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1. Introduction.

In recent years there has been a growing interest in studying the abstract Cauchy
problem (in short, ACP) described by an almost sectorial operator. Specifically,
let X be a complex Banach space. Several authors have studied the existence
and regularity of solutions of the Cauchy problem

x′(t) = −Ax(t) + f(t), t ≥ 0 (1)

x(0) = x0, (2)

in the Banach space X. In this description f : [0,∞)→ X is a locally integrable
function, and A : D(A) ⊆ X → X is a closed linear operator whose spectrum
σ(A) is included in the sector Sω = {z ∈ C \ {0} : | arg z| ≤ ω} ∪ {0} for
some 0 < ω < π

2
and the resolvent operator R(λ,A) = (λI − A)−1 satisfies the

estimate
‖R(λ,A)‖ ≤ Cη|λ|γ
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for all λ ∈ C \ Sη, where η is such that ω < η < π and γ ∈ (−1, 0). These
operators have been called almost sectorial ([1, 4, 11,12]).

It was shown in [12] that −A is the generator of an analytic semigroup
(T (t))t>0 of growth order γ + 1, i.e.,

‖T (t)‖ ≤Mt−(γ+1), t > 0, (3)

and that for f ∈ L1((0, a], X) the mild solution of (1), (2) is given by the
variation of constants formula

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s)ds.

Moreover, this function need not be continuous at t = 0.
The main objective of this paper is to extend some properties of controlla-

bility of linear distributed control systems modeled by analytic semigroups in
the classic sense (C0-semigroups) to systems modeled by analytic semigroups
generated by almost sectorial operators. Exact and approximate controllabil-
ity of linear distributed control systems modeled by C0-semigroups has been
studied by many authors. Related with our objectives we only mention here
[2, 3, 7, 8].

In what follows X and U will denote Banach spaces endowed with a
norm ‖ · ‖. We consider a linear operator A : D(A) ⊆ X → X that satisfies
the conditions specified previously. Throughout this work we assume that X
is an infinite dimensional space and that D(A) 6= X. In Section 2 we will be
concerned with linear systems of first order modeled with states x(t) ∈ X and
controls u(t) ∈ U . More specifically, we consider first order systems governed
by the equation

x′(t) = −Ax(t) +Bu(t), t ≥ 0, (4)

with initial condition (2), where B : U → X is a bounded linear operator which
represents the control action, and the control function u(·) is at least locally in-
tegrable. In Section 3, we establish some criteria of approximate controllability
for nonlinear systems. Finally, in Section 4, we present an application.

The terminology and notations are those generally used in functional anal-
ysis. In particular, for Banach spaces X, Y , we denote by L(X, Y ) the space
formed by the bounded linear maps from X into Y endowed with the norm of
operators. We abbreviate this notation to L(X) when X = Y . We will say that
a set D ⊆ X is total in X if Span(D) is dense in X. We denote the dual space
of a Banach space Z by Z∗ = L(Z,K). In addition, if C is a linear operator, we
denote by R(C) the range space of C, and if C is a linear operator defined in a
dense subspace D(C), then C∗ will represent the adjoint operator of C. Finally,
if x∗ ∈ X∗ and M is a subspace of X, we will write x∗ ⊥ M if 〈x∗, x〉 = 0, for
all x ∈M .
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2. Approximate controllability of linear control systems

Throughout this section, we will assume that the operator A is almost secto-
rial. This implies that −A generates an analytic semigroup of bounded linear
operators (T (t))t>0 on X . For the properties of this type of semigroups the
reader can consult for example [4]. In particular, there are constants M > 0
and γ ∈ (−1, 0) such that the estimate (3) holds. Moreover, the unique mild
solution of (4), with initial condition x(0) = x0 , is given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds.

In particular, consider the initial condition x0 = 0 leads us to define, for each
a > 0 and 1 ≤ p ≤ ∞, the map Ga : Lp([0, a], U)→ X by

Ga(u) =

∫ a

0

T (a− s)Bu(s)ds.

In what follows we consider a fixed − 1
γ
< p ≤ ∞. It is clear that Ga is a

bounded linear operator. We will use the following terminology.

Definition 2.1. System (4) is called exactly controllable on [0, a] if the space
R(Ga) = X. The system (4) will be called exactly controllable in finite time if
the space ∪a>0R(Ga) = X.

Since ([12, p. 56]) the space R(T (t)) ⊆ D(A) for t > 0, proceeding as usual
([2]) we can establish the following property of negative character.

Proposition 2.2. System (4) is not exactly controllable in finite time.

The lack of exact controllability motivates us to introduce a weaker notion
of controllability.

Definition 2.3. System (4) is called approximately controllable on [0, a] if the
spaceR(Ga) is dense in X. System (4) will be called approximately controllable
in finite time if the space ∪a>0R(Ga) is dense in X.

We next will show that the approximate controllability is independent of the
interval [0, a]. The following property was originally established by Fattorini [5].

Proposition 2.4. Under the previous conditions the following statements are
satisfied:

(a) System (4) is approximately controllable on [0, a] if and only if for every
x∗ ∈ X∗ such that B∗T (t)∗x∗ = 0, for all 0 < t ≤ a, we have that x∗ = 0.

(b) System (4) is approximately controllable in finite time if and only if for
every x∗ ∈ X∗ such that B∗T (t)∗x∗ = 0, for all t > 0, we have that x∗ = 0.
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Corollary 2.5. System (4) is approximately controllable on [0, a] for some a > 0
if and only if it is approximately controllable in finite time.

We next will show that the well known Kalman’s controllability criterion
for lumped systems can be extended to distributed systems of type (4) (see
also [8]). Henceforth we use the notations

D∞(A) = ∩∞n=1D(An),

U1 = {u ∈ U : Bu ∈ D(A)} ,
U∞ = {u ∈ U : Bu ∈ D∞(A)} .

Theorem 2.6. Under the previous conditions the following statements are sat-
isfied:

(a) If Span{AnBU∞ : n ∈ N0} is dense in X, then the system (4) is approxi-
mately controllable in finite time.

(b) If the system (4) is approximately controllable in finite time, then the space
Span{AnT (t)BU : n ∈ N0} is dense in X, for all t > 0.

Proof. (a) Let x∗ ∈ X∗ be such that B∗T (t)∗x∗ = 0 for all t > 0. We choose
u∈U∞ and define the function f(t)=〈x∗, T (t)Bu〉 for t>0. Since Bu∈D∞(A),
it follows from [4, Observation 1] that

f (n)(t) = 〈x∗, AnT (t)Bu〉 = 〈x∗, T (t)AnBu〉 = 0.

Turning to apply [4, Observation 1], the function T (t)AnBu→ AnBu as t→ 0+.
This implies that 〈x∗, AnBu〉 = 0 and x∗ ⊥ Span{AnBU∞ : n ∈ N0}. It follows
from the hypothesis that x∗ = 0. Our assertion is now a direct consequence of
Proposition 2.4.

(b) Let now s > 0 be fixed and x∗ ⊥ Span{AnT (s)BU : n ∈ N0}. Since
T (s)(X) ⊆ D(A) and T (s) = T ( s

n
)n, using [4, Observation 1] again we get

that T (s)(X) ⊆ D(An) for all n ∈ N0. Proceeding as in the proof of (a)
for the function f(t) = 〈x∗, T (t)Bu〉 for t > 0 and u ∈ U , we obtain that
f (n)(s) = 〈x∗, AnT (s)Bu〉 = 0. Since f is analytic on (0,∞), it follows that
f = 0. As u ∈ U was chosen arbitrarily, we get that B∗T (t)∗x∗ = 0, for all
t > 0. Using both the fact that the system (4) is approximately controllable in
finite time as the Proposition 2.4, we can affirm that x∗ = 0, which implies that
the space Span{AnT (s)BU : n ∈ N0} is dense in X.

In [2, Theorem 3.15] has been shown that the study of approximate control-
lability in finite time of a linear distributed systems modeled by a C0-semigroup
can be reduced to the study of approximate controllability in finite time of a
linear distributed systems where the system operator is bounded. Next we will
show that, at least when U1 is dense in U , this result remains valid in the
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context of almost sectorial operators. Specifically, let −λ0 ∈ C \ Sω. Hence,
λ0 ∈ ρ(−A), and we may consider the control system

x′(t) = R(λ0,−A)x(t) +Bu(t), t ≥ 0. (5)

Theorem 2.7. Assume that U1 is dense in U . Then the system (4) is approx-
imately controllable in finite time if, and only if, it is the system (5).

Proof. Assume initially that the system (4) is approximately controllable in
finite time. Proceeding as in [2, Theorem 3.15], if B∗eR(λ0,−A)∗tx∗ = 0, for all
t > 0, using that R(·,−A) is a holomorphic function on ρ(−A), we obtain
that B∗R(λ,−A)∗x∗ = 0, for all λ ∈ C \ (−Sω). Applying now the expression
for T (t) given by (2.1) in [4], it follows that 〈x∗, T (t)Bu〉 = 0 for all t > 0.
Consequently, from the Proposition 2.4 follows that x∗ = 0, and using again the
Proposition 2.4 we can affirm that the system (5) is approximately controllable
in finite time. Conversely, we assume that the system (5) is approximately
controllable in finite time, and we choose x∗ ∈ X∗ such that B∗T (t)∗x∗ = 0 for
all t > 0. For µ ∈ C such that Re(µ) > 0 we have that

R(µ,−A) =

∫ ∞
0

e−µtT (t)dt (6)

which implies that B∗R(µ,−A)∗x∗ = 0. Using again that R(·,−A) is a holo-
morphic function, it follows that B∗(R(λ0,−A)∗)nx∗ = 0 for all n ∈ N. Fur-
thermore, for u ∈ U1 the function T (·)Bu is continuous on [0,∞). Since

〈x∗, µR(µ,−A)Bu〉 = 〈µB∗R(µ,−A)∗x∗, u〉 = 0,

using (6) and the properties of the Laplace transformation, we have that

lim
µ→+∞

〈x∗, µR(µ,−A)Bu〉 = 〈x∗, Bu〉

which implies that B∗x∗ = 0. Hence we deduce that B∗eR(λ0,A)∗tx∗ = 0, for
all t ≥ 0. Therefore, using again repeatedly the Proposition 2.4, we infer that
x∗ = 0, and that the system (4) is approximately controllable in finite time.

In the control theory for distributed systems modeled by C0-semigroups is
also frequently used the weaker notion of controllability to the zero state. Here
we introduce this concept in the form given in [2, Definition 3.19].

Definition 2.8. The system (4) is called exactly null controllable on [0, a] if
R(T (a)) ⊆ R(Ga). The system (4) will be called approximately null control-
lable on [0, a] if R(T (a)) ⊆ R(Ga).

Our first result shows that the concept of exact null controllability is only
apparently weaker than the concept of exact controllability. To establish this
result we will use the following general property of continuous linear operators.
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Lemma 2.9. Let X, Y, Z be Banach spaces, and let F ∈ L(X,Z) and G ∈
L(Y, Z) be such that R(F ) ⊆ R(G). Then there exists a constant β > 0 such
that for every x ∈ X, there is y ∈ Y with ‖y‖ ≤ β‖x‖ such that F (x) = G(y).
Furthermore, R(F ) ⊆ R(G).

Proof. For completeness, we indicate briefly the main steps of the proof. The
first assertion is a consequence of the construction carried out in the proof of
[2, Theorem 3.3]. To establish the second assertion we proceed as follows. Let
z ∈ R(F ). We can choose a sequence (xn)n in X such that F (xn) → z as
n → ∞. Let yn ∈ Y such that F (xn) = G(yn). If G is injective, then G−1F
is a bounded linear map, which implies that (yn)n is a Cauchy sequence, and
therefore convergent to some y ∈ Y . Consequently,

z = lim
n→∞

F (xn) = lim
n→∞

G(yn) = G(y) ∈ R(G).

In the case when G is not injective, we replace G by G̃, where G̃ : Y/ ker(G)→ Z
is the map induced by G in the quotient space.

Proposition 2.10. If D(A) is dense in X, then the system (4) is not exactly
null controllable on [0, a].

Proof. If we assume that R(T (a)) ⊆ R(Ga), applying the Lemma 2.9 follows
thatR(T (a)) ⊆ R(Ga). On the other hand, if x∗ ⊥ R(T (a)), then 〈x∗, T (t)x〉 =
0 for all t > 0 and x ∈ X. In particular, if x ∈ D(A), since in this case
T (t)x → x as t → 0+, we obtain that 〈x∗, x〉 = 0. Consequently, applying the
Hahn-Banach theorem we get D(A) ⊆ R(T (a)) ⊆ R(Ga), and this inclusion
implies that the system (4) is exactly controllable on [0, a], which is absurd.

Similar to what we have stated in Proposition 2.4 and Theorem 2.6, for the
concept of approximate null controllability we obtain the following characteri-
zations.

Proposition 2.11. System (4) is approximately null controllable on [0, a] if and
only if for every x∗ ∈ X∗ such that B∗T (t)∗x∗ = 0, for all 0 < t ≤ a, we have
that T (a)∗x∗ = 0.

The following result easily follows from the fact that the function T (·)x is
analytic on (0,∞) for all x ∈ X.

Corollary 2.12. If the system (4) is approximately null controllable on [0, a]
for some a > 0, then it is approximately null controllable on [0, b] for all b > 0.
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Theorem 2.13. Under the previous conditions the following statements are
satisfied:

(a) If R(T (a)) ⊆ Span{AnBU∞ : n ∈ N0}, then the system (4) is approxi-
mately null controllable on [0, a].

(b) If the system (4) is approximately null controllable on [0, a], then

R(T (a)) ⊆ Span{AnT (t)BU : n ∈ N0}, for all t > 0.

Proof. The proof is very similar to that we carried out to establish the Theo-
rem 2.6 so we will omit it.

Definition 2.14. The system (4) is called exactly null controllable in finite
time if for each x ∈ X, there is t > 0 such that T (t)x ∈ R(Gt).

The following result relates these concepts.

Proposition 2.15. If the system (4) is exactly null controllable in finite time,
then it is approximately null controllable on [0, a] for all a > 0.

Proof. For t > 0, we define the space Et = {x ∈ X : T (t)x ∈ R(Gt)}. Clearly
X = ∪t>0Et. Furthermore, if x ∈ Et and h > 0, there is u ∈ Lp([0, t], U) such
that T (t)x =

∫ t
0
T (t− s)Bu(s)ds. Consequently,

T (t+ h)x =

∫ t

0

T (t+ h− s)Bu(s)ds =

∫ t+h

0

T (t+ h− s)Bũ(s)ds = Gt+h(ũ),

where ũ is the function given by ũ(s) = u(s) for 0 < s ≤ t and ũ(s) = 0 for
t < s ≤ t+h. This shows that the family of subspaces (Et)t>0 is nondecreasing.
Therefore, there is a > 0 such that Ea = X. Let x∗ ∈ X∗ be such that
B∗T (t)∗x∗ = 0, for all 0 < t ≤ a. This implies that x∗ ⊥ R(Ga). Therefore,
for all x ∈ Ea we have that 〈T (a)x, x∗〉 = 0. That is, T (a)∗x∗ ⊥ Ea. Hence we
get that T (a)∗x∗ ⊥ Ea = X, which implies that T (a)∗x∗ = 0. We complete the
proof combining the assertions in Proposition 2.11 and Corollary 2.12.

3. Approximate controllability of nonlinear control
systems

In this section we apply the preceding results to study the approximate con-
trollability of nonlinear systems modeled by the equation

x′(t) = −Ax(t) + f(t, x(t), u(t)) +Bu(t), 0 ≤ t ≤ a. (7)

In this section the operators A and B satisfy all conditions considered in pre-
vious sections, and f : [0, a]×X × U → X is a function which satisfies appro-
priate conditions. Specifically, we will assume that for any u ∈ Lp([0, a], U),
there exists a unique mild solution of (7) with initial condition x(0) = 0. For
completeness, we next establish some results to ensure that this property holds.
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Definition 3.1. A continuous function x : [0, a]→ X is said to be a mild solu-
tion of (7) with initial condition x(0) = 0 if x(·) satisfies the integral equation

x(t) =

∫ t

0

T (t− s)Bu(s)ds+

∫ t

0

T (t− s)f(s, x(s), u(s))ds, for 0 ≤ t ≤ a.

Proceeding as in [10, Lemma 5.6.7] we can establish the following property.

Lemma 3.2. Let r, w : [0, a]→ [0,∞) be continuous functions. If w is nonde-
creasing and there are constants β > 0 and 0 < α < 1 such that

r(t) ≤ w(t) + β

∫ t

0

r(s)

(t− s)1−α
ds,

then r(t) ≤ Cw(t), where C is a constant independent of r(·).

We next consider a fixed p > − 1
γ

and q denotes the conjugate exponent
of p. Moreover, we set α = −γ.

We say that a function f verifies a local Lipschitz condition at x if for each
R ≥ 0 there exists a constant L(R) ≥ 0 such that

‖f(t, x1, u)− f(t, x2, u)‖ ≤ L(R)‖x1 − x2‖, (8)

for 0 ≤ t ≤ a, u ∈ U and all x1, x2 ∈ X with ‖x1‖, ‖x2‖ ≤ R.

Theorem 3.3. Assume that T (t) is a compact operator for every t > 0. Assume
further that f is continuous, verifies the local Lipschitz condition (8) and there
is a constant η > 0 such that

‖f(t, x, u)‖ ≤ η(1 + ‖x‖+ ‖u‖)

for all x ∈ X and u ∈ U . Then for each u ∈ Lp([0, a], U) there exists a unique
mild solution of (7) defined on [0, a].

Proof. It follows from [9] that for any function u∈Lp([0,a],U) and x∈C([0,a],X)
the function T (t− s)f(s, x(s), u(s)) is integrable on [0, t]. Hence we may define
F : C([0, a], X)→ C([0, a], X) by

Fx(t) =

∫ t

0

T (t−s)Bu(s)ds+

∫ t

0

T (t−s)f(s, x(s), u(s))ds, for t ∈ [0, a]. (9)

It follows from the Lebesgue dominated convergence theorem that F is
continuous. Furthermore, it is easy to see that F is completely continuous. Let
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0 < λ < 1. If x = λFx, then combining the estimate

‖x(t)‖ ≤ M‖B‖tα−
1
p

(1 + (α− 1)q)
1
q

‖u‖p +M

∫ t

0

(t− s)−(1+γ)‖f(s, x(s), u(s))‖ds

≤ M(η + ‖B‖)tα−
1
p

(1 + (α− 1)q)
1
q

‖u‖p +
Mηtα

α
+ ηM

∫ t

0

(t− s)−(1+γ)‖x(s)‖ds

with the Lemma 3.2 we get that ‖x(t)‖ ≤ C1, where C1 is a positive constant
independent of x. Consequently, the set {x∈C([0, a], X) : x=λFx, 0 <λ< 1}
is bounded. Applying the Leray-Schauder alternative theorem ([6]) we get that
F has at least a fixed point x, which is a mild solution of equation (7). The
uniqueness of x is an immediate consequence of (8) and Lemma 3.2.

As usual, we can avoid the condition of compactness of the semigroup T (·)
demanding instead that f verifies a stronger Lipschitz condition.

Theorem 3.4. Assume that f(t, x, u) satisfies the conditions:

(a) f(t, x, u) is continuous at t for all x ∈ X and u ∈ U .

(b) f(t, x, u) is continuous at u for all t ∈ [0, a] and x ∈ X.

(c) There is L > 0 such that f(t, x, u) satisfies the uniform Lipschitz condition

‖f(t, x1, u)− f(t, x2, u)‖ ≤ L‖x1 − x2‖, (10)

for 0 ≤ t ≤ a, u ∈ U and all x1, x2 ∈ X.

Then for each u ∈ Lp([0, a], U) there exists a unique mild solution of (7) defined
on [0, a].

Proof. We define F as in (9). For x(·), y(·) ∈ C([a, b], X), it follows from (10)
that

‖Fx(t)−Fy(t)‖ ≤ LM

∫ t

0

(t−s)α−1‖x(s)−y(s)‖ds ≤ LM

α
tα max

0≤s≤t
‖x(s)−y(s)‖.

Arguing inductively we get that

‖F nx(t)− F ny(t)‖ ≤ 1

Γ(α + 1)

(LMΓ(α)tα)n

Γ(nα + 1)
max
0≤s≤t

‖x(s)− y(s)‖,

which implies that F n is a contraction for n large enough. The fixed point of F
is the unique mild solution of equation (7).

We next assume that for each u ∈ Lp([0, a], U) there exists a unique mild
solution of (7), which we will denote x(t, u). The set R(a) = {x(a, u) : u ∈
Lp([0, a], U)} is called the reachable set of system (7).
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Definition 3.5. The system (7) is called approximately controllable on [0, a] if
R(a) = X.

In what follows, we present two results of approximate controllability of
system (7). Our next result extends a property of approximate controllability
studied previously in [14].

Theorem 3.6. Assume that f is uniformly bounded. If the system (4) is ap-
proximately controllable on [0, a], then so is the system (7).

Proof. There is a constant C > 0 such that ‖f(t, x, u)‖ ≤ C for (t, x, u) ∈ [0, a]×
X ×U . We choose bn → a as n→∞. It is clear that

∫ a
bn

(a− s)−(1+γ)ds→ 0 as
n→∞.

We consider a fixed z ∈ X. Let xn = x(bn, 0). It follows from Corollary 2.5
that the system (4) is approximately controllable on [0, a− bn]. Consequently,
there exists a control function wn ∈ Lp([0, a− bn], U) such that

Ga−bn(wn) + T (a− bn)xn − z =

∫ a

bn

T (a− s)Bvn(s)ds+ T (a− bn)xn − z

converges to zero as n→∞, where vn(s) = wn(s− bn) for s ∈ [bn, a].

We define un(s) = 0, for 0 ≤ s ≤ bn and un(s) = vn(s), for s ∈ [bn, a].
Therefore, the mild solution of (7) corresponding to control un(s) verifies

x(a, un) = Ga(un) +

∫ a

0

T (a− s)f(s, x(s, un), un)ds

= T (a− bn)

∫ bn

0

T (bn − s)f(s, x(s, un), 0)ds+

∫ a

bn

T (a− s)Bvn(s)ds

+

∫ a

bn

T (a− s)f(s, x(s, un), vn)ds.

Since xn =
∫ bn
0
T (bn−s)f(s, x(s, un), 0)ds and

∫ a
bn
T (a−s)f(s, x(s, un), vn)ds→ 0

as n → ∞, we get that x(a, un) → z as n → ∞, which implies that z ∈ R(a).
Since z was arbitrarily chosen, this completes the proof.

The condition that f is uniformly bounded used in Theorem 3.6 is something
demanding. To avoid this condition we can generalize the results of approximate
controllability established in [13].

We define the map Λ(t) : Lp([0, a], X)→ X by

Λ(t)(x(·)) =

∫ t

0

T (t− s)x(s)ds.
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It is clear that Λ(t) is a bounded linear map for p > − 1
γ
. Moreover, if q denotes

the conjugate exponent of p, then

‖Λ(t)(x(·))‖ ≤M

∫ t

0

(t− s)−(γ+1)‖x(s)‖ds ≤ M

(1− (γ + 1)q)
1
q

t
1
q
−(γ+1)‖x‖p,

which implies that ‖Λ(t)‖ ≤M(1 + (1− α)q)−
1
q tα−

1
p . In addition, it is clear

that Ga(u) = Λ(a)(Bu). Let G̃a : Lp([0, a], U)/ ker(Ga) → R(Ga) be the map
induced by Ga on the quotient. We consider the space R(Ga) endowed with the
norm

|||z||| = ‖G̃a

−1
(z)‖, z ∈ R(Ga).

It is well known that R(Ga) endowed with the norm ||| · ||| is a Banach space.
Let Ψ : C([0, a], X)× Lp([0, a], U)→ X be given by

Ψ(x(·), u(·)) = Λ(a)(f(·, x, u)).

We consider the following conditions:

(H1) The space U is reflexive and − 1
γ
< p <∞.

(H2) There exists a Banach space (Z, ‖ · ‖Z) continuously included in R(Ga)
for the norm ||| · ||| such that R(Ψ) ⊆ Z.

In this case, we denote by k > 0 a constant such that |||z||| ≤ k‖z‖Z for all
z ∈ Z.

If condition (H1) holds, then Lp([0, a], U) is a reflexive Banach space and
the map J : Lp([0, a], U)/ ker(Ga)→ Lp([0, a], U) defined by

J(u) = u0,

where ‖u0‖p = inf{‖v‖p : v ∈ u}, is a bounded linear map with ‖J(u)‖p =
‖u‖ ≤ ‖u‖p for all u ∈ Lp([0, a], U).

Theorem 3.7. Assume that conditions (H1) and (H2) hold, and f(t, x, u) is
continuous at t for each x ∈ X and u ∈ U , and satisfies the Lipschitz condition

‖f(t, x1, u1)− f(t, x2, u2)‖ ≤ L1‖x1 − x2‖+ L2‖u1 − u2‖.

If

β = M

(
max{1, k}

(
L1a

α

α
+

L2a
α− 1

p

(1 + q(α− 1))
1
q

)
+

‖B‖aα−
1
p

(1 + q(α− 1))
1
q

)
< 1,

then Z ⊆ R(a). In particular, if Z is dense in X, then system (7) is approxi-
mately controllable on [0, a].
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Proof. It is clear that hypotheses of Theorem 3.4 are fulfilled. Let z ∈ Z.
Following [13] we define the map Φ : C([0, a], X)×Lp([0, a], U)→ C([0, a], X)×
Lp([0, a], U) by Φ(x, u)(t) = (y(t), v(t)), where

y(t) = Λ(t)(f(·, x, u)) + Λ(t)(Bu), v = J(G̃a

−1
(z − Λ(a)(f(·, x, u)))),

for t ∈ [0, a] and the product space C([0, a], X)× Lp([0, a], U) is provided with
the norm ‖(x(·), u(·))‖ = max{‖x(·)‖∞, ‖u(·)‖p}. It follows from (H1) and (H2)
that Φ is well defined. Moreover, Φ is a contraction. In fact, for x1, x2 ∈
C([0, a], X) and u1, u2 ∈ Lp([0, a], U), let vi = J(G̃a

−1
(z − Λ(a)(f(·, xi, ui))))

and yi(t) = Λ(t)(f(·, xi, ui)) + Λ(t)(Bui) for i = 1, 2. Then

‖v2 − v1‖p = ‖J(G̃a

−1
(Λ(a)(f(·, x2, u2)− f(·, x1, u1))))‖p

≤ k‖Λ(a)(f(·, x2, u2)− f(·, x1, u1))‖

≤ kM

∫ a

0

(a− s)α−1(L1‖x2(s)− x1(s)‖+ L2‖u2(s)− u1(s)‖)ds

≤ kML1a
α

α
‖x2 − x1‖∞ +

kML2a
α− 1

p

(1 + q(α− 1))
1
q

‖u2 − u1‖p.

A similar argument shows that

‖y2 − y1‖∞ ≤
ML1a

α

α
‖x2 − x1‖∞ +

M(L2 + ‖B‖)aα−
1
p

(1 + q(α− 1))
1
q

‖u2 − u1‖p.

Therefore, ‖Φ(x2, u2)− Φ(x1, u1)‖ ≤ β‖(x2 − x1, u2 − u1)‖ which shows that Φ
is a contraction. Let (x(·), u(·)) be the fixed point of Φ. It follows directly from
the definition of Φ that x(a) = z. Hence, z ∈ R(a), which completes the proof
of our assertion.

4. Applications

In this section we present some applications of our abstract results.

Application 1. We are concerned with the approximate controllability for the
heat conduction. To simplify the exposition, we consider only a simple model
with one-dimensional domain.

Initially we study the approximate controllability of a system governed by
the heat equation

∂w(t, ξ)

∂t
=
∂2w(t, ξ)

∂ξ2
+Bu(t), 0 ≤ t ≤ a, 0 < ξ < π (11)

w(t, 0) = w(t, π) = 0. (12)
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To model this system we consider X = Cα([0, π]), 0 < α < 1, the space of
α-Hölder-continuous functions endowed with the norm

|||z|||α = ‖z‖∞ + sup
0≤ξ<ξ′≤π

|z(ξ)− z(ξ′)|
|ξ − ξ′|α

.

We define the operator A by

(Az)(ξ) = −d
2z(ξ)

dξ2
(13)

with domain

D(A) =
{
z ∈ C2+α([0, π]) : z(0) = z(π) = 0

}
.

It follows from [12, Example 2.3] that −A is an almost sectorial operator that
generates an analytic semigroup (T (t))t>0 of growth order α

2
in X. Let U be

a Banach space and let B : U → X be a bounded linear map. Therefore,
using the notation x(t) = w(t, ·), problem (11), (12) can be modeled as the
abstract control system (4). Furthermore, since T (t)(X) ⊆ D(A) and D(A) is
not dense in X, then there exists 0 6= x∗ ∈ X∗ such that 〈x∗, T (t)Bu〉 = 0 for
all u ∈ U . This implies that system (11), (12) is not approximately controllable
on [0, a]. That is, superficially speaking, we can not regulate the temperature
with α-Hölder-continuous functions.

We next study the approximate controllability of the system

∂w(t, ξ)

∂t
=
∂2w(t, ξ)

∂ξ2
+ u(t, ξ), 0 ≤ t ≤ a, 0 < ξ < π (14)

w(t, 0) = w(t, π) = 0, (15)

in the spaceD(A). To model this system, we take U = D(A) and B = I. Let AD
be the part of A in D(A). It follows from [12] that AD is a densely defined
operator that generates an analytic semigroup (T (t))t>0 of growth order α

2
.

Hence, using again the notation x(t) = w(t, ·), system (14), (15) can be modeled

as the abstract system (4). Let x∗ ∈ D(A)
∗

such that

〈x∗, T (t)Bu〉 = 〈x∗, T (t)x〉 = 0

for all t > 0 and x ∈ D(A). Since T (t)x → x as t → 0+ for x ∈ D(A), then
〈x∗, x〉 = 0 for all x ∈ D(A). Using that D(A) is dense in D(A), we infer that
x∗ = 0. Therefore, system (14), (15) is approximately controllable on [0, a] in
the space D(A).
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Application 2. In this application we exhibit a general method for constructing
analytic semigroups of growth order α with 0 < α < 1, and defining approxi-
mately controllable systems defined by this kind of semigroups.

For each n ∈ N, we introduce the group

Tn(t) = e−nt
(

1 n(n+ 1)αt
0 1

)
, t ∈ R,

on R2. We consider R2 endowed with the norm ‖(a, b)‖ = max{|a|, |b|}. Then

‖Tn(t)‖ = e−nt(1 + n(n+ 1)αt), t ≥ 0.

It follows that
sup
t≥0
‖Tn(t)‖ = ‖Tn(tn)‖ = e−ntn(n+ 1)α, (16)

where tn = 1
n

(
1− 1

(n+1)α

)
. Hence we deduce that ‖Tn(t)‖ ≤ Ct−α, t > 0, where C

denotes a generic constant independent of t and n. In fact, for 0 < t ≤ tn we
have that (n+ 1)α ≤ Ct−α for a positive constant C, and the assertion follows
from (16). For t ≥ tn we have that

e−ntn(n+ 1)αt ≤ 2

n2t2
n(n+ 1)α ≤ 2(n+ 1)α

nt
≤ 2C

n1−αt
=

2C

tα(nt)1−α
≤ C

tα
.

We next consider X = ⊕∞n=1Xn, where Xn = R2, endowed with the norm

‖(xn)n‖ =
∞∑
n=1

‖xn‖.

We define T (t) : X → X by

T (t)(xn)n = (Tn(t)xn)n, t > 0.

It is easy to see that T (t) ∈ L(X) and (T (t))t>0 is an analytic semigroup.
Moreover,

‖T (t)‖ = sup
n≥1
‖Tn(t)‖ ≤ Ct−α, t > 0,

and
‖T (tn)‖ ≥ ‖Tn(tn)‖ ≥ e−a(n+ 1)α, n ∈ N,

for some constant a > 0 independent of n ∈ N. Combining these assertions we
can affirm that (T (t))t>0 is an analytic semigroup of growth order α.

On the other hand, it is not difficult to see that the infinitesimal generator A
of (T (t))t>0 is the operator given by A(xn)n = (Anxn)n, where

An =

(
−n n(n+ 1)α

0 −n

)
.
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Let b = (bn)n, where bn = 1
2n

col (0, 1). We consider the control system

x′(t) = Ax(t) + bu(t), t > 0. (17)

This system is a particular case of system (4) with U = R and B : U → X the
operator given by Bu = bu.

It is well known that X∗ = ⊕∞n=1X
∗
n, endowed with the norm ‖(x∗n)n‖ =

supn≥1 ‖x∗n‖. Hence B∗ : X∗ → R is given by

B∗(x∗n)n =
∞∑
n=1

〈x∗n, bn〉.

We are in a position to establish the following property.

Corollary 4.1. System (17) is approximately controllable in finite time.

Proof. Following Proposition 2.4, we take (x∗n)n ∈ X∗ and we assume that

B∗T (t)∗(x∗n)n =
∞∑
n=1

〈x∗n, eAntbn〉 = 0. (18)

We will prove inductively that x∗n = 0. In fact, it follows from (18) that

〈x∗1, eA1tb1〉 = −
∞∑
n=2

〈x∗n, eAntbn〉

which implies that 〈x∗1, eteA1tb1〉 = −
∑∞

n=2〈x∗n, eteAntbn〉 → 0, t → ∞. Since
eteA1tb1 = 1

2
col (2αt, 1), we get that x∗1 = 0. We can repeat this argument to

conclude that x∗n = 0 for n ∈ N.
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the warm hospitality of Professor E. Hernández, as well as their interesting
comments.
The authors wish to thank the anonymous referees for their important work.

References

[1] Carvalho, A. N., Dlotko, T. and Nascimento, M. J. D., Non-autonomous
semilinear evolution equations with almost sectorial operators. J. Evol. Equ.
8 (2008), 631 – 659.

[2] Curtain, R. F. and Pritchard, A. J., Infinite Dimensional Linear Systems
Theory. Berlin: Springer 1978.
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[8] Henŕıquez, H. R., Approximate controllability of linear distributed control sys-
tems. Appl. Math. Letters 21 (2008)(10), 1041 – 1045.

[9] Martin, R. H., Nonlinear Operators and Differential Equations in Banach
Spaces. Melbourne (FL): Robert E. Krieger 1987.

[10] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differ-
ential Equations. New York: Springer 1983.

[11] Periago, F. and Straub, B., On the existence and uniqueness of solutions for an
incomplete second-order abstract Cauchy problem. Stud. Math. 155 (2003)(2),
183 – 193.

[12] Periago, F. and Straub, B., A functional calculus for almost sectorial opera-
tors and applications to abstract evolution equations. J. Evol. Equ. 2 (2002),
41 – 68.

[13] Quinn, M. D. and Carmichael, N., An approach to non-linear control problem
using fixed-point methods, degree theory and pseudo-inverses. Numer. Funct.
Anal. Optim. 7 (1984-85), 197 – 219.

[14] Wang, L., Approximate controllability and approximate null controllability of
semilinear systems. Comm. Pure Appl. Anal. 5 (2006)(4), 953 – 962.

Received December 2, 2011; revised August 15, 2012


