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Transport Equations with Fractal Noise -
Existence, Uniqueness and Regularity

of the Solution
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Abstract. The main result of the present paper is a statement on existence, unique-
ness and regularity for mild solutions to a parabolic transport diffusion type equation
that involves a non-smooth coefficient. We investigate related Cauchy problems on
bounded smooth domains with Dirichlet boundary conditions by means of semigroup
theory and fixed point arguments. Main ingredients are the definition of a product
of a function and a (not too irregular) distribution as well as a corresponding norm
estimate. As an application, transport stochastic partial differential equations driven
by fractional Brownian noises are considered in the pathwise sense.
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1. Introduction

We consider the following transport equation on a domain D ⊂ Rd with initial
and Dirichlet boundary conditions:

∂u

∂t
(t, x) = ∆u(t, x) + ⟨∇u,∇Z⟩(t, x), t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

(1)

where D is a bounded open set of Rd with C∞ boundary, u0 is a given function
in some appropriate space, Z is a given non-differentiable function on Rd and
the derivative is taken in the distributional sense. The gradient ∇ as well as the
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Laplacian ∆ refer to the space variables. The precise definition of the product
⟨∇u,∇Z⟩(t, x) will be given below, and it is set by use of the Fourier transform.

The study of this model is motivated by an increasing interest in PDEs with
space-dependent random input. In particular, random fields with complex space
dependence have recently attracted much attention in the probabilistic commu-
nity, at the border between probability geometry and physics. In this context
we consider a transport equation whose drift has very rough space-dependence,
being the distributional space-derivative of a non-differentiable field. The mo-
tivating example for the field is a typical realization of a fractional Brownian
field with Hurst parameter 1

2
< H < 1, but the result applies in general to any

(random) field with given space-regularity properties. We note that stochas-
tic transport equations with irregular fields have been considered as models of
transport of passive scalars in turbulent fluids (see [6,12]), but still with function
valued noises.

The aim of this paper is to give a meaning to the formal problem (1) and
to investigate existence, uniqueness and regularity of corresponding solutions.
We rewrite problem (1) in the abstract Cauchy setting, namely we interpret
all mappings as functions of time t taking values in some suitable function
space X (real function space on Rd, our choice will be specified later). Set
u : [0, T ] → X, t 7→ u(t) ∈ X and (u(t))(·) := u(t, ·). The Dirichlet initial value
problem becomes the following abstract Cauchy problem

d

dt
u = ∆Du + ⟨∇u,∇Z⟩, t ∈ (0, T ],

u(0) = u0, t = 0,
(2)

where ∆D stands for the Dirichlet-Laplace operator.
Note that we need some care to give an appropriate definition for the prod-

uct term ⟨∇u,∇Z⟩: In the cases we consider, the components of ∇Z will be
distributions. This is not covered by results in the standard literature for partial
differential equations (PDEs) (see for instance [5,14]). We use a priori estimates
on this product which lead to optimal regularity results. To our knowledge, this
has not been considered anywhere else.

There is a rich literature regarding stochastic PDEs (SPDEs) (see for in-
stance [1, 2, 9] and references therein). In these references the noise is assumed
to be of Brownian (or semimartingale) type.

There are also results on SPDEs involving fractional Brownian (or general
non-semimartingale) type noises (see for instance [4,7,8,10,15,20]) but it seems
that there are few results on transport diffusion equations with random non-
smooth drift of the form (2).

To our knowledge, the only study regarding this problem is due to Russo
and Trutnau [18] where they investigate a stochastic equation like (8) (which is
the stochastic analog of (1)) but in space dimension one. The authors proceed
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by freezing the realization of the noise for each ω and overcome the problem
of defining the product between a function and a distribution by means of a
probabilistic representation, they express the parabolic PDE probabilistically
through the associated diffusion which is the solution of a stochastic differential
equation with generalized drift.

In the present paper Fourier analysis is used to define pointwise products
that work for any space dimension (see Proposition 2.5). The product itself will
be a distribution.

We proceed as follows: In Section 2, after having introduced the framework
and the notion of (mild) solution, we define an integral operator I. The product
together with the action of the semigroup and an integration with respect to
time will define the integral operator.

In Section 3 we first collect some useful a priori estimates and bounds, then
we state the key Theorem 3.4 dealing with the mapping property of the integral
operator in the spaces Cγ([0, T ]; H̃1+δ(D)) and finally we state the main result in
Theorem 3.5. By a contraction argument and under suitable conditions on the
parameters γ, δ > 0, on the noise and on the initial condition we find a unique
(mild) solution for (1) in the above-mentioned space. Of interest is the fact
that the solution is actually a function, even though we make use of fractional
Sobolev spaces of negative index (spaces of distributions) while proving the
desired result.

In Section 4 we conclude the paper presenting some applications to stochas-
tic PDEs. We are namely able to solve a class of SPDEs where the noise is,
for instance, a temporally homogeneous fractional Brownian field with Hurst
parameter 1

2
< H < 1 (see Corollary 4.2). Moreover combining it with a re-

sults of Hinz and Zähle [8] we can treat the more general (stochastic) transport
equation of the form
∂u

∂t
(t, x) = ∆u(t, x) + ⟨∇u,∇Z⟩(t, x) +

⟨
F,
∂

∂t
∇V

⟩
(t, x), t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

where F is a given vector and V = V (t, x) is a given non-differentiable function.
Throughout the whole paper c denotes a finite positive constant whose exact
value is not important and may change from line to line.

2. Preliminaries

2.1. Framework. Recall the definition of fractional Sobolev spaces (Bessel
potential spaces) on Rd. For α ∈ R and 1 < p <∞ set

Hα
p (Rd;C) :=

{
f ∈ S ′(Rd;C) : ((1 + |ξ|2)

α
2 f̂)∨ ∈ Lp(Rd,C)

}
,
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equipped with the norm ∥f |Hα
p (Rd;C)∥ = ∥((1+ |ξ|2)α

2 f̂)∨|Lp(Rd;C)∥, where f̂
stands for the Fourier transform of f on Rd and (·)∨ denotes the inverse Fourier
transform. We are interested only in real valued distributions (and functions)
so we follow [17] and define S ′(Rd;R) := {f ∈ S ′(Rd;C) : f̄ = f} where f̄ is
defined by f̄(ϕ) = f(ϕ̄) for all ϕ ∈ S(Rd,C). For 1 < p < ∞ and α ∈ R we
define Hα

p (Rd;R) := Hα
p (Rd;C) ∩ S ′(Rd;R). For simplicity of notation we omit

the writing of the codomain when it is R.
The corresponding Sobolev spaces on D, suitable for our purposes, are

defined for all α > −1
2
as

H̃α
p (D) :=

{
f ∈ Hα

p (Rd) : supp(f) ⊂ D̄
}

equipped with the norm inHα
p (Rd). Observe that if α = 0 then the space H̃0

p (D)
is simply Lp(D). Such spaces are embedded in each other in the following way:
For all α > β, Hα

p (Rd) ⊂ Hβ
p (Rd). An analogous relation holds for the spaces

on domain D for all α > β > −1
2
.

We omit the subscript index p if p = 2. In this case the norm in Hα(Rd)
is denoted by ∥ · ∥α. Moreover when we have a vector (like ∇Z) we write
∇Z ∈ Hα

p (Rd) (and similarly for spaces on D) to intend that every component
of the vector ∇Z belongs to such space. The norm of a d-dimensional vector
in the space (Hα

p (Rd))d is defined as the square root of the sum of the squared
norm of each component in Hα

p (Rd). For simplicity we will indicate it with the
same notation.

Consider now the Dirichlet-Laplacian ∆D as the infinitesimal generator
of the Dirichlet heat semigroup acting on L2(D) (see e.g. [24, Section 4.1],
[5, Section 7.4.3]). The boundary conditions appearing in (1) are now en-
coded in the domain of the Dirichlet-Laplacian which is given by D(∆D) =
{f ∈ H2(D) : f |∂D = 0}. Throughout the whole paper we will indicate the
Dirichlet-Laplacian with ∆D = −A. More precisely −A generates a compact
C0 semigroup of contractions (Pt)t≥0 in L2(D) (see [24, Theorem 7.2.5]). The
semigroup is of negative type and symmetric. Moreover it is known that if
the semigroup is contractive and symmetric it is also analytic (see [3, Theorem
1.4.1], or [19, Chapter III]), thus one can define fractional powers of A of any
order (see for instance [16]).

It can be shown (see [23, Equations (27.50), (27.51)] or [22, Section 4.9.2])
that for all γ, α ∈ R such that −1

2
< γ, γ−α < 3

2
the fractional power A

α
2 maps

isomorphically H̃γ(D) onto H̃γ−α(D), hence there exist c1 > 0 and c2 > 0 such
that for all f ∈ H̃γ(D)∥∥Aα

2 f
∥∥
γ−α

≤ c1 ∥f∥γ ≤ c2
∥∥Aα

2 f
∥∥
γ−α

. (3)

Furthermore one can prove that D(A
α
2 ) = H̃α(D) for all 0 < α < 3

2
, α ̸= 1

2
. In

fact using complex interpolation theory (see [22, Theorems 1.15.3, 4.3.3(a)]) one
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can show that D(Aθ) = H2θ
2,{Id}. For small θ this space coincides with H̃2θ(D)

(see [22, Theorems 4.7.1(a), 4.3.2/1(c)]). We recall now a standard result on
semigroups, for a proof we refer to [16, Theorem II.6.13] or [24, Theorem 7.7.2].

Theorem 2.1. Let −A be the infinitesimal generator of an analytic semigroup
Tt on a Banach space (X, ∥ · ∥X). If for each t ≥ 0 holds ∥Tt∥ ≤ Me−ωt with
M ≥ 1 and ω > 0 then

(a) Tt : X → D(Aα) for every t > 0, α ≥ 0;

(b) for every α ≥ 0 and for every x ∈ D(Aα), TtAαx = AαTtx;

(c) for every t > 0 and for every α ≥ 0 the operator AαTt is bounded
and linear and there exist constants Mα (which depends only on α) and
θ ∈ (0, ω) such that

∥AαTt∥L (X) ≤Mαe
−θtt−α;

(d) for each 0 < α ≤ 1 there exists Cα > 0 such that ∀t > 0 and for each
x ∈ D(Aα) we have

∥Ttx− x∥X ≤ Cαt
α∥Aαx∥X .

As a consequence of this theorem and of relation (3) we get the following
result.

Corollary 2.2. Let (Pt)t≥0 be the Dirichlet heat semigroup on L2(D). Then
for all positive t and for any −1

2
< ρ, γ, ρ+ γ < 3

2
we have

Pt : H̃
γ(D) → H̃ρ+γ(D).

In particular if f ∈ H̃γ(D) then supp(Ptf) ⊂ D̄.

Proof. Consider first the case when γ > 0. Let f ∈ H̃γ(D) so by (3) we have
g := A

γ
2 f ∈ L2(D). We write Ptf = PtA

− γ
2A

γ
2 f = PtA

− γ
2 g = A− γ

2Ptg and by
Theorem 2.1(a) we know that Ptg ∈ D(A

ρ
2 ) for any ρ ≥ 0. Moreover recall that

D(A
ρ
2 ) = H̃ρ(D) for all 0 ≤ ρ < 3

2
, ρ ̸= 1

2
, so for this choice of ρ and using (3)

we get Ptf = A− γ
2Ptg ∈ H̃ρ+γ(D). Observe that this fact is true also if ρ = 1

2

since H̃ρ+γ(D) ⊂ H̃
1
2
+γ(D) for all ρ > 1

2
.

The case when γ < 0 is proven in the same way, simply write A− γ
2A

γ
2Ptf

instead of PtA
− γ

2A
γ
2 f .

2.2. Mild solutions. A function u is a mild solution of (2) if it satisfies the
following integral equation

u(t) = Ptu0 +

∫ t

0

Pt−r⟨∇u(r),∇Z⟩ dr.
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To give a formal meaning to the product ⟨·, ·⟩ we make use of the so called
paraproduct, see e.g. [17]. We shortly recall the definition and some useful
properties.

Suppose we are given f ∈ S ′(Rd). Choose a function ψ ∈ S(Rd) such that
0 ≤ ψ(x) ≤ 1 for every x ∈ Rd, ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 3

2
.

Then consider the following approximation of f

Sjf(x) :=

(
ψ

(
ξ

2j

)
f̂

)∨

(x)

that is in fact the convolution of f with a smoothing function. This approxi-
mation is used to define the product of two distributions fg as follows:

fg := lim
j→∞

SjfSjg

if the limit exists in S ′(Rd). The convergence in the case we are interested in is
part of the assertion below (see [8, Appendix C.4], [17, Theorem 4.4.3/1] ).

Lemma 2.3. Let 1 < p, q <∞ and 0 < β < δ and assume that q > max(p, d
δ
).

Then for every f ∈ Hδ
p(Rd) and g ∈ H−β

q (Rd) we have

∥fg|H−β
p (Rd)∥ ≤ c∥f |Hδ

p(Rd)∥ · ∥g|H−β
q (Rd)∥.

The following Lemma regarding a locality-preserving property will be used
while shifting the properties of the product fg from the whole Rd to the do-
main D. For the proof see [17, Lemma 4.2].

Lemma 2.4. If f, g ∈ S ′(Rd) and supp(f) ⊂ D̄ then also supp(fg) ⊂ D̄.

Our aim now is to apply such product to ∇u(s) and ∇Z. We will denote
by ⟨·, ·⟩ the pointwise product combined with the scalar product in Rd.

Proposition 2.5. Let u(s) ∈ H̃1+δ
p (D), Z ∈ H1−β

q (Rd) for 1 < p, q < ∞,

q > max(p, d
δ
), 0 < β < 1

2
and β < δ. Then the pointwise multiplication

⟨∇u(s),∇Z⟩ is well defined, it belongs to the space H̃−β
p (D) and we have the

following bound

∥⟨∇u(s),∇Z⟩|H̃−β
p (D)∥ ≤ c∥∇u(s)|H̃δ

p(D)∥ · ∥∇Z|H−β
q (Rd)∥.

Proof. The idea is to apply first Lemma 2.3 to define the product as an element
of H−β

p (Rd) and then restrict it to H̃−β
p (D) with the help of Lemma 2.4.

Let f = ∇u(s) and g = ∇Z. We should check the conditions in Lemma 2.3.
Clearly g ∈ H−β

q (Rd) because Z ∈ H1−β
q (Rd) and it is easy to show that (∇)i

is bounded form Hγ(Rd) to Hγ−1(Rd) for every γ ∈ R and for all i = 1, . . . , d.
The fact that f ∈ Hδ

p(Rd) is also clear since H̃1+δ
p (D) ⊂ H1+δ

p (Rd).
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Denote m(s) := ⟨∇u(s),∇Z⟩ ∈ H−β
p (Rd) and by Lemma 2.3 we get

∥m(s)|H−β
p (Rd)∥ ≤ c∥∇u(s)|Hδ

p(Rd)∥ · ∥∇Z|H−β
q (Rd)∥ <∞.

Since supp u(s) ⊂ D̄ then supp∇u(s) ⊂ D̄ and so by Lemma 2.4 it follows
suppm(s) ⊂ D̄ and so m(s) ∈ H̃−β

p (D) since β < 1
2
. Moreover,

∥⟨∇u(s),∇Z⟩|H̃−β
p (D)∥ = ∥⟨∇u(s),∇Z⟩|H−β

p (Rd)∥
≤ c∥∇u(s)|Hδ

p(Rd)∥ · ∥∇Z|H−β
q (Rd)∥

= c∥∇u(s)|H̃δ
p(D)∥ · ∥∇Z|H−β

q (Rd)∥.

The notion of mild solution is now formalized. Next we check the con-
vergence of the integral, so for any fixed u(r) ∈ H̃1+δ(D) define the integral
operator I by

It(u) :=

∫ t

0

Pt−r⟨∇u(r),∇Z⟩ dr

for any t ∈ [0, T ]. We consider this operator acting on the Hölder space
Cγ([0, T ];X) into itself (this mapping property will be proven later, see Theo-
rem 3.4) for some suitable γ and for some infinite dimensional Banach space X.
The Hölder space is defined as

Cγ([0, T ];X) := {h : [0, T ] → X s.t. ∥h∥γ,X <∞}

where ∥h∥γ,X := supt∈[0,T ] ∥h(t)∥X+sups<t∈[0,T ]
∥h(t)−h(s)∥X

(t−s)γ
.WhenX = H̃1+δ(D)

the norm will be indicated by ∥·∥γ,1+δ. Next we introduce a family of equivalent

norms ∥ · ∥(ρ)γ,X , ρ ≥ 1 defined by

∥f∥(ρ)γ,X := sup
0≤t≤T

e−ρt

(
∥f(t)∥X + sup

0≤s<t

∥f(t)− f(s)∥X
(t− s)γ

)
.

3. The main result

In this section we prove the contractivity of the operator I in the Hölder space
Cγ([0, T ]; H̃1+δ(D)).

3.1. Mapping property of I. Recall that m(r) := ⟨∇u(r),∇Z⟩ for all
0 ≤ r ≤ T .

Proposition 3.1. Let 0<β < 1
2
and β<δ and fix a function Z∈H1−β

q (Rd) for

some q>max(2, d
δ
). Then for all 0≤r≤ t≤T and u(t)∈H̃1+δ(D) we have

(1) ∥m(r)|H̃−β(D)∥ ≤ c∥u(r)|H̃1+δ(D)∥
(2) ∥m(t)−m(r)|H̃−β(D)∥ ≤ c∥u(t)− u(r)|H̃1+δ(D)∥.



44 E. Issoglio

Proof. To see (1), observe that by definition ∇u(r) ∈ H̃δ(D) means that
∇u(r) ∈ Hδ(Rd) and supp(∇u(r)) ⊂ D̄. Also (∇)j : H1+δ(Rd) → Hδ(Rd)
is bounded for all δ, i.e. for all f ∈ H1+δ(Rd) there exists c > 0 such that
∥∇f∥δ ≤ c∥f∥1+δ. These results combined with Proposition 2.5 (where p = 2)
lead to (1).

Now we prove (2). Since H̃−β(D) is a linear space then m(t) − m(r) ∈
H̃−β(D). The pointwise product and the operator ∇ are linear so we can write
m(t)−m(r) = ⟨∇u(t)−∇u(r),∇Z⟩ = ⟨∇(u(t)−u(r)),∇Z⟩. Clearly u(t)−u(r)
is an element of H̃δ(D) ⊂ Hδ(Rd) so we proceed in the same way as for (1) and
we get the wanted result.

Proposition 3.2. Let 0 < β < δ < 1
2
and w ∈ H̃−β(D). Then Ptw ∈ H̃1+δ(D)

for any t > 0 and moreover there exists a positive constant c such that

∥Ptw∥1+δ ≤ c ∥w∥−β t
− 1+δ+β

2 .

Proof. Let w ∈ H̃−β(D). By (3) we have

∥Ptw∥1+δ ≤ c∥A
1+δ
2 Ptw∥0 = c∥A

1+δ
2 A

β
2A−β

2Ptw∥0 = c∥A
1+δ+β

2 PtA
−β

2w∥0.

Since w ∈ H̃−β(D) then by (3) we have also A−β
2w ∈ L2(D) and Theorem 2.1(c)

ensures that the following bound holds for all t > 0

∥A
1+δ+β

2 Pt∥L (L2(D)) ≤Me−θtt−
1+δ+β

2 .

This fact together with the previous bound implies

∥Ptw∥1+δ ≤ ct−
1+δ+β

2 ∥A−β
2w∥0 ≤ ct−

1+δ+β
2 ∥w∥−β <∞,

having used in the last inequality again equation (3).

These two properties can be generalized to a wider range of parameters δ
and β (for more details see [22]).

The following integral bounds will be used later. The proof makes use of
the Gamma and the Beta functions together with some basic integral estimates.

Lemma 3.3. If 0 ≤ s < t ≤ T <∞ and 0 ≤ θ < 1 then for any ρ ≥ 1 it holds∫ t

s

e−ρrr−θdr ≤ Γ(1− θ)ρθ−1. (4)

Moreover if γ > 0 is such that θ + γ < 1 then for any ρ ≥ 1 there exists a
positive constant C such that∫ t

0

e−ρ(t−r)(t− r)−θr−γdr ≤ Cρθ−1+γ. (5)
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In what follows we state and give the proof of the main mapping property
of the integral operator. It is a contraction on a Banach space of function with
Hölder-type regularity in time and fractional Sobolev-type regularity in space.

Theorem 3.4. Let 0 < β < δ < 1
2
and Z ∈ H1−β

q (Rd) for q > max(2, d
δ
). Then

for any γ such that 0 < 2γ < 1− δ − β it holds

I : Cγ([0, T ]; H̃1+δ(D)) → Cγ([0, T ]; H̃1+δ(D))

and the following estimate holds for any fixed u ∈ Cγ([0, T ]; H̃1+δ(D))

∥I(·)(u)∥(ρ)γ,1+δ ≤ c(ρ)∥u∥(ρ)γ,1+δ (6)

where c(ρ) is a function of ρ not depending on u nor T and such that

lim
ρ→∞

c(ρ) = 0.

Proof. Given any u ∈ Cγ([0, T ]; H̃1+δ(D)) our goal is to bound

∥I(·)(u)∥(ρ)γ,1+δ = sup
0≤t≤T

(
e−ρt∥It(u)∥1+δ + e−ρt sup

0≤s<t

∥It(u)− Is(u)∥1+δ

(t− s)γ

)
=: sup

0≤t≤T

(
(A) + (B)

)
using the (ρ)-norm of u, namely using ∥u∥(ρ)γ,1+δ.

Step 1. Consider part (A). Fix t ∈ [0, T ]. Since

e−ρt∥It(u)∥1+δ = e−ρt

∥∥∥∥∫ t

0

Pt−rm(r) dr

∥∥∥∥
1+δ

≤ e−ρt

∫ t

0

∥Pt−rm(r)∥1+δ dr

apply Proposition 3.2 with w = m(s) ∈ H̃−β(D) and afterwards Proposi-
tion 3.1(1) to obtain

(A) ≤ e−ρt

∫ t

0

∥m(r)∥−β(t− r)−
1+δ+β

2 dr ≤ ce−ρt

∫ t

0

∥u(r)∥1+δ(t− r)−
1+δ+β

2 dr.

Observe that e−ρr∥u(r)∥1+δ ≤ sup0≤r≤T e
−ρr∥u(r)∥1+δ ≤ ∥u∥(ρ)γ,1+δ for any

0 ≤ r ≤ t ≤ T and then we obtain

(A) = e−ρt∥It(u)∥1+δ ≤ c∥u∥(ρ)γ,1+δ

∫ t

0

e−ρ(t−r)(t− r)−
1+δ+β

2 dr

= c∥u∥(ρ)γ,1+δ

∫ t

0

e−ρrr−
1+δ+β

2 dr

≤ c∥u∥(ρ)γ,1+δρ
1+δ+β

2
−1
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having used estimate (4) of Lemma 3.3 in the last line. Clipping the result

together we can state that (A) = e−ρt∥It(u)∥1+δ ≤ c(ρ)∥u∥(ρ)γ,1+δ where c(ρ) =

cρ
δ+β−1

2 and since δ+β−1
2

< 0 we have c(ρ) → 0 as ρ→ ∞.

Step 2. Consider part (B). Let for the moment fix our attention only on the
argument inside the norm in the numerator of (B). Recall that 0 ≤ s < t ≤ T .
We make a change of variable in the middle integral r′ = r− t+s and we obtain∫ t

0

Pt−rm(r) dr −
∫ s

0

Ps−rm(r) dr

=

∫ t−s

0

Pt−rm(r) dr +

∫ t

t−s

Pt−rm(r) dr −
∫ s

0

Ps−rm(r) dr

=

∫ t−s

0

Pt−rm(r) dr +

∫ s

0

Ps−rm(r + t− s) dr −
∫ s

0

Ps−rm(r) dr

=

∫ t−s

0

Pt−rm(r) dr +

∫ s

0

Ps−r(m(r + t− s)−m(r)) dr .

These computations enable us to write

(B) = e−ρt sup
0≤s<t

∥It(u)− Is(u)∥1+δ

(t− s)γ

= e−ρt sup
0≤s<t

∥
∫ t

0
Pt−rm(r) dr −

∫ s

0
Ps−rm(r) dr∥1+δ

(t− s)γ

≤ e−ρt sup
0≤s<t

∥
∫ t−s

0
Pt−rm(r) dr∥1+δ

(t− s)γ

+ e−ρt sup
0≤s<t

∥
∫ s

0
Ps−r(m(r + t− s)−m(r)) dr∥1+δ

(t− s)γ

:= (C) + (D).

Step 3. Consider term (C). The numerator is similar to the term (A) and
therefore we proceed as we did in Step 1. We have

(C) ≤ e−ρt sup
0≤s<t

∫ t−s

0
c∥u(r)∥1+δ(t− r)−

1+δ+β
2 dr

(t− s)γ

≤ sup
0≤s<t

∫ t−s

0

e−ρ(t−r)c∥u∥(ρ)γ,1+δ(t− r)−
1+δ+β

2 (t− s)−γ dr

≤ c∥u∥(ρ)γ,1+δ sup
0≤s<t

∫ t−s

0

e−ρ(t−r)(t− r)−
1+δ+β

2 r−γ dr

= c∥u∥(ρ)γ,1+δ

∫ t

0

e−ρ(t−r)(t− r)−
1+δ+β

2 r−γ dr
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Set θ := 1+δ+β
2

. The assumption 2γ < 1−δ−β on γ ensures that γ+θ < 1 and es-

timate (5) in Lemma 3.3 can be applied. We obtain (C)≤c∥u∥(ρ)γ,1+δρ
1+δ+β+2γ

2
−1≤

c∥u∥(ρ)γ,1+δρ
δ+β+2γ−1

2 .
Clipping the result together

(C) = e−ρt sup
0≤s<t

∥
∫ t−s

0
Pt−rm(r) dr∥1+δ

(t− s)γ
≤ c1∥u∥(ρ)γ,1+δρ

δ+β+2γ−1
2 .

Step 4. Consider term (D). First apply Proposition 3.2 to w = m(r+ t− s)
−m(r) which is an element of H̃−β(D) thanks to Proposition 2.5. Then apply
Proposition 3.1(2)

(D) = e−ρt sup
0≤s<t

∥
∫ s

0
Ps−r(m(r + t− s)−m(r)) dr∥1+δ

(t− s)γ

≤ e−ρt sup
0≤s<t

∫ s

0
∥m(r + t− s)−m(r)∥−β(s− r)−

1+δ+β
2

(t− s)γ
dr

≤ ce−ρt sup
0≤s<t

∫ s

0

e−ρ(r+t−s)

e−ρ(r+t−s)

∥u(r + t− s)− u(r)∥1+δ(s− r)−
1+δ+β

2

(t− s)γ
dr

≤ c sup
0≤s<t

∫ s

0

e−ρ(s−r)e−ρ(r+t−s)∥u(r + t− s)− u(r)∥1+δ

(t− s)γ
(s− r)−

1+δ+β
2 dr.

Fix the attention on the term e−ρ(r+t−s) ∥u(r+t−s)−u(r)∥1+δ

(t−s)γ
and set h = t − s to

obtain

e−ρ(r+h)∥u(r + h)− u(r)∥1+δ

hγ
. (7)

Moreover observe that

∥u∥(ρ)γ,1+δ = sup
0≤t≤T

e−ρt∥u(t)∥1+δ + sup
0≤r<t≤T

e−ρt∥u(t)− u(r)∥1+δ

(t− r)γ

and in particular, setting again t− r = h, the second summand can be rewrit-
ten as sup0<h≤r+h≤T e

−ρ(r+h) ∥u(r+h)−u(r)∥1+δ

hγ . Therefore we can bound (7) by

∥u∥(ρ)γ,1+δ (since the parameters r and h are such that 0 < h ≤ r + h ≤ T )
and applying once more estimate (4) in Lemma 3.3 the upper bound for (D)
becomes

(D) ≤ c∥u∥(ρ)γ,1+δ sup
0≤s<t

∫ s

0

e−ρ(s−r)(s−r)−
1+δ+β

2 dr ≤ c2∥u∥(ρ)γ,1+δρ
δ+β−1

2 Γ

(
δ+β−1

2

)
.

Clipping the result for part (B) we obtain

(B) = (C) + (D) = e−ρt sup
0≤s<t

∥It(u)− Is(u)∥1+δ

(t− s)γ
≤ c′(ρ)∥u∥(ρ)γ,1+δ
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where c′(ρ) = c1ρ
δ+β+2γ−1

2 + c2ρ
δ+β−1

2 and since δ+β+2γ−1
2

and δ+β−1
2

are negative
we have c′(ρ) → 0 as ρ→ ∞.

Finally observe that the bound for (A)+(B) does not depend on t and then
the supremum over 0 ≤ t ≤ T of (A) + (B) is simply bounded by

∥I(·)(u)∥(ρ)γ,1+δ = sup
0≤t≤T

(
(A) + (B)

)
≤ (c(ρ) + c′(ρ))∥u∥(ρ)γ,1+δ.

3.2. Theorem of existence and uniqueness. Now we prove existence and
uniqueness of a global mild solution.

Theorem 3.5. Let 0 < β < δ < 1
2
and 0 < 2γ < 1− β − δ. Fix Z ∈ H1−β

q (Rd)

for some q > max(2, d
δ
). Then for any initial condition u0 ∈ H̃1+δ+2γ(D)

and for any positive finite time T there exists a unique mild solution u in

Cγ([0, T ]; H̃1+δ(D)) for (2) satisfying the integral equation u(t) = Ptu0 + It(u).

Proof. From Theorem 3.4 we know that if u ∈ Cγ([0, T ]; H̃1+δ(D)) then I(·)(u) ∈
Cγ([0, T ]; H̃1+δ(D)).

Now we should ensure that for u0 ∈ H̃σ(D), with σ ≥ 1 + δ + 2γ then
P(·)u0 ∈ Cγ([0, T ]; H̃1+δ(D)) too, using the (ρ)-norm, namely we should check
that

sup
0≤t≤T

e−ρt

(
∥Ptu0∥1+δ + sup

0≤s<t

∥Ptu0 − Psu0∥1+δ

(t− s)γ

)
<∞.

Recall that Pt is a bounded linear operator on H̃σ(D) for −1
2
< σ, therefore

for every x ∈ H̃σ(D), ∥Ptx∥σ ≤ ∥Pt∥ · ∥x∥σ < ∞. Since u0 ∈ H̃1+δ+2γ(D) ⊂
H̃1+δ(D) then sup0≤t≤T e

−ρt∥Ptu0∥1+δ ≤ c sup0≤t≤T ∥Ptu0∥1+δ <∞.

For the second summand use Theorem 2.1(d) and relation (3) to obtain
∥Ptu0 − Psu0∥1+δ = ∥Ps(Pt−s − I)u0∥1+δ ≤ c∥Ps∥∥(Pt−s − I)u0∥1+δ ≤ c∥Ps∥
(t − s)α∥Aαu0∥1+δ ≤ c∥Ps∥(t − s)α∥u0∥1+δ+2α ≤ cMe−ωs(t − s)α∥u0∥1+δ+2α for
any 0 < α < 1. Therefore the second summand becomes

sup
0≤t≤T

e−ρt sup
0≤s<t

∥Ptu0 − Psu0∥1+δ

(t− s)γ
≤ sup

0≤s<t≤T
e−ρtcs(t− s)α

∥u0∥1+δ+2α

(t− s)γ

and if we choose α = γ then

sup
0≤t≤T

e−ρt sup
0≤s<t

∥Ptu0 − Psu0∥1+δ

(t− s)γ
≤ sup

0≤s<t≤T
e−ρtcs∥u0∥1+δ+2γ

that is a finite quantity if u0 ∈ H̃1+δ+2γ(D).
So for any fixed u0 ∈ H̃1+δ+2γ(D) the operator J(·) := P(·)u0+I(·) is mapping

Cγ([0, T ]; H̃1+δ(D)) into itself. It is left to prove that J(·) is a contraction,
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namely that there exists a constant k < 1 such that ∥J(·)(u) − J(·)(v)∥(ρ)γ,1+δ ≤
k∥u − v∥(ρ)γ,1+δ for all u, v ∈ Cγ([0, T ]; H̃1+δ(D)). For this aim observe that

∥J(·)(u)− J(·)(v)∥(ρ)γ,1+δ = ∥Ptu0 + I(·)(u)− Ptu0 − I(·)(v)∥(ρ)γ,1+δ

=

∥∥∥∥∫ ·

0

P·−r⟨∇u(r),∇Z⟩dr −
∫ ·

0

P·−r⟨∇v(r),∇Z⟩dr
∥∥∥∥(ρ)

γ,1+δ

≤
∥∥∥∥∫ ·

0

P·−r (⟨∇(u(r)− v(r)),∇Z⟩dr)
∥∥∥∥(ρ)

γ,1+δ

≤ ∥I(·)(u − v)∥(ρ)γ,1+δ.

We clearly have w := u − v ∈ Cγ([0, T ]; H̃1+δ(D)) and then it suffices to apply
the result of Theorem 3.4 with w instead of u and choose ρ big enough such
that the constant c(ρ) appearing in (6) is less than 1.

4. Applications

In this section we will apply the previous results to some stochastic PDEs.

4.1. The stochastic transport equation. Consider the stochastic transport
equation given by

∂u

∂t
(t, x) = σ2∆u(t, x) + ⟨∇u(t, x),∇Y (x, ω)⟩, t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

(8)

where Y = {Y (x, ω)}x∈Rd is a stochastic field defined on a given probability
space (Ω,F ,P). One suitable example for the noise Y is the Lévy fractional
Brownian motion {BH(x)}x∈Rd with Hurst parameter 1

2
< H < 1. It is the

isotropic generalization of the fractional Brownian motion (see [13]) and it is
defined to be a centered Gaussian field on Rd of covariance function

E[BH(x)BH(y)] =
1

2

(
|x|2Hd + |y|2Hd − |x− y|2Hd

)
,

where | · |d stands for the Euclidean norm in Rd. The parameter 0 < H < 1
is called Hurst parameter. In case when H = 1

2
we recover the Lévy Brownian

motion, whereas if d = 1 we get the fractional Brownian motion. Using a
Kolmogorov continuity theorem suitable for stochastic fields (see for instance
[11, Theorem 1.4.1]) and basic properties of Gaussian random variables one can
show that there exist Ω1 ⊂ Ω with P(Ω1) = 1 and a modification of BH(x),
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x ∈ D (for simplicity we call it again BH(x)) with D ⊂ Rd arbitrary bounded
domain of Rd such that for every ω ∈ Ω1 and for every x, y ∈ D we have∣∣BH(x, ω)−BH(y, ω)

∣∣ ≤ Kω|x− y|αd , ∀α < H

where K is a positive random variable with finite moments of every order.
In other words, for almost every realization ω the field is α-Hölder contin-

uous on D of any order α < H. This fact together with the following property
enable us to apply the results presented in the previous section to equation (8)
in a pathwise sense.

Proposition 4.1. Let h be a compactly supported real valued α-Hölder con-
tinuous function on Rd for some 0 < α < 1. Then for any α′ < α we have
h ∈ Hα′

p (Rd) for all 2 ≤ p <∞.

The proof makes use of the equivalent norm

∥h∥Lp +

(∫
|y|≤1

∥h(·+ y)− h(·)∥2Lp

|y|d+2α′ dy

) 1
2

for the Besov spaces Bα′
p,2(Rd) and of embedding properties between Besov and

Sobolev spaces (see [21] for more details).
In order to apply this to (almost every) path of BH we should ensure the

compactness of the support. This is not true in general. Instead, since (8)
is considered only on the domain D, let ψ(x), x ∈ Rd be a C∞-function with
compact support and such that ψ(x) = 1 ∀x ∈ D̄. Then for almost every ω ∈ Ω
the function ψ(·)BH(ω, ·) is α-Hölder continuous. By Proposition 4.1 we have
that for all 2 ≤ q < ∞ and for all α′ < α < H, ψ(·)BH(ω, ·) ∈ Hα′

q (Rd). For
consistency of notation set 1−β := α′, and so 1−β < H. In order to match the
conditions on the parameter β we have to choose 1

2
< H < 1. Then for every

ω ∈ Ω1 we set Z(x) := ψ(x)BH(ω, x) and so Theorem 3.5 ensures existence and
uniqueness of a function solution to the stochastic Dirichlet problem (8) with
Y = BH . This proves the following corollary.

Corollary 4.2. Let {BH(x)}x∈Rd be a Lévy fractional Brownian field defined
as before and let Y = BH in equation (8). If 1

2
< H < 1 then for almost every

ω ∈ Ω there exist a set of parameters δ, β, γ and q that satisfy the assumptions
of Theorem 3.5.

In particular, for any u0 ∈ H̃1+δ+2γ(D) we have a.s. existence and unique-
ness of a mild solution to (8) in Cγ([0, T ]; H̃1+δ(D)).

Note 4.3. The restriction on the Hurst parameter (H > 1
2
) seems to be necessary.

In fact the main result is based on the properties of the paths of BH seen as a
function of x. The (H − ε)-Hölder regularity is basically the fractional Sobolev
regularity of order 1− β < H. We use this (not too bad ir)regularity −β twice:
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- To define the pointwise product: In Proposition 2.5 the condition −β>−1
2

arises from the definition of {H̃α
p (D), α > −1

2
} but this restriction can be

overcome by using a wider family of fractional Sobolev spaces on domains.
For instance the family {H̄α

p (D), α ∈ R} (for more details see [23, Section
27.11]).

- To prove the contractivity of the integral: In the proof of Theorem 3.4 we

integrate several times a singularity in time of the type e−ρtt−
1+δ+β

2 where
0 < β < δ. For the singularity to be integrable we necessarily need that
β + δ < 1 and so β < 1

2
.

4.2. A (more) general stochastic transport equation.We combine in this
section the main result obtained in this paper with a result obtained in [8].

Recall Definition 2.1 in [8] (we only need the case k = 1) where the authors
define an integral operator of the type Iαt (F,

∂
∂t
∇V ) for some given F ∈ Rd

and V = V (t, x1, . . . , xd). Their idea is to use Fourier transform to perform
the integration with respect to the space variable x and fractional derivatives
to give a meaning to the derivative with respect to time and then perform
the integration. Moreover they exploited the regularity of this integral, and
they proved in Proposition 7.1 that if 0 < α, β, γ < 1 with α + γ < 1 and
2γ + δ̃ < 2 − 2α − β then the integral Iα(·)(F,

∂
∂t
∇V ) (which in fact does not

depend on α) belongs to the space Cγ([0, T ]; H̃ δ̃(D)) for any given function
V ∈ C1−α([0, T ];H1−β(Rd)) and vector F ∈ Rd.

Taking this into account we are able to give the following existence and
uniqueness result.

Corollary 4.4. Let T > 0 be fixed, choose 0 < β < δ < 1
2
and 0 < 2γ <

1 − β − δ. Fix F ∈ Rd, Z ∈ H1−β
q (Rd) and V ∈ C1−α([0, T ];H1−β

q (Rd)) for
some q > max(2, d

δ
) and for some 0 < α < 1 such that α + γ < 1. Then given

any initial condition u0 ∈ H̃1+δ+2γ(D) there exists a unique global mild solution

u(t, x) in the Hölder space Cγ([0, T ]; H̃1+δ(D)) for the problem

∂u

∂t
(t, x) = σ2∆u(t, x) + ⟨∇u(t, x),∇Z(x)⟩

+

⟨
F,

∂

∂t
∇V (t, x)

⟩
,

t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

(9)

and the solution is given by

u(t, ·) = Ptu0 + It(u) + Iαt

(
F,

∂

∂t
∇V

)
.
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Proof. Set δ̃ := 1+δ. Since 2γ < 1−δ−β then 2γ+ δ̃ < 2−β and if one chooses
a positive α such that 2γ + δ̃ < 2 − β − 2α then the condition α + γ < 1 is
satisfied and by [8, Proposition 7.1] we have Iα(·)(F,

∂
∂t
∇V ) ∈ Cγ([0, T ]; H̃ δ̃(D)).

Finally apply a contraction principle as applied in the proof of Theorem 3.5 and
recover the thesis.

With the same technique illustrated in Section 4.1 one can solve (9) in the
case when Z and V are substituted by stochastic fields, and then the system is
solved in the pathwise sense. See [8, Section 6] for a survey on possible noises
in place of V .
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Birkhäuser 1996.



Transport Equations with Fractal Noise 53

[10] Hu, Y., A class of SPDE driven by fractional white noise. In: Stochastic Pro-
cesses, Physics and Geometry: New Interplays. II (Proceedings Leipzig 1999;
eds.: F. Gesztesy et al.). CMS Conf. Proc. 29. Providence: Amer. Math. Soc.
2000, pp. 317 – 325.

[11] Kunita, H., Stochastic Flows and Stochastic Differential Equations. Cambridge:
Cambridge Univ. Press 1990.

[12] Le Jan, Y. and Raimond, O., Integration of Brownian vector fields. Ann.
Probab. 30 (2002)(2), 826 – 873.

[13] Lindstrøm, T., Fractional Brownian fields as integrals of white noise. Bull.
London Math. Soc. 25 (1993), 83 – 88.

[14] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Prob-
lems. Basel: Birkhäuser 1995.
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