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Theoretical Study of an
Abstract Bubble Vibration Model

Yohan Penel, Stéphane Dellacherie and Olivier Lafitte

Abstract. We present the theoretical study of a hyperbolic-elliptic system of equa-
tions called the Abstract Bubble Vibration (Abv) model. This simplified system is
derived from a model describing a diphasic low Mach number flow. It is thus aimed at
providing mathematical properties of the coupling between the hyperbolic transport
equation and the elliptic Poisson equation.
We prove an existence and uniqueness result including the approximation of the time
interval of existence for any smooth initial condition. In particular, we obtain a
global-in-time existence result for small parameters. We then focus on properties of
solutions (depending of their smoothness) such as maximum principle or evenness.
In particular, an explicit formula of the mean value of solutions is given.
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1. Introduction

Over the past two centuries, several systems of equations have been proposed
to model motion of fluids. The most general formulation is the compressible
Navier-Stokes system that consists of conservation laws for variables such as
density, momentum and energy. Then, the equations may be simplified through
physical considerations. For instance, in this particular study, we are interested
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in the modelling of a diphasic flow – which can be assimilated to a nonmiscible
2-fluid flow at our scale – where the Mach number relative to each phase is
very small. In other words, the ratio of the fluid velocity to the sound speed is
supposed to be negligible, which enables to make a formal asymptotic expansion
with respect to this small parameter. The resulting system is called Diphasic
Low Mach Number (Dlmn) [5, 18]. See also [6] for numerical simulations.

Classically, a major consequence of the low Mach number expansion is that
the system turns from hyperbolic to hyperbolic-elliptic [14]. That is why we
aim at focusing on couplings between hyperbolic and elliptic equations. Indeed,
assuming the velocity field is potential and decoupling from temperature and
pressure laws, a 2-equation system has been derived in [6]. This system – called
the Abstract Bubble Vibration (Abv) model – consists of a Poisson equation for
the velocity field and a transport equation for the mass fraction of gas, together
with initial and boundary conditions. It has a similar structure to models used
in different physical frameworks. We may refer to the 2D incompressible Euler
equations [24], the Keller-Segel equations in biology [22], the Smoluchowski
model in astrophysics [3] or the Kull-Anisimov instability [12].

Investigations of simpler models provide reliable theoretical and numerical
results. They also turn out to be useful for more general studies carried out
on the full sets of equations (like Dlmn). Indeed, the Abv model has been
constructed in order to yield a better understanding of the overall process of
the motion of bubbles. Concerning numerical aspects (which are not the topic
of this paper), we refer to [19, 21]. In particular, one of the most difficult
issues raised by diphasic flows is the numerical handling of interfaces. That
is why an accurate resolution requires an adaptive mesh refinement technique
to avoid any diffusion of the interface [21]. For diffuse interface, a scheme has
been specifically derived in [19]. Both approaches provide qualitative results for
bubbly flows.

This paper is devoted to the proof of different properties of the Abv model.
In Section 2, we describe the derivation of this model from the compressible
Navier-Stokes equations while in Section 3, we get interested in theoretical
results including existence and uniqueness issues and properties that solutions
satisfy. At last, we conclude with a lemma that provides an explicit expression
for the mean value of solutions that can be interpreted as the volume of a
bubble in the case of nonsmooth initial data (more precisely indicator functions
of subdomains).

2. Derivation of the model

As bubbles may appear in an operating reactor, we deal with a compressible
diphasic flow in a bounded domain Ω ⊂ Rd, d ∈ {1, 2, 3}. While many formu-
lations are based on a set of equations for each phase, our model consists of a
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single system in which variables are global and not specific to one phase or the
other. It can be assimilated to a single interfacial velocity approach.

The compressible Navier-Stokes equations for a viscous compressible dipha-
sic flow under gravity read in conservative variables

∂t(ρY1) +∇ · (ρY1u) = 0 (1a)

∂tρ+∇ · (ρu) = 0 (1b)

∂t(ρu) +∇ · (ρu⊗ u) = −∇P +∇ · σ + ρg (1c)

∂t(ρE) +∇ · (ρEu) = −∇ · (Pu) +∇ · (κ∇T ) +∇ · (σu) + ρg · u. (1d)

Compared to the standard conservation laws involving density ρ, momentum ρu
and total energy ρE, there is an additional equation corresponding to the con-
servation of partial mass (1a). Y1 denotes the mass fraction of gas. As the two
phases are nonmiscible, Y1 can be assimilated to the indicator function of the
domain Ω1(t) occupied by the vapor phase. Then, Ω2(t) = Ω\Ω1(t) is the liquid
domain and Σ(t) = Ω1(t) ∩Ω2(t) is the location of the interface between liquid
and gas. It corresponds to the discontinuity of the function Y1.

Here and in the sequel, g denotes the gravity field, κ the thermal conduc-
tivity, T the temperature and P the pressure. We note σ the linearized Cauchy
stress tensor that reads under the linear elasticity assumption

σ = µ
(
∇u+ t∇u

)
+ λ(∇ · u)Id.

λ and µ are the Lamé coefficients (see [16] for example). The system is closed
as soon as the physical coefficients ρ (or P ), κ, λ and µ are known (through
equations of state and constitutive laws).

After a singular perturbation analysis with respect to the Mach number

M∗ = U∗

√
ρ∗
P∗

≪ 1 applied to the non-conservative formulation of System (1),

the latter reduces to

∂tY1 + u · ∇Y1 = 0 (2a)

∇ · u = G(t,x) (2b)

ρ
[
∂tu+ (u · ∇)u

]
= −∇π +∇ ·

[
µ(∇u+ t∇u)

]
+ ρg (2c)

ρcp(∂tT + u · ∇T ) = αTP ′(t) +∇ · (κ∇T ) (2d)

P ′(t) = H(t). (2e)

For more details about the derivation of this system – called the Diphasic Low
Mach Number (Dlmn) system – please refer to [5,6]. The methods which lead
to Dlmn are based on works from Majda and Embid [10, 15]. In particular,
Equation (2d) is deduced from (1) by means of the second law of thermody-
namics and the Maxwell relations applied to the Gibbs potential.
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As for notations, α and cp are classical thermodynamic variables [11]. At
order 0 in the asymptotic expansion, the thermodynamic pressure depends only
on time t. Another variable is thus introduced to allow for dynamic effects
in the momentum equation. That is why π is called the dynamic pressure.
It corresponds to the second-order term in the asymptotic expansion of the
pressure. Finally, G and H are nonlinear functionals of Y1, T and P .

The elliptic equation (2b) is a reformulation of the mass conservation law
to highlight the compressibility of the system despite the low Mach number.
Furthermore, it leads to Equation (2e) by ensuring the compatibility with the
boundary condition u|∂Ω = 0 [4] namely

∫
Ω
G(t,x) dx = 0. System (2) is thus

closed.
Since all the coefficients appearing in System (2) depend implicitly on Y1, T

and P through the equations of state, the Dlmn system is highly nonlinear.
That is why as a preliminary we derived a simplified model based on the poten-
tial assumption that consists in stating that u is a gradient field. Let ϕ be the
potential (known up to a constant), i.e. u = ∇ϕ. Equation (2c) is overlooked
and ϕ is determined by means of the Poisson equation ∆ϕ = G which is coupled
to the mass fraction, temperature and pressure equations through the depen-
dance of G w.r.t. (Y1, T, P ). This underlines the new mathematical structure
of the low Mach number system which is hyperbolic-elliptic. To decouple the
velocity equation from temperature and pressure evolution laws, we replace G
by a simplified term depending only on Y1 (linearly). The resulting model –
called the Abstract Bubble Vibration (Abv) model – reads [7]:

∂tY1 +∇ϕ · ∇Y1 = 0 (3a)

Y1(0,x) = Y 0(x) (3b)

∆ϕ = ψ(t)

[
Y1(t,x)−

1

|Ω|

∫
Ω

Y1(t,x
′) dx′

]
(3c)

∇ϕ · n|∂Ω = 0. (3d)

Y 0 and ψ are given functions of x and t respectively, with ψ continuous on
[0,+∞). In addition, we assume that Ω is smooth enough to allow the existence
of the normal unit vector n|∂Ω and to provide elliptic regularity results for the
Poisson equation. Note that the global system (3) is still non-linear due to the
term ∇ϕ · ∇Y1.

3. Theoretical results

In this section we present some results under different smoothness assumptions.
In a Sobolev case, we prove existence and uniqueness of classical solutions in
finite time. In particular, we provide an estimate of the time interval. The last
paragraph deals with a less smooth case where we obtain an explicit formula
for the mean value of weak solutions.
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3.1. Preliminary. Before any investigation, we make two remarks about the
potential ϕ. On the one hand, it is obvious that the potential cannot be unique,
except up to a constant. We choose the following gauge for ϕ:∫

Ω

ϕ(x) dx = 0. (4)

On the other hand, as Equation (3c) is stationary, the potential necessarily
satisfies the initial condition

∆ϕ0 = ψ(0)

[
Y 0(x)− 1

|Ω|

∫
Ω

Y 0(x′) dx′
]
, ∇ϕ0 · n|∂Ω = 0. (5)

Equations (4), (5) will be implicitly included in System (3) in the sequel even if
they are not referred to. Any initial data satisfying (5) are called well-prepared.

We introduce the functional space related to this problem (and more specif-
ically to advection problems) defined for T > 0 and s ∈ Z+ by

Ws,T (Ω) = C 0
(
[0,T ], L2(Ω)

)
∩ L∞(

[0,T ], Hs(Ω)
)
,

where

Hs(Ω) =
{
f ∈ L2(Ω) | ∀ s′ ∈ {0, . . . , s}, ∀ γ ∈ Zd+, |γ| = s′ : Dγf ∈ L2(Ω)

}
.

This definition extends to non-integer s by means of the Slobodeckij semi-
norm [23] but this case will not be considered in the sequel. The set Ws,T (Ω)
is a Banach space when equipped with the norm

∥f∥s,T = sup
t∈[0,T ]

∥f(t, ·)∥s.

The injection from Ws,T (Ω) to C 0
(
[0,T ], Hs′(Ω)

)
is continuous for any s′ < s.

So does the injection from Ws,T (Ω) to C 0
(
[0,T ] × Ω

)
when s > d

2
(see Lem-

ma A.3 and [7]).

3.2. Short time existence theorem. Theorem 3.1 below was first published
in [7]. Nevertheless, we present here a proof that enables to specify an approx-
imation of the time interval (Theorem 3.2) and that leads to a global-in-time
existence result for a certain class of initial data (Corollary 3.3). Let s0 be the
integer s0 = ⌊d

2
⌋+ 1.

Theorem 3.1. Assume Y 0 ∈ Hs(Ω) with s an integer such that s ≥ s0+1 and
ψ ∈ C 0(0,+∞). Then there exists T0 > 0 depending on ψ and ∥Y 0∥s such that
System (3) has a unique classical solution Y1 ∈ Ws,T (Ω) for T at least greater
than T0.
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The time of existence T0 is not said to be optimal: It is prescribed by the
way we prove Theorem 3.1, namely the combination of a boundedness property
in Ws,T (Ω) and a strong convergence in W0,T (Ω). In the course of the proof, we
derive the constraint (8) for T0 that we improve to obtain the following lower
bound:

Theorem 3.2. Under the same assumptions as in Theorem 3.1, we have
Y1 ∈ Ws,T0(Ω) for any T0 > 0 such that∫ T0

0

|ψ(τ)| dτ ≤ Cabv(s, d,Ω)
∥∥Y 0 − µ(Y 0)

∥∥−1

s
, (6)

where µ(Y 0) = 1
|Ω|

∫
Ω
Y 0(x) dx and Cabv is a universal constant.

We note that the left hand side in (6) is monotone-increasing w.r.t. T0.
Thus, the greater ∥Y 0 − µ(Y 0)∥s, the lower T0.

Furthermore, if Y 0 ≡ 1 ∈ H∞(Ω) – which corresponds to a bubble occupy-
ing the whole domain – (resp. Y 0 ≡ 0), the unique solution is trivially given by
Y1 ≡ 1 (resp. Y1 ≡ 0) without restriction on the time of existence. Likewise,
for ψ ≡ 0, Y1 ≡ Y 0 is a global solution. In those three cases, (6) is optimal.

We also infer that given T > 0 and ψ ∈ C 0(0,T ), there exists a local
solution Y1 ∈ Ws,T (Ω) for any Y 0 s.t. ∥Y 0 − µ(Y 0)∥s ≤ Cabv∥ψ∥−1

L1(0,T ). Con-
sequently, if ψ also belongs to L1(0,+∞), we have a global-in-time existence
result:

Corollary 3.3. Let ψ be a function in C 0(0,+∞) ∩ L1(0,+∞). Then there
exists a unique solution Y1 global in time for any Y 0 ∈ Hs0+1(Ω) provided∥∥Y 0 − µ(Y 0)

∥∥
s0+1

≤ Cabv(s, d,Ω)

∥ψ∥L1

.

Proof of Theorem 3.1. For the proof of uniqueness, see Lemma 3.4 below. For
the existence part, we consider the Picard iterates for System (3). More pre-
cisely, we introduce the sequences (Y (k)) and (ϕ(k)) defined by induction as
follows:

¬ Y (k=0) = Y 0.

 Given Y (k), we compute ϕ(k) as the solution of ∆ϕ(k)(t,x) = ψ(t)

(
Y (k)(t,x)− 1

|Ω|

∫
Ω

Y (k)(t,x′) dx′
)

∇ϕ(k) · n|∂Ω = 0.

(7a)

® Then, Y (k+1) satisfies{
∂tY

(k+1) +∇ϕ(k) · ∇Y (k+1) = 0

Y (k+1)(0, ·) = Y 0.
(7b)
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We shall show that the sequence (Y (k)) is bounded in Ws,T (Ω) and converges
strongly in W0,T (Ω). Applying Lemma A.1 to Equation (7b) and Lemma A.2
to Equation (7a), we get1

∥Y (k+1)∥s,T ≤ ∥Y 0∥s exp
[
Cadv(s)

∫ T

0

∥Hess(ϕ(k))∥s−1(t) dt

]
≤ ∥Y 0∥s exp

[
Cadv(s) · Cell(s− 1) · ∥Y (k)∥s−1,T

∫ T

0

|ψ(t)| dt
]

≤ ∥Y 0∥s exp
[
C̃abv(s) · ∥Y (k)∥s−1,T ·Ψ(T )

]
,

where C̃abv(s) = Cadv(s) · Cell(s − 1) and Ψ is s.t. Ψ
′
= |ψ| and Ψ(0) = 0.

We introduce the sequence (uk) defined by u0 = C̃abv(s) · ∥Y 0∥s · Ψ(T ) and
uk+1 = u0 expuk. Thus, we have C̃abv(s) · ∥Y (k)∥s,T ·Ψ(T ) ≤ uk by induction.

It is easy to prove that (uk) converges iff u0 ≤ e−1. Then, the limit is the
lowest solution2 x0 of the equation x exp(−x) = u0 and we have uk ≤ uk+1 ≤ x0.
Hence, under the assumption

∥Y 0∥s ·Ψ(T ) ≤ Cabv(s) :=
1

eC̃abv(s)
, (8)

the sequence (Y (k)) is uniformly bounded in Ws,T (Ω). An upper bound is given
by ex0∥Y 0∥s. In particular, this result implies that the sequence

(
∥Y (k)(t, ·)∥0

)
is equicontinuous and uniformly bounded in C 0

(
[0,T ]

)
. The Arzelà-Ascoli

theorem yields the existence of a subsequence (Y (k′)) that converges strongly in
C 0

(
[0,T ], L2(Ω)

)
. Likewise, the boundedness property in Ws,T (Ω) also pro-

vides the weak-⋆ convergence of a subsequence (Y (k′′)) of (Y (k′)) in the space
L∞(

[0,T ], Hs(Ω)
)
. We still note (Y (k)) the weak-⋆ convergent subsequence in

Ws,T (Ω) and Ỹ ∈ Ws,T (Ω) its limit.

We shall prove that the sequence (Y (k)) converges strongly in W0,T (Ω) by
means of a contraction inequality. Indeed, we deduce from Equation (7b)

{[
∂t +∇ϕ(k) · ∇

]
(Y (k+1) − Y (k)) = −(∇ϕ(k) −∇ϕ(k−1)) · ∇Y (k),

(Y (k+1) − Y (k))(0, ·) = 0 .

1We emphasize dependencies on s for the constants appearing in the proof and we omit
other dependencies but they are specified in the appendix.

2Equation xe−x = u0 has 2 solutions for u0 ∈ (0, e−1). Let x0 be the solution in (0, 1).
Moreover x0 = 1 iff u0 = e−1, which means that (8) is an equality.
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The energy estimate given by Lemma A.1 reads

e−χ
(k)
0 (t)

∥∥(Y (k+1) − Y (k)
)
(t, ·)

∥∥
0

≤
∫ t

0

e−χ
(k)
0 (τ)

∥∥(∇ϕ(k) −∇ϕ(k−1)
)
· ∇Y (k)(τ, ·)

∥∥
0
dτ,

≤ CM(0, s− 1, d) · ∥Y (k)∥s,T
∫ t

0

e−χ
(k)
0 (τ)

∥∥(∇ϕ(k) −∇ϕ(k−1)
)
(τ, ·)

∥∥
0
dτ,

≤ CM · ex0∥Y 0∥s · CPW sup
t∈[0,T ]

|ψ(t)|︸ ︷︷ ︸
Cabv,2

∫ t

0

e−χ
(k)
0 (τ)

∥∥(Y (k) − Y (k−1)
)
(τ, ·)

∥∥
0
dτ,

using Lemma A.2 and the Moser inequality (Lemma A.3). Here, the exponent

is given by χ
(k)
0 (t) = 1

2

∫ t
0
∥∆ϕ(k)(τ, ·)∥∞ dτ . Using the boundedness property

and the Sobolev embedding inequality (see Lemma A.3), we have

χ
(k)
0 (t) ≤

∫ t

0

|ψ(τ)| · ∥Y (k)(τ, ·)∥∞ dτ ≤ χ(t)

with χ(t) = ex0∥Y 0∥s ·Csob(s) ·Ψ(t). We can thus replace χ
(k)
0 by χ in the energy

estimate3

e−χ(t)
∥∥(Y (k+1) − Y (k)

)
(t, ·)

∥∥
0
≤ Cabv,2

∫ t

0

e−χ(τ)
∥∥(Y (k) − Y (k−1)

)
(τ, ·)

∥∥
0
dτ.

Iterating the process, we obtain

e−χ(t)
∥∥(Y (k+1)−Y (k)

)
(t, ·)

∥∥
0
≤ Ck

abv,2

∫ t

0

e−χ(τ)
∥∥(Y (1)−Y (0)

)
(τ, ·)

∥∥
0

(t− τ)k−1

(k−1)!
dτ

≤
Ck
abv,2 t

k

k!
∥Y (1)−Y (0)∥0,T .

Thus

∥Y (k+1) − Y (k)∥0,T ≤ (Cabv,2 T )k

k!
eχ(T )∥Y (1) − Y (0)∥0,T .

The series
∑

k ∥Y (k+1) − Y (k)∥0,T is convergent, which shows that the sequence

Y (k) converges in the complete spaceW0,T (Ω) to Y ∈W0,T (Ω). By uniqueness of
the limit, the weak-⋆ limit Ỹ is necessarily equal to Y . Therefore, Y ∈Ws,T (Ω)
even if there is no proof that Y (k) tends to Y in Ws,T (Ω) (strongly). However,
we can show by means of an interpolation inequality [17] that the convergence
is strong in Ws′,T (Ω) for any s′ < s.

3See Lemma A.1: The exponent may be replaced by any upper bound (in the differential
form).
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Likewise, we prove that ∇ϕ(k) converges in W0,T (Ω) to Φ ∈ Ws+1,T (Ω).
Indeed, applying Lemma A.2, we have

∥∇ϕ(k)∥s+1,T ≤ Cell(s) sup
t∈[0,T ]

|ψ(t)| · ∥Y (k)∥s,T ,∥∥∇ (
ϕ(k) − ϕ(k−1)

)∥∥
0,T

≤ CPW sup
t∈[0,T ]

|ψ(t)| ·
∥∥(Y (k) − Y (k−1)

)∥∥
0,T

.

The previous results for Y (k) provides the convergence for ∇ϕ(k). Moreover,
there exists ϕ ∈ Ws+2,T (Ω) such that Φ = ∇ϕ because the gradient field space
is closed.

It remains to prove that Y and ∇ϕ are solutions to System (3). To do so
we rewrite (7b), (7a) as

Y (k+1) = Y 0 −
∫ t

0

∇ϕ(k) · ∇Y (k+1) dτ,

∀ φ ∈ H1(Ω) :

∫
Ω

∇φ · ∇ϕ(k) dx = −ψ(t)
∫
Ω

φ

(
Y (k) − 1

|Ω|

∫
Ω

Y (k) dx′
)

dx .

As each function involved in the latter relations belongs to C 0
(
[0,T ]×Ω

)
due to

the embedding Ws,T (Ω) ⊂ C 0
(
[0,T ], Hs′(Ω)

)
for s′ < s (see [7, Lemma A.1]),

we apply the dominated convergence theorem to obtain the integral form of (3).
In particular, we have Y1(t,x) = Y 0(x) −

∫ t
0
∇ϕ · ∇Y1(τ,x) dτ. The previous

embedding results show that ∇Y1 and ∇ϕ are continuous. This fact implies
that Y1 ∈ C 1

(
[0,T ]×Ω

)
and we recover the differential form of Equation (3a).

Similarly, ∇ϕ ∈ Ws+1,T (Ω) ⊂ C 0
(
[0,T ],C 1(Ω)

)
, which means that the weak

formulation above is equivalent to Equation (3c) in the strong sense.

Proof of Theorem 3.2. Let Y 0 ∈ Hs with s > d
2
+ 1 and ψ ∈ C 0(0,+∞). Then

there exists Y1 ∈ Ws,T (Ω) with T prescribed by (8) (as large as possible, maybe
T = +∞). Let c0 be the constant such that ∥Y 0 − c0∥s = minc∈R ∥Y 0 − c∥s,
i.e.

c0 =
1

|Ω|

∫
Ω

Y 0(x) dx.

Hence, we have ∥Y 0 − c0∥s ≤ ∥Y 0∥s. We consider System (3) with initial

condition Z(0, ·) = Y 0−c0 ∈ Hs to which we apply Theorem 3.1. There exists a

unique solution Z ∈ Ws,T ′(Ω) for T ′ satisfying
∫ T ′

0
|ψ(t)| dt ≤ Cabv

∥Y 0−c0∥s
. Hence,

we can choose T ′ ≥ T with a strict inequality iff c0 ̸= 0 and T < +∞. Thus,

Y1 = Z + c0 is a solution to System (3) on [0,T ′].

It is worth underlining that unlike classical results as [1] which rely on
smallness assumptions for initial data, our result states that existence is ob-
tained provided initial datum is close enough to its mean value. This leads to
a larger time of existence.
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3.3. Other properties. In this paragraph, we give some formal lemmas about
solutions under weaker assumptions than in Theorem 3.1. For some T > 0,
we set ZT (Ω) = L∞(

[0,T ],W 1,∞(Ω)
)
. Note that Ws,T (Ω) ⊂ ZT (Ω), which

means that the lemmas below can be applied to the classical solution induced by
Theorem 3.1. We do not state any existence result in ZT (Ω) but any solution
must satisfy the following properties.

First, we shall state whether ZT (Ω) is a suitable functional space for solu-
tions to System (3). Let Y1 ∈ ZT (Ω) be a solution of

Y1 = Y 0 −
∫ t

0

∇ϕ · ∇Y1 dτ, ∆ϕ = ψ(t)
(
Y1 − µ(Y1)

)
. (9)

As Y1 ∈ L∞(
[0,T ] × Ω

)
, elliptic regularity results guarantee that the solu-

tion ∇ϕ of the Poisson equation in (9) belongs to L∞(
[0,T ],C 0(Ω)

)
. Knowing

that ∇Y1 ∈ L∞(
[0,T ] × Ω

)
, the term ∇ϕ · ∇Y1 is in L∞(

[0,T ], L2(Ω)
)
⊂

L1
(
[0,T ], L2(Ω)

)
. Thus, the integral in (9) is continuous w.r.t. t and differen-

tiable for almost all t (see [2, § II.4.1]) and Y1 satisfies (3a) in L2(Ω) and thus
almost everywhere in Ω, which legitimates the following calculus.

Lemma 3.4. There exists at most one solution in the space ZT (Ω).

Proof. Let (Y1, ϕ1) and (Y2, ϕ2) be two solutions. Combining the two equations
with the notation δ∗ = ∗1 − ∗2, we have ∂tδY + ∇ϕ1 · ∇δY = −∇Y2 · ∇δϕ.
Multiplying by δY and integrating by parts, we get by virtue of the Cauchy-
Schwarz inequality

d

dt
∥δY ∥0 ≤

1

2
∥∆ϕ1∥∞∥δY ∥0 + ∥∇Y2∥∞∥∇δϕ∥0.

We apply Lemma A.2 to the last term and the Grönwall’s inequality to obtain
∥δY ∥0 = 0 due to the fact that ∥δY (0, ·)∥0 = 0.

Lemma 3.5. Assume Y1 is a solution in the space ZT (Ω). Then, Y1 keeps the
same upper and lower bounds as Y 0 almost everywhere.

Proof. We first prove that if Y 0 ≥ 0, then Y1 ≥ 0. Multiplying Equation (3a)
by Y −

1 = min(Y1, 0) ∈ ZT (Ω) and integrating by parts, we obtain

d

dt
∥Y −

1 ∥20 =
1

2

∫
Ω

(Y −
1 )

2
(t,x)∆ϕ(t,x) dx.

As ∆ϕ ∈ ZT (Ω) ⊂ L∞(
[0,T ]×Ω

)
, the Grönwall’s inequality yields ∥Y −

1 ∥0 = 0
allowing for the fact that ∥Y −

1 (0, ·)∥0 = 0. Thus Y1 ≥ 0 a.e.
If Y 0 ≤ 1, we apply the previous result to the variable Z = 1 − Y1 which

is a solution to (3) with initial condition Z(0, ·) = 1 − Y 0 ≥ 0. Hence Z ≥ 0
and Y1 ≤ 1. The general case Y 0 ∈ [a, b] can be inferred from the positivity
of variables Y1 − a and b− Y1, which are solutions to System (3) with suitable
initial data.
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Lemma 3.6. The system is time-reversible in ZT (Ω).

Proof. Let Y1 be a solution to System (3) in the class ZT (Ω) for a certain
T > 0. The question adressed in the lemma is to determine whether starting
from Y1(T , ·), one recovers the initial condition Y 0 by “inverting” the time
scale by means of the transformation t 7→ T − t. With ψ̂(t) = −ψ(T − t),
we check out that

(
Ŷ1, ϕ̂

)
=

(
Y1(T − t,x),−ϕ(T − t,x)

)
is a solution to the

system on [0,T ]. By the Uniqueness Lemma 3.4,
(
Ŷ1, ϕ̂

)
is the unique solution

and Ŷ1(T , ·) = Y1(0, ·) = Y 0.

For the last lemma, we introduce an additional definition:

Ω is said to be symmetric if • x ∈ Ω =⇒ (−x) ∈ Ω

• ∀ x ∈ ∂Ω : n(−x) = −n(x).

Lemma 3.7. If Ω is symmetric and Y 0 is even, then any solution in the space
ZT (Ω) is also even.

Proof. Denoting Ỹ1(t,x) = Y1(t,−x) and ϕ̃(t,x) = ϕ(t,−x), we remark that∫
Ω
Ỹ1(t,x) dx =

∫
Ω
Y1(t,x) dx which shows that (Ỹ1, ϕ̃) is a solution to Sys-

tem (3) with the same initial datum Y 0(−x) = Y 0(x) and the same boundary
condition. The Uniqueness Lemma 3.4 provides Y1(t,x) = Ỹ1(t,x) = Y1(t,−x).
The velocity field is odd.

3.4. Volume. We consider in this paragraph a more general case, namely Y1 ∈
L∞(

[0,T ]×Ω
)
and Y 0 bounded in [0, 1]: this case corresponds to the modelling

of bubbles in which Y1 is the mass fraction of gas. For miscible fluids, Y1 takes
values between 0 and 1 while in the present study (without phase change and at
the scale of bubbles), Y1 is exactly equal to 0 or 1. In the latter case, the mean
value of Y1 is equal to the volume of the bubble. We present in this paragraph
a general result about mean values (Proposition 3.9) and its application to a
physical case (Lemma 3.11).

Let µn(t) be the mean value of Y n
1 (t, ·) over Ω. In the class ZT (Ω), when Y 0

takes values in [0, 1], so does Y1 according to Lemma 3.5. The sequence
(
µn(t)

)
n

is bounded (in [0, 1]) and monotone-decreasing (pointwise). Thus, µn(t) con-
verges to µ∞(t) := |Ω1(t)|

|Ω| where Ω1(t) = {x ∈ Ω : Y1(t,x) = 1} since (Y1)|Ω1(t)
=

(Y n
1 )|Ω1(t)

= 1. Nonetheless, these considerations do not enable to conclude

about the convergence of µn in the weaker case L∞(
[0,T ]×Ω). This is achieved

thanks to Proposition 3.9, which provides an explicit expression for µn and a
new proof for a maximum principle restricted to [0, 1] (Lemma 3.10).

We first establish an ODE to which µn is a solution.

Lemma 3.8. The sequence (µn)n satisfies the following ODE:

µ′
n(t) = ψ(t)

(
µn+1(t)− µ1(t)µn(t)

)
. (10)
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Proof. If Y1 is a weak solution of Equation (3a), then Y n
1 satisfies ∂tY

n
1 +

∇ϕ · ∇Y n
1 = 0 according to the renormalisation principle [8]. That means

∀ ξ ∈ C ∞
0

(
(0,T )× Ω

)
:

∫ T

0

∫
Ω

Y n
1

(
∂tξ +∇ · (ξ∇ϕ)

)
dxdt = 0.

Taking ξ(t,x) = ζ(t)ξp(x) with ζ ∈ C ∞
0

(
0,T

)
and ξp ∈ C ∞

0

(
Ω
)
converging

pointwise to 1Ω, the last equality can be rewritten as∫ T

0

ζ ′
∫
Ω

Y n
1 ξp dxdt+

∫ T

0

ζ

∫
Ω

Y n
1 ∇ · (ξp∇ϕ) dxdt = 0.

In the limit as p → +∞ through the dominated convergence theorem, the
equation reduces to∫ T

0

ζ ′(t)µn(t) dt+

∫ T

0

ζ(t)ψ(t)

|Ω|

∫
Ω

Y n
1 (t,x)

(
Y1(t,x)− µ1(t)

)
dxdt = 0,

for all ζ ∈ C ∞
0

(
0,T

)
, i.e. to ODE (10) in the sense of distributions. Since ψ

is continuous and µn bounded for all n, the right hand side in (10) is bounded.
We deduce that µn is continuous, which provides the continuity of the right
hand side. ODE (10) thus holds in a classical sense.

The main consequence is that we can derive an explicit expression for µn in
terms of ψ and Y 0.

Proposition 3.9. Let Ψ be s.t. Ψ′ = ψ and Ψ(0) = 0. Then

µn(t) =

∫
Ω
[Y 0(x)]n exp

[
Ψ(t)Y 0(x)

]
dx∫

Ω
exp

[
Ψ(t)Y 0(x)

]
dx

. (11)

Proof. Since µ′
n + ψµ1µn can be expressed as[

µn(t) exp

∫ t

0

µ1(τ)ψ(τ) dτ

]′
exp

(
−
∫ t

0

µ1(τ)ψ(τ) dτ

)
,

ODE (10) can be rewritten in the integral form

MN(t) = µN(0) +

∫ t

0

ψ(τ)MN+1(τ) dτ, (12)

with MN(t) = µN(t) exp
∫ t
0
ψ(τ)µ1(τ) dτ . By induction, we show that

M1(t) =
N∑
k=1

µk(0)
Ψ(t)k−1

(k − 1)!
+

∫ t

0

ψ(τ)MN+1(τ)
[Ψ(t)−Ψ(τ)]N

N !
dτ.
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Since Ψ is continuous and the sequence µk(0) is uniformly bounded (Y 0∈ [0, 1]),

the series
∑

k µk+1(0)
Ψk(t)
k!

is normally convergent on every compact set. Fur-
thermore, the last term reads

1

|Ω|

∫ t

0

∫
Ω

[
Y1(τ,x)

(
Ψ(t)−Ψ(τ)

)]N
N !

Y1(τ,x)ψ(τ)e
∫ τ
0 ψ(σ)µ1(σ) dσ dxdτ.

In the limit as N → +∞, the integral tends to 0 by virtue of the dominated
convergence theorem. Thus

M1(t) = µ1(t) exp

(∫ t

0

ψ(τ)µ1(τ) dτ

)
=

∑
k≥1

µk(0)
Ψ(t)k−1

(k − 1)!
.

Multiplying by ψ and integrating we obtain

exp

(∫ t

0

ψ(τ)µ1(τ) dτ

)
= 1 +

∑
k≥1

µk(0)
Ψ(t)k

k!
.

The combination of the last two equalities leads to

µ1(t) =

∑
k≥1 µk(0)

Ψ(t)k−1

(k−1)!

1 +
∑

k≥1 µk(0)
Ψ(t)k

k!

=

∫
Ω
Y 0(x) exp

[
Ψ(t)Y 0(x)

]
dx∫

Ω
exp

[
Ψ(t)Y 0(x)

]
dx

.

The last equality is obtained by inverting integral and sum symbols, as the

series
∑

k
[Y 0(x)Ψ(t)]k

k!
converges normally. Then, we show (11) by induction: For

n = 2 we differentiate the expression of M1 as well as Equation (12), and so
on.

This result holds for any solution to System (3) given ψ and Y 0 at least
bounded. Moreover, it enables to extend Lemma 3.5 (when Y 0 ∈ [0, 1]) to the
bounded case.

Lemma 3.10. Let Y1 be a weak solution to System (3) belonging to L∞(
[0,T ] × Ω

)
for a certain T > 0. If Y 0 ∈ [0, 1], then Y1 also takes values

in [0, 1] (almost everywhere).

Proof. First note that Equation (11) shows that µn(t) converges for all t since
Y 0 ∈ [0, 1]. Considering the definition of µn, that is µn(t) =

1
|Ω|

∫
Ω
Y n
1 (t,x) dx,

we shall prove that Y1 cannot take values outside [0, 1]. Indeed, assume there
exists ω(t)⊂Ω s.t. |ω(t)| ̸=0 and Y1(t,x)>1 for almost all x∈ω(t). Writing µ2n

as

µ2n(t) =
1

|Ω|

∫
Ω\ω(t)

Y 2n
1 (t,x) dx︸ ︷︷ ︸

≥0

+
1

|Ω|

∫
ω(t)

Y 2n
1 (t,x) dx︸ ︷︷ ︸

−−−−→
n→+∞

+∞
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we show that µn cannot converge, which is contradictory to what we stated
above. Thus, Y1 ≤ 1 a.e. Likewise, if Y1 < 0 on a positive measure set, we
consider the solution Z = 1−Y1 associated to the initial condition Z0 = 1−Y 0.
Necessarily, Z ≤ 1 as shown previously and Y1 ≥ 0 a.e.

Although Proposition 3.9 and Lemma 3.10 have been proven for Y 0 taking
values in [0, 1], they still hold for general bounded Y 0 in [a, b] by considering
Z = Y−a

b−a .
Proposition 3.9 is a generalization of [7, Lemma 1.1]. Indeed, when Y1 is the

mass fraction of gas as described in Section 2, Proposition 3.9 has the following
simpler formulation:

Lemma 3.11. ([7, Lemma 1.1]) Assume there exists a solution of the type
Y1(t,x) = 1Ω1(t)(x) where Ω1(t) ⊂ Ω, t ∈ [0,T ] for a certain T > 0. Let V be
the “volume of the bubble”, i.e. V (t) = |Ω1(t)|. Then V is explicitly known as:

V (t) =
1(

1
V (0)

− 1
|Ω|

)
exp [−Ψ(t)] + 1

|Ω|

. (13)

Proof. This lemma was first proven in [7]. Here the proof is based on Proposi-

tion 3.9. In this irregular case, µN(0) = µ1(0) =
V (0)
|Ω| for all N and (11) leads

to (13).

Remark 3.12. Equation (13) turns out to be of great interest from a numerical
point of view. As it is an exact formula for the volume, we can compute this
volume so as to compare it to numerical approximations. Thus we can check
out the accuracy of numerical schemes [19,21].

Formulae (11) and (13) are global in time, which tends to show that there
is no blow-up in finite time, even if it is still an open problem. Moreover,
they show the influence of ψ: If ψ is positive, the bubble grows and conversely.
Likewise, if ψ is periodic and has a zero mean value over the period, the volume
is periodic too.

Another remark is the dependence w.r.t. |Ω|: The same bubble inside two
domains of different sizes will evolve differently. It is the influence of the Poisson
equation and more particularly the boundary condition. We recall that the
Abv model is derived from a low Mach number system (Dlmn, [5,6]). In that
case, the acoustic waves have an infinite speed of propagation which gives an
elliptic character to the Dlmn system. Nevertheless, Equation (13) shows that
the bubble cannot reach the boundary in finite time.

Finally, we mention that Proposition 3.9 enabled to prove further results
in the one-dimensional case [19]. In particular, explicit solutions are derived
thanks to the mean value formula.
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4. Conclusion

The mathematical coupling in the Abv model between a transport equation
and a Poisson equation turned out to be an interesting problem balancing hy-
perbolic properties and elliptic effects. In the smooth case, we proved both
short time existence and uniqueness of classical solutions to the Abv model.
In less regular situations, we established properties of possible solutions. These
are qualitative results which provide a better knowledge of the behaviour of so-
lutions. Some of them tend to show that solutions evolve as expected especially
concerning boundedness properties or influence of the pulse ψ. There are still
open problems like the periodicity in time of solutions if ψ is periodic.

Another major issue is about existence of solutions in weaker functional
spaces satisfying physical constraints. There exists an explicit solution in 1D
for a bubble-kind initial datum [19], which tends to show that there exist so-
lutions in the general bounded case even if we did not prove either existence
or uniqueness yet in higher dimensions. Possible methods to carry out may be
the parabolic approximation (see [22] for instance), the use of log-Lipschitz es-
timates [24] or the concept of renormalized solutions [8]. Those approaches lead
to existence of weak solutions to similar systems. The latter method will be
applied in future works [20]. The use of the bounded mean oscillation (BMO)
space [13] may also be of crucial interest. The fact remains that this study
forms a relevant starting point for the analysis of the Dlmn system [5,6].

A. Appendix

In this part we recall some functional results about hyperbolic and elliptic reg-
ularity as well as classical inequalities.

The following lemma corresponds to [18, Lemma 2.10] and is an improve-
ment of [7, Lemma 3.1] and [9, Lemma 2.4] for a special care is given to constants
involved in the estimates.

Lemma A.1. Assume that Y 0 ∈ Hs(Ω), u ∈ Ws,T (Ω) such that u · n|∂Ω = 0
and f ∈ Ws,T (Ω) with T > 0 and s an integer s.t. s ≥ s0 + 1. Then, the
transport equation

∂tY + u · ∇Y = f, Y (0,x) = Y 0(x)

has a unique classical solution Y ∈ Ws,T (Ω) satisfying the energy estimates

∥Y (t, ·)∥0 ≤ eχ0(t)

(∥∥Y 0
∥∥
0
+

∫ t

0

e−χ0(τ)∥f(τ, ·)∥0 dτ
)

∥Y (t, ·)∥s ≤ eχs(t)

(∥∥Y 0
∥∥
s
+

∫ t

0

e−χs(τ)∥f(τ, ·)∥s dτ
)
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for all t ∈ [0,T ] and any functions χ0 and χs such that

χ′
0(t) ≥

1

2
∥∇ · u(t, ·)∥∞ and χ′

s(t) ≥ Cadv(s, d,Ω)∥∇u(t, ·)∥s−1.

Lemma A.2 ([7, Lemma 3.2], [2, Theorem III.5.3]). Suppose ψ ∈ C 0(0,+∞)
and Y1 ∈ Ws,T (Ω) for T > 0 and s ∈ N. There exists a unique solution to the
system

∆ϕ(t,x) = ψ(t)

(
Y1(t,x)−

1

|Ω|

∫
Ω

Y1(t,x
′) dx′

)
,

∇ϕ · n|∂Ω = 0,

∫
Ω

ϕ(x) dx = 0.

This solution satisfies ∇ϕ ∈ Ws+1,T (Ω) and4

∥∇ϕ(t, ·)∥0 ≤ CPW (d,Ω) · |ψ(t)| · ∥Y1(t, ·)∥0,
∥∇ϕ(t, ·)∥s+1 ≤ Cell(s, d,Ω) · |ψ(t)| · ∥Y1(t, ·)∥s.

Lemma A.3. We recall that s0 = ⌊d
2
⌋+ 1.

1. Let s1 and s2 be two integers satisfying s1+s2 ≥ s0. Assume f ∈ Hs1 and
g ∈ Hs2. Then fg ∈ Hs3 with s3 = min(s1, s2, s1 + s2 − s0). Moreover,
there exists CM = CM(s1, s2, d) s.t. for all f and g as above

∥fg∥s3 ≤ CM ∥f∥s1∥g∥s2 .

2. (Sobolev embeddings) s0 is the lowest integer s such that Hs(Ω) ⊂ L∞(Ω):
∀ s ≥ s0, ∃ Csob(s, d,Ω) > 0, ∀ f ∈ Hs(Ω), ∥f∥∞ ≤ Csob∥f∥s. Likewise,
we have Hs(Ω) ⊂ Cm(Ω) as soon as s > m+ d

2
.
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