϕ(ζ)[AW (ζ)+BW (ζ)]

HW (ζ)(ζ − z)
dσζ

= (z−z0)

{
Φ0(z)e

ϕ(z)− 1

π

∫∫
D

Φ0(ζ)e
ϕ(ζ)[AW (ζ) + BW (ζ)]

HW (ζ)(ζ − z)
dσζ

}

− 1

π

∫∫
D

Φ0(ζ)e
ϕ(ζ)

[
A

H
+
BW (ζ)

HW (ζ)

]
dσζ .

The above equality implies

Φ0(z)e
ϕ(z) − 1

π

∫∫
D

Φ0(ζ)e
ϕ(ζ)[AW (ζ) + BW (ζ)]

HW (ζ)(ζ − z)
dσζ = 0 in D,

and the above homogeneous integral equation only have the trivial solution,
namely Φ0(z) = 0 in D, thus W (z) = Φ(z)eϕ(z) = (z − z0)Φ0(z)e

ϕ(z) ≡ 0 in D.
This is impossible.

For the above discussion, we see that four real coefficients a(z), b(z), c(z),
d(z) of the system (1.1) or two complex coefficients A(z), B(z) of the complex
equation (1.4) can be determined by two boundary functions h1(z), h2(z) in the
set Rh.

We have tried to prove the existence of solutions for above inverse prob-
lem by the inverse scatting method as stated in [7, 8, 13, 14], but it cannot be
completed, hence the new complex method in the presented article is used. Be-
sides, the global uniqueness of solutions for the inverse problem will be further
investigated.
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3. Existence of solutions of the inverse problem for degen-
erate elliptic equations of second order

In this section, by using the similar method, the corresponding results of the
inverse problem for elliptic equations of second order with degenerate curve
from Dirichlet to Neumann map can be obtained.

Let D be an N+1-connected bounded domain in the complex plane C with
the boundary ∂D = Γ = ∪N

j=0Γj ∈ C2
µ(0 < µ < 1), where Γj (j = 0, 1, . . . , N)

are inside of Γ0 and 0 ∈ D as stated in Section 1. Consider the degenerate
elliptic equation of second order

K(ŷ)uxx + uyy + aux + buy = 0 in D, (3.1)

in which ŷ = y − x2, K(ŷ) = |ŷ|h(ŷ), h(ŷ) is a continuously differentiable pos-
itive function in D, and a, b are real functions of z = x + iŷ (∈ D) satisfying
a, b ∈ L∞(D). Moreover define K(ŷ) = 1, a = b = 0 in C\D. The above
conditions will be called Condition C. It is clear that equation (3.1) in D\γ is
elliptic with the parabolic degenerate curve γ = D ∩ {ŷ = 0}.

If the function K(ŷ) = |ŷ|, H(ŷ) = |ŷ| 12 , then |G(ŷ)| = |
∫ ŷ

0
H(t)dt| = 2

3
|ŷ| 32

in D, and the inverse function of Y = G(ŷ) is

ŷ = ±|G−1(Y )| = ±
(
3

2

) 2
3

|Y |
2
3 = ±J |Y |

2
3 in D.

Denote

W (z) = U + iV =
H(ŷ)ux − iuy

2
= uz̃ = H(ŷ)

ux − iuY

2
= H(ŷ)uZ

W¯̃z =
H(ŷ)Wx + iWy

2
= H(ŷ)[Wx + iWY ] = H(ŷ)WZ ,

where ŷ = y − x2, G(ŷ) = |ŷ|h(ŷ), G′(ŷ) = H(ŷ), we can get K(ŷ)uxx + uyy =
H[Hux − iuy]x + i[Hux − iuy]y − iHyux = 2{H[U+iV ]x+i[U+iV ]y}−iHyux =

4Wz̃ − iHy

H
Hux = 4H(ŷ)WZ − iHy

H
Hux = −[aux + buy], i.e.

WZ =
Wz̃

H(ŷ)
=

iHyux − (aux + buy)

4H(ŷ)

=

(
iHy

H
− a

H

)
(W +W )− ib(W −W )

4H(ŷ)

=
A(z)W +B(z)W

H(ŷ)
in DZ ,

(3.2)

where

A[z(Z)] =
1

4

[
iHy

H
− a

H
− ib

]
, B[z(Z)] =

1

4

[
iHy

H
− a

H
+ ib

]
,
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and DZ is the image domain of D with respect to the mapping Z = Z(z) =
x + iG(ŷ). Obviously the complex equation Wz̃ = 0 in D, i.e. WZ = 0 in DZ ,
is a special case of equation (3.2). For convenience we only discuss the complex
equation (3.2) about the number Z replaced by z later on.

Introduce the Dirichlet boundary condition for the equation (3.1) as follows:

u = f(z) on Γ, i.e. u = f(z) on ∂D, (3.3)

where f(z) ∈ C1
α(Γ), α (0 < α ≤ p−2

p
is a positive constant, which is called

Problem D for equation (3.1). If we find the derivative of positive tangent
direction with respect to the unit arc length parameter s of the boundary Γ
with s(0) = arg(z0 + 0) = 0, where the point z0 ∈ Γ0, then

fs =
∂f(z)

∂s
= uzzs + uz̄ z̄s = 2Re[zsuz] = f1(z) on Γ.

It is clear that the equivalent boundary value problem is found a solution
[W (z), u(z)] of the complex equation (3.2) with the boundary conditions

Re[λ(z)w(z)] = Re[zsw(z)] =
fs
2
, z ∈ Γ, u(z0) = f(z0),

and the relation

u(z) = 2Re

∫ z

z0

w(z)dz + f(z0) in D, (3.4)

in which λ(z) = zs, z ∈ Γ. Taking into account the partial indexes of K0 =
∆Γ0 arg[λ(z)] = −1 and Kj = ∆Γj

arg[λ(z)] = 1 (j = 1, . . . , N), thus the index
of the above boundary value problem is K = K0 + K1 + · · · + KN = N − 1,
obviously this is a special case of Riemann-Hilbert boundary value problem
(Problem RH) as stated in Sections 1 and 2. It is easy to see that

2Re

∫
Γj

W (z)dz = 2Re

∫
Γj

uzzsds =

∫ Sj

0

fsds = 0, j = 0, 1, . . . , N,

herein Sj (j = 0.1 . . . , N) is the arc length of Γj (j = 1, . . . , N) and applying
the Green formula, the function u(z) determined by the integral in (3.4) in D
is single-valued.

Under the above condition, the corresponding Neumann boundary condition
is

un =
∂u

∂n
= uzzn + uz̄ z̄n = 2Im[zsuz] = f2(z) on Γ, (3.5)

where n is the unit outwards normal vector of Γ. The boundary value problem
(3.1) (or (3.2)), (3.5) will be called Problem N. Hence the boundary conditions
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of Dirichlet and Neumann problems can be written as follows

us + iun =2Re[zsuz] + 2iIm[zsuz] = 2zsw(z), z ∈ Γ, i.e.

w(z)=h(z) = f1(z) + if2(z) =
us + iun

2zs
, z ∈ Γ,

which will be called Problem DN for the complex equation (3.2) (or (3.1)) with
the relation (3.4), where h(z) ∈ Cα(Γ) is a complex function satisfying the
condition

∫
Γj
Re[zs]uzds = 0, j = 0, 1, . . . , N . For any function f(z) of the set

C1
α(Γ) in the Dirichlet boundary condition (3.3), there is a set {f2(z)} of the

functions of Neumann boundary condition (3.5) as stated before, which is called
the Dirichlet to Neumann map. According to the method of Section 1, we can
obtain the set of functions {h(z)}, which is denoted by Rh. Later on we will
determine the coefficients of equation (3.1) from the set Rh = {h(z)}.

According to [9] introduce the notations

T̃ f(z) = T

[
f

H

]
= − 1

π

∫∫
D

f(ζ)

H(ζ − Z)
dσζ ,

in which |ŷ|τf(z) ∈ L∞(D), τ = max
(
1 − m

2
, 0
)
. Suppose that f(z) = 0 in

C\D. Then (T̃ f)z̄ = f(z)
H

in C. We consider the first order complex equation
with singular coefficients

HWz − A(z)W −B(z)W = 0, i.e.

H(ŷ)[g(z)]z−A(z)g(z)−B(z)g(z) = 0 in C,
(3.6)

where Z = x + iG(ŷ), G(ŷ) =
∫ ŷ

0
H(ŷ)dŷ, g(z) = W (z). On the basis of the

Pompeiu formula (see [9, Chapters I, III]), the corresponding integral equation
of the complex equation (3.6) is as follows

g(z) + T

[
Ag +Bg

H

]
=

1

2πi

∫
Γ

g(ζ)

ζ − z
dζ in D. (3.7)

For simplicity we can only consider the following integral equation

g(z) + T

[
Ag +Bg

H

]
= 1 or = i in D

later on. Similarly to Section 2, we see that the above integral equation has a
unique solution.

Similarly to the proof of Lemma 2.2 as stated before, we can prove the
following lemma.



12 Wen Guochun

Lemma 3.1. The function g(z) = hj(z) (j = 1, 2) is a solution of the integral
equation

g(z) + T

[
Ag +Bg

H

]
=

{
1

i
in D, g(z) =

{
h1(z)

h2(z)
on Γ,

if and only if it is a solution of the integral equation

1

2
g(z) +

1

2πi

∫
Γ

g(ζ)

ζ − z
dζ =

{
1

i
, g(ζ) =

{
h1(ζ)

h2(ζ)
, i.e.

h1(z)

2
+

1

2πi

∫
Γ

h1(ζ)

ζ − z
dζ = 1,

h2(z)

2
+

1

2πi

∫
Γ

h2(ζ)

ζ − z
dζ = i on Γ.

Lemma 3.2. Under the above conditions, the functions h1(z), h2(z) as stated
in Section 1 are the solutions of the system of integral equations

1

2
(1− iS)h1 = 1, Sh1 =

1

π

∫
Γ

h1(ζ)

ζ − z
dζ,

1

2
(1− iS)h2 = i, Sh2 =

1

π

∫
Γ

h2(ζ)

ζ − z
dζ.

(3.8)

Proof. From Lemma 3.1, we define the functions

w1(z) =


1− 1

2πi

∫
Γ

h1(ζ)

ζ − z
dζ, z ∈ C\D

1 +
1

π

∫∫
C

Aw1 +Bw1

H(ζ − z)
dσζ , z ∈ D,

w2(z) =


i− 1

2πi

∫
Γ

h2(ζ)

ζ − z
dζ, z ∈ C\D

i+
1

π

∫∫
C

Aw2 +Bw2

H(ζ − z)
dσζ , z ∈ D,

which are analytic in C\D with the boundary values h1(z), h2(z) on Γ respec-
tively. Thus we can get the solutions h1(z) and h2(z) of (3.8) and satisfy the
complex equation (3.7).

Theorem 3.3. For the above inverse problem of the equation (3.1) with Con-
dition C, we can reconstruct the coefficients a(z) and b(z).

Proof. We shall find two solutions ϕ1(z) = W1(z) and iϕ2(z) = W2(z) of
complex equation

[ϕ]z̄ −
Aϕ

H
− Bϕ

H
= 0 in C
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with the conditions ϕ1(z) → 1 and iϕ2(z) → i as z → ∞. In fact the above so-
lutions F (z) = ϕ1(z), G(z) = iϕ2(z) are also the solutions of integral equations

F (z)− T

[
AF +BF

H

]
= 1

G(z)− T

[
AG+BG

H

]
= i

in C.

As stated in Lemmas 3.1, 3.2, we can require that the above solutions satisfy the
boundary conditions F (z) = h1(z), G(z) = h2(z) on Γ, where h1(z), h2(z) ∈ Rh.

Note that F (z), G(z) satisfy the complex equations
Fz̄ −

AF +BF

H
= 0

Gz̄ −
AG+BG

H
= 0

in D,

and similarly to Lemma 2.4, the inequality Im[F (z)G(z)] = F (z)G(z)−F (z)G(z)
2i

̸= 0
in D can be verified. Hence we can determine the coefficients A

H
and B

H
as follows

A

H
=

Fz̄G−Gz̄F

FG− FG
,

B

H
= −Fz̄G−Gz̄F

FG− FG
in D, i.e.

A = H
Fz̄G−Gz̄F

FG− FG
, B = −H

Fz̄G−Gz̄F

FG− FG
in D.

From the above formulas, we can obtain the coefficients a(z) and b(z) of the
equation (3.1), i.e.

a = iHy − 2H[A(z) +B(z)], b(z) = 2iH[A(z)−B(z)] in D.

4. The property of an integral operator

It is clear that the complex equation

wZ = 0 in DZ (4.1)

is a special case of equation (1.4). On the basis of Theorem 1.3, [12, Chapter
I], we can find a unique solution of Problem RH for equation (4.1) in DZ .

Now we consider the function g(Z) ∈ L∞(DZ), and first extend the function
g(Z) to the exterior of DZ in C, i.e. set g(Z) = 0 in C\DZ , hence we can only
discuss the domain D0 = {|x| < R0} ∩{ImY ̸= 0} ⊃ DZ , here Z = x + iY, R0

is a positive number. In the following we shall verify that the integral

Ψ(Z)=T
[ g

H

]
=− 1

π

∫∫
D0

g(t)

H(Imt)(t−Z)
dσt in D0, L∞[g(Z), D0]≤k3, (4.2)
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satisfies the estimate (4.3) below, where H(ŷ) = ŷ
m
2 , ŷ = y − x2, m ia a pos-

itive number. It is clear that the function g(Z)
H(ŷ)

belongs to the space L1(D0)

and in general is not belonging to the space Lp(D0) (p > 2,m ≥ 2), and the
integral Ψ(Z0) is definite when ImZ0 ̸= 0. If Z0 ∈ D0 and ImZ0 = 0, we can
define the integral Ψ(Z0) as the limit of the corresponding integral over D0∩
{|Ret − ReZ0| ≥ ε} ∩ {|Imt − ImZ0| ≥ ε} as ε → 0, where ε is a sufficiently
small positive number. The Hölder continuity of the integral will be proved by
the following method.

Lemma 4.1. If the function g(Z) in DZ satisfies the condition in (4.2), and
H(ŷ) = ŷ

m
2 , where m is a positive number, then the integral in (4.2) satisfies

the estimate
Cβ[Ψ(Z), DZ ] ≤ M1, (4.3)

where β = 2
m+2

− δ, δ is a sufficiently small positive constant, and M1 =
M1(β, k3, H,DZ) is a positive constant.

Proof. We first give the estimates of Ψ(Z) of (4.2) in D ∩ {ImY ≥ 0}, and
verify the boundedness of the function in (4.2). As stated before, if H(ŷ) = ŷ

m
2 ,

then H(ŷ) = J
m
2 Y

m
m+2 . For any two points Z0 = x0 ∈ γ = D∩{ŷ = 0} on x-axis

and Z1 = x1 + iY1(Y1 > 0) ∈ D0 satisfying the condition 2ImZ1√
3

≤ |Z1 − Z0| ≤
2ImZ1, this means that the inner angle at Z0 of the triangle Z0Z1Z2 (Z2 =
x0 + iY1 ∈ D0) is not less than π

6
and not greater than π

3
, choose a sufficiently

large positive number q, from the Hölder inequality, we have L1[Ψ(Z), D0] ≤
Lq[g(Z), D0]Lp

[
1

H(Imt)(t−Z)
, D0

]
, where p = q

q−1
(> 1) is close to 1. In fact we

can derive as follows

|Ψ(Z0)| ≤
∣∣∣∣ 1π

∫∫
D0

g(t)

H(Imt)(t− Z0)
dσt

∣∣∣∣
≤ 1

J
m
2 π

Lq[g(Z), D0]

[∫∫
D0

∣∣∣∣ 1

t
m

m+2 (t− Z0)

∣∣∣∣p dσt

] 1
p

=
1

J
m
2 π

Lq[g(Z), D0] J
1
p

1 ,

where J1 =

∫∫
D0

∣∣∣∣ 1

t
m

m+2 (t− Z0)

∣∣∣∣p dσt

≤
∫∫

D0

1

|t|
pm
m+2 |Im(t− Z0)|pβ0 |Re(t− Z0)|p(1−β0)

dσt

≤

∣∣∣∣∣
∫ d0

0

1

Y
pm
m+2 |Y − Y0|pβ0

dY

∫ d2

d1

1

|x− x0|p(1−β0)
dx

∣∣∣∣∣
≤ k4,

in which d0 = maxZ∈D0
ImZ, d1 = minZ∈D0

ReZ, d2 = maxZ∈D0
ReZ, β0 =

2
m+2

− ε, ε
(
< 1

p
− m

m+2

)
is a sufficiently small positive constant, we can choose
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ε = 2(p−1)
p

(
≤ 2

m+2

)
, such that p (1 − β0) < 1 and p[ m

m+2
+ β0] < 1, and k4 =

k4(β, k3, H,D0) is a non-negative constant.
Next we estimate the Hölder continuity of the integral Ψ(Z) in D0, i.e.

|Ψ(Z1)−Ψ(Z0)| ≤
|Z1 − Z0|

π

∣∣∣∣ ∫∫
D0

g(t)

H(Imt)(t− Z0)(t− Z1)
dσt

∣∣∣∣
≤ |Z1 − Z0|

J
m
2 π

Lq[g(Z), D0]

[∫∫
D0

∣∣∣∣ 1

t
m

m+2 (t− Z0)(t− Z1)

∣∣∣∣pdσt

] 1
p

,

and J2 =

∫∫
D0

∣∣∣∣ 1

t
m

m+2 (t− Z0)(t− Z1)

∣∣∣∣p dσt

≤
∫∫

D0

|Re(t− Z0)|p(
β0
2
−1)|Re(t− Z1)|p(

β0
2
−1)

|t|
pm
m+2 |Im(t− Z0)|

pβ0
2 |Im(t− Z1)|

pβ0
2

dσt

≤
∫ d0

0

1

Y
pm
m+2 |Im(Y − Z0)|

pβ0
2 |Im(Y − Z1)|

pβ0
2

dY

×
∫ d2

d1

1

|Re(t− Z0)|p(1−
β0
2
)|Re(t− Z1)|p(1−

β0
2
)
dRet

≤ k5

∫ d2

d1

1

|x− x0)|p(1−
β0
2
)|x− x1|p(1−

β0
2
)
dx,

where β0 =
2

m+2
− ε is chosen as before and

k5 = max
Z0,Z1∈D0

∫ d0

0

[
Y

pm
m+2 |Im(Y − Z0)|

pβ0
2 |Im(Y − Z1)|

pβ0
2

]−1
dY.

Denote ρ0 = |Re(Z1 − Z0)| = |x1 − x0|, L1 = D0 ∩ {|x − x0| ≤ 2ρ0, Y = Y0}
and L2 = D0 ∩ {2ρ0 < |x − x0| ≤ 2ρ1 < ∞, Y = Y0} ⊃ [d1, d2]\L1, where ρ1 is
a sufficiently large positive number, we can derive

J2 ≤ k5

[ ∫
L1

1

|x− x0|p(1−
β0
2
)|x− x1|p(1−

β0
2
)
dx

+

∫
L2

1

|x− x0|p(1−
β0
2
)|x− x1|p(1−

β0
2
)
dx

]
≤ k5

[
|x1−x0|1−2p+pβ0

∫
|ξ|≤2

1

|ξ|p(1−
β0
2
)|ξ±1|p(1−

β0
2
)
dξ+k6

∣∣∣∣∫ 2ρ1

2ρ0

ρpβ0−2pdρ

∣∣∣∣ ]
≤ k7|x1 − x0|1−p(2−β0)

= k7|x1 − x0|p(
2

m+2
−ε+ 1

p
−2),

in which we use |x−x0| = ξ|x1−x0|, |x−x1| = |x−x0−(x1−x0)| = |ξ±1||x1−x0|
if x ∈ L1, |x − x0| = ρ ≤ 2|x − x1| if x ∈ L2, choose that p (> 1) is close to 1
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such that 1−p(2−β0) < 0, and kj = kj(β, k3, H,D0) (j = 6, 7) are non-negative
constants. Thus we get

|Ψ(Z1)−Ψ(Z0)| ≤ k7|Z1 − Z0||x1 − x0|
2

m+2
−ε+ 1

p
−2 ≤ k8|Z1 − Z0|β,

in which we use that the inner angle at Z0 of the triangle Z0Z1Z2 (Z2 = x0+iY1,

Z2 ∈ D0) is not less than π
6

and not greater than π
3
, and choose ε = 2(p−1)

p
, β =

2
m+2

−δ, δ = 3(p−1)
p

, k8 = k8(β, k3, H,D0) is a non-negative constant. The above
points Z0=x0, Z1=x1+iY1 can be replaced by Z0=x0+iY0, Z1=x1+iY1∈D0,
0 < Y0 < Y1 and 2(Y1−Y0)√

3
≤ |Z1 − Z0| ≤ 2(Y1 − Y0).

Finally we consider any two points Z1 = x1+iY1, Z2 = x2+iY1 and x1 < x2,
from the above estimates, the following estimate can be derived

|Ψ(Z1)−Ψ(Z2)| ≤ |Ψ(Z1)−Ψ(Z3)|+ |Ψ(Z3)−Ψ(Z2)|
≤ k8|Z1 − Z3|β + k8|Z3 − Z2|β

≤ k9|Z1 − Z2|β,
(4.4)

where Z3 =
x1+x2

2
+i

[
Y1+

x2−x1

2
√
3

]
. If Z1 = x1+iY1, Z2 = x1+iY2, Y1 < Y2, and we

choose Z3 = x1+
Y2−Y1

2
√
3
+ i(Y2+Y1)

2
, and can also get (4.4). If Z1 = x1+ iY1, Z2 =

x2 + iY2, x1 < x2, Y1 < Y2, and we choose Z3 = x2 + iY1, obviously

|Ψ(Z1)−Ψ(Z2)| ≤ |Ψ(Z1)−Ψ(Z3)|+ |Ψ(Z3)−Ψ(Z2)|,

and |Ψ(Z1)−Ψ(Z3)|, |Ψ(Z3)−Ψ(Z2)| can be estimated by the above way, hence
we can obtain the estimate of |Ψ(Z1)−Ψ(Z2)|. For the function Ψ(Z) in (4.2)
in D ∩ {ImY ≤ 0}, the similar estimates can be also derived. Hence we have
the estimate (4.3).

Remark 4.2. If the condition H(ŷ) = ŷ
m
2 in Lemma 4.1 is replaced by

H(ŷ) = ŷη, herein ŷ = y − x2, η is a positive constant satisfying the inequality
η < m+2

2
, then by the same method we can prove that the integral Ψ(Z) = T

(
g
H

)
satisfies the estimate

Cβ[Ψ(Z), DZ ] ≤ M1,

in which β = 1− 2η
m+2

− δ, δ is a sufficiently small positive constant, and M1 =
M1(β, k3, H,DZ) is a positive constant. In particular if H(ŷ) = ŷ = y − x2,
i.e. η = 1, then we can choose β = m

m+2
− δ, δ is a sufficiently small positive

constant.
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