
Zeitschrift für Analysis und ihre Anwendungen c⃝ European Mathematical Society
Journal for Analysis and its Applications
Volume 32 (2013), 83–101
DOI: 10.4171/ZAA/1475
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Abstract. We investigate limiting J-interpolation methods for general Banach cou-
ples, not necessarily ordered. We also show their relationship with the interpolation
methods defined by the unit square.
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1. Introduction

As one can see in the books by Butzer and Berens [6], Bergh and Löfström [4],
Triebel [24–26], Bennett and Sharpley [3], Brudny̆ı and Krugljak [5], Connes [15]
or Amrein, Boutet de Monvel and Georgescu [1], the real interpolation method
is a very useful tool in many areas of mathematics, including harmonic analysis,
partial differential equations, approximation theory and operator theory.

Given any Banach couple (A0, A1), the real interpolation spaces (A0, A1)θ,q
are defined for 0 < θ < 1 (we review their construction in Section 2). In the
limit cases θ = 0 or θ = 1, the definition must be modified in order to be
meaningful.

Working with ordered Banach couples, that is assuming A0 ↪→ A1, limiting
spaces (A0, A1)0,q;J based on the Peetre’s J-functional with θ = 0 have been
introduced in [7] by Kühn, Ullrich and two of the present authors. They also
showed that these limiting spaces arise interpolating by the J-method associated
to the unit square (see [13]) the diagonally equal 4-tuple (A0, A1, A1, A0).
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The assumption A0 ↪→ A1 was essential for the arguments in [7], and the
later papers [9] and [11] on limiting J-spaces, but for the definition of inter-
polation methods it is an unnecessary restriction. This is our motivation to
study limiting J-spaces for arbitrary (not necessarily ordered) couples. The
corresponding problem for spaces defined by using the K-functional, the dual
functional to the J-functional, has been investigated by the authors in [10].

We start by recalling some basic results on the real interpolation method
and on function spaces in Section 2. Then, in Section 3, we extend the definition
of limiting J-spaces with θ = 0 to arbitrary Banach couples. We also introduce
there limiting J-spaces with θ = 1, and we show their relationship with J-spaces
defined by a “broken power function” and with K-spaces defined by “broken
function parameter”.

In Section 4, we investigate the connection between the limiting J-spaces
and the J-method associated to the unit square. Given any Banach couple
(A0, A1), we consider the 4-tuple obtained by placing A0 on the vertices (0, 0)
and (1, 1), and A1 on (1, 0) and (0, 1). We show that if we choose for interpo-
lating an interior point of the square laying on the diagonals, then the resulting
spaces are intersections of limiting J-spaces with real interpolation spaces. In
the ordered case we recover a result of [7]. In contrast to the ordered case
where the spaces are all the same along the diagonal (α, α), now there is no
segment where they are constant. Moreover, the results in the general case
show a symmetry which cannot be observed in the simpler case studied in [7].

2. Preliminaries

Let Ā = (A0, A1) be a Banach couple, that is, two Banach spaces Aj (j = 0, 1)
which are continuously embedded in some Hausdorff topological vector space.
Let A0+A1 be their sum and A0∩A1 be their intersection. These spaces become
Banach spaces under the norms

∥a∥A0+A1 = inf{∥a0∥A0 + ∥a1∥A1 : a = a0 + a1, aj ∈ Aj}

and ∥a∥A0∩A1 = max{∥a∥A0 , ∥a∥A1}, respectively.
The Peetre’s K- and J-functionals are defined by

K(t, a) = K(t, a; Ā)

= inf{∥a0∥A0 + t∥a1∥A1 : a = a0 + a1, aj ∈ Aj}, a ∈ A0 + A1,

and

J(t, a) = J(t, a; Ā) = max{∥a∥A0 , t∥a∥A1}, a ∈ A0 ∩ A1.

Note that ∥ · ∥A0+A1 = K(1, ·; Ā) and ∥ · ∥A0∩A1 = J(1, ·; Ā).
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Let 0<θ < 1 and 1≤q ≤∞. The real interpolation space Āθ,q=(A0, A1)θ,q,
view as a K-space, is formed by all elements a ∈ A0 + A1 for which the norm

∥a∥Āθ,q
=

(∫ ∞

0

(t−θK(t, a))q
dt

t

) 1
q

is finite (when q = ∞ the integral should be replaced by the supremum). This
space coincides with the collection of all those elements a ∈ A0 + A1 for which
there is a strongly measurable function u(t) with values in A0 ∩ A1 such that

a =

∫ ∞

0

u(t)
dt

t
(convergence in A0+A1) and

(∫ ∞

0

(t−θJ(t, u(t)))q
dt

t

)1
q

<∞.

Moreover,

∥a∥Āθ,q;J
= inf

{(∫ ∞

0

(t−θJ(t, u(t)))q
dt

t

) 1
q

: a =

∫ ∞

0

u(t)
dt

t

}

is an equivalent norm to ∥ · ∥Āθ,q
. This is the description of Āθ,q by means of

the J-functional. We refer to [3–6, 24] for full details on the real interpolation
method and to [27] for properties of the Bochner integral.

Let (Ω, µ) be a σ-finite measure space and let f be a measurable function
which is finite almost everywhere. The non-increasing rearrangement of f is
defined by f ∗(t) = inf{s > 0 : µ{x ∈ Ω : |f(x)| > s} ≤ t}. We put f ∗∗(t) =
1
t

∫ t

0
f ∗(s)ds for the average function of f ∗.
It turns out that

K(t, f ;L∞, L1) = f ∗∗
(
1

t

)
. (2.1)

This yields that (L∞, L1)θ,p = Lp if 1
p
= θ, with equivalent norms. In a more

general way, if 0 < θ < 1, 1
p
= θ and 1 ≤ q ≤ ∞, we obtain the Lorentz spaces

(L∞, L1)θ,q = L(p,q) =

{
f : ∥f∥L(p,q)

=

(∫ ∞

0

(
t
1
pf ∗∗(t)

)q dt
t

) 1
q

< ∞

}
.

We shall also need the Lorentz-Zygmund spaces (see [2,3,16]). Let 1 ≤ p ≤ ∞,
1 ≤ q ≤ ∞ and b ∈ R. We let

Lp,q(logL)b =

{
f : ∥f∥Lp,q(logL)b =

(∫ ∞

0

(
t
1
p (1 + | log t|)bf ∗(t)

)q dt
t

) 1
q

< ∞

}

and we define L(p,q)(logL)b similarly but replacing f ∗ by f ∗∗.
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Clearly L(p,q) = L(p,q)(logL)0. We also have Lp = Lp,p(logL)0 = L(p,p).
Moreover, if 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and b ∈ R, it turns out that Lp,q(logL)b =
L(p,q)(logL)b (see [16, Lemma 3.4.39]). Note that if p = q then Lp,p(logL)b is
the Zygmund space Lp(logL)b (see [17]).

As usual, A ↪→ B means that the space A is continuously embedded in B.
Given two quantities X,Y depending on certain parameters, we write X ≲ Y if
there is a constant c > 0 independent of the parameters involved in X and Y ,
such that X ≤ cY . If X ≲ Y and Y ≲ X we put X ∽ Y .

3. Limiting J-spaces

In this section we study new limiting J-spaces which are defined for arbitrary
Banach couples.

Definition 3.1. Let Ā = (A0, A1) be a Banach couple and let 1 ≤ q ≤ ∞. The
space Ā0,q;J = (A0, A1)0,q;J is the collection of all a ∈ A0 + A1 which can be
represented as

a =

∫ ∞

0

v(t)
dt

t
(convergence in A0 + A1), (3.1)

where v(t) is a strongly measurable function with values in A0 ∩ A1 such that∫ 1

0

J(t, v(t))
dt

t
+

(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

< ∞. (3.2)

The norm in Ā0,q;J is given by taking the infimum in (3.2) over all representations
of the type (3.1), (3.2).

The space Ā1,q;J = (A0, A1)1,q;J is formed by all those a ∈ A0+A1 for which
there is a representation of the type (3.1) but satisfying now

(∫ 1

0

(t−1J(t, v(t)))q
dt

t

) 1
q

+

∫ ∞

1

t−1J(t, v(t))
dt

t
< ∞. (3.3)

The norm in Ā1,q;J is the infimum in (3.3) over all representations (3.1), (3.3).

Let F(Ā) = Ā0,q;J or Ā1,q;J . Next we show that the functor F produces
intermediate spaces. This means that A0∩A1 ↪→ F(Ā) ↪→ A0+A1. Moreover, F
has the interpolation property for bounded linear operators. That is to say,
whenever T is a linear operator from A0+A1 into B0+B1 such that its restriction
T : Aj −→ Bj is bounded for j = 0, 1, then the restriction T : F(Ā) −→ F(B̄)
is also bounded.
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Proposition 3.2. Let Ā = (A0, A1) be a Banach couple and 1 ≤ q ≤ ∞. The
spaces Ā0,q;J and Ā1,q;J are intermediate spaces between A0 and A1. Furthermore,
the functors (·, ·)0,q;J and (·, ·)1,q;J have the interpolation property for bounded
linear operators.

Proof. Let a ∈ Ā0,q;J with a =
∫∞
0

v(t)dt
t
. Using Hölder’s inequality we get with

1
q
+ 1

q′
= 1,

∥a∥A0+A1 ≤
∫ ∞

0

∥v(t)∥A0+A1

dt

t

≤
∫ ∞

0

min{1, t−1}J(t, v(t))dt
t

≤
∫ 1

0

J(t, v(t))
dt

t
+

(∫ ∞

1

t−q′ dt

t

) 1
q′
(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

.

This yields that ∥a∥A0+A1 ≲ ∥a∥Ā0,q;J
.

Assume now that a ∈ A0∩A1. Since a =
∫∞
1

aχ(1,e)
dt
t
, we derive ∥a∥Ā0,q;J

≤(∫ e

1
J(t, a)q dt

t

) 1
q ≲ ∥a∥A0∩A1 .

The interpolation property for (·, ·)0,q;J follows from

J(t, Tw;B0, B1) ≤ max{∥T∥A0,B0 , ∥T∥A1,B1}J(t, w;A0, A1), w ∈ A0 ∩ A1.

Indeed, if a∈ Ā0,q;J with a=
∫∞
0
v(t)dt

t
, then Ta∈B̄0,q;J because Ta=

∫∞
0
Tv(t)dt

t
.

The proof for Ā1,q;J can be carried out in the same way.

Remark 3.3. If A0↪→A1 and a∈ Ā0,q;J , then for any representation a=
∫∞
0
v(t)dt

t

satisfying (3.1), (3.2), we have that a0 =
∫ 1

0
v(t)dt

t
belongs to A0. Indeed,∫ 1

0

∥v(t)∥A0

dt

t
≤
∫ 1

0

J(t, v(t))
dt

t
< ∞.

Hence, writing u(t) = v(t)+a0χ(1,e)(t) for 1 ≤ t < ∞, we get that a =
∫∞
1

u(t)dt
t

(convergence in A1). Moreover,(∫ ∞

1

J(t, u(t))q
dt

t

) 1
q

≲
(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

+ ∥a0∥A0

≤
(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

+

∫ 1

0

J(t, v(t))
dt

t
.

This yields that, in the ordered case, the space Ā0,q;J coincide with the usual
(0, q; J)-space studied in [7, 9]. One can show that Ā0,q;J ↪→ Āθ,q ↪→ Ā1,q;J for
any 0 < θ < 1.
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Next we introduce other kinds of related interpolation spaces.

Definition 3.4. Let Ā = (A0, A1) be a Banach couple, let 0 ≤ θ0, θ1 ≤ 1
and 1 ≤ q ≤ ∞. The space Ā{θ0,θ1},q;J = (A0, A1){θ0,θ1},q;J consists of all those
a ∈ A0 + A1 for which there is a strongly measurable function v(t) with values
in A0 ∩ A1 such that

a =

∫ ∞

0

v(t)
dt

t
(convergence in A0 + A1), (3.4)

and the sum(∫ 1

0

(t−θ0J(t, v(t)))q
dt

t

) 1
q

+

(∫ ∞

1

(t−θ1J(t, v(t)))q
dt

t

) 1
q

(3.5)

is finite. We set

∥a∥Ā{θ0,θ1},q;J
= inf

{(∫ 1

0

(t−θ0J(t, v(t)))q
dt

t

) 1
q

+

(∫ ∞

1

(t−θ1J(t, v(t)))q
dt

t

) 1
q

}

where the infimum is extended over all representations v satisfying (3.4) and
(3.5).

Clearly, for 0<θ<1, the real interpolation space Āθ,q realized as a J-space is
equal to Ā{θ,θ},q;J and the norms are equivalent. Notice also that in notation of
[22,23], the space Ā{θ0,θ1},q;J coincides with the J-space defined by the function
parameter

f(t) =

{
tθ0 if 0 < t ≤ 1

tθ1 if 1 < t < ∞.

Remark 3.5. Assume that A0 ↪→ A1. Let 1 ≤ q ≤ ∞, 0 < θ0 ≤ 1 and take any
a =

∫∞
0

v(t)dt
t
belonging to Ā{θ0,0},q;J with(∫ 1

0

(t−θ0J(t, v(t)))q
dt

t

) 1
q

+

(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

≲ ∥a∥Ā{θ0,0},q;J
.

Then a0 =
∫ 1

0
v(t)dt

t
belongs to A0 because∫ 1

0

∥v(t)∥A0

dt

t
≤
∫ 1

0

J(t, v(t))
dt

t

≤
(∫ 1

0

tθ0q
′ dt

t

) 1
q′
(∫ 1

0

(t−θ0J(t, v(t)))q
dt

t

) 1
q

≲ ∥a∥Ā{θ0,0},q;J
.
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By Remark 3.3, it follows that Ā{θ0,0},q;J is equal to Ā0,q;J and also equal to the
(0, q; J)-space considered in [7].

A similar reasoning shows that if A0 ↪→ A1, 0 < θ1 < 1 and 1 ≤ q ≤ ∞,
then Ā{0,θ1},q;J = Āθ1,q.

Lemma 3.6. Let Ā=(A0, A1) be a Banach couple, let 0<θ<1 and 1≤q≤∞.
Then the following holds :

(i) Ā{θ,0},q;J ↪→ Āθ,q ∩ Ā0,q;J

(ii) Ā{1,θ},q;J ↪→Ā1,q;J ∩ Āθ,q

(iii) Ā{1,0},q;J ↪→Ā1,q;J ∩ Ā0,q;J .

Proof. Let a ∈ Ā{θ,0},q;J and let a =
∫∞
0

v(t)dt
t
be a representation of a satisfying

(3.5). By Hölder’s inequality, we get∫ 1

0

J(t, v(t))
dt

t
≤
(∫ 1

0

tθq
′ dt

t

)1
q′
(∫ 1

0

(t−θJ(t, v(t)))q
dt

t

)1
q

≲
(∫ 1

0

(t−θJ(t, v(t)))q
dt

t

)1
q

.

On the other hand, it is clear that∫ ∞

1

(t−θJ(t, v(t)))q
dt

t
≤
∫ ∞

1

J(t, v(t))q
dt

t
.

This yields that a =
∫∞
0

v(t)dt
t
is also a representation of a in each one of the

spaces Āθ,q and Ā0,q;J , and (i) follows.
The proofs of (ii) and (iii) are similar.

Definition 3.7. Let Ā = (A0, A1) be a Banach couple, let 1 ≤ q ≤ ∞ and
assume that f0, f1 : (0,∞) −→ (0,∞) are continuous functions. We write
Ā{f0,f1},q;K = (A0, A1){f0,f1},q;K to designate the space of all a ∈ A0 + A1 which
have a finite norm

∥a∥Ā{f0,f1},q;K
=

(∫ 1

0

(
K(t, a)

f0(t)

)q
dt

t

) 1
q

+

(∫ ∞

1

(
K(t, a)

f1(t)

)q
dt

t

) 1
q

.

We are interested in spaces Ā{f0,f1},q;K when f0 and f1 are any of the func-
tions

g(t) = 1 + | log t|, f(t) = t(1 + | log t|) (3.6)

or a power function. If f0(t) = tθ (respectively, f1(t) = tθ) with 0 ≤ θ ≤ 1, we
simply write Ā{θ,f1},q;K (respectively, Ā{f0,θ},q;K). Clearly, Āθ,q = Ā{θ,θ},q;K with
equivalent norms.

Spaces Ā{f0,f1},q;K when f0(t) = tθ(1 + | log t|)α0 , f1(t) = tθ(1 + | log t|)α∞ ,
0 ≤ θ ≤ 1 and (α0, α∞) ∈ R2 have been extensively studied in the literature
(see, for example, [19,20]).
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Theorem 3.8. Let Ā = (A0, A1) be a Banach couple, let 1 < q ≤ ∞ and
0 < θ < 1. Then we have with equivalent norms

Ā{θ,0},q;J = Āθ,q ∩ Ā0,q;J = Ā{θ,g},q;K .

Proof. Suppose 1 < q < ∞. The case q = ∞ can be treated in the same way.
By Lemma 3.6(i), we know that Ā{θ,0},q;J ↪→ Āθ,q ∩ Ā0,q;J . Let us show that

Āθ,q ∩ Ā0,q;J ↪→ Ā{θ,g},q;K . (3.7)

Let a ∈ Āθ,q∩Ā0,q;J . It is clear that
(∫ 1

0
(t−θK(t, a))q dt

t

)1
q ≲∥a∥Āθ,q

≤∥a∥Āθ,q∩Ā0,q;J
.

In order to estimate
(∫∞

1

(
K(t,a)
g(t)

)q dt
t

) 1
q
from above, we make the discretization

t = 2ν , ν ∈ Z, and we work with the equivalent discrete norms. Since a ∈ Ā0,q;J ,

we can find a representation of a as a =
∑∞

ν=−∞ uν (convergence in A0 + A1),

with (uν) ⊆ A0∩A1 and
∑0

ν=−∞ J(2ν , uν)+(
∑∞

ν=1 J(2
ν , uν)

q)
1
q ≲ ∥a∥Ā0,q;J

. Let

n = 1, 2, . . . . We obtain

K(2n, a) ≤
∥∥∥ n∑

ν=−∞

uν

∥∥∥
A0

+ 2n
∥∥∥ ∞∑

ν=n+1

uν

∥∥∥
A1

≤
0∑

ν=−∞

J(2ν , uν) +
n∑

ν=1

J(2ν , uν) + 2n
∞∑

ν=n+1

2−νJ(2ν , uν)

≲ ∥a∥Ā0,q;J
+

n∑
ν=1

J(2ν , uν) + 2n
∞∑

ν=n+1

2−νJ(2ν , uν).

The last term can be estimated using Hölder’s inequality. We have

2n
∞∑

ν=n+1

2−νJ(2ν , uν) ≲
(

∞∑
ν=n+1

J(2ν , uν)
q

) 1
q

≲ ∥a∥Ā0,q;J
.

Now, proceeding as in [7, p. 2335], by Hardy’s inequality we derive(∫ ∞

1

(
K(t, a)

g(t)

)q
dt

t

) 1
q

∽
(

∞∑
n=1

(
K(2n, a)

n

)q
) 1

q

≲
(

∞∑
n=1

1

nq

) 1
q

∥a∥Ā0,q;J
+

(
∞∑
n=1

(
1

n

n∑
ν=1

J(2ν , uν)

)q) 1
q

≲ ∥a∥Ā0,q;J
+

(
∞∑
n=1

J(2n, un)
q

) 1
q

≲ ∥a∥Ā0,q;J
.
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Note that
∑∞

n=1
1
nq < ∞ because q > 1. This establishes (3.7).

To complete the proof of the theorem it is enough to prove that

Ā{θ,g},q;K ↪→ Ā{θ,0},q;J . (3.8)

Let a ∈ Ā{θ,g},q;K . Then(
2−θνK(2ν , a)

)0
ν=−∞ ∈ ℓq and

(
ν−1K(2ν , a)

)∞
ν=1

∈ ℓq. (3.9)

For ν = 0,−1,−2, . . . we can decompose a = a0,ν + a1,ν with aj,ν ∈ Aj and

∥a0,ν∥A0 + 2ν∥a1,ν∥A1 ≤ 2K(2ν , a).

By (3.9), ∥a0,ν∥A0 ≤ [21−θνK(2ν , a)]2θν −→ 0 as ν → −∞. For the other values
of ν, following [7, Theorem 4.2], we put λ0 = 1 and λν = 22

ν−1
if ν = 1, 2, . . . .

We decompose a = a0,ν + a1,ν with aj,ν ∈ Aj and

∥a0,ν∥A0 + λν+1∥a1,ν∥A1 ≤ 2K(λν+1, a).

So, using again (3.9)

∥a1,ν∥A1 ≤
[
2K(λν+1, a)

log λν+1

]
log λν+1

λν+1

−→ 0 as ν → ∞.

Let uν = a0,ν − a0,ν−1 = a1,ν−1 − a1,ν ∈ A0 ∩ A1, ν ∈ Z. Since

∥∥∥a− M∑
ν=N

uν

∥∥∥
A0+A1

≤ ∥a0,N−1∥A0 + ∥a1,M∥A1 −→ 0

as M → ∞ and N → −∞, we have that a =
∑∞

ν=−∞ uν in A0 + A1.
Put Iν = [λν−1, λν) for ν = 1, 2, . . . and consider the function

v(t) =


1

log 2
uν if 2ν−1 ≤ t < 2ν , ν = 0,−1,−2, . . .

1
log 2

u1 if t ∈ I1
1

2ν−2 log 2
uν if t ∈ Iν , ν = 2, 3, . . . .

Then∫ ∞

0

v(t)
dt

t
=

0∑
ν=−∞

∫ 2ν

2ν−1

1

log 2
uν

dt

t
+

∫
I1

1

log 2
u1

dt

t
+

∞∑
ν=2

∫
Iν

1

2ν−2 log 2
uν

dt

t

=
∞∑

ν=−∞

uν

= a.
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Moreover, for ν = 0, 1, 2, . . . and 2ν−1 ≤ t < 2ν ,

J(t, v(t)) ≲ J(2ν , uν) ≲ K(2ν , a) ≲ K(t, a).

For t ∈ I1, we have J(t, v(t)) ≲ J(2, u1) ≲ K(4, a) ≲ K(t,a)
1+log t

, and for ν = 2, 3, . . .
and t ∈ Iν , we obtain

J(t, v(t)) ≤ J(λν , uν)

2ν−2 log 2
≲ K(λν+1, a)

2ν−2
.

Consequently,(∫ 1

0

(t−θJ(t, v(t)))q
dt

t

) 1
q

+

(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

≲
(∫ 1

0

(t−θK(t, a))q
dt

t

) 1
q

+

(
∞∑
ν=1

∫
Iν

J(t, v(t))q
dt

t

) 1
q

≲ ∥a∥Ā{θ,g},q;K
+

(∫
I1

(
K(t, a)

1 + log t

)q
dt

t
+

∞∑
ν=2

(
K(λν+1, a)

2ν−2

)q ∫
Iν

dt

t

) 1
q

≲ ∥a∥Ā{θ,g},q;K
+

(∫
I1

(
K(t, a)

1 + log t

)q
dt

t
+

∞∑
ν=2

(
K(λν+1, a)

2ν+2

)q ∫
Iν+2

dt

t

) 1
q

≲ ∥a∥Ā{θ,g},q;K
+

(
∞∑
ν=1

∫
Iν

(
K(t, a)

1 + log t

)q
dt

t

) 1
q

≲ ∥a∥Ā{θ,g},q;K
.

This yields (3.8) and completes the proof.

The corresponding result for Ā{1,θ},q;J involves the function f defined in (3.6).

Theorem 3.9. Let Ā = (A0, A1) be a Banach couple, let 1 < q ≤ ∞ and
0 < θ < 1. Then we have with equivalent norms

Ā{1,θ},q;J = Ā1,q;J ∩ Āθ,q = Ā{f,θ},q;K .

Proof. Let B̄ = (A1, A0) be the couple Ā with reverse order and let K̂ and Ĵ
be the K- and J-functionals associated to B̄. Using that

K(t, a) = tK̂(t−1, a) and J(t, a) = tĴ(t−1, a),

it is not hard to check that Āθ,q = B̄1−θ,q, Ā1,q;J = B̄0,q;J , Ā{1,θ},q;J = B̄{1−θ,0},q;J
and Ā{f,θ},q;K = B̄{1−θ,g},q;K . According to Theorem 3.8,

B̄{1−θ,0},q;J = B̄1−θ,q ∩ B̄0,q;J = B̄{1−θ,g},q;K .

Thus we conclude the result.
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The arguments used in the proofs of Theorems 3.8 and 3.9 may be modified
to give the following characterization of Ā{1,0},q;J .

Theorem 3.10. Let Ā = (A0, A1) be a Banach couple and let 1 < q ≤ ∞. Then
we have with equivalent norms

Ā{1,0},q;J = Ā1,q;J ∩ Ā0,q;J = Ā{f,g},q;K .

In order to give some examples, let (Ω, µ) be a σ-finite measure space. If
µ(Ω) < ∞ then we are in the ordered case with L∞ ↪→ L1 and it is shown in
[7, Corollary 4.3] that the Zygmund space L∞,∞(logL)−1 = Lexp coincides with
(L∞, L1)0,∞;J . By Theorem 3.8 and Remark 3.3, it follows that

(L∞, L1){θ,0},∞;J = L∞,∞(logL)−1 for any 0 < θ < 1.

As a direct consequence of Theorem 3.8 and (2.1), we can determine these spaces
when µ(Ω) = ∞.

Corollary 3.11. Let (Ω, µ) be a σ-finite measure space and 0 < θ < 1. Then

(i) ∥f∥(L∞,L1){θ,0},∞;J
∽ sup

0<t<1

f ∗∗(t)

1 + | log t|
+ sup

1<t<∞
tθf ∗∗(t)

(ii) ∥f∥(L∞,L1){1,θ},∞;J
∽ sup

0<t<1
tθf ∗∗(t) + sup

1<t<∞

tf ∗∗(t)

1 + | log t|

(iii) ∥f∥(L∞,L1){1,0},∞;J
∽ sup

0<t<1

f ∗∗(t)

1 + | log t|
+ sup

1<t<∞

tf ∗∗(t)

1 + | log t|
.

These interpolation spaces can be described in terms of Lorentz and Lorentz-
Zygmund spaces as follows.

Corollary 3.12. Let (Ω, µ) be a σ-finite measure space and let 0 < θ < 1. We
have with equivalent norms

(a) (L∞, L1){θ,0},∞;J = L∞,∞(logL)−1 ∩ L( 1
θ
,∞)

(b) (L∞, L1){1,θ},∞;J = L( 1
θ
,∞) ∩ L(1,∞)(logL)−1

(c) (L∞, L1){1,0},∞;J = L∞,∞(logL)−1 ∩ L(1,∞)(logL)−1.

Proof. Recall that L∞,∞(logL)−1 = L(∞,∞)(logL)−1. By Corollary 3.11(i), it is
clear that L∞,∞(logL)−1∩L( 1

θ
,∞) ↪→ (L∞, L1){θ,0},∞;J . On the other hand, using

again Corollary 3.11(i), we obtain

sup
0<t<1

tθf ∗∗(t) ≲
(

sup
0<t<1

tθ(1 + | log t|)
)
∥f∥(L∞,L1){θ,0},∞;J

≲ ∥f∥(L∞,L1){θ,0},∞;J
.
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Similarly,

sup
1<t<∞

f ∗∗(t)

1 + | log t|
≲
(

sup
1<t<∞

t−θ(1 + | log t|)−1
)
∥f∥(L∞,L1){θ,0},∞;J

≲ ∥f∥(L∞,L1){θ,0},∞;J
.

This yields that

∥f∥L∞,∞(logL)−1∩L( 1
θ
,∞)

≲ ∥f∥(L∞,L1){θ,0},∞;J

and establishes (a). Equalities (b) and (c) can be checked with similar argu-
ments.

4. Interpolation over the unit square

Let Π = P1P2P3P4 be the unit square in R2 with vertices P1 = (0, 0), P2 =
(1, 0), P3 = (0, 1) and P4 = (1, 1). Let Ā = (A0, A1) be a Banach couple and
consider the 4-tuple Ā = (A0, A1, A1, A0). We imagine A0 sitting on P1 and P4,
and A1 on P2 and P3. Using the coordinates of the vertices of Π, we derive the
following version of the J-functional with two parameters t, s > 0

J̄(t, s; a) = max{∥a∥A0 , t∥a∥A1 , s∥a∥A1 , ts∥a∥A0}, a ∈ A0 ∩ A1.

Let (α, β) be an interior point to Π and let 1 ≤ q ≤ ∞. We define the J-
space Ā(α,β),q;J = (A0, A1, A1, A0)(α,β),q;J as the collection of all those a ∈ A0+A1

for which there is a strongly measurable function u(t, s) with values in A0 ∩A1

such that

a =

∫ ∞

0

∫ ∞

0

u(t, s)
dt

t

ds

s
(4.1)

and (∫ ∞

0

∫ ∞

0

(t−αs−βJ̄(t, s;u(t, s)))q
dt

t

ds

s

) 1
q

< ∞. (4.2)

The norm in Ā(α,β),q;J is the infimum in (4.2) over all representations of the type
(4.1), (4.2).

Spaces Ā(α,β),q;J are a special case of interpolation spaces generated by con-
vex polygons in R2. They were introduced by Cobos and Peetre [13]. Besides
[13], we refer to [8,12,14,18,21] and the references given there for full details on
these interpolation methods. When (α, β) lies in any diagonal of Π, the results
are sometimes harder and unexpected. Next we determine Ā(α,β),q;J in those
cases.
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Theorem 4.1. Let Ā = (A0, A1) be a Banach couple, let 0 < α < 1 and let
1 ≤ q ≤ ∞. Put Ā = (A0, A1, A1, A0). Then we have with equivalent norms

Ā(α,α),q;J =


Ā{2α,0},q;J if 0 < α < 1

2

Ā{1,0},q;J if α = 1
2

Ā{2−2α,0},q;J if 1
2
< α < 1,

and

Ā(α,1−α),q;J =


Ā{1,1−2α},q;J if 0 < α < 1

2

Ā{1,0},q;J if α = 1
2

Ā{1,2α−1},q;J if 1
2
< α < 1.

Proof. Using that Ā is diagonally equal, we get

J̄(t, s; a) = tsJ̄(t−1, s−1; a), a ∈ A0 ∩ A1.

This implies that Ā(α,β),q;J = Ā(1−α,1−β),q;J for any (α, β) in the interior of Π.
Hence, it is enough to establish the result for 0 < α ≤ 1

2
. Suppose also that

1 ≤ q < ∞. The proof when q = ∞ is similar.
We consider first the point (α, α). Take any a ∈ Ā{2α,0},q;J and let

a =
∫∞
0

v(t)dt
t
be any representation with(∫ 1

0

(t−2αJ(t, v(t)))q
dt

t

) 1
q

+

(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

≤ 2∥a∥Ā{2α,0},q;J
.

It is easy to check that the integrals

x1 =

∫ 1

0

v(t)
dt

t
and x2 =

∫ ∞

1

v(t)
dt

t

are convergent in A0 + A1. Let us show that xj ∈ Ā(α,α),q;J for j = 0, 1. Put

u(t, s) =

{
v(t) if t

e
≤ s ≤ t and 0 < t < 1

0 in any other case.

We have that ∫ ∞

0

∫ ∞

0

u(t, s)
dt

t

ds

s
=

∫ 1

0

(∫ t

t
e

ds

s

)
v(t)

dt

t
= x1.

Moreover, for t
e
≤ s ≤ t and 0 < t < 1,

J̄(t, s;u(t, s)) = max{∥v(t)∥A0 , t∥v(t)∥A1} = J(t, v(t)).
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Therefore,

∥x1∥Ā(α,α),q;J
≤

(∫ 1

0

∫ t

t
e

(t−αs−αJ(t, v(t)))q
ds

s

dt

t

) 1
q

≲
(∫ 1

0

(t−2αJ(t, v(t)))q
dt

t

) 1
q

≲ ∥a∥Ā{2α,0},q;J
.

To deal with x2 we put

w(t, s) =

{
v
(
1
t

)
if 1

t
≤ s ≤ e

t
and 0 < t < 1

0 in any other case.

Then ∫ ∞

0

∫ ∞

0

w(t, s)
dt

t

ds

s
=

∫ 1

0

(∫ e
t

1
t

ds

s

)
v

(
1

t

)
dt

t
= x2

and, for 1
t
≤ s ≤ e

t
and 0 < t < 1, we have

J̄(t, s;w(t, s)) ≤ max

{
e

∥∥∥∥v(1

t

)∥∥∥∥
A0

,
e

t

∥∥∥∥v(1

t

)∥∥∥∥
A1

}
≲ J

(
1

t
, v

(
1

t

))
.

Consequently,

∥x2∥Ā(α,α),q;J
≲
(∫ 1

0

∫ e
t

1
t

(
t−αs−αJ

(
1

t
, v

(
1

t

)))q
ds

s

dt

t

) 1
q

≲
(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

≲ ∥a∥Ā{2α,0},q;J
.

This implies that Ā{2α,0},q;J ↪→ Ā(α,α),q;J .

In order to establish the converse embedding, take any a ∈ Ā(α,α),q;J and
choose a representation a =

∫∞
0

∫∞
0

u(t, s)dt
t
ds
s
with

(∫ ∞

0

∫ ∞

0

(t−αs−αJ̄(t, s;u(t, s)))q
dt

t

ds

s

) 1
q

≤ 2∥a∥Ā(α,α),q;J
.
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Consider the partition of (0,∞)× (0,∞) given by the sets

Ω1 = {(t, s) ∈ R2 : 0 < t ≤ 1, 0 < s ≤ t}
Ω2 = {(t, s) ∈ R2 : 1 < t < ∞, 0 < s ≤ 1

t
}

Ω3 = {(t, s) ∈ R2 : 0 < t < 1, t < s ≤ 1
t
}

Ω4 = {(t, s) ∈ R2 : 0 < t ≤ 1, 1
t
< s < ∞}

Ω5 = {(t, s) ∈ R2 : 1 < t < ∞, t < s < ∞}
Ω6 = {(t, s) ∈ R2 : 1 < t < ∞, 1

t
< s ≤ t},

and write yj =
∫ ∫

Ωj
u(t, s) dt

t
ds
s
. We have a =

∑6
j=1 yj. We are going to check

that yj ∈ Ā{2α,0},q;J for 1 ≤ j ≤ 6. In the argument we shall use freely that

J̄(t, s;u(t, s)) = max{1, ts}J
(

max{t, s}
max{1, ts}

, u(t, s)

)
.

In Ω1 we have J̄(t, s;u(t, s)) = J(t, u(t, s)). For 0 < t ≤ 1, the integral
v(t) =

∫ t

0
u(t, s) ds

s
is absolutely convergent in A0 ∩ A1. Indeed, using Höder’s

inequality we obtain

J(t, v(t)) ≤
∫ t

0

J(t, u(t, s))
ds

s

=

∫ t

0

J̄(t, s;u(t, s))
ds

s

≤
(∫ t

0

sαq
′ ds

s

) 1
q′
(∫ t

0

(s−αJ̄(t, s;u(t, s)))q
ds

s

) 1
q

≲ tα
(∫ t

0

(s−αJ̄(t, s;u(t, s)))q
ds

s

) 1
q

.

Since y1 =
∫ 1

0
v(t) dt

t
, it follows that

∥y1∥Ā{2α,0},q;J
≤
(∫ 1

0

(t−2αJ(t, v(t)))q
dt

t

) 1
q

≲
(∫ 1

0

∫ t

0

(t−αs−αJ̄(t, s;u(t, s)))q
ds

s

dt

t

) 1
q

≲ ∥a∥Ā(α,α),q;J
.

For y2, we write v(t) =
∫ 1

t

0
u(t, s) ds

s
for 1<t<∞. Using that J̄(t, s;u(t, s))=

J(t, u(t, s)), (t, s) ∈ Ω2, we derive

J(t, v(t)) ≤
∫ 1

t

0

J̄(t, s;u(t, s))
ds

s
≲ t−α

(∫ 1
t

0

(s−αJ̄(t, s;u(t, s)))q
ds

s

) 1
q

.
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Therefore,

∥y2∥Ā{2α,0},q;J
≤
(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

≲
(∫ ∞

1

∫ 1
t

0

(t−αs−αJ̄(t, s;u(t, s)))q
ds

s

dt

t

) 1
q

≲ ∥a∥Ā(α,α),q;J
.

Consider now y3. We have

y3 =

∫ ∫
Ω3

u(t, s)
dt

t

ds

s
=

∫ 1

0

∫ s

0

u(t, s)
dt

t

ds

s
+

∫ ∞

1

∫ 1
s

0

u(t, s)
dt

t

ds

s
= z1 + z2.

Moreover, J̄(t, s;u(t, s)) = J(s, u(t, s)), (t, s) ∈ Ω3. Hence, changing the role of t

and s in the argument for y1, we obtain that z1 ∈ Ā{2α,0},q;J with ∥z1∥Ā{2α,0},q;J
≲

∥a∥Ā(α,α),q;J
. A similar change in the argument used for y2 yields that

∥z2∥Ā{2α,0},q;J
≲ ∥a∥Ā(α,α),q;J

. It follows that y3 ∈ Ā{2α,0},q;J with the correspond-

ing estimate for the norm.

As for y4, put v(t) =
∫∞
t
u
(
1
t
, s
)

ds
s
for 1 ≤ t < ∞. This time, J̄(t, s;u(t, s)) =

tsJ
(
1
t
, u(t, s)

)
, (t, s) ∈ Ω4. We obtain

J(t, v(t))≤
∫ ∞

t

ts−1J̄

(
1

t
, s;u

(
1

t
, s

))
ds

s
≲ tα

(∫ ∞

t

(
s−αJ̄

(
1

t
, s;u

(
1

t
, s

)))q
ds

s

)1
q

.

Therefore,

∥y4∥Ā{2α,0},q;J
≤
(∫ ∞

1

J(t, v(t))q
dt

t

) 1
q

≲
(∫ ∞

1

∫ ∞

t

(
tαs−αJ̄

(
1

t
, s;u

(
1

t
, s

)))q
ds

s

dt

t

) 1
q

≲ ∥a∥Ā(α,α),q;J
.

In Ω5 we have J̄
(
t, s;u(t, s)

)
= tsJ

(
1
t
, u(t, s)

)
. To deal with y5, we write

v(t) =
∫∞

1
t
u
(
1
t
, s
)

ds
s
for 0 < t < 1. We get

J(t, v(t)) ≤
∫ ∞

1
t

ts−1J̄

(
1

t
, s;u

(
1

t
, s

))
ds

s

≲ t2−α

(∫ ∞

1
t

(
s−αJ̄

(
1

t
, s;u

(
1

t
, s

)))q
ds

s

) 1
q

.
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It follows that

∥y5∥Ā{2α,0},q;J
≤
(∫ 1

0

(t−2αJ(t, v(t)))q
dt

t

) 1
q

≲
(∫ 1

0

∫ ∞

1
t

(
t2−4αtαs−αJ̄

(
1

t
, s;u

(
1

t
, s

)))q
ds

s

dt

t

) 1
q

.

In the integral we have that t2−4α ≤ 1 because α ≤ 1
2
. This yields that

∥y5∥Ā{2α,0},q;J
≲ ∥a∥Ā(α,α),q;J

.

Finally, for y6, we derive

y6 =

∫ ∞

1

∫ t

1
t

u(t, s)
ds

s

dt

t
=

∫ 1

0

∫ ∞

1
s

u(t, s)
dt

t

ds

s
+

∫ ∞

1

∫ ∞

s

u(t, s)
dt

t

ds

s
= z4 + z5.

Moreover, J̄(t, s;u(t, s)) = tsJ
(
1
s
, u(t, s)

)
, (t, s) ∈ Ω6. Consequently, changing

the role of t and s, we can treat z4 as y4 and z5 as y5. This completes the proof
for (α, α). For the remaining case (α, 1−α), the proof can be carried out in the
same way.

If A0 ↪→ A1 we recover [7, Theorem 5.1] as a direct consequence of Theorem
4.2 and Remark 3.5.

Having in mind Theorems 3.8, 3.9 and 3.10, we obtain the following de-
scription of Ā(α,α),q;J and Ā(α,1−α),q;J as intersections of real interpolation spaces
and limiting J-spaces.

Corollary 4.2. Let Ā = (A0, A1) be a Banach couple, let 0 < α < 1 and let
1 < q ≤ ∞. Put Ā = (A0, A1, A1, A0). Then we have with equivalent norms

Ā(α,α),q;J =


Ā2α,q ∩ Ā0,q;J if 0 < α < 1

2

Ā1,q;J ∩ Ā0,q;J if α = 1
2

Ā2−2α,q ∩ Ā0,q;J if 1
2
< α < 1,

and

Ā(α,1−α),q;J =


Ā1−2α,q ∩ Ā1,q;J if 0 < α < 1

2

Ā0,q;J ∩ Ā1,q;J if α = 1
2

Ā2α−1,q ∩ Ā1,q;J if 1
2
< α < 1.

Theorem 4.1 and Corollary 4.2 show a symmetry which does not appear in
the ordered case studies in [7]. Moreover, Ā(α,α),q;J = Ā0,q;J for any 0 < α < 1 if
A0 ↪→ A1. But in the general case, the J-space may change along the diagonals.
We illustrate this fact in our last result which is a consequence of Theorem 4.1
and Corollary 3.12.



100 F. Cobos et al.

Corollary 4.3. Let (Ω, µ) be a σ-finite measure space. Then

(L∞, L1, L1, L∞)(α,α),∞;J =


L( 1

2α
,∞) ∩ L∞,∞(logL)−1 if 0 < α < 1

2

L(1,∞)(logL)−1 ∩ L∞,∞(logL)−1 if α = 1
2

L( 1
2−2α

,∞) ∩ L∞,∞(logL)−1 if 1
2
< α < 1,

and

(L∞, L1, L1, L∞)(α,1−α),∞;J=


L( 1

1−2α
,∞) ∩ L(1,∞)(logL)−1 if 0 < α < 1

2

L∞,∞(logL)−1 ∩ L(1,∞)(logL)−1 if α = 1
2

L( 1
2α−1

,∞) ∩ L(1,∞)(logL)−1 if 1
2
< α < 1.
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