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Approximation Results with Respect
to Multidimensional φ-Variation
for Nonlinear Integral Operators
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Abstract. In this paper we study approximation problems for functions belonging to
BV φ-spaces (spaces of functions of bounded φ-variation) in multidimensional setting.
In particular, using a multidimensional concept of φ-variation in the sense of Tonelli
introduced in [4], we obtain estimates, convergence results and, by means of suitable
Lipschitz classes, results about the order of approximation for a family of nonlinear
convolution integral operators.
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1. Introduction

In [4] approximation problems for a family of linear integral operators of the
form

(Twf)(s) =

∫
RN

Kw(t)f(s− t) dt, w > 0, s ∈ RN , (I)

are studied in the frame of BV φ-spaces. In particular, a multidimensional con-
cept of φ-variation is introduced, with the purpose to extend to the multidimen-
sional frame the classical notion of φ-variation. The φ-variation was introduced
for the first time by L. C. Young ([37]) as a generalization of Wiener’s quadratic
variation ([35]), later extended to p-variation ([21,36]). This concept, however,
was mainly developed by J. Musielak and W. Orlicz ([27]), so that it is known
as the Musielak-Orlicz φ-variation, and later extensively studied by the Orlicz
school. The φ-variation extends the notion of Jordan variation preserving a
lot of its properties. However, a crucial difference with the classical variation
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is that there is not any integral representation in terms of φ-absolutely conti-
nuous functions. As a consequence, in order to solve this problem and to get
approximation theorems in the frame of BV φ-spaces, several preliminary results
are necessary (see Sections 3 and 4). Further results about φ-variation can be
found, for example, in [3, 8–11,14,16,22–24,28–30,32].

The multidimensional concept of φ-variation introduced in [4] follows the
idea of Tonelli’s variation ([33]) for functions of two variables, later generalized
to the frame of RN by C. Vinti ([34]). We recall that a different generalization of
φ-variation in the multidimensional setting in the sense of Vitali was introduced
by Lenze ([19,20]), but the φ-variation in the sense of Tonelli seems to be more
suitable in order to study this kind of approximation problems.

In this paper, working with the multidimensional notion of φ-variation in-
troduced in [4] we study the nonlinear version of the operators (I), hence we
obtain results about convergence and order of approximation for the following
family of nonlinear convolution integral operators

(Twf)(s) =

∫
RN

Kw(t, f(s− t)) dt, w > 0, s ∈ RN , (II)

where {Kw}w>0 is a family of kernels of the form Kw(s, u) = Lw(s)Hw(u),
s ∈ RN , u ∈ R. Here, {Lw}w>0 satisfies classical singularity conditions, while
on {Hw}w>0 we make assumptions which are quite natural in a nonlinear setting,
as pointed out in Section 2. It is not difficult to find examples of kernels which
fulfill all the assumptions of our theory: An example is furnished in Section 2.

Besides some estimates (Section 3), in particular about the error of appro-
ximation (Twf − f), the main result that we obtain proves that

lim
w→+∞

V φ[λ(Twf − f)] = 0,

for some λ > 0, provided that, mainly, f is locally φ-absolutely continuous
(f ∈ ACφ

loc(RN)). Analogous results were obtained, for the classical variation,
in [7] (linear case) and in [2] (nonlinear case) while, in the frame of φ-variation,
our results generalize to the multidimensional setting those ones obtained in [3].
As in the one-dimensional case, the assumption that f is locally φ-absolutely
continuous is crucial: Indeed, a fundamental step in order to achieve the con-
vergence is to prove that

lim
δ→0+

ωφ(λ(Hw ◦ f), δ) = 0, (1)

uniformly with respect to w ≥ w̄, for some w̄ > 0 and λ > 0 (see [3, 11] and,
in different frames, [5, 9, 10, 29]), where ωφ(g, δ) := sup|t|≤δ V

φ[τtg − g] is the
φ-modulus of smoothness of g and τtg(s) := g(s− t) is the translation operator
([8, 27]). Here we prove that, as in the one-dimensional case ([3]), (1) holds if
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f ∈ ACφ(RN) ∩ BV η(RN) (Theorem 4.2), where φ and η are two φ-functions
linked by a suitable growth condition (see Section 2). This situation reproduces
exactly what happens in the case of linear operators (i.e., Hw(u) = u, see [1])
and in the case of classical variation, even in multidimensional setting ([7]).

Besides convergence, we also face the problem of the order of approximation
with respect to φ-variation (Section 5) for our integral operators introducing, as
it is usual in this kind of problems, suitable Lipschitz classes which depend on
the φ-variational functional. In the final section we present some further results
in order to complete the theory. In particular, we first provide some regularity
results which prove that, if the kernels are φ-absolutely continuous, as happens
in the most common cases, so are the corresponding integral operators. This
implies (see Remark 6.3) that, in this case, the assumption that the function is
φ-absolutely continuous is not only sufficient, but also necessary for convergence
in φ-variation of our integral operators. We finally prove that all the theory
can be extended to the case of Fφ-variation (see [4]), which is a concept of
multidimensional φ-variation filtered by a functional F : RN −→ R+

0 , more
general than a norm-functional.

2. Notations and assumptions

A function φ : R+
0 → R+

0 is said to be a φ-function if it is continuous, nonde-
creasing on R+

0 , such that φ(0)=0, φ(u)>0 for u>0 and limu→+∞ φ(u)=+∞.

We will denote by Φ the class of all the φ-functions and by Φ̃ the class of all
the convex φ-functions. In the following we will assume that φ ∈ Φ̃.

For the main results of the paper we shall need the following further property
on the φ-function φ:

u−1φ(u) → 0, as u→ 0+. (+)

This assumption, which is typical working in the frame of BV φ-spaces, is es-
sentially due to the lack of an integral representation of φ-variation in terms of
absolutely continuous functions. For further comments on assumption (+) see
Remark 4.5.

We shall work with the multidimensional φ-variation introduced in [4],
which is a generalization of the classical concept of Musielak-Orlicz φ-variation
([27]) in the multidimensional frame, following the approach due to Tonelli and
C. Vinti (see [33, 34]).

Since we work in the multidimensional setting, we now recall some notations
that we will use in the following (see [4, 7]).

Given f : RN → R and x = (x1, . . . , xN) ∈ RN , N ∈ N, if we are interested
in the j-th coordinate we will write x′j = (x1, . . . , xj−1, xj+1, . . . , xN) ∈ RN−1,
so that x = (x′j, xj), f(x) = f(x′j, xj). For an (N -dimensional) interval I =∏N

i=1[ai, bi], I
′
j = [a′j, b

′
j] will denote the (N − 1)-dimensional interval obtained
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by deleting the j-th coordinate from I, so that I = [a′j, b
′
j]×[aj, bj], j = 1, . . . , N.

For j = 1, . . . , N , gj(xj) := f(x′j, xj) will denote the j-section of f . Let us
consider the (N − 1)-dimensional integrals

Φφ
j (f, I) :=

∫ b′j

a′j

V φ
[aj ,bj ]

[f(x′j, ·)]dx′j,

where V φ
[aj ,bj ]

[f(x′j, ·)] is the (one-dimensional) Musielak-Orlicz φ-variation of

the j-section of f . We recall that the φ-variation of a function g : [a, b] → R is
defined as

V φ
[a,b][g] := sup

D

n∑
i=1

φ(|g(si)− g(si−1)|),

where D = {s0 = a < s1 < . . . < sn = b} denotes a partition of the interval [a, b]
([27]), and g : [a, b] → R is said to be of bounded φ-variation (g ∈ BV φ([a, b])) if
there exists λ > 0 such that V φ

[a,b][λg] < +∞. We refer to [27] for the properties
of the classical one-dimensional φ-variation: Here we just recall that, for every
f1, . . . , fn ∈ L1(R),

V φ

[
n∑
i=1

fi

]
≤ 1

n

n∑
i=1

V φ[nfi]. (∗)

Now, let Φφ(f, I) be the euclidean norm of the vector (Φφ
1 (f, I), . . . ,Φ

φ
N(f, I)),

namely

Φφ(f, I) :=

{
N∑
j=1

[Φφ
j (f, I)]

2

} 1
2

,

where we put Φφ(f, I) = +∞ if Φφ
j (f, I) = +∞ for some j = 1, . . . , N .

The multidimensional φ-variation of f on an interval I ⊂ RN is then de-
fined as

V φ
I [f ] := sup

m∑
k=1

Φφ(f, Jk),

where the supremum is taken over all the finite families of N -dimensional in-
tervals {J1, . . . , Jm} which form partitions of I ([4]). The φ-variation of f over
the whole space RN is defined as

V φ[f ] := sup
I⊂RN

V φ
I [f ],

where the supremum is taken over all the intervals I ⊂ RN .
By BV φ(RN) we will denote the space of functions of bounded φ-variation

over RN , i.e.,

BV φ(RN) =
{
f ∈ L1(RN) : ∃λ > 0 s.t. V φ[λf ] < +∞

}
.
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We also define, for every k = 1, . . . , N , the “separated” variations

V φ
k [f, I] := sup

{
m∑
i=1

Φφ
k (f, Ji)

}
,

where the supremum is taken over all the partitions {J1, . . . , Jm} of I (see [1]).
V φ
k [f, I] is a kind of variation with respect to just the k-th direction, while
V φ
I [f ] takes into account of all the N directions. Obviously we have, for every

k = 1, . . . , N , V φ
k [f, I] ≤ V φ

I [f ] ≤
∑N

k=1 V
φ
k [f, I].

In [4], a multidimensional concept of φ-absolute continuity is also intro-
duced: A function f : RN → R is locally φ-absolutely continuous (ACφ

loc(RN))
if it is (uniformly) φ-absolutely continuous in the Tonelli sense, i.e., for every
interval I =

∏N
i=1[ai, bi] ⊂ RN and for every j = 1, 2, . . . , N , the j-th section

of f , gj : [aj, bj] → R, is (uniformly) φ-absolutely continuous for almost every
x′j ∈ [a′j, b

′
j]. We recall that a function g : [a, b] → R is φ-absolutely continuous

if there exists λ > 0 such that the following property holds:

For every ε > 0, there exists δ > 0 such that
∑n

i=1 φ(λ|g(βi) − g(αi)|) < ε, for
all finite sets of non-overlapping intervals [αi, βi] ⊂ [a, b], i = 1, . . . , n, such
that

∑n
i=1 φ(βi − αi) < δ.

If φ ∈ Φ̃ satisfies (+), then the above definition is equivalent to the following
(see [27]):

For every ε > 0, there exists δ > 0 such that
∑m

i=1 φ(λ|g(ti)− g(ti−1)|) < ε, for
all finite partitions a = t0 < t1 < . . . < tm = b of [a, b], such that ti − ti−1 < δ,
for every i = 1, . . . ,m.

By ACφ(RN) we will denote the space of functions f ∈ BV φ(RN) ∩ACφ
loc(RN)

(φ-absolutely continuous functions).

We now introduce a family of kernels. Let {Kw}w>0 be a family of functions
Kw : RN × R → R such that

Kw(t, u) = Lw(t)Hw(u),

for every t ∈ RN , u ∈ R, where Lw : RN → R and Hw : R → R is such that
Hw(0) = 0. We assume that Hw is a ψ-Lipschitz kernel for every w > 0, i.e.,
there exists a constant K > 0 such that

|Hw(u)−Hw(v)| ≤ Kψ(|u− v|) (⋆)

for every u, v ∈ R, where ψ is a φ-function.

Moreover the following conditions are satisfied:

Kw.1) Lw :RN→ R is a measurable function such that Lw∈L1(RN), ∥Lw∥1≤A,
for an absolute constant A > 0, and

∫
RN Lw(t) dt = 1, for every w > 0.
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Kw.2) For every fixed δ > 0,
∫
|t|>δ |Lw(t)| dt → 0, as w → +∞.

Kw.3) Denoted by Gw(u) := Hw(u) − u, u ∈ R, w > 0, for every γ > 0 there
exists λ > 0 such that

V φ
J [λGw]

φ(γm(J))
→ 0, as w → +∞,

uniformly with respect to every (proper) bounded interval J ⊂ R, i.e., in
correspondence to γ > 0 there exists λ > 0 such that, for every ε > 0,

there exists w > 0 (depending only on ε) for which
V φ
J [λGw]

φ(γm(J))
≤ ε, if w≥w,

for every (proper) bounded interval J⊂R (m(J) denotes the length of J).

In the following we will say that {Kw}w>0 ⊂ Kw if the above properties hold.

We remark that assumption (⋆) is a generalization of a Hölder-type condi-
tion, Kw.1) and Kw.2) mean that {Lw}w>0 is an approximate identity, while
Kw.3) is quite natural, working in a nonlinear setting (see [2,3]). Moreover it is
not difficult to provide examples of kernel functions which satisfy all the above
assumptions, and to which our theory can be applied. We now give an example.
Other examples can be found in [3].

Example 2.1. Let Kw : RN × R → R be defined as Kw(t, u) = Lw(t)Hw(u),
where {Lw}w>0 is an approximate identity, Hw(u) is defined as

Hw(u) =


ewu

ew + 1
, 0 ≤ u < 1,

ewu2

ewu+ 1
, u ≥ 1,

and the definition of Hw(u) is extended in odd-way for u < 0. Then {Hw}w>0

satisfies (⋆) with ψ(|u|) = |u|, u ∈ R, and K = 1. Moreover

Gw(u) =


− u

ew + 1
, 0 ≤ u < 1,

− u

ewu+ 1
, u ≥ 1,

and so Gw is decreasing in R+
0 . Hence it is not difficult to see that, for ev-

ery convex φ-function φ : R+
0 → R+

0 , γ > 0 and [a, b] ⊂ [0, 1], V φ
[a,b][γGw] =

φ
(
γ|Gw(b)−Gw(a)|

)
= φ

(
γ b−a
ew+1

)
≤ 1

ew+1
φ(γ(b− a)), and so

V φ
[a,b][γGw]

φ(γ(b− a))
≤ 1

ew + 1
→ 0,

as w → +∞, while, if [a, b] ⊂ [1,+∞), V φ
[a,b][γGw] = φ

(
γ
(

b
ewb+1

− a
ewa+1

))
≤

1
(ew+1)2

φ(γ(b− a)), and hence

V φ
[a,b][γGw]

φ(γ(b− a))
≤ 1

(ew + 1)2
→ 0,
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as w → +∞. Finally, if [a, b] is such that a < 1 < b, then it is sufficient to
notice that, by the properties of φ-variation,

V φ
[a,b][γGw] ≤

1

2

{
V φ
[a,1][2γGw] + V φ

[1,b][2γGw]
}
.

Therefore Kw.3) holds with λ = γ
2
.

Finally, we assume the following growth condition on the function ψ of
the ψ-Lipschitz assumption (see e.g. [8]). From now on we will assume that
η, ψ ∈ Φ.

Definition 2.2. We say that the triple (φ, η, ψ) is properly directed if for every
γ ∈]0, 1[ there exists a constant Cγ ∈]0, 1[ such that

φ
(
Cγψ(|g|)

)
≤ η

(
γ|g|

)
, (⋆⋆)

for every measurable function g : RN → R.

The above condition is the natural formulation, in the multidimensional
frame, of the analogous assumption in the one-dimensional case, which is usual
in convergence problems in BV φ-spaces by means of nonlinear integral operators
(see [2, 3, 8, 9, 23, 30]). Moreover it is not difficult to find triples of functions
satisfying (⋆⋆): As an example, it is sufficient to take φ(u) = eu

a − 1, a ≥ 1,
ψ ∈ Φ and η(u) := eψ

a(u) − 1, u ≥ 0.
We will now consider the following family of nonlinear integral operators

(Twf)(s) =

∫
RN

Kw(t, f(s− t))dt, w > 0, s ∈ RN ,

for every f ∈ L1(RN).

3. Estimates

We first prove an estimate for the φ-variation of our family of operators (II).

Proposition 3.1. Let f ∈ BV η(RN). If Kw.1) and (⋆) are satisfied and the
triple (φ, η, ψ) is properly directed, then there exists λ > 0 such that, for every
w > 0,

V φ[λ(Twf)] ≤ V η[γf ], (2)

where γ > 0 is the constant for which V η[γf ] < +∞. Therefore, (II) maps
BV η(RN) into BV φ(RN).



110 L. Angeloni

Proof. Let I =
∏N

i=1[ai, bi] be an interval in RN and let {J1, . . . , Jm} be a

partition of I, with Jk =
∏N

j=1[
(k)aj,

(k) bj], k = 1, . . . ,m. For every fixed

j = 1, . . . N , k = 1, . . . ,m, let {soj = (k)aj < . . . < sνj =
(k)bj} be a partition of

[(k)aj,
(k) bj]. Then, for every λ > 0,

Sj :=
ν∑

µ=1

φ
(
λ|(Twf)(s′j, s

µ
j )−(Twf)(s

′
j, s

µ−1
j )|

)
=

ν∑
µ=1

φ

(
λ

∣∣∣∣∫
RN

Kw(t, f(s
′
j−t′j, s

µ
j −tj))dt−

∫
RN

Kw(t, f(s
′
j−t′j, s

µ−1
j −tj))dt

∣∣∣∣)

≤
ν∑

µ=1

φ

(
λ

∫
RN

|Lw(t)||Hw(f(s
′
j−t′j, s

µ
j −tj))−Hw(f(s

′
j−t′j, s

µ−1
j −tj))|dt

)
.

Now, since by Kw.1) ∥Lw∥1 ≤ A, for every w > 0, and φ is convex, by Jensen’s
inequality,

Sj≤A−1

∫
RN

|Lw(t)|
ν∑

µ=1

φ
(
λA

∣∣Hw(f(s
′
j−t′j, s

µ
j−tj))−Hw(f(s

′
j−t′j, s

µ−1
j −tj))

∣∣)dt,
and so, by (⋆),

Sj ≤ A−1

∫
RN

|Lw(t)|
ν∑

µ=1

φ
(
λAKψ

(
|f(s′j−t′j, s

µ
j −tj)−f(s′j−t′j, s

µ−1
j −tj)|

))
dt.

If λ > 0 is such that λAK < Cγ, where Cγ is the constant of assumption (⋆⋆),
then

Sj ≤ A−1

∫
RN

|Lw(t)|
ν∑

µ=1

η
(
γ
∣∣f(s′j − t′j, s

µ
j − tj)− f(s′j − t′j, s

µ−1
j − tj)

∣∣)dt
≤ A−1

∫
RN

|Lw(t)|V η

[(k)aj ,(k)bj ]
[γf(s′j − t′j, · − tj)]dt.

Then, by the Fubini-Tonelli theorem, for every j = 1, . . . , N ,

Φφ
j (λ(Twf), Jk) :=

∫ (k)b′j

(k)a′j

V φ

[(k)aj ,(k)bj ]
[λ(Twf)(s

′
j, ·)]ds′j

≤ A−1

∫ (k)b′j

(k)a′j

{∫
RN

|Lw(t)|V η

[(k)aj ,(k)bj ]
[γf(s′j − t′j, · − tj)]dt

}
ds′j

= A−1

∫
RN

{∫ (k)b′j

(k)a′j

V η

[(k)aj ,(k)bj ]
[γf(s′j − t′j, · − tj)]ds

′
j

}
|Lw(t)|dt

= A−1

∫
RN

Φη
j (γf(· − t), Jk)|Lw(t)|dt.
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Now, using a Minkowski-type inequality, for every k = 1, . . . ,m there holds

Φφ(λ(Twf), Jk) : =

{
N∑
j=1

[Φφ
j (λ(Twf), Jk)]

2

} 1
2

≤ A−1

{
N∑
j=1

(∫
RN

Φη
j (γf(· − t), Jk)|Lw(t)|dt

)2
} 1

2

≤ A−1

∫
RN

{
N∑
j=1

[
Φη
j (γf(· − t), Jk)

]2} 1
2

|Lw(t)|dt

= A−1

∫
RN

Φη(γf(· − t), Jk)|Lw(t)|dt.

Summing over k = 1, . . . ,m and passing to the supremum over all the possible
partitions {J1, . . . , Jm} of the interval I, we conclude that

V φ
I [λ(Twf)] ≤ A−1

∫
RN

V η
I [γf(· − t)]|Lw(t)|dt

and so, by the arbitrariness of I ⊂ RN ,

V φ[λ(Twf)] ≤ A−1∥Lw∥1V η[γf ] ≤ V η[γf ].

Remark 3.2. In case of φ(u) = u = η(u), u ∈ R+
0 , the previous inequality gives,

for non-negative kernels {Kw}w>0, the “variation non-augmenting property” for
the operators Twf (see [7]); indeed in this case in (2) we may take λ = γ = 1,
since A = ∥Lw∥1 = 1.

We now prove that, if f ∈ BV η(RN), then {Hw ◦ f}w>0 are equibounded in
φ-variation.

Proposition 3.3. Let f ∈ BV η(RN). If (⋆) is satisfied and the triple (φ, η, ψ)
is properly directed, then there exists µ > 0 such that, for every w > 0,

V φ[µ(Hw ◦ f)] ≤ V η[γf ],

where γ > 0 is the constant for which V η[γf ] < +∞. Hence the family
{Hw ◦ f}w>0 is equibounded in φ-variation.

Proof. Let I =
∏N

i=1[ai, bi] ⊂ RN and let {J1, . . . , Jm} be a partition of I, with

Jk =
∏N

j=1[
(k)aj,

(k) bj], k = 1, . . .m. For every j = 1, . . . N , k = 1, . . .m, let us

consider a partition {soj = (k)aj < . . . < sνj =
(k)bj} of [(k)aj,

(k) bj]. Let γ > 0
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be such that V η[γf ] < +∞. Then, by (⋆), if 0 < µ < Cγ

K
, there holds

Sj : =
ν∑

µ=1

φ
(
µ|(Hw ◦ f)(s′j, s

µ
j )− (Hw ◦ f)(s′j, s

µ−1
j )|

)
≤

ν∑
µ=1

φ
(
Cγψ

(
|f(s′j, s

µ
j )− f(s′j, s

µ−1
j )|

) )
and so, by (⋆⋆),

Sj ≤
ν∑

µ=1

η
(
γ|f(s′j, s

µ
j )− f(s′j, s

µ−1
j )|

)
≤ V η

[(k)aj ,(k)bj ]
[γf(s′j, ·)].

This implies that

Φφ
j (µ(Hw ◦ f), Jk) =

∫ (k)b′j

(k)a′j

V φ

[(k)aj ,(k)bj ]
[µ(Hw ◦ f)(s′j, ·)] ds′j

≤
∫ (k)b′j

(k)a′j

V η

[(k)aj ,(k)bj ]
[γf(s′j, ·)] ds′j = Φη

j (γf, Jk)

and so Φφ(µ(Hw ◦ f), Jk) ≤ Φη(γf, Jk). Now summing over k = 1, . . . ,m, and
passing to the supremum over all the partitions of I, by the arbitrariness of I,
we conclude that

V φ[µ(Hw ◦ f)] ≤ V η[γf ],

for every w > 0.

We now recall the notion of V φ-modulus of continuity ([1, 4]), which is the
natural generalization, in the frame ofBV φ(RN)-spaces, of the classical modulus
of smoothness (see, for example, [8,25,26]). The V φ-modulus of continuity of a
function f ∈ BV φ(RN) will be denoted by ωφ(f, δ), δ > 0, and it is defined as

ωφ(f, δ) := sup
|t|≤δ

V φ[τtf − f ],

where (τtf)(s) := f(s− t) for every s, t ∈ RN is the translation operator.
The following proposition gives an estimate for (Twf − f), which will be

crucial for the main convergence result of Section 4.

Proposition 3.4. Let f ∈ BV η(RN). If Kw.1) is satisfied, then, for every
λ, δ > 0 and for every w > 0, there holds

V φ[λ(Twf − f)] ≤ 1

2

{
ωφ(2λA(Hw ◦ f), δ) + A−1V φ[4λA(Hw ◦ f)]

×
∫
|t|>δ

|Lw(t)| dt+ V φ[2λA(Hw ◦ f − f)]
}
.
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Proof. Using similar reasonings to Proposition 3.1, with the same notations it
is possible to write, for every λ > 0,

Sj : =
ν∑

µ=1

φ
(
λ
∣∣∣(Twf)(s′j, sµj )− f(s′j, s

µ
j )− [(Twf)(s

′
j, s

µ−1
j )− f(s′j, s

µ−1
j )]

∣∣∣)
=

ν∑
µ=1

φ

(
λ

∣∣∣∣ ∫
RN

Lw(t)
[
Hw(f(s

′
j − t′j, s

µ
j − tj))−Hw(f(s

′
j − t′j, s

µ−1
j − tj))

− f(s′j, s
µ
j ) + f(s′j, s

µ−1
j )

]
dt

∣∣∣∣).
Now, by Kw.1), Jensen’s inequality and by convexity of φ, for every λ > 0,

Sj ≤ A−1

∫
RN

|Lw(t)|
ν∑

µ=1

φ
(
λA

∣∣∣[Hw(f(s
′
j − t′j, s

µ
j − tj))−Hw(f(s

′
j, s

µ
j ))

−Hw(f(s
′
j − t′j, s

µ−1
j − tj)) +Hw(f(s

′
j, s

µ−1
j )) +Hw(f(s

′
j, s

µ
j ))

−Hw(f(s
′
j, s

µ−1
j ))− f(s′j, s

µ
j ) + f(s′j, s

µ−1
j )]

∣∣∣) dt

≤ A−1

2

∫
RN

|Lw(t)|
ν∑

µ=1

φ
(
2λA

∣∣∣[Hw(f(s
′
j − t′j, s

µ
j − tj))−Hw(f(s

′
j, s

µ
j ))

]
−

[
Hw(f(s

′
j − t′j, s

µ−1
j − tj))−Hw(f(s

′
j, s

µ−1
j ))

]∣∣∣) dt

+
A−1

2

∫
RN

|Lw(t)|
ν∑

µ=1

φ
(
2λA

∣∣∣[Hw(f(s
′
j, s

µ
j ))− f(s′j, s

µ
j )
]

−
[
Hw(f(s

′
j, s

µ−1
j ))− f(s′j, s

µ−1
j )

]∣∣∣) dt =:
1

2
(I1 + I2).

Let us estimate I1 and I2. For every fixed δ > 0, using property (∗) of φ-
variation,

I1≤A−1

∫
RN

|Lw(t)|V φ

[(k)aj ,(k)bj ]

[
2λA

(
(Hw ◦ f)(s′j−t′j, ·−tj)−(Hw◦f)(s′j, ·)

)]
dt

=A−1

{∫
|t|≤δ

+

∫
|t|>δ

}
|Lw(t)|V φ

[(k)aj ,(k)bj ]

[
2λA

(
(Hw◦f)(s′j−t′j, ·−tj)−(Hw◦f)(s′j, ·)

)]
dt

≤ A−1

∫
|t|≤δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]

[
2λA

(
(Hw◦f)(s′j−t′j, · − tj)−(Hw◦f)(s′j, ·)

)]
dt

+
A−1

2

∫
|t|>δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]
[4λA(Hw◦f)(s′j−t′j, ·−tj)] dt

+
A−1

2

∫
|t|>δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]
[4λA(Hw◦f)(s′j, ·)] dt,
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and

I2 ≤ A−1

∫
RN

|Lw(t)|V φ

[(k)aj ,(k)bj ]
[2λA(Hw ◦ f − f)(s′j, ·)] dt

≤ V φ

[(k)aj ,(k)bj ]
[2λA(Hw ◦ f − f)(s′j, ·)].

Hence there holds

V φ

[(k)aj ,(k)bj ]
[λ(Twf−f)(s′j, ·)]

≤A−1

2

∫
|t|≤δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]

[
2λA

(
(Hw◦f)(s′j−t′j, ·−tj)−(Hw◦f)(s′j, ·)

)]
dt

+
A−1

4

∫
|t|>δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]
[4λA(Hw◦f)(s′j−t′j, ·−tj)] dt

+
A−1

4

∫
|t|>δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]
[4λA(Hw◦f)(s′j, ·)] dt

+
1

2
V φ

[(k)aj ,(k)bj ]
[2λA(Hw◦f−f)(s′j, ·)].

Now, applying the Fubini-Tonelli theorem,

Φφ
j

(
λ(Twf − f), Jk

)
:=

∫ (k)b′j

(k)a′j

V φ

[(k)aj ,(k)bj ]
[λ(Twf − f)(s′j, ·)] ds′j

≤ A−1

2

∫ (k)b′j

(k)a′j

(∫
|t|≤δ

|Lw(t)|

V φ

[(k)aj ,(k)bj ]

[
2λA

(
(Hw ◦ f)(s′j − t′j, · − tj)− (Hw ◦ f)(s′j, ·)

)]
dt

)
ds′j

+
A−1

4

∫ (k)b′j

(k)a′j

(∫
|t|>δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]
[4λA(Hw ◦ f)(s′j − t′j, · − tj)] dt

)
ds′j

+
A−1

4

∫ (k)b′j

(k)a′j

(∫
|t|>δ

|Lw(t)|V φ

[(k)aj ,(k)bj ]
[4λA(Hw ◦ f)(s′j, ·)] dt

)
ds′j

+
1

2

∫ (k)b′j

(k)a′j

V φ

[(k)aj ,(k)bj ]
[2λA(Hw ◦ f − f)(s′j, ·)] ds′j

=
A−1

2

∫
|t|≤δ

|Lw(t)|Φφ
j

(
2λA((Hw ◦ f)(· − t)− (Hw ◦ f)(·)), Jk

)
dt

+
A−1

4

∫
|t|>δ

|Lw(t)|
[
Φφ
j (4λA(Hw ◦ f)(· − t), Jk)

+ Φφ
j (4λA(Hw ◦ f), Jk)

]
dt+

1

2
Φφ
j (2λA(Hw ◦ f − f), Jk).
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Similarly to Proposition 3.1, we now apply a Minkowski-type inequality, and so

Φφ(λ(Twf−f), Jk)

:=

{
N∑
j=1

[Φφ
j (λ(Twf−f), Jk)]2

} 1
2

≤

{
N∑
j=1

[
A−1

2

∫
|t|≤δ

|Lw(t)|Φφ
j

(
2λA

(
(Hw◦f)(·−t)−(Hw◦f)(·)

)
, Jk

)
dt

+
A−1

4

∫
|t|>δ

|Lw(t)|
[
Φφ
j

(
4λA(Hw◦f)(·−t), Jk

)
Φφ
j

(
4λA(Hw◦f), Jk

)]
dt

+
1

2
Φφ
j

(
2λA(Hw◦f−f), Jk

)]2} 1
2

≤A−1

2

∫
|t|≤δ

|Lw(t)|Φφ
(
2λA

(
(Hw◦f)(·−t)−(Hw◦f)(·)

)
, Jk

)
dt

+
A−1

4

∫
|t|>δ

|Lw(t)|
[
Φφ

(
4λA(Hw◦f)(·−t), Jk

)
+Φφ

(
4λA(Hw◦f), Jk

)]
dt

+
1

2
Φφ

(
2λA(Hw◦f−f), Jk

)
.

Now, summing over k = 1, . . . ,m and passing to the supremum over all the
possible partitions {J1, . . . , Jm} of the interval I, we obtain that

V φ
I [λ(Twf − f)]

≤ A−1

2

∫
|t|≤δ

|Lw(t)|V φ
I

[
2λA

(
(Hw ◦ f)(· − t)− (Hw ◦ f)(·)

)]
dt

+
A−1

4

∫
|t|>δ

|Lw(t)|
(
V φ
I [4λA(Hw ◦ f)(· − t)] + V φ

I [4λA(Hw ◦ f)]
)
dt

+
1

2
V φ
I [2λA(Hw ◦ f − f)].

Hence, by the arbitrariness of I ⊂ RN and Kw.1), we conclude that

V φ[λ(Twf − f)]

≤ 1

2

{
ωφ(2λA(Hw ◦ f), δ)

+ A−1V φ[4λA(Hw ◦ f)]
∫
|t|>δ

|Lw(t)| dt+ V φ[2λA(Hw ◦ f − f)]

}
.
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4. Convergence results

In order to prove the main theorem of this section we need to establish some
preliminary convergence results. We first prove a result of convergence in φ-
variation for (Hw ◦ f − f) which is the generalization to the multidimensional
frame of an analogous one in [3].

Proposition 4.1. Let f ∈ BV φ(RN) ∩ C0(RN), where C0(RN) denotes the
space of continuous functions on RN . If Kw.3) holds, then there exists ξ > 0
such that

lim
w→+∞

V φ[ξ(Hw ◦ f − f)] = 0.

Proof. Let I =
∏N

i=1[ai, bi] ⊂ RN and let {J1, . . . , Jm} be a partition of I, with

Jk =
∏N

j=1[
(k)aj,

(k) bj], k = 1, . . .m. Since f is continuous on RN , in particular

f(x′j, ·) is continuous for every x′j ∈ [(k)a′j,
(k) b′j] and for every j = 1, . . . , N .

Then f(x′j, ·) has at most countably infinitely many proper points of maxi-
mum/minimum ([17]). Let us consider the most general case in which f(x′j, ·)
has exactly countably infinitely many proper points of maximum/minimum,
say xi, i = 0, 1, 2, . . . . Let D = {x0 =(k) aj, x1, . . . , xn =(k) bj} be a division of

the interval [(k)aj,
(k) bj] and let D̃ = {y0, y1, . . . } be the (infinite) division ob-

tained adding the points xi to D. Without any loss of generality let us assume
that limi→+∞ xi =

(k) bj (in the other cases it is sufficient to split the interval)
and that x0 ≡ x0 =(k) aj. Indeed, if x0 >

(k) aj, f is constant in [(k)aj, x0]
and so V φ

[(k)aj ,(k)bj ]
[f(x′j, ·)] = V φ

[x0,(k)bj ]
[f(x′j, ·)]. Hence in each of the intervals

Ai := [xi−1, xi], i = 1, 2, . . . , f(x′j, ·) is monotone, and so, for every µ > 0,
w > 0,

V φ
Ai
[µ(Hw ◦ f − f)(x′j, ·)] ≤ V φ

Ii
[µGw], i = 1, 2, . . . ,

where Ii :=
[
min{f(x′j, xi−1), f(x

′
j, xi)},max{f(x′j, xi−1), f(x

′
j, xi)}

]
. Since by

assumption f ∈ BV φ(RN), there exists γ > 0 such that V φ[γf ] < +∞, and
so in particular V φ

[(k)aj ,(k)bj ]
[γf(x′j, ·)] < +∞ for a.e. x′j ∈ [(k)a′j,

(k) b′j]. Then, by

assumption Kw.3), in correspondence to γ there exists ξ > 0 such that, for a
fixed ε > 0, there exists w > 0 (depending only on ε) for which V φ

Ii
[ξGw] ≤

εφ(γm(Ii)), for every w ≥ w and i = 1, 2, . . . . Hence

+∞∑
i=1

φ
(
ξ|(Hw◦f−f)(x′j, yi)−(Hw◦f−f)(x′j, yi−1)|

)
≤

+∞∑
i=1

V φ
Ai
[ξ(Hw◦f−f)(x′j, ·)]

≤
+∞∑
i=1

V φ
Ii
[ξGw]

≤εV φ

[(k)aj ,(k)bj ]
[γf(x′j, ·)].

Then, passing to the supremum over all the possible divisions of [(k)aj,
(k) bj], we
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have that, for every ε > 0, there exists w > 0 such that V φ

[(k)aj ,(k)bj ]
[ξ(Hw ◦ f −

f)(x′j, ·)] ≤ εV φ

[(k)aj ,(k)bj ]
[γf(x′j, ·)] for every w ≥ w. Then, for w ≥ w,

Φφ
j (ξ(Hw ◦ f − f), Jk) =

∫ (k)b′j

(k)a′j

V φ

[(k)aj ,(k)bj ]
[ξ(Hw ◦ f − f)(x′j, ·)] dx′j

≤ ε

∫ (k)b′j

(k)a′j

V φ

[(k)aj ,(k)bj ]
[γf(x′j, ·)] dx′j

= εΦφ
j (γf, Jk),

for every j = 1, . . . , N, and so Φφ(ξ(Hw ◦ f − f), Jk) ≤ εΦφ(γf, Jk). Hence,
passing to the supremum over all the possible partitions of I, by the arbitrariness
of I ⊂ RN , we have that

V φ[ξ(Hw ◦ f − f)] ≤ εV φ[γf ],

for every w ≥ w, which completes the proof recalling that V φ[γf ] < +∞.

In [1] it is proved that, if φ ∈ Φ̃ satisfies (+), the φ-modulus of smoothness
of a function f ∈ ACφ(RN), ωφ(λf, δ), converges to zero, as δ → 0+, for some
λ > 0. We now prove an analogous result for the φ-modulus of smoothness of
(Hw ◦ f).

Theorem 4.2. Let f ∈ ACφ(RN) ∩ BV η(RN) and let φ ∈ Φ̃ be such that (+)
holds. If Kw.3) and (⋆) are satisfied and the triple (φ, η, ψ) is properly directed,
then there exist λ > 0 and w > 0 such that

lim
δ→0+

ωφ(λ(Hw ◦ f), δ) = 0,

uniformly with respect to w ≥ w.

Proof. We will prove that there exist λ > 0 and w > 0 such that, for every
ε > 0 there is δ > 0 for which

V φ[λ(τtgw − gw)] < ε,

if |t| ≤ δ, for every w ≥ w, where gw := Hw ◦ f . The proof will be adapted,
in the present nonlinear frame, from the proof of [1, Theorem 5]; hence, as
in [1], for the sake of simplicity we will prove the result in the particular case
N = 2, since all the reasonings can be easily adapted to the general case of RN ,
N ≥ 2. Moreover we will consider the particular case t = (t, 0), t < 0, since all
the other cases can be treated in a similar way, as pointed out in the proof of
[1, Theorem 5].
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Since f ∈ ACφ(R2) ∩ BV η(R2), as in [1, Proposition 6] it can be proved
that, if γ > 0 is such that V η[γf ] < +∞, there exists λ > 0 such that, for every
fixed ε > 0, there exist I = [a, α]× [b, β] and δ > 0 for which

V η
R×(−∞,b ] [γf ] + V η

R×[β,+∞)[γf ] + V η
(−∞,a]×[b,β][γf ] + V η

[α,+∞)×[b,β][γf ] < ε, (3)

and

V φ
k [λ(f − νk), Iδ] <

ε

2
, k = 1, 2, (4)

where νk are the step functions used in [1] to approximate f and Iδ :=
[a− δ, α + δ]× [b− δ, β + δ].

Following the proof of [1, Theorem 5] one can prove that, for every w > 0,
if (t, 0) is such that − δ

2
< t < 0, and 0 < 32λ < λ, then

V φ[λ(τtgw − gw)]

≤ 1

2
V φ
R×(−∞,b ] [4λgw] +

1

4
V φ
R×[β,+∞)[8λgw] +

1

8
V φ
(−∞,a]×[b,β][16λgw]

+
1

16
V φ
[α,+∞)×[b,β][32λgw] +

1

16
V φ

[a− δ
2
,α+ δ

2 ]×[b,β]
[16λ(τtgw − gw)] .

Now, using Proposition 3.3 there exists µ > 0 such that, if 0 < 32λ < µ,

V φ[λ(τtgw − gw)] ≤
1

2
V η
R×(−∞,b ] [γf ] +

1

4
V η
R×[β,+∞)[γf ] +

1

8
V η
(−∞,a]×[b,β][γf ]

+
1

16
V η
[α,+∞)×[b,β][γf ] +

1

16
V φ

[a− δ
2
,α+ δ

2 ]×[b,β]
[16λ(τtgw − gw)] ,

for every w > 0 and so, by (3),

V φ[λ(τtgw − gw)] <
15

16
ε+

1

16
V φ

[a− δ
2
,α+ δ

2 ]×[b,β]
[16λ(τtgw − gw)] .

About the last term, obviously there holds

V φ

[a− δ
2
,α+ δ

2 ]×[b,β]
[16λ(τtgw − gw)]

≤ V φ
1

[
16λ(τtgw − gw),

[
a− δ

2
, α +

δ

2

]
× [b, β]

]
+ V φ

2

[
16λ(τtgw − gw),

[
a− δ

2
, α +

δ

2

]
× [b, β]

]
=: J1 + J2.

Concerning J1, for − δ
2
< t < 0, by the properties of φ-variation (see [1, Propo-
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sition 1]) there holds

J1 ≤
1

3

{
V φ
1

[
48λ(τtgw − τtν1),

[
a− δ

2
, α +

δ

2

]
× [b, β]

]
+ V φ

1

[
48λ(τtν1 − ν1),

[
a− δ

2
, α +

δ

2

]
× [b, β]

]
+ V φ

1

[
48λ(ν1 − gw),

[
a− δ

2
, α +

δ

2

]
× [b, β]

]}
≤ 1

3

{
2V φ

1 [48λ(ν1 − gw), Iδ] + V φ
1 [48λ(τtν1 − ν1), I δ

2
]
}

≤ 1

3

{
V φ
1 [96λ(ν1 − f), Iδ] + V φ

1 [96λ(f − gw), Iδ] + V φ
1 [48λ(τtν1 − ν1), I δ

2
]
}
.

Now, by (4), V φ
1 [96λ(ν1 − f), Iδ] <

ε
2
while, by [1, Theorem 3], V φ

1 [48λ(τtν1 −
ν1), I δ

2
] < ε

2
, if λ > 0 is small enough. Finally, by Proposition 4.1, there

exist ξ > 0 and w > 0 such that V φ
1 [ξ(f − gw), Iδ] ≤ V φ[ξ(f − gw)] <

ε
2
,

for every w ≥ w; hence, if λ is such that 96λ < ξ, then for every w ≥ w,
V φ
1 [96λ(f − gw), Iδ] <

ε
2
, and so J1 <

ε
2
.

In analogous way it can be proved (replacing ν1 with ν2) that J2 <
ε
2
, and

hence we conclude that, if (t, 0) is such that − δ
2
< t < 0, V φ[λ(τtgw − gw)] < ε,

uniformly with respect to w ≥ w, for some λ > 0, and so the thesis follows.
The other cases for t = (t1, t2) can be treated similarly, taking into account

of the same remarks pointed out in [1, Theorem 5].

We are now ready to prove the main result of this section.

Theorem 4.3. Let f ∈ ACφ(RN) ∩ BV η(RN), where φ ∈ Φ̃ is such that (+)
holds. If {Kw}w>0 ⊂ Kw and (φ, η, ψ) is properly directed, then there exists
λ > 0 such that

lim
w→+∞

V φ[λ(Twf − f)] = 0.

Proof. By Proposition 3.4 we have that

V φ[λ(Twf − f)] ≤ 1

2

{
ωφ(2λA(Hw ◦ f), δ) + A−1V φ[4λA(Hw ◦ f)]

×
∫
|t|>δ

|Lw(t)| dt+ V φ[2λA(Hw ◦ f − f)]
}
.

for every λ, δ > 0 and w > 0. Let us fix ε > 0. By Theorem 4.2 there exist
λ > 0, w > 0 such that ωφ(λ(Hw◦f), δ) → 0, as δ → 0+, uniformly with respect
to w ≥ w. Hence in correspondence to ε there is δ > 0 for which

ωφ(2λA(Hw ◦ f), δ) < ε,
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if 0 < δ ≤ δ, 2λA < λ and w ≥ w. Since f ∈ BV η(RN), there exists γ > 0
such that V η[γf ] < +∞, and so, by Proposition 3.3, there is µ > 0 such that,
if 4λA < µ, V φ[4λA(Hw ◦ f)] ≤ V η[γf ], for every w > 0. Hence, for sufficiently
large w > 0, by assumption Kw.2),

V φ[4λA(Hw ◦ f)]
∫
|t|>δ

|Lw(t)|dt < εV η[γf ],

for every δ > 0, and so in particular for the above fixed 0 < δ ≤ δ. Finally,
by Proposition 4.1, there exists ξ > 0 such that, if w > 0 is large enough and
2λA < ξ, then V φ[2λA(Hw ◦ f − f)] < ε. In conclusion, we have proved that

for every ε > 0, if 0 < λ < min{ λ
2A
, µ
4A
, ξ
2A
}, then

V φ[λ(Twf − f)] < ε

(
1 +

A−1

2
V η[γf ]

)
,

for sufficiently large w > 0, and so the thesis follows since V η[γf ] < +∞.

Remark 4.4. (a) In the linear case, i.e., Hw(u) = u and φ(u) = η(u), The-
orem 4.2 obviously reduces exactly to [1, Theorem 5], and hence Theo-
rem 4.3 (where it is sufficient to assume f ∈ ACφ(RN)) generalizes [4,
Theorem 3.3].

(b) We notice that the above convergence result does not hold, in general,
with the mere assumption that f ∈ BV η(RN). We refer to [3, Example 2]
for an example in the one-dimensional case, with φ(u) = η(u).

Remark 4.5. We remark that, as pointed out in the Introduction, assump-
tion (+) is natural in BV φ-spaces, since, in some sense, it replaces the integral
representation of φ-variation in terms of φ-absolute continuity. Indeed, it is
used to prove the convergence of the φ-modulus of continuity (Theorem 4.2),
which is, in the case of classical variation, an immediate consequence of the
integral representation of variation.

Moreover, since φ is a convex φ-function, the only alternative to (+) is that

limu→0+
φ(u)
u

= k > 0 (as happens, for example, for φ(u) = eu − 1, u ≥ 0).
Let us now consider for simplicity the case N = 1. If φ is such that

limu→0+
φ(u)
u

= k > 0, then BV (R) = BV φ(R) (see [27, 1.15]). Hence, if
we want to develop a theory in BV φ-spaces, it is natural to assume (+): Indeed
in this case it is easy to see that BV (R) ⊂ BV φ(R), and the inclusion is strict,
in general. For example, the function

f(x) =

x sin

(
1

x

)
, 0 < x <

1

π

0, otherwise,
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is such that f ∈ BV φ(R) \ BV (R), with φ(u) = u2. Hence, in this case,
condition (+) is necessary and sufficient in order to have the strict inclusion
of BV into BV φ.

For N > 1 the situation is the same if we consider just bounded functions.
In particular, with (+), the inclusion of BV into BV φ is strict again, in general:
An example is furnished, in the case N = 2, by

g(x, y) =

x sin

(
1

x

)
y(1− y), (x, y) ∈

]
0,

1

π

]
× [0, 1]

0, otherwise,

for φ(u) = u2. Actually, in the multidimensional case, functions of bounded
variation need not to be bounded, in general: For example the function

h(x, y) =


1√

|x|+
√

|y|
,

√
|x|+

√
|y| ≤ 1, (x, y) ̸= (0, 0)

1, otherwise,

belongs to BV (R2), although it is not bounded in (0, 0). In this more general
case we remark that assumption (+) does not guarantee anymore the inclusion
of the BV -spaces in BV φ. As an example, the function h(x, y) defined before
does not belong to BV φ(R2), with φ(u) = u2.

5. Order of approximation

We will now face the problem of the rate of approximation for our family of
nonlinear integral operators. In order to do this, it is necessary to introduce
the notion of α-singular kernels: For a fixed α > 0, we say that {Lw}w>0 is an
α-singular kernel if, for every w > 0,∫

|t|>δ
|Lw(t)|dt = O(w−α), as w → +∞, (5)

for every δ > 0.
Moreover, as usual in this kind of problems, we have to introduce a suitable

notion of Lipschitz class V φLipRN (α), defined as

V φLipRN (α) :=
{
f ∈ACφ(RN) : ∃µ>0 s.t.V φ[µ∆t(Hw◦f)]=O(|t|α), as |t|→0

}
,

uniformly with respect to w > 0, with

∆t(Hw ◦ f)(x) :=
(
τt(Hw ◦ f)− (Hw ◦ f)

)
(x) = (Hw ◦ f)(x− t)− (Hw ◦ f)(x),

for every x, t ∈ RN .
About kernel functions, assumption Kw.3) has to be replaced with the fol-

lowing:
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K̃w.3) denoted by Gw(u) := Hw(u) − u, u ∈ R, w > 0, for every γ > 0 there
exists λ > 0 such that

V φ
J [λGw]

φ(γm(J))
= O(w−α), as w → +∞,

uniformly with respect to every (proper) bounded interval J ⊂ R, i.e., in
correspondence to γ > 0 there exists λ > 0 such that, for every ε > 0,

there exists w > 0 (depending only on ε) for which
V φ
J [λGw]

φ(γm(J))
≤ Nw−α, for

some constant N > 0, for every w ≥ w and for every (proper) bounded
interval J ⊂ R (see [3]).

It is not difficult to find examples of functions which fulfill assumption K̃w.3),
among them, for example, the kernel functions {Hw}w>0 of the Example of
Section 2.

From now on we will say that {Kw}w>0 ⊂ K̃w if (⋆), Kw.1), Kw.2) and K̃w.3)
are satisfied. We now establish a preliminary result about the order of appro-
ximation of (Hw ◦ f − f), with respect to convergence in φ-variation.

Proposition 5.1. Let f ∈ BV φ(RN)∩C0(RN). If K̃w.3) is satisfied, then there
exists ξ > 0 such that

V φ[ξ(Hw ◦ f − f)] = O(w−α), w → +∞.

Proof. Similarly to Proposition 4.1, and using the same notations, it is possible
to prove that, for every µ > 0, V φ

Ai
[µ(Hw◦f−f)(x′j, ·)] ≤ V φ

Ii
[µGw], i = 1, 2, . . . ,

where Ii := [min{f(x′j, xi−1), f(x
′
j, xi)},max{f(x′j, xi−1), f(x

′
j, xi)}]. By K̃w.3),

there exist w > 0, N > 0 and ξ > 0 such that V φ
Ii
[ξGw] ≤ Nw−αφ(γm(Ii)), for

every w ≥ w, where γ > 0 is such that V φ[γf ] < +∞. Then, arguing as in
Proposition 4.1, one can prove that this implies that

V φ[ξ(Hw ◦ f − f)] ≤ NV φ[γf ]w−α,

for w ≥ w, and so the thesis follows.

We are now ready to state the main result about the rate of approximation
for (Twf − f).

Theorem 5.2. Let us assume that {Kw}w>0 ⊂ K̃w, {Lw}w>0 is an α-singular

kernel and there exists δ̃ > 0 such that∫
|t|≤δ̃

|Lw(t)||t|αdt = O(w−α), as w → +∞. (6)

Then if f ∈ BV η(RN) ∩ V φLipRN (α), there exists λ > 0 such that

V φ[λ(Twf − f)] = O(w−α), (7)

for sufficiently large w > 0.
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Proof. As in Proposition 3.4 it is possible to prove that, for every λ, δ > 0 and
for every w > 0,

V φ[λ(Twf − f)]

≤ 1

2

{
A−1

∫
|t|≤δ

V φ
[
2λA

(
τt(Hw ◦ f)− (Hw ◦ f)

)]
|Lw(t)|dt

+ A−1V φ[4λA(Hw ◦ f)]
∫
|t|>δ

|Lw(t)| dt+ V φ[2λA(Hw ◦ f − f)]

}
.

Since f ∈ V φLipRN (α), there exist µ > 0, N > 0, δ̄ > 0 such that, if 2λA < µ,

V φ
[
2λA

(
τt(Hw◦f)−(Hw◦f)

)]
≤ N |t|α, if |t| ≤ δ̄. Hence if 0 < δ < min{δ̃, δ̄},

by (6),

A−1

∫
|t|≤δ

V φ
[
2λA

(
τt(Hw ◦ f)− (Hw ◦ f)

)]
|Lw(t)|dt

≤ A−1N

∫
|t|≤δ

|t|α|Lw(t)|dt = O(w−α),

as w → +∞.
Moreover, since f ∈ BV η(RN), there exists γ > 0 such that V η[γf ] < +∞.

Hence, by Proposition 3.3, there exists ν > 0 such that V φ[ν(Hw ◦f)] ≤ V η[γf ],
for every w > 0, and so, by (5), if 4λA < ν,

A−1V φ[4λA(Hw ◦ f)]
∫
|t|>δ

|Lw(t)| dt ≤ A−1V η[γf ]

∫
|t|>δ

|Lw(t)| dt = O(w−α),

for sufficiently large w > 0. Finally, by Proposition 5.1, there exists ξ > 0
such that V φ[ξ(Hw ◦ f − f)] = O(w−α), as w → +∞. Hence the thesis follows
taking 0 < λ < min{ µ

2A
, ν
4A
, ξ
2A
}.

Remark 5.3. We point out that it is possible to furnish a generalization of
Theorem 5.2 replacing the power function |t|α with a function τ(t), t ∈ RN ,
where τ : RN → R+

0 is measurable, continuous at 0 and such that τ(t) = 0 iff
t = 0. Indeed, if we define the Lipschitz class as

V φLipRN (τ) :=
{
f ∈ACφ(RN) : ∃µ>0 s.t.V φ[µ∆t(Hw◦f)]=O(τ(t)), as |t|→0

}
,

uniformly with respect to w > 0 and we replace (6) with∫
|t|≤δ̃

|Kw(t)|τ(t)dt = O(w−α), as w → +∞, (6′)

for some δ̃ > 0, following the proof of Theorem 5.2 one can prove that (7) holds.
The above result can be further generalized replacing w−α with ζ(w−1),

being ζ : R+
0 → R+

0 a continuous function at 0, with ζ(u) > 0 iff u > 0.



124 L. Angeloni

6. Further results

We now prove some regularity results for the family of integral operators (II).
In particular, we first prove that the η-absolute continuity of the function f
implies the φ-absolute continuity of the integral operators Twf . Then we will
prove that the same holds for f simply of η-bounded variation, provided that
the kernel functions {Lw}w>0 are φ-absolutely continuous.

Proposition 6.1. If f ∈ ACη(RN), Kw.1) and (⋆) are satisfied, and the triple
(φ, η, ψ) is properly directed, then Twf ∈ ACφ(RN), for every w > 0.

Proof. Let f ∈ ACη(RN); then in particular f ∈ ACη
loc(RN). Let us fix ε > 0

and let δ > 0 be the number of the absolute continuity of the j-section gj of f ,
for every j = 1, 2, . . . , N .

Let us fix an interval I =
∏N

i=1[ai, bi] and let {[αµj , β
µ
j ]}µ=1,...,ν be a collection

of nonoverlapping intervals of [aj, bj] such that
∑ν

µ=1 η(β
µ
j − αµj ) < δ. Then,

since f ∈ ACη
loc(RN), there exists γ > 0 (independent by ε > 0) such that, for

a.e. s′j ∈ [a′j, b
′
j],

ν∑
µ=1

η
(
γ|f(s′j − t′j, β

µ
j − tj)− f(s′j − t′j, α

µ
j − tj)|

)
< ε.

Now, with similar reasonings to Proposition 3.1, one can prove that, in corre-
spondence to γ > 0, there exists λ > 0 such that

ν∑
µ=1

φ
(
λ|(Twf)(s′j, β

µ
j )− (Twf)(s

′
j, α

µ
j )|

)
≤ A−1

∫
RN

|Lw(t)|
ν∑

µ=1

η
(
γ|f(s′j − t′j, β

µ
j − tj)− f(s′j − t′j, α

µ
j − tj)|

)
dt

< εA−1

∫
RN

|Lw(t)| dt

≤ ε.

This proves that the j-section (Twf)(s
′
j, ·) is φ-absolutely continuous for a.e.

s′j ∈ [a′j, b
′
j], and so Twf ∈ ACφ

loc(RN). Hence the assertion follows since, by
Proposition 3.1, Twf ∈ BV φ(RN).

Proposition 6.2. Let f ∈ BV η(RN), let Kw.1) and (⋆) be satisfied and let
(φ, η, ψ) be properly directed. If {Lw}w>0 ⊂ ACφ(RN) and (ψ ◦ |f |) ∈ L1(RN),
then Twf ∈ ACφ(RN), for every w > 0.
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Proof. Without any loss of generality, we can take ∥ψ ◦ |f |∥1 > 0, for every
w > 0. For every s ∈ RN there holds

(Twf)(s) =

∫
RN

Kw(t, f(s− t))dt =

∫
RN

Lw(s− z)(Hw ◦ f)(z) dz.

For a fixed ε > 0, let δ > 0 be the number of the φ-absolute continuity of
the j-section of Lw, for j = 1, . . . , N . Let us fix an interval I =

∏N
i=1[ai, bi]

and a collection of non-overlapping intervals {[αµj , β
µ
j ]}µ=1,...,ν of [aj, bj] such

that
∑ν

µ=1 φ(β
µ
j − αµj ) < δ. Then, by (⋆) and Jensen’s inequality, recalling that

Hw(0) = 0, there holds, for every λ > 0,

ν∑
µ=1

φ
(
λ|(Twf)(s′j, β

µ
j )− (Twf)(s

′
j, α

µ
j )|

)
=

ν∑
µ=1

φ

(
λ

∣∣∣∣∫
RN

[Lw(s
′
j − z′j, β

µ
j − zj)− Lw(s

′
j − z′j, α

µ
j − zj)](Hw ◦ f)(z)dz

∣∣∣∣)

≤
ν∑

µ=1

φ

(
λK

∫
RN

∣∣Lw(s′j − z′j, β
µ
j − zj)− Lw(s

′
j − z′j, α

µ
j − zj)

∣∣ψ(|f(z)|)dz)

≤ ∥ψ ◦ |f |∥−1
1

∫
RN

ψ(|f(z)|)
ν∑

µ=1

φ
(
λK∥ψ ◦ |f |∥1 |Lw(s′j − z′j, β

µ
j − zj)

− Lw(s
′
j − z′j, α

µ
j − zj)|

)
dz.

Now, since
∑ν

µ=1 φ(β
µ
j − zj − (αµj − zj)) < δ, and Lw ∈ ACφ

loc(RN), there exists
µ > 0 such that

∑ν
µ=1 φ(µ|Lw(s′j − z′j, β

µ
j − zj) − Lw(s

′
j − z′j, α

µ
j − zj)|) < ε.

Then, if 0 < λ < ∥ψ ◦ |f |∥−1
1 K−1µ,

ν∑
µ=1

φ
(
λ|(Twf)(s′j, β

µ
j )− (Twf)(s

′
j, α

µ
j )|

)
≤ ∥ψ ◦ |f |∥−1

1

∫
RN

εψ(|f(z)|) dz = ε.

This implies that Twf ∈ ACφ
loc(RN) and hence the thesis follows recalling that

Twf ∈ BV φ(RN), by Proposition 3.1.

Remark 6.3. (a) Proposition 6.2 proves that, if f ∈ BV η(RN), for ACφ-
kernels, the φ-absolute continuity of the function f is also necessary for the
convergence in variation of Twf−f . Indeed, if the kernels are φ-absolutely
continuous, as it happens in the classical cases, then, by Proposition 6.2,
so are the integral operators Twf . Now in [4] it is proved that ACφ(RN) is
a closed subspace of BV φ(RN) with respect to convergence in φ-variation,
and so f ∈ ACφ(RN). Hence in this case the convergence in φ-variation
of our integral operators holds if and only if f is φ-absolutely continuous.
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(b) The above propositions are the natural generalization of the analogous
results in the linear case ([4]) and in the one-dimensional case ([3]). For
similar results in the case of the classical variation see [2].

We finally remark that all the theory can be extended to the case of Fφ-
variation, namely a concept of φ-variation, introduced in [4], filtered by a func-
tional F which satisfies the following properties:

(i) F(p) = 0 if and only if p = 0, p ∈ RN ;

(ii) F(p+ q) ≤ F(p) + F(q), p, q ∈ RN ;

(iii) F(αp) = αF(p), α ∈ R+
0 , p ∈ RN ;

(iv) F(p) ≤ C∥p∥, p ∈ RN (C is the Lipschitz constant of F).

The Fφ-variation of f over an interval I ⊂ RN is defined as

V φ
F [f, I] := sup

m∑
k=1

F(Φφ(f, Jk)),

where the supremum is taken over all the finite families of N -dimensional in-
tervals {J1, . . . , Jm} which form a partition of I, while the Fφ-variation of f
over RN is defined as V φ

F [f ] := supI⊂RN V
φ
F [f, I], where the supremum is taken

over all the intervals I ⊂ RN .
The Fφ-variation is a generalization of the multidimensional φ- variation,

which can be obtained taking F(p) = ∥p∥, p ∈ RN . It is inspired by the concept
of F -variation, an extension of the classical variation, which is connected with
several problems of Calculus of Variations (see e.g. [6, 12, 15,31]).

Since, by the properties of F , it is easy to prove (see [4]) that there exists
a > 0 such that aV φ[f ] ≤ V φ

F [f ] ≤ CV φ[f ], then convergence in Fφ-variation
is equivalent to convergence in φ-variation and so all the previous theory about
convergence and order of approximation for the family of operators (II) can be
generalized to the frame of Fφ-variation.
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