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Universal Singular Sets and Unrectifiability
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Abstract. The geometry of universal singular sets has recently been studied by
M. Csörnyei et al. [Arch. Ration. Mech. Anal. 190 (2008)(3), 371–424]. In particular
they proved that given a purely unrectifiable compact set S ⊆ R2, one can construct
a C∞-Lagrangian with a given superlinearity such that the universal singular set of L
contains S. We show the natural generalization: That given an Fσ purely unrectifiable
subset of the plane, one can construct a C∞-Lagrangian, of arbitrary superlinearity,
with universal singular set covering this subset.
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1. Introduction

The basic problem of the (one-dimensional) calculus of variations is that of
minimizing the functional

L (u) =

∫ b

a

L(x, u(x), u′(x)) dx (1)

for a given function L : [a, b] × R × R → R known as the Lagrangian, over the
class of absolutely continuous functions u : [a, b]→ R with prescribed boundary
conditions u(a) = A, u(b) = B. Tonelli [8,9] performed the first rigorous analysis
of this problem, giving conditions on the Lagrangian L = L(x, y, p) to guarantee
existence and Ck-regularity of a minimizer, see also the book [3] for a good
summary of these results. The key assumptions on L for existence are some
continuity, and convexity and superlinearity in the third variable p.

Tonelli also gave the following partial regularity statement: For L ∈ C3(R3)
satisfying Lpp > 0, any minimizer has a (possibly infinite) classical derivative
everywhere in [a, b], and this derivative is continuous as a map into the extended
real line. Thus the singular set, defined to be the set of points in [a, b] where
the derivative is infinite, is closed (and necessarily Lebesgue null, since u′ is
integrable, see for example [3, Theorem 2.17]).

R. Gratwick: St. John’s College, Oxford, OX1 3JP, UK; richard.gratwick@sjc.ox.ac.uk



180 R. Gratwick

Tonelli gave various conditions to ensure the singular set is empty, but it has
been known since the work of Lavrentiev [6] that minimizers can have infinite
derivative. Ball and Mizel [1] gave the first examples of problems satisfying
the exact requirements of the partial regularity theorem which have minimizers
with non-empty singular set. They also studied the properties of the singular
set, and Davie [5] completed this work, showing that nothing more can be said
about it except the immediate information that it is closed and Lebesgue null.

The superlinearity condition (see subsection 2.1 below) required for exis-
tence of minimizers would seem to prevent infinite derivatives from occurring
too often in solutions to minimization problems, since large derivatives imply
high energies. That this is not the case must be due to dramatic behaviour of
the Lagrangian in the first two coordinates around the point in the plane where
the graph of a singular minimizer has a vertical tangent. To make this obser-
vation more precise, Ball and Nadirashvili [2] introduced the universal singular
set of a Lagrangian, which records for which points (x, y) in the plane there
exists an interval [a, b] and a choice of boundary conditions a = A, b = B,
such that the problem (1) has a minimizer with graph passing through (x, y)
with infinite derivative. They showed that this set is of the first Baire category,
and Sychëv [7] showed that it has zero two-dimensional measure. Csörnyei et
al. [4] showed that universal singular sets intersect most absolutely continuous
curves in sets of zero linear measure, the exceptions being some curves with
vertical tangents. They also showed that any set covered by universal singular
sets of Lagrangians with arbitrary superlinearity is purely unrectifiable. The
ability to choose the superlinearity arbitrarily seems here to be the key. To
prove this pure unrectifiability result, a superlinearity is constructed to deal
with a given test C1 curve. On the other hand the universal singular set of
a Lagrangian with some fixed superlinearity can contain non-trivial rectifiable
curves, see [4, Theorem 11].

To complement these results, they give examples of Lagrangians with large
universal singular sets, in particular showing that any compact purely unrecti-
fiable set can lie inside the universal singular set of a smooth Lagrangian with
arbitrary superlinearity. In this paper we show that this is true for Fσ purely un-
rectifiable sets. A natural converse to this result would be that any set E which
can be covered by universal singular sets of smooth Lagrangians with arbitrary
superlinearity must admit a purely unrectifiable Fσ cover. That this might be
true seems plausible: By [4, Theorem 8] (see below) E is purely unrectifiable,
and moreover, for any fixed superlinearity, since the Lagrangians are smooth,
each universal singular set is Fσ, as proved in [2]. However, as mentioned above,
it is not true in general that for a fixed superlinearity these universal singular
sets are purely unrectifiable. It is not currently known whether E must in fact
admit an Fσ purely unrectifiable cover.



Universal Singular Sets 181

2. Preliminaries

2.1. Notation. We denote by ‖ · ‖∞ the usual supremum norm on R2, which
shall be the norm we use throughout the paper and for the following defi-
nitions. For x ∈ R2 and r > 0, we write Br(x) for the open ball of radius r
around x; analogously for A ⊆ R2 we write Br(A) for the open r-neighbourhood
around A. The distance between two non-empty subsets A,B ⊆ R2 shall be de-
noted dist(A,B); in the case that A = {x} for some x ∈ R2 then we write
dist(x,B). The notation ‖ · ‖ will be used for the supremum norm of a function
on R2.

Given (a,A), (b, B) ∈ R2, we let Q(a,A; b, B) denote the smallest closed
rectangle in R2 with two vertices at (a,A) and (b, B) and sides parallel to the
coordinate axes (we admit the possibility that this contains zero area). For any
function u : R→ R we let U : R→ R2 be given by U(x) = (x, u(x)).

For a bounded interval [a, b] in R, we shall write AC(a, b) for the class of
absolutely continuous functions on [a, b]. We denote by λ the one-dimensional
Lebesgue measure on R. Partial derivatives shall be denoted by subscripts, e.g.
Φx, Φy, and Lp for functions Φ = Φ(x, y) : R2 → R and L = L(x, y, p) : R3 → R.

We recall that a set S ⊆ R2 is purely unrectifiable if it meets every Lipschitz
curve γ : R→ R2 in a set of linear measure zero.

We shall call a function ω ∈ C∞(R) a superlinearity if

• ω(p) ≥ ω(0) = 0 for all p ∈ R;

• ω is strictly convex; and

• (superlinearity) ω(p)
|p| →∞ as |p| → ∞.

A Lagrangian shall be a function L = L(x, y, p) : R3 → R, of class C∞, su-
perlinear and strictly convex in p, where here superlinear means that for some
superlinearity ω, L(x, y, p) ≥ ω(p) for all (x, y, p) ∈ R3. These assumptions
suffice to guarantee existence and partial regularity of a solution to the mini-
mization problem (1) over those u ∈ AC(a, b) satisfying u(a) = A and u(b) = B
(see for example [3, Theorem 3.7]).

All of our Lagrangians will be of the form L(x, y, p) = F (x, y, p) +ω(p), for
functions F : R3 → R satisfying the following conditions, which we shall refer
to as (?F ):

(?1) F ∈ C∞(R3);

(?2) F ≥ 0 on R3 and F (x, y, 0) = 0 for all (x, y) ∈ R2; and

(?3) p 7→ F (x, y, p) is convex for each fixed (x, y) ∈ R2.

We shall say a Lagrangian L of this form is of form (?) (so this terminology
agrees with that of [4]).

2.2. Universal singular sets. Ball and Nadirashvili [2] give the following
definition.
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Definition 2.1. The universal singular set of a Lagrangian L : R3 → R, which
we shall write uss(L), is defined as those points (x0, y0) ∈ R2 where one can
find an interval [a, b] in R containing x0 and a choice of boundary conditions
u(a)=A, u(b)=B, such that there is a minimizer u of the associated variational
problem (1) with u(x0) = y0 and |u′(x0)| =∞.

In [4], Csörnyei et al. prove the following theorems, their theorems 8 and 10
respectively:

Theorem 2.2. Let E ⊆ R2 be such that for any superlinearity ω there is a
Lagrangian L : R3 → R with this prescribed superlinearity such that the universal
singular set of the Lagrangian contains E. Then E is purely unrectifiable.

Theorem 2.3. Let ω be a given superlinearity, and let S ⊆ R2 be a compact
purely unrectifiable set.
Then there exists a Lagrangian L of form (?) with the prescribed superlinearity ω
such that the universal singular set of L contains S.

The result of this paper is the natural generalization of this latter result
to Fσ purely unrectifiable sets:

Theorem 2.4. Let ω be a given superlinearity, and let S ⊆ R2 be an Fσ purely
unrectifiable set.
Then there exists a Lagrangian L of form (?) with the prescribed superlinearity ω
such that the universal singular set of L contains S.

The remainder of the paper gives the construction of such a Lagrangian.

3. The construction: General discussion

Suppose S =
⋃∞
n=1 Sn, where each Sn is compact and purely unrectifiable. We

construct by induction a sequence of Lagrangians Ln such that for each n ≥ 1
we have uss(Ln) ⊇

⋃n
m=1 Sm. We discuss how to do this so that the Ln converge

to a function L with uss(L) ⊇ S.
Fix a point (x0, y0) ∈ Sn\

⋃n−1
m=1 Sm. We construct Lagrangian Ln and func-

tion Φn ∈ C(R2) ∩ C∞(R2\S) such that there is a rectangular neighbourhood
Q(a0, A0; b0, B0) of (x0, y0) such that for any u ∈ AC(a0, b0) with graph lying in
Q(a0, A0; b0, B0), we have∫ b0

a0

Ln(x, u, u′) ≥ Φn(U(b0))− Φn(U(a0)), (2)

with equality if and only if u′(x) = ψn(x, u(x)) almost everywhere, where we en-
sure ψn := −2(Φn)x/(Φn)y is well-defined on R2\S. We then solve the ordinary
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differential equation u′0(x) = ψn(x, u0(x)) for a locally absolutely continuous
u0 : R → R with u0(x0) = y0. If Φn was constructed so that ψn(x, y) → ∞ as
dist((x, y), Sn) → 0, we then have u′0(x) → ∞ as x → x0. Moreover, the con-
struction in [4] guarantees that non-monotone functions cannot be minimizers.
Given this, a calibration argument implies that inequality (2) suffices to prove
that u0 is a minimizer with respect to its own boundary conditions on [a0, b0].
This shows that (x0, y0) ∈ uss(Ln).

Let m ≥ n. If we have constructed our Lagrangians so that firstly Lm ≥ Ln,
we have ∫ b0

a0

Lm(x, u, u′) ≥ Φn(U(b0))− Φn(U(a0))

for all u ∈ AC(a0, b0). If secondly we can guarantee that Lm(x, u0, u
′
0) =

Ln(x, u0, u
′
0) for almost every x ∈ (a0, b0), where u0 is the solution of the ODE

mentioned above, then we have that∫ b0

a0

Lm(x, u0, u
′
0) = Φn(U0(b0))− Φn(U0(a0)).

Thus u0 is a minimizer of the functional given via Lagrangian Lm over AC(a0, b0)
with respect to its own boundary conditions. Assuming the Lagrangians Ln
converge pointwise to a Lagrangian L, we let m → ∞ in these two relations
to see that u0 is a minimizer of the functional given via Lagrangian L over
AC(a0, b0) with respect to its own boundary conditions.

This outline of our strategy gives us two requirements at the inductive step
of constructing Ln. The details of this inductive step mimic those of the original
proof in [4]. For a given superlinearity ω, they build a function F : R3 → R
of form (?F ) and define L(x, y, p) = F (x, y, p) + ω(p). The key observation to
make about this proof when seeking to generalize it for our purposes is that ω
may be regarded just as a Lagrangian depending only on p. Or rather, the role
of ω may be taken by any Lagrangian strictly convex and superlinear in p, with
partial derivatives with respect to p replacing any ω′ terms. In particular, the
argument may be applied to a previously constructed Ln−1. The arguments
in [4] then tell us how to construct an Fn of form (?F ) to add to this Ln−1, via
the construction of a potential Φn ∈ C(R2) ∩ C∞(R2\Sn). The considerations
of the preceding paragraphs mean the argument is rather more intricate, but
the general strategy is the same.

Ensuring that Lm ≥ Ln for all m ≥ n is easy; this just requires the stipula-
tion that each Fn is non-negative, which is already given by the methods of [4].
Harder is ensuring that for each point (x0, y0) ∈

⋃n−1
m=1 Sm, we have Ln = Ln−1

along the trajectory u0 (except perhaps on a null set) on some fixed neighbour-
hood of x0. The key fact here is that precisely by construction we know that
u′0 = ψm(x, u0) for some 1 ≤ m < n, where ψm ∈ C∞(R2\Sm), and therefore ψm
is bounded on sets positively separated from Sm.
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At this point it is easiest to first suppose that the {Sn}∞n=1 are pairwise
disjoint. Thus Sn is positively separated from

⋃n−1
m=1 Sm, so we can choose a

neighbourhood Hn of Sn on which ψm is bounded above for all 1 ≤ m < n,
by Mn say. So to construct an appropriate Ln, the condition is now just that
Fn is only non-zero on Hn×(Mn,∞). A straightforward use of a cut-off function
on R2 ensures Fn(x, y, p) = 0 for (x, y) /∈ Hn. The demand that Fn(x, y, p) = 0 if
(x, y, p) ∈ Hn×(Mn,∞) reduces to certain inequalities involving the derivatives
of the potential Φn on the set Hn. These can be satisfied using a construction
of the potential similar to the construction from [4].

The existence of a pointwise limit L(x, y, p) := limn→∞ Ln(x, y, p) is trivial
if the lower bounds Mn tend to infinity: Then for each fixed (x, y, p) ∈ R3,
for large enough n, Ln does not change on a neighbourhood of (x, y, p), so
the limit L exists and is smooth. The arguments sketched above show that
uss(L) ⊇

⋃∞
m=1 Sm.

This discussion applies directly only to the disjoint case, but the spirit of
the proof is retained in the full version. The issue in the general case is that
we of course no longer have positive separation of our compact sets, and hence
cannot in general find an upper bound on Sn for the derivative of a minimizer
u0 witnessing

⋃n−1
m=1 Sm ⊆ uss(Ln−1). This in turn implies that the region in R3

on which we may modify Ln−1 is not in general bounded below, rather as we
approach

⋃n−1
m=1 Sm, the base “slopes up to infinity”.

Throughout the paper we adhere to the indexing suggested above. Sub-
scripts such as m,n refer to the inductive step. Superscripts such as i, j, k, l are
used to index sequences of objects discussed within the argument at a fixed in-
ductive step. This superscript notation is retained even in arguments presented
independently of the induction (e.g. in Lemma 4.2) to avoid confusion.

4. The construction: Details

Our first result is a modified version of Lemma 11 from [4]. This tells us how to
modify a given Lagrangian so as to include new points in its universal singular
set, but without changing it on certain “cylinders” in R3. We try to motivate
the exact assumptions made in the next lemma by sketching its role in the
inductive construction of Ln. First we note that the set G does not appear
in the conclusions, only in the assumptions regarding Φ. Gn will be chosen
to be a bounded open cover of Sn, but there is no loss of understanding in
assuming G = R2 for this first lemma. We choose a sequence {V i

n}∞i=1 covering
Sn\

⋃n−1
m=1 Sm, but such that each V i

n is positively separated from
⋃n−1
m=1 Sm, and

also a sequence of upper bounds {M i
n}∞i=1 of ψm (1 ≤ m < n) on V i

n, and thus a
sequence of “cylinders” {V i

n×(M i
n,∞)}∞i=1 in R3. Our goal, as discussed above, is

to construct a function Fn of form (?F ) which is zero off all these sets. We show,
just as in [4], that such an Fn is given by a potential Φn ∈ C(R)∩C∞(R2\Sn),
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where the derivatives of Φn satisfy certain inequalities. The inequalities we
require are similar to but more complicated than those from [4], since we demand
also some information about our resulting function Fn on the sets V i

n×(M i
n,∞).

We also need to fix a neighbourhood Wn of Sn\
⋃n−1
m=1 Sm which will contain

the graphs of u0 ∈ AC(a0, b0) which witness that (x0, y0) ∈ uss(Ln) for each
(x0, y0) ∈ Sn\

⋃n−1
m=1 Sm. Since Ln is already determined on

⋃n−1
m=1 Sm, we keep

this neighbourhood Wn in some sense as far from
⋃n−1
m=1 Sm as possible. Ideally

(viz in the disjoint case) we would have that Wn is compactly contained in
Vn :=

⋃∞
i=1 V

i
n, but since Wn must cover Sn\

⋃n−1
m=1 Sm and Vn must not intersect⋃n−1

m=1 Sm, this is not in general possible. The best we can ask for is that Wn

does not approach the boundary of Vn unless it is required to do so to cover all
the points of Sn, hence the condition on W below.

Before stating our result, we recall [4, Lemma 10], which we shall use just
as it is used in this original paper. We do not repeat the (simple) proof.

Lemma 4.1. There exists a C∞ function γ : {(p, a, b) ∈ R3 : b > 0} → R with
the following properties:

(4.1.a) p 7→ γ(p, a, b) is convex;

(4.1.b) γ(p, a, b) = 0 for p ≤ a− 1;

(4.1.c) γ(p, a, b) = b(p− a) for p ≥ a+ 1; and

(4.1.d) γ(p, a, b) ≥ max{0, b(p− a)}.

Lemma 4.2. Let F : R3 → R be of form (?F ), S ⊆ R2 be compact, and G ⊇ S
be open. Let L(x, y, p) = ω(p) + F (x, y, p), where ω is a given superlinear-
ity. Suppose further that Φ ∈ C∞(R2\S) ∩ C(R2), sequence {V i}∞i=1 of sets
V i ⊆ R2, and sequence of non-negative constants {M i}∞i=1 are such that the set
V :=

⋃∞
i=1 V

i is open and bounded, V ⊆ G, and the following conditions hold:

(4.2.1) Φ is decreasing in x and increasing in y on R2;

(4.2.2) −Φx(x, y) ≥ (2M i + 4)Φy(x, y) for (x, y) ∈ V i\S for all i ≥ 1, and
−Φx(x, y) ≥ 4Φy(x, y) > 0 for (x, y) ∈ R2\S;

(4.2.3) Φy(x, y) ≥ 4Lp
(
x, y,−2Φx

Φy
(x, y)

)
for (x, y) ∈ G\S;

(4.2.4) lim0<dist((x,y),S)→0
Φx
Φy

(x, y) = −∞;

(4.2.5) for all a < b and non-decreasing functions u ∈ AC(a, b), the sets
{x : U(x) ∈ S} and {(Φ ◦ U)(x) : U(x) ∈ S} are Lebesgue null.

Then for any W ⊆ V such that W\V ⊆ S, there exists F̂ : R3 → R of form (?F )
with the following properties:

(4.2.6) F̂ ≥ F on R3;

(4.2.7) F̂ = F on R3\
⋃∞
i=1(V i × (M i,∞)); and

(4.2.8) L̂ : R3 → R defined by

L̂(x, y, p) = ω(p) + F̂ (x, y, p)
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has the property that for all a < b and all u ∈ AC(a, b) such that
Q(a, u(a); b, u(b)) ⊆ W , we have∫ b

a

L̂(x, u(x), u′(x)) dx ≥ Φ(U(b))− Φ(U(a));

with equality if and only if u′(x)=−2Φx
Φy

(x, u(x)) for almost every x∈ [a, b].

Proof. We mimic the proof of [4, Lemma 11], but now working with L = F +ω,
instead of just ω. The main difference in our assumptions from those in the
original lemma from [4] is the dependence of the inequality in (4.2.2) on the
sets Vi. This is exactly the stronger information we need to guarantee the
conclusion (4.2.7) which we now require.

Define ψ ∈ C∞(R2\S) and θ, ξ ∈ C∞(G\S) by

ψ = −2
Φx

Φy

, θ = Φy − Lp(x, y, ψ), ξ =
−Φx + L(x, y, ψ)− ψLp(x, y, ψ)

θ
.

Condition (4.2.2) ensures ψ is well-defined and strictly positive everywhere on
R2\S. By properties of ω and F , we have for all (x, y) ∈ R2\S that L(x, y, 0) = 0
and L is strictly convex in p. Since ψ > 0, we know also by properties of ω that
ω(ψ) > 0. So using the mean value theorem, and property (?2) of F , we have
for all (x, y) ∈ R2\S that

Lp(x, y, ψ) >
L(x, y, ψ)− L(x, y, 0)

ψ − 0
≥ ω(ψ)

ψ
> 0. (3)

So for (x, y) ∈ G\S, we have by (4.2.3) that θ ≥ 3Lp(x, y, ψ) > 0 and hence
that ξ is well-defined.

Fix (x, y) ∈ G\S. Note that by our definitions of θ and ξ,

L(x, y, ψ) + (p− ψ)Lp(x, y, ψ) + θ(p− ξ) = Φx + pΦy. (4)

Also note that the strict convexity of L in p and the mean value theorem give
us the relation

L(x, y, p) ≥ L(x, y, ψ) + (p− ψ)Lp(x, y, ψ) (5)

with equality if and only if p = ψ. By (3) and (4.2.3) we have

Φy > θ ≥ Φy −
Φy

4
=

3Φy

4
. (6)

By (5) for case p = 0 and the fact that L(x, y, 0) = 0, we have that

ξθ < −Φx. (7)
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Further, by (4.2.3), the definition of ψ, and the facts that L ≥ 0 and −Φx > 0,
we also have

ξθ = −Φx + L(x, y, ψ)− −2Φx

Φy

Lp(x, y, ψ) ≥ −Φx + L(x, y, ψ)− −2Φx

4
> −Φx

2
.

Hence, using (6) and the fact that Φy > 0,

ξ ≥ − Φx

2Φy

. (8)

This implies, using (4.2.2), that

ξ ≥M i + 2 > M i + 1 if (x, y) ∈ V i\S; and ξ ≥ 2 > 1 on G\S. (9)

The latter gives, using the definition of ψ, (7), (6), and that ξθ > 0, that

ψ >
2ξθ

Φy

≥ 3ξΦy

2Φy

= ξ +
ξ

2
≥ ξ + 1 (10)

on G\S. Since G is open, for (x, y) sufficiently close to S we have (x, y) ∈ G,
so by (8) and (4.2.4) we have that

lim
0<dist((x,y),S)→0

ξ ≥ −1

2

(
lim

0<dist((x,y),S)→0

Φx

Φy

)
=∞. (11)

We now use the corner-smoothing γ constructed in Lemma 4.1 to define
f : G× R→ R by

f(x, y, p) =

{
γ(p, ξ(x, y), θ(x, y)), (x, y) ∈ G\S
0, (x, y) ∈ S.

Evidently f ≥ 0 on G × R by (4.1.a). Since ξ ≥ 1 on G\S from (9), prop-
erty (4.1.b) of γ implies that f(x, y, 0) = 0 for all (x, y) ∈ G. For fixed
(x, y) ∈ G, that p 7→ f(x, y, p) is convex follows from (4.1.a). Clearly f ∈
C∞((G\S)× R). But for given p ∈ R, by (11) there is an open set S ⊆ Ω ⊆ G
such that ξ ≥ p+ 2 on Ω\S. Hence f = 0 on Ω× (−∞, p+ 1) by (4.1.b). That
is, for given (x, y, p) ∈ S × R, there is an open set Ω× (−∞, p + 1) containing
(x, y, p) on which f = 0. Hence f ∈ C∞(G× R).

Let i ≥ 1 and suppose (x, y, p) ∈ (V i\S) × (−∞,M i]. Then by (9) we see
that ξ > M i + 1 ≥ p+ 1, so f(x, y, p) = 0 by (4.1.b). Hence

f(x, y, p) = 0 for all (x, y, p) ∈
∞⋃
i=1

(V i × (−∞,M i]). (12)
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Let W ⊆ V be such that W\V ⊆ S. Find a non-negative function φ ∈
C∞(R2\(W\V )) such that φ = 1 on W and φ = 0 off V ; i.e., a smooth cut-off
function which necessarily fails to be defined on W\V . Extend φ to a function
defined everywhere on R2 by defining it as 0 on W\V .

Then φ ∈ C∞(R2\((∂V )∩S)) since W\V ⊆ (V \V )∩S = (∂V )∩S. Choose
an open set G′ ⊇ S ∪ V such that G′ ⊆ G, and define F̃ : R3 → R by

F̃ (x, y, p) =

{
φ(x, y)f(x, y, p), (x, y) ∈ G′

0, (x, y) /∈ G′.

We claim F̃ ∈ C∞(R3). Clearly F̃ ∈ C∞(((R2\G′)×R)∪((G′\((∂V )∩S))×R)).
So consider first (x, y, p) ∈ ∂G′ × R. Since (x, y) /∈ G′ ⊇ V , we can find

an open set B such that (x, y) ∈ B ⊆ R2\V . So φ = 0 on B, hence F̃ = 0 on
B × R, hence F̃ ∈ C∞(B × R).

Consider now the case (x, y, p) ∈ (G′ ∩ ((∂V ) ∩ S)) × R. By (11), there
exists an open set Ω with S ⊆ Ω ⊆ G′ such that ξ ≥ p + 2 on Ω\S. Since
(x, y) ∈ S, we have (x, y, p) ∈ Ω × (−∞, p + 1). By (4.1.b), f = 0 and hence
F̃ = 0 on Ω× (−∞, p+ 1). So F̃ ∈ C∞(Ω× (−∞, p+ 1)).

So indeed F̃ ∈ C∞(R3). That F̃ satisfies the remaining properties of (?F )
follows by the analogous properties proved above of f . Now define F̂ = F + F̃ .
Thus F̂ is also of form (?F ). Property (4.2.6) follows since F̃ satisfies (?2).

Let (x, y, p) ∈ R3\
⋃∞
i=1(V i × (M i,∞)). If (x, y) /∈ V , then F̃ (x, y, p) = 0,

by choice of φ. If (x, y) ∈ V i ⊆ G′ for some i ≥ 1, then p ≤ M i, and so
F̃ (x, y, p) = 0 by (12). Thus F̂ satisfies (4.2.7).

We define L̂(x, y, p) = ω(p)+F̂ (x, y, p) and are just required to check (4.2.8).
So let (x, y) ∈ W\S. Since W ⊆ V ⊆ G′ and φ = 1 on W , we have by definition
and (4.1.d) that F̃ (x, y, p) = f(x, y, p) = γ(p, ξ, θ) ≥ θ(p − ξ). Hence by (5)
and (4)

L̂(x, y, p)≥L(x, y, p)+θ(p−ξ)≥L(x, y, ψ)+(p−ψ)Lp(x, y, ψ)+θ(p−ξ)=Φx+pΦy.

For the case p = ψ, (10) and (4.1.c) imply that the first inequality above is an
equality, thus L̂(x, y, ψ) = Φx+ψΦy. Moreover, should the equality L̂(x, y, p) =
Φx +pΦy hold, then in particular the second inequality in the above calculation
must be an equality, which by strict convexity of L forces p = ψ. That is, we
have equality in this inequality if and only if p = ψ(x, y).

The remainder of the proof is just as in [4]; details to supplement the
following can be found there.

First suppose a < b and u ∈ AC(a, b) is non-decreasing and such that
U([a, b]) ⊆W . Then (4.2.5) states that U(x) /∈ S for almost every x ∈ [a, b],
thus (Φ ◦ U) : [a, b]→ R is differentiable almost everywhere with (Φ ◦ U)′(x) =
Φx(U(x))+u′(x)(Φy(U(x)). Combining this with the above observations about L̂
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we see that for almost every x ∈ [a, b],

L̂(x, u(x), u′(x)) ≥ (Φ ◦ U)′(x), (13)

with equality if and only if u′(x) = ψ(x, u(x)). We also note that (Φ ◦ U) has
the Lusin property, i.e., maps null sets to null sets: (4.2.5) implies any subset
of U−1(S) is mapped to a null set, and on [a, b]\U−1(S) the function (Φ ◦ U) is
locally absolutely continuous.

Given these observations, we now check (4.2.8). Let a < b and u ∈ AC(a, b)
be such that Q(a, u(a); b, u(b)) ⊆ W . We argue that it suffices to check (4.2.8)
for non-decreasing u such that Φ(U(a)) ≤ Φ(U(b)). The result is trivial if
Φ(U(a)) ≥ Φ(U(b)) since L̂ ≥ 0. By (4.2.1), we have Φ(U(a)) ≤ Φ(U(b)) only
if u(a) < u(b). Thus if such a u is not non-decreasing, we can construct non-
decreasing v ∈ AC(a, b) such that v(a) = u(a), v(b) = u(b), and for almost every
x ∈ [a, b] either v(x) = u(x) and v′(x) = u′(x), or v′(x) = 0. Therefore, since
L̂(x, y, p) ≥ L̂(x, y, 0) = 0 for all (x, y, p) ∈ R3, and since {x ∈ [a, b] : v(x) = 0}
must have positive measure, we see that∫ b

a

L̂(x, u(x), u′(x)) dx >

∫ b

a

L̂(x, v(x), v′(x)) dx.

So we can indeed assume u is non-decreasing and such that Φ(U(a)) ≤ Φ(U(b)).
That u is non-decreasing implies, since Q(a, u(a); b, u(b)) ⊆ W , that in fact
U([a, b]) ⊆ W . So the relation (13) holds for almost every x ∈ [a, b]. We let
{(aj, bj)}j∈J be the (at most countable) sequence of components of (a, b)\U−1(S)
such that Φ(U(aj)) < Φ(U(bj)). Then using that (Φ ◦ U) is locally absolutely
continuous on (a, b)\U−1(S) and the fact from (4.2.5) that (Φ ◦ U)(U−1(S)) is
null, we see that∫ b

a

L̂(x, u(x), u′(x)) dx ≥
∑
j∈J

∫ bj

aj

L̂(x, u(x), u′(x)) dx

≥
∑
j∈J

∫ bj

aj

max{0, (Φ ◦ U)′} dx

≥
∑
j∈J

Φ(U(bj))− Φ(U(aj))

≥ (Φ ◦ U)(b)− (Φ ◦ U)(a).

Equality in this relation implies that L̂(x, u(x), u′(x)) = (Φ ◦ U)′(x) for al-
most every x ∈

⋃
j∈J(aj, bj), but also that

⋃
j∈J(aj, bj) = (a, b)\U−1(S), and

also therefore that in fact L̂(x, u(x), u′(x)) = (Φ ◦ U)′(x) for almost every
x ∈ (a, b)\U−1(S). By (13) and (4.2.5) this implies that u′(x) = ψ(x, u(x))
for almost every x ∈ [a, b].
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Conversely, u′(x) = ψ(x, u(x)) almost everywhere implies

(Φ ◦ U)′(x) = (Φx ◦ U)(x) + ψ(x, u(x))(Φy ◦ U)(x) = (−Φx ◦ U)(x) ≥ 0

almost everywhere. This, combined with the fact that (Φ ◦ U) has the Lusin
property (since u′ = ψ(x, u) implies that u ∈ AC(a, b) is non-decreasing),
implies that (Φ ◦ U) is absolutely continuous. Moreover, (13) implies that
L̂(x, u(x), u′(x)) = (Φ ◦ U)′(x) almost everywhere, hence∫ b

a

L̂(x, u(x), u′(x)) dx =

∫ b

a

(Φ ◦ U)′(x) dx = (Φ ◦ U)(b)− (Φ ◦ U)(a)

as required.

We now give the construction of the potential required for an application
of this lemma. This is a version of the proof of [4, Theorem 10], i.e., the
construction of a potential satisfying the conditions of their Lemma 11. This
is done entirely independently of the sequence of constants {M i}∞i=1, which are
therefore taken to be arbitrary. We then simply define subsets {V i}∞i=1 of R2 so
that the required inequalities hold. The final statement (4.5.3) falls naturally
out of the proof from [4]; it is only now in our case that it is relevant to emphasize
it.

As part of the proof of Lemma 4.5 we recall Lemmas 12 and 13 stated and
proved in [4], which are used to prove our statement in exactly the same way
as they are used in [4]. We do not give the proofs. The second lemma follows
easily from the first. The first relies on using the pure unrectifiability of S to
find, given ε > 0 and C > 0, an open set Ω around S such that the graph of any
Lipschitz function from R to R with Lipschitz constant less than C intersects Ω
in a set of length at most ε.

For two vectors x, y ∈ R2, we let [x, y] denote the line segment in R2 with
these points as endpoints.

Lemma 4.3. Let S ⊆ R2 be a compact purely unrectifiable set, e ∈ R2, and
τ > 0. Then there is g ∈ C∞(R2) such that

• 0 ≤ g(x) ≤ τ for all x ∈ R2;

• dist(∇g(x), [0, e]) < τ for all x ∈ R2; and

• supx∈S ‖∇g(x)− e‖∞ < τ .

Lemma 4.4. Let S ⊆ R2 be a compact purely unrectifiable set, Ω ⊇ S be open,
h0 ∈ C∞(R2), e0, e1 ∈ R2, and ε > 0. Then there is h1 ∈ C∞(R2) such that

• ‖h1 − h0‖ < ε;

• h1 = h0 outside Ω;

• dist(∇h1(x), [e0, e1]) < ε+ ‖∇h0(x)− e0‖∞ for x ∈ R2; and

• ‖∇h1(x)− e1‖∞ < ε+ ‖∇h0(x)− e0‖∞ for x ∈ S.
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Lemma 4.5. Let S ⊆ R2 be compact and purely unrectifiable, G,H ⊆ R2

be bounded such that H is open and H ⊆ G, and {M i}∞i=1 be a sequence of
constants. Let F : R3 → R be such that Fp exists and is bounded above on
G × [8, n] for all n ≥ 9. Let L(x, y, p) = ω(p) + F (x, y, p), where ω is a given
superlinearity.
Then there is Φ ∈ C∞(R2\S) ∩ C(R2) and a sequence {V i}∞i=1 of open sets
V i ⊆ R2 such that the conditions (4.2.1)–(4.2.5) of Lemma 4.2 hold, and

(4.5.1) H ∩ S ⊆ V :=
⋃∞
i=1 V

i ⊆ V ⊆ G;

(4.5.2) V i ⊆ {(x, y) ∈ H : dist((x, y),R2\H) > 1
i
} for all i ≥ 1; and

(4.5.3) ψ ∈ C∞(R2\S) defined by ψ := −2Φx
Φy

is bounded above on any

subset of R2 positively separated from S.

Proof. We use a slight variant of the construction which comprises the proof of
[4, Theorem 10].

We define an increasing sequence {ck}∞k=0 by, for each k ≥ 0, choosing ck ≥ 0
such that Lp(x, y, p) ≤ ck for all (x, y, p) ∈ G× [8, 5 · 2k+4]. We now define

Bk = 4 + 4ck and Ak = 3 · 2k+2Bk.

The construction of Φ is then similar to that in [4], with these new definitions
of Ak and Bk. We sketch the proof; more details can be found in [4]. The
construction relies on the exhibiting of a sequence, for k ≥ 0, of functions
Φk ∈ C∞(R2), open sets Ωk, and εk > 0 such that, where ηk = 1− 2k−1,

Φ0(x) = −A0x+B0y, Ω0 = R2, ε0 =
1

4
; (14)

‖∇Φk(x)− ek‖∞ < ηk for x ∈ Ωk; (15)

if a<b, u∈C([a, b]) is non-decreasing and Φ∈C(R2) satisfies ‖Φ− Φk‖∞<2εk,
then

λ({(Φ ◦ U)(x) : U(x) ∈ Ωk}) ≤ 1

k
; (16)

and for k ≥ 1

‖Φk − Φk−1‖ < εk−1; (17)

Φ1 = Φ0 off B1(S), and for k ≥ 2, Φk = Φk−1 outside Ωk−1; (18)

dist(∇Φk(x), [ek−1, ek]) < ηk for x ∈ Ωk−1; (19)

S ⊆ Ωk, Ωk ⊆ B2−k(S) ∩ Ωk−1, εk <
εk−1

2
. (20)

(Interpret 1
0

as ∞ in (16).)
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This can be done inductively, using (14) to define Φ0, Ω0, and ε0, and for
k ≥ 1 applying Lemma 4.4 with Ω = Ωk−1 (except for k = 1 when we put
Ω = B1(S)), h0 = Φk−1, e0 = ek−1, e1 = ek, ε = εk−1 and defining Φk = h1.
Properties (17), (18) are immediate from the definition of Φk, and (19) follows
by induction. Defining Ωk = Bδ(S) for sufficiently small δ > 0, and defining

εk = min
{
εk−1

2
, δ
}

gives the remaining properties (15), (16), and (20).
By (17), the sequence Φk converges uniformly to some Φ ∈ C(R2). By (18)

and the nesting of {Ωk}∞k=1, Φl = Φk on R2\Ωk for all l ≥ k. Hence, by (20),

Φ ∈ C∞(R2\S) and ∇Φ = ∇Φk on R2\Ωk. For (x, y) ∈ R2\S, by (20) there
is a smallest k ≥ 1 such that (x, y) ∈ Ωk−1\Ωk, and so ∇Φ(x, y) = ∇Φk(x, y).
Hence by (19)

Φy ≥ Bk−1 − 1 ≥ B0 − 1 = 3 + 4c0 ≥ 3

and

Φx ≤ −Ak−1 + 1 = −3 · 2k+1(4 + 4ck−1) + 1 ≤ −3 · 4 · 4 + 1 = −47.

Thus we have (4.2.1) and the very last inequality of (4.2.2). More precisely,
by (19) there is s ∈ [0, 1] such that

−Φx ≥ sAk−1 + (1− s)Ak − 1

= s3 · 2k+1Bk−1 + (1− s)3 · 2k+2Bk − 1

≥ 3 · 2k+1(sBk−1 + (1− s)Bk)− 1

≥ 3 · 2k+1(Φy − 1)− 1

≥ 2k+1Φy.

(21)

This gives the penultimate inequality of (4.2.2), since k ≥ 1, and also (4.2.4),
since as dist((x, y), S) → 0, we have k → ∞, by (20). We now check (4.2.3).
Again, there is s ∈ [0, 1] such that

−Φx < sAk−1 + (1− s)Ak + 1

= s3 · 2k+1Bk−1 + (1− s)3 · 2k+2Bk + 1

≤ 3 · 2k+2(sBk−1 + (1− s)Bk) + 1

≤ 3 · 2k+2(Φy + 1) + 1

≤ 5 · 2k+2Φy

whence
−2Φx

Φy

≤ 5 · 2k+3 on R2\Ωk. (22)

In particular for given (x, y) ∈ G\S there is a k ≥ 1 such that (x, y) ∈ G\Ωk;
thus Φy ≥ Bk−1 − 1 ≥ 4ck−1 ≥ 4Lp(x, y, ψ) since (x, y, ψ) ∈ G × [8, 5 · 2k+3]
from (21) and (22).
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Condition (22) also gives (4.5.3), since by (20) for any set X ⊆ R2 positively
separated from S there is k ≥ 1 such that X ⊆ R2\Ωk, and hence 5 · 2k+3 is an
upper bound for ψ on X.

We are now obliged to construct {V i}∞i=1. For each i ≥ 1, choose ki ≥ 1
such that 2ki+2 ≥ 2M i + 4 and define open V i ⊆ H by

V i = Ωki ∩
{

(x, y) ∈ H : dist((x, y),R2\H) >
1

i

}
.

Evidently the V i satisfy (4.5.2). For (x, y) ∈ H ∩ S, we see (x, y) ∈ V i for

i ≥ 2 such that B 1
i−1

((x, y)) ⊆ H. Hence V :=
⋃∞
i=1 V

i is an open set such

that H ∩ S ⊆ V ⊆ H. Since H ⊆ G, we then have that V ⊆ G, as required

for (4.5.1).

All that remains to check of {V i}∞i=1 is (4.2.2). Let (x, y) ∈ V i\S. Then
(x, y) ∈ Ωk−1\Ωk for some k > ki. So by (21), and recalling Φy > 0, we see that

−Φx ≥ 2k+1Φy ≥ 2ki+2Φy ≥ (2M i + 4)Φy

as required.
We easily check condition (4.2.5). Let a < b and u ∈ AC(a, b) be non-

decreasing. The {x ∈ (a, b) : U(x) ∈ S} is null since S is purely unrectifiable.
For all k ≥ 0, properties (17) and (20) imply that ‖Φ−Φk‖ < 2εk for all k ≥ 0,
and hence by property (16) that λ({(Φ ◦ U)(x) : U(x) ∈ S}) ≤ 1

k
. Hence this

set is also null.

We now give the exact details of the inductive construction of our La-
grangians Ln. Let S ⊆ R2 be a purely unrectifiable set such that S =

⋃∞
n=1 Sn

for some compact Sn, and let ω be a fixed superlinearity. For each n ≥ 1 define

Gn = B1(Sn) and Hn = B 1
2
(Sn)\

n−1⋃
m=1

Sm.

The set Hn is a neighbourhood of the set Sn\
⋃n−1
m=1 Sm which we want to cover

by uss(Ln), but contains no points of
⋃n−1
m=1 Sm, which we assume to be covered

by uss(Ln−1). ThusHn×R ⊆ R3 is the domain on which we modify a given Ln−1,
building Ln to deal with the points in Sn, without interfering with the structure
of Ln−1 on

⋃n−1
m=1 Sm. In the case that the Sn are pairwise disjoint, Hn could be

chosen to be any open neighbourhood of Sn positively separated from
⋃n−1
m=1 Sm.

Lemma 4.6. For each n ≥ 1 there exist Fn : R3 → R of form (?F ),
Φn ∈ C∞(R2\Sn)∩C(R2), sequence {V i

n}∞i=1 of open sets V i
n ⊆ Hn, sequence of

constants {M i
n}∞i=1, and an open set Wn ⊆ R2 such that the following relations

hold:
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(4.6.1) Hn ∩ Sn ⊆ Wn ⊆ Vn :=
⋃∞
i=1 V

i
n ⊆ Vn ⊆ Gn;

(4.6.2) Wn\Vn ⊆ Sn;

(4.6.3) {M i
n}∞i=1 is a non-decreasing sequence and M1

n ≥ n;

(4.6.4) lim0<dist((x,y),Sn)→0
(Φn)x
(Φn)y

(x, y) = −∞;

(4.6.5) Ln : R3 → R defined by

Ln(x, y, p) = ω(p) + Fn(x, y, p)

has the property that for all a < b and all u ∈ AC(a, b) such that
Q(a, u(a); b, u(b)) ⊆ Wn, we have∫ b

a

Ln(x, u(x), u′(x)) dx ≥ Φn(U(b))− Φn(U(a))

with equality if and only if u′(x) = −2 (Φn)x
(Φn)y

(x, u(x)) for almost every

x ∈ [a, b];

and for n ≥ 2,

(4.6.6) Fn ≥ Fn−1 on R3;

(4.6.7) Fn = Fn−1 on R3\
⋃∞
i=1(V i

n × (M i
n,∞)); and

(4.6.8) ψm ∈ C∞(R2\Sm) defined by ψm := −2 (Φm)x
(Φm)y

satisfies ψm ≤M i
n on

V i
n for all i ≥ 1, for each 1 ≤ m < n.

Proof. For each n ≥ 1, we want to apply Lemma 4.5 to get a potential with
which we can apply Lemma 4.2. To begin, we define M i

1 = 1 for all i ≥ 1, and
F0 : R3 → R to be the zero function.

For n ≥ 2 we suppose Φm ∈ C∞(R2\Sm)∩C(R2) to have been constructed
as claimed, and moreover such that ψm satisfies (4.5.3) for each 1 ≤ m < n.
For each i ≥ 1 define

Ṽ i
n =

{
(x, y) ∈ Hn : dist((x, y),R2\Hn) >

1

i

}
.

So for all i ≥ 1 we have dist(Ṽ i
n,R2\Hn) > 0, and also therefore dist(Ṽ i

n, Sm) > 0
for each 1 ≤ m < n, since

⋃n−1
m=1 Sm ⊆ R2\Hn. So by the assumption (4.5.3) on

each ψm, we can choose M1
n ≥ n such that ψm ≤ M1

n on Ṽ 1
n for all 1 ≤ m < n,

and inductively M i
n ≥M i−1

n such that ψm ≤M i
n on Ṽ i

n for all 1 ≤ m < n. This
gives us a sequence {M i

n}∞i=1 satisfying (4.6.3).
We can now apply Lemma 4.5 inductively for each n ≥ 1, using data S = Sn,

G = Gn, H = Hn, {M i}∞i=1 = {M i
n}∞i=1, F = Fn−1. This gives us a function

Φ = Φn as required, and a sequence of open sets {V i}∞i=1 = {V i
n}∞i=1 such that

by (4.5.1),

Hn ∩ Sn ⊆ Vn :=
∞⋃
i=1

V i
n ⊆ Vn ⊆ Gn. (23)
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For n ≥ 2, we have by (4.5.2) that V i
n ⊆ Ṽ i

n for each i ≥ 1, so (4.6.8) holds.
Lemma 4.5 also asserts that all the conditions of Lemma 4.2 hold, using

this data, which gives us in particular (4.6.4). To apply Lemma 4.2, we need a
suitable Wn.

Since Lemma 4.5 tells us Vn is open, for all x ∈ Hn ∩ Sn, there is δx > 0
such that Bδx(x) ⊆ Vn. Then defining

Wn =
⋃

x∈Hn∩Sn

B 1
2
δx

(x)

gives an open set Wn which, in conjunction with (23), gives (4.6.1). We easily

check that (4.6.2) holds: If x ∈ Wn and Bε(x) ∩ Sn = ∅ for some ε > 0, then

choosing w ∈ Wn ∩ B ε
2
(x) gives us a point y ∈ Sn such that w ∈ B δy

2

(y),

where δy > ε, and hence x ∈ Bδy(y) ⊆ V . Thus Wn\Sn ⊆ Vn, which gives the

result. Then set Fn = F̂n−1 as given in Lemma 4.2 for this Wn. The remaining

conclusions then follow directly from those of the lemma. Since Lemma 4.5

asserts that ψn also satisfies (4.5.3), we are able to iterate the construction to

produce the required sequence.

Proof of Theorem 2.4. By Lemma 4.6 we have a sequence {Fn}∞n=1 of functions
Fn : R3 → R of form (?F ). Note that for n0 ≥ 1, we have by (4.6.3) that
p /∈ (M i

n,∞) for all i ≥ 1 and all n ≥ n0 whenever p ∈ (−∞, n0). Hence
by (4.6.7), Fn = Fn0 on R2 × (−∞, n0) for all n ≥ n0. Then for (x, y, p) ∈ R3,
choosing n0 > p, we have that Fn = Fn0 for all n ≥ n0 on an open set around
(x, y, p). We then define F : R3 → R by F (x, y, p) = limn→∞ Fn(x, y, p), and it
is clear that F satisfies (?F ).

So we can define Lagrangian L : R3 → R of form (?) by defining

L(x, y, p) = ω(p) + F (x, y, p).

We claim S lies in the universal singular set of L.
Let (x0, y0) ∈ S. Choose n0 ≥ 1 such that (x0, y0) ∈ Sn0\

⋃n0−1
m=1 Sm. As

in [4], we proceed to construct a locally absolutely continuous u0 : R→ R such
that u′0(x) = ψn0(x, u0(x)) for almost every x ∈ R and u(x0) = y0, as fol-
lows. For each k ≥ 0 we find uk ∈ C1(R) such that (uk)′ = ψkn0

(x, uk) for
all k ≥ 0, and show that {uk}∞k=1 is an equicontinuous family. Some sub-
sequence therefore converges locally uniformly to a non-decreasing function
u0 ∈ C(R) which solves u′0(x) = ψn0(x, u0(x)) whenever (x, u0(x)) /∈ Sn0 , i.e.,
almost everywhere. Thus u0 is locally absolutely continuous. We observe that
(x0, y0) ∈ Sn0 ∩Hn0 ⊆ Wn0 , using (4.6.1). Since Wn0 is open we can choose real
numbers a0 < b0 such that (x0, y0) ∈ Q(a0, u(a0); b0, u(b0)) ⊆ Wn0 .

We claim we have constructed {Fn}∞n=1 in such a way that

L(x, u0(x), u′0(x)) = Ln0(x, u0(x), u′0(x)) for almost every x ∈ [a0, b0].
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We show in fact that for all n ≥ n0,

Ln(x, u0(x), u′0(x)) = Ln0(x, u0(x), u′0(x)) for almost every x ∈ [a0, b0].

This suffices since a countable union of null sets is null.
We proceed by induction. The claim is obvious for n = n0, so let n > n0

and assume that the statement is true for n− 1. At points where the graph of
the trajectory lies outside Vn, we see the result immediately since we know Ln−1

was not changed there: For x ∈ [a0, b0]\U−1
0 (Vn), by (4.6.7) we have

Ln(x, u0(x), u′0(x)) = Ln−1(x, u0(x), u′0(x)).

When the graph of the trajectory lies inside Vn, we have to use some information
about the derivative. Let i ≥ 1. By choice of u0, (4.6.8), and (4.6.3), for almost
every x ∈ [a0, b0] ∩ U−1

0 (V i
n) we have that

u′0(x) = ψn0(x, u0(x)) ≤M i
n ≤M j

n for all j ≥ i.

So for almost every x ∈ [a0, b0]∩U−1
0 (V i

n), we have u′0(x) /∈ (M j
n,∞) for all j ≥ i.

For each x ∈ [a0, b0] ∩ U−1
0 (Vn), there is a least i ≥ 1 such that (x, u0(x)) ∈ V i

n;
so (x, u0(x)) /∈ V j

n for all 1 ≤ j < i. Then, since U−1
0 (Vn) =

⋃∞
i=1 U

−1
0 (V i

n) and
a countable union of null sets is null, for almost every x ∈ [a0, b0]∩U−1

0 (Vn) we
have that

(x, u0(x), u′0(x)) ∈ R3\
∞⋃
j=1

(V j
n × (M j

n,∞)).

But then, by (4.6.7), we see that indeed

Ln(x, u0(x), u′0(x)) = Ln−1(x, u0(x), u′0(x))

for almost every x ∈ [a0, b0]∩U−1
0 (Vn). The result then follows by the inductive

hypothesis.
So applying (4.6.5) to Ln0 , we see, since u′0(x) = ψn0(x, u0(x)) for almost

every x ∈ R,∫ b0

a0

L(x, u0(x), u′0(x)) dx =

∫ b0

a0

Ln0(x, u0(x), u′0(x)) dx = Φn0(U(b0))−Φn0(U(a0)).

By (4.6.6) and (4.6.5), we see∫ b0

a0

L(x, u(x), u′(x)) dx ≥
∫ b0

a0

Ln0(x, u(x), u′(x)) dx ≥ Φn0(U(b0))−Φn0(U(a0))

for any u ∈ AC(a0, b0) such that Q(a0, u(a0); b, u(b0)) ⊆ Wn0 . Thus u0 is a
minimizer for (1) over those functions u ∈ AC(a0, b0) such that u(a0) = u0(a0)
and u(b0) = u0(b0). Tonelli’s partial regularity result and (4.6.4) then imply
that u′0(x0) = ∞. Hence (x0, y0) lies in the universal singular set of L, as
required.
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