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Abstract. In the paper we study the existence of mild solutions of a semilin-
ear evolution equation with nonlocal initial conditions under the assumptions of the
Hausdorff measure of noncompactness in separable Banach space.
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1. Introduction

We consider the following semilinear equation of evolution with nonlocal initial
conditions having the form

x′(t) = A(t)x(t) + f(t, x(t)), t ∈ J (1)

x(0) = g(x), (2)

where J = [0, T ], A(t) : Dt ⊂ E → E generates an evolution system

{U(t, s)}0≤s≤t≤T

on a separable Banach space E, g : C(J,E)→ E and f : J ×E → E are given
mappings.

Recently there have appeared a lot of papers concerned with the existence
of integral or mild solutions for Equation (1) with (2) or similar problem (cf. [1,
2,5,9–12,14,16–22]). In all those papers there are imposed conditions requiring
the compactness of at least one of the mappings f and g or compactness or
equicontinuity of the evolution system {U(t, s)} (or semigroup {G(t)}).
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In this paper we give conditions guaranteeing the existence of mild solutions
of Equation (1) with (2) without assumptions on the compactness of f, g and
{U(t, s)}. Our considerations will be conducted in a separable Banach space E
and we assume that the mappings g, f are condensing with respect to a measure
of noncompactness and the evolution system {U(t, s)} is strongly continuous.
The proofs of results obtained in this paper are based on a new calculation
method which employs the technique of measures of noncompactness.

The paper is organized as follows. In Section 2 there are given notations
and auxiliary facts needed further on. In Section 3 we formulate and prove two
theorems on the existence of mild solutions of Equation (1) with (2). Section 4
is devoted to discussion of some hypotheses assumed on the functions involved
in Equation (1).

2. Notation and auxiliary facts

In this section, we collect some definitions and results which will be needed
later. Let (E, ‖ · ‖) be a real Banach space with the zero element θ. Denote by
B(x, r) the closed ball in E centered at x and with radius r. The collection of
all linear and bounded operators from E into itself will be denoted by B(E).
If X is a subset of E we write X, ConvX in order to denote the closure and
the convex closure of X, respectively.

Throughout this paper, we will also accept the following definition of the
concept of measure of noncompactness [6].

Definition 2.1. A function µ, defined on bounded subsets of a real Banach
space E with real values, is said to be a measure of noncompactness if it satisfies
the following conditions:

1o µ(X) = 0 implies that X is relatively compact.

2o X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3o µ(ConvX) = µ(X).

4o µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

5o If (Xn) is a sequence of nonempty, bounded and closed subsets of E such
that Xn+1 ⊂ Xn (n = 1, 2, . . .) and if limn→∞ µ(Xn) = 0, then the inter-
section X∞ =

⋂∞
n=1Xn is nonempty.

Remark 2.2. Let us notice that the intersection set X∞ described in axiom
5o satisfies the equality µ(X∞) = 0. In fact, the inequality µ(X∞) ≤ µ(Xn) for
n = 1, 2, . . . implies that µ(X∞) = 0. This property of the set X∞ will be very
important in our investigations.

The most frequently applied measure of noncompactness is that called the
Hausdorff measure of noncompactness which is defined in the following way

β(X) = inf{r > 0 : X can be covered by finitely many balls of radius r}.
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Other facts concerning measures of noncompactness may be found in [3,4,6,15].
In the sequel, we will work in the space C(J,E) consisting of all functions defined
and continuous on J with values in the Banach space E. The space C(J,E) is
furnished with the standard norm

‖x‖C = sup{‖x(t)‖ : t ∈ J}.

We will use a measure of noncompactness in the space C(J,E) which was in-
vestigated in [3,4,6–8,15]. In order to define this measure let us fix a nonempty
bounded subset X of the space C(J,E) and a positive number t ∈ J . For x ∈ X
and ε ≥ 0 denote by ωt(x, ε) the modulus of continuity of the function x on the
interval [0, t], i.e.

ωt(x, ε) = sup{‖x(t2)− x(t1)‖ : t1, t2 ∈ [0, t], |t2 − t1| ≤ ε}.

Further, let us put:

ωt(X, ε) = sup{ωt(x, ε) : x ∈ X}, ωt0(X) = lim
ε→0+

ωt(X, ε).

Apart from this we put

β(X) = sup{β(X(t)) : t ∈ J},

where β denotes Hausdorff measure of noncompactness in E. Finally, we define
the function µ on the family of bounded subsets of the space C(J,E) by putting

µ(X) = ωT0 (X) + β(X).

It may be shown that the function µ is the measure of noncompactness in the
space C(J,E) (see [3, 4, 6–8, 15]). The kernel kerµ = {X⊂C(J,E) : µ(X) = 0,
X 6= ∅} is the family of all nonempty and bounded sets X such that functions
belonging to X are equicontinuous on J and the set X(t) is relatively compact
in E for t ∈ J . This property will be crucial in our further study.

Next, for a given nonempty and bounded subset X of the space C(J,E),
let us denote∫ t

0

X(s)ds =

{∫ t

0

x(s)ds : x∈X
}
, t∈J, X([0, t]) = {x(s) : x∈X, s∈ [0, t]}.

Lemma 2.3 ([13, Corollary 3.1(b), Remarks (c)]). If the Banach space E is
separable and a set X ⊂ C(J,E) is bounded, then the function t 7→ β(X(t)) is
measurable and

β

(∫ t

0

X(s)ds

)
≤
∫ t

0

β(X(s))ds for each t ∈ J.
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Remark 2.4. Observe that in the above lemma we do not require the equicon-
tinuity of functions from the set X.

For our further purposes we will also need the following lemma.

Lemma 2.5. Assume that a set X ⊂ C(J,E) is bounded. Then

β(X([0, t])) ≤ ωt0(X) + sup
s≤t

β(X(s)), for t ∈ J. (3)

Proof. Fix arbitrarily δ > 0. Then there exists ε > 0 such that ωt(X, ε) ≤
ωt0(X) + δ

2
. Let us take a partition 0 = t0 < t1 < · · · < tk = t such that

ti − ti−1 ≤ ε for i = 1, . . . , k. Then for each t′ ∈ [ti−1, ti] and x ∈ X the
following inequality is fulfilled

‖x(t′)− x(ti)‖ ≤ ωt0(X) +
δ

2
. (4)

Let us notice that for each i = 1, 2, . . . , k there are points zij ∈ E (j = 1, . . . , ni)
such that

X(ti) ⊂
ni⋃
j=1

B
(
zij, sup

s≤t
β(X(s)) +

δ

2

)
. (5)

We show that

X([0, t]) =
k⋃
i=1

ni⋃
j=1

B
(
zij, sup

s≤t
β(X(s)) + ωt0(X) + δ

)
. (6)

Let us choose an arbitrary element v ∈ X([0, t]). Then, we can find t′ ∈ [0, t]
and x ∈ X, such that v = x(t′). Choosing i such that t′ ∈ [ti−1, ti] and j such
that x(ti) ∈ B(zij, sups≤t β(X(s)) + δ

2
) we obtain from (4) and (5)

‖v−zij‖ = ‖x(t′)−zij‖ ≤ ‖x(t′)−x(ti)‖+‖x(ti)−zij‖ ≤ ωt0(X)+sup
s≤t

β(X(s))+δ

and this verifies (6). Condition (6) yields that

β(X([0, t])) ≤ ωt0(X) + sup
s≤t

β(X(s)) + δ.

Letting δ → 0+ we get (3).

Now we give an example of a set X and a Banach space E such that the
sign equality in (3) is attained.
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Example 2.6. Consider an infinite dimensional Banach space E and a sequence
of vectors {ek} ⊂ E such that ‖ek‖ = 1, k = 1, 2, . . . and

β({ek : k ∈ N}) = 1, (7)

for example E = c0 and ek = (0, . . . , 0, 1, 0, . . .), k = 1, 2, . . . .

Next, we define the sequence {fn} of continuous and piece-wise linear func-
tions fn : [0, T ]→ R, n = 1, 2, . . . , given by formula

fn(t) =


0 for t ∈ [0, T

n+1
] ∪ [T

n
, T ]

2n(n+ 1)t− 2n for t ∈ ( T
n+1

, (2n+1)T
2n(n+1)

]

−2n(n+ 1)t+ 2(n+ 1) for t ∈ ( (2n+1)T
2n(n+1)

, T
n

).

Further, let us put

xn(t) = (1 + fn(t))en, t ∈ [0, T ], n = 1, 2, . . . , and X = {xn : n ∈ N}.

Observe that

X(s) =

{
{ek : k ∈ N} for s = 0
{ek : k 6= n} ∪ {(1 + fn(s))en} for s ∈ ( T

n+1
, T
n

].

Hence

β(X(s)) = 1 for s ∈ [0, T ], (8)

X([0, t]) = {ek : k ∈ N} for t = 0,

and

⋃
c∈[1,2]

c · {ek : k > n} ⊂ X([0, t]) ⊂
⋃

c∈[1,2]

c · {ek : k ∈ N} for t ∈
( T

n+ 1
,
T

n

]
.

Then, in virtue of (7) we get

β(X([0, t])) =

{
1 for t = 0
2 for t ∈ (0, T ].

(9)

Moreover, we have

ωt0(X) =

{
0 for t = 0
1 for t ∈ (0, T ].

(10)

Linking (8)–(10), we conclude that the sign equality in (3) is attained for t ∈ J .
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3. Main result

In this section we prove two existence results for the semilinear equation of
evolution (1) and (2). First, we will assume that the functions involved in
Equations (1) and (2) satisfy the following conditions:

(HA) A(t) is a linear operator acting from Dt ⊂ E to E for each t ∈ J and
A(t) generates a strongly continuous evolution system {U(t, s)}0≤s≤t≤T
such that

(i) U(t, s) is a function, defined on 0 ≤ s ≤ t ≤ T , which takes values
in B(E),

(ii) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T ,

(iii) the map (t, s)→ U(t, s)x is continuous for every x ∈ E.

Further, let us denote:

N(t) = sup{‖U(s, 0)‖ : 0 ≤ s ≤ t}, N(t) = sup{‖U(s, τ)‖ : 0 ≤ τ ≤ s ≤ t}.

(Hf) (i) The mapping f : J × E → E satisfies Carathéodory conditions, i.e.
f(·, x) is measurable for x ∈ E and f(t, ·) is continuous for a.e. t ∈ J ,

(ii) the mapping f is bounded on bounded subsets of C(J,E),

(iii) there exists a constant kf ≥ 0 such that for any bounded set
X ⊂ C(J,E), the inequality

β(f([0, t]×X)) ≤ kfβ(X([0, t]))

holds for t ∈ J , where f([0, t]×X) = {f(s, x(s)) : 0 ≤ s ≤ t, x ∈ X}.
(Hg) (i) The function g : C(J,E)→ E is continuous,

(ii) there exists a constant kg ≥ 0 such that

β(g(X)) ≤ kgβ(X(J)),

for each bounded set X ⊂ C(J,E).

(H1) There exists a constant r > 0 such that for any t ∈ J

N(t) sup
x∈B(θ,r)

‖g(x)‖+N(t) sup
x∈B(θ,r)

∫ t

0

‖f(s, x(s))‖ds ≤ r,

where B(θ, r) is closed ball in C(J,E) centered at θ and with radius r.

(H2)

3kgN(T ) + 3kfTN(T ) < 1.
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Definition 3.1. A continuous function x : J → E such that

x(t) = U(t, 0)g(x) +

∫ t

0

U(t, s)f(s, x(s))ds for t ∈ J

will be called the mild solution of Equation (1) with initial condition (2).

Next, consider the operators H,G : C(J,E) → C(J,E) defined by the
formulas

(Hx)(t) = U(t, 0)g(x)

(Gx)(t) =

∫ t

0

U(t, s)f(s, x(s))ds.

Lemma 3.2. Assume that assumptions (HA) and (Hf) are satisfied and a set
X ⊂ C(J,E) is bounded. Then

ωt0(GX) ≤ 2tN(t)β(f([0, t]×X)) for t ∈ J.

Proof. Fix t ∈ J and denote W = f([0, t]×X),

νt(ε) = sup{‖(U(t2, s)− U(t1, s))w‖ : 0 ≤ s ≤ t1 ≤ t2 ≤ t, t2 − t1 ≤ ε, w ∈ W}.

At the beginning we show that

lim
ε→0+

νt(ε) ≤ 2N(t)β(W ). (11)

Suppose contrary. Then there exists a number d such that

lim
ε→0+

νt(ε) > d > 2N(t)β(W ). (12)

Fix δ > 0 such that
d > 2N(t)(β(W ) + δ). (13)

Condition (12) yields that there exist sequences (t2,n), (t1,n), (sn) ⊂ J and
(wn) ⊂ W , such that t2,n → t′, t1,n → t′, sn → s and

‖(U(t2,n, sn)− U(t1,n, sn))wn‖ > d.

Let the points y1, y2, . . . , yk ∈ E be such that W ⊂
⋃k
i=1B(yi, β(W ) + δ). Then

there exists a point yj and a subsequence of (wn), (which is further denoted
by (wn)) such that wn ∈ B(yj, β(W ) + δ), i.e.

‖yj − wn‖ ≤ β(W ) + δ for n = 1, 2, . . . .
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Further, we obtain

‖U(t2,n, sn)wn − U(t1,n, sn)wn‖
≤ ‖U(t2,n, sn)wn − U(t2,n, sn)yj‖+ ‖U(t2,n, sn)yj − U(t1,n, sn)yj‖

+ ‖U(t1,n, sn)yj − U(t1,n, sn)wn‖
≤ 2N(t)‖yj − wn‖+ ‖U(t2,n, sn)yj − U(t1,n, sn)yj‖
≤ 2N(t)(β(W ) + δ) + ‖U(t2,n, sn)yj − U(t1,n, sn)yj‖.

Letting n→∞ and using the properties of the evolution system {U(t, s)}, from
the above estimate we get

lim sup
n→∞

‖U(t2,n, sn)wn − U(t1,n, sn)wn‖ ≤ 2N(t)(β(W ) + δ).

This contradicts (12) and (13).
Now, fix ε > 0 and t1, t2 ∈ [0, t], 0 ≤ t2 − t1 ≤ ε. Applying (Hf)(ii) we

obtain

‖(Gx)(t2)− (Gx)(t1)‖

≤
∫ t1

0

‖(U(t2, s)− U(t1, s))f(s, x(s))‖ds+

∫ t2

t1

‖U(t2, s)f(s, x(s))‖ds

≤
∫ t

0

‖(U(t2, s)− U(t1, s))f(s, x(s))‖ds

+ εN(t) sup{‖f(s, x(s))‖ : s ∈ [0, t], x ∈ X}.

Hence, we derive the following inequality

ωt(GX, ε)

≤ sup

{∫ t

0

‖(U(t2, s)−U(t1, s))f(s, x(s))‖ds : t1, t2∈ [0, t], 0≤ t2−t1≤ε, x∈X
}

+ εN(t) sup {‖f(s, x(s))‖ : s ∈ [0, t], x ∈ X} .

Letting ε→ 0+ and keeping in mind (11) we complete the proof.

Lemma 3.3. Assume that assumptions (HA), (Hg) are satisfied and a set
X ⊂ C(J,E) is bounded. Then

ωt0(HX) ≤ 2N(t)β(g(X)) for t ∈ J.

The simple proof is omitted. Then we can formulate our first result.

Theorem 3.4. If the Banach space E is separable then under assumptions
(HA), (Hg), (Hf), (H1), and (H2), Equation (1) with initial condition (2) has
at least one mild solution x = x(t).
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Proof. Consider the operator F defined by formula

(Fx)(t) = U(t, 0)g(x) +

∫ t

0

U(t, s)f(s, x(s))ds.

For an arbitrarily fixed x ∈ C(J,E) and t ∈ J we get:

‖(Fx)(t)‖ ≤ N(t)‖g(x)‖+N(t)

∫ t

0

‖f(s, x(s))‖ds.

From the above estimate and assumption (H1) we infer that there exists a
constant r > 0 such that the operator F transforms the closed ball B(θ, r) into
itself.

Now, we prove that operator F is continuous in B(θ, r). To do this, let us
fix x ∈ B(θ, r) and take arbitrary sequence (xn) ∈ B(θ, r) such that xn → x in
C(J,E). Next, we have

‖Fx− Fxn‖C ≤ N(T )‖g(x)− g(xn)‖+N(T )

∫ T

0

‖f(s, x(s))− f(s, xn(s))‖ds.

Applying Lebesgue dominated convergence theorem and (Hg)(i) and (Hf)(i) we
derive that F is continuous on B(θ, r).

Now, we consider the sequence of sets (Ωn) defined by induction as follows:

Ω0 = B(θ, r),Ωn+1 = Conv(FΩn) for n = 0, 1, . . . .

This sequence is decreasing, i.e. Ωn ⊃ Ωn+1 for n = 0, 1, 2, . . . .
Further, let us put

un(t) = β(Ωn([0, t])), wn(t) = ωt0(Ωn).

Observe that each of functions un(t) and wn(t) is nondecreasing, while sequences
(un(t)) and (wn(t)) are nonincreasing at any fixed t ∈ J . Put

u∞(t) = lim
n→∞

un(t), w∞(t) = lim
n→∞

wn(t)

for t ∈ J . Using Lemmas 2.5, 3.3 and (Hg)(ii) we obtain

β(HΩn([0, t])) ≤ ωt0(HΩn) + sup
s≤t

β(HΩn(s))

≤ 2N(t)β(g(Ωn)) + sup
s≤t

N(s)β(g(Ωn))

≤ 3N(t)β(g(Ωn))

≤ 3kgN(t)β(Ωn([0, T ]))

= 3kgN(t)un(T ). (14)
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Moreover, taking into account Lemmas 2.3, 2.5, 3.2 and (Hf)(iii) we infer the
following estimate

β(GΩn([0, t])) ≤ ωt0(GΩn) + sup
s≤t

β(GΩn(s))

≤ 2tN(t)β(f([0, t]× Ωn)) + sup
s≤t

β
(∫ s

0

U(s, τ)f(τ,Ωn(τ))dτ
)

≤ 2kf tN(t)β(Ωn([0, t])) + sup
s≤t

N(s)

∫ s

0

β(f(τ,Ωn(τ)))dτ

≤ 2kf tN(t)un(t) +N(t)

∫ t

0

β(f([0, τ ]× Ωn))dτ

≤ 2kf tN(t)un(t) + kfN(t)

∫ t

0

un(τ)dτ.

Linking this estimate with (14) we obtain

un+1(t) = β(Ωn+1([0, t])) = β(FΩn([0, t])) ≤ β(HΩn([0, t])) + β(GΩn([0, t]))

and consequently un+1(t) ≤ 3kgN(t)un(T )+2kf tN(t)un(t)+kfN(t)
∫ t
0
un(τ)dτ.

Letting n→∞ we get

u∞(t) ≤ 3kgN(t)u∞(T ) + 2kf tN(t)u∞(t) + kfN(t)

∫ t

0

u∞(τ)dτ.

Hence, putting t = T , we get in view of (H2)

u∞(T ) = 0. (15)

Moreover, applying Lemmas 3.3, 3.2, (Hg)(ii) and (Hf)(iii) we derive wn+1(t) =
ωt0(Ωn+1) = ωt0(FΩn) ≤ ωt0(HΩn) + ωt0(GΩn) ≤ 2kgN(t)un(T ) + 2kf tN(t)un(t).
Letting n→∞ we get

w∞(t) ≤ 2kgN(t)u∞(T ) + 2kf tN(t)u∞(t).

Putting t = T and applying (15) we conclude that w∞(T ) = 0. This fact to-
gether with (15) implies that limn→∞ µ(Ωn) = 0. Hence, in view of Remark 2.2,
we deduce that the set Ω∞ =

⋂∞
n=0 Ωn is nonempty, compact and convex. Fi-

nally, linking all above obtained facts concerning the set Ω∞ and the operator
F : Ω∞ → Ω∞ and using the classical Schauder fixed point principle we infer
that the operator F has at least one fixed point x in the set Ω∞. Obviously the
function x = x(t) is a mild solution of Equations (1) and (2).

Now we will investigate Equations (1) and (2) under the following hypothe-
ses:
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(Hg’) (i) This condition is identical with (Hg)(i),

(ii) there exists a nonnegative constant kg ≥ 0 such that

β(g(X)) ≤ kg sup
t≤T

β(X(t)),

for each bounded set X ⊂ C(J,E).

(Hf’) (i) The mapping f : J × E → E is uniformly continuous on bounded
subsets of J × E,

(ii) there is a constant kf ≥ 0 such that

β(f(t, Y )) ≤ kfβ(Y ),

for t ∈ J and for each bounded Y ⊂ E.

(H3)
min{kgN(T ) + kfN(T ), 2kfTN(T )} < 1.

For the proof of next theorem we need the following lemma.

Lemma 3.5. Assume that assumptions (HA) and (Hf’) are satisfied and a set
X ⊂ C(J,E) is bounded. Then

ωt0(GX) ≤ 2kf tN(t)β(X([0, t])) for t ∈ J.

Proof. Fix t ∈ J and denote

νt(ε) = sup{‖(U(t2, s)− U(t1, s))w‖ : 0 ≤ s ≤ t1 ≤ t2 ≤ t, t2 − t1 ≤ ε, x ∈ X}.

At the beginning we show that

lim
ε→0+

νt(ε) ≤ 2kfN(t)β(X([0, t])).

Suppose contrary. Then there exists a number d such that

lim
ε→0+

νt(ε) > d > 2kfN(t)β(X([0, t])).

Fix δ > 0 such that

lim
ε→0+

νt(ε) > d+ δ > d > 2N(t)(kfβ(X([0, t])) + δ). (16)

Condition (16) yields that there exist sequences (t2,n), (t1,n), (sn) ⊂ J and
(xn) ⊂ X, such that t2,n → t′, t1,n → t′, sn → s′ and

‖(U(t2,n, sn)− U(t1,n, sn))f(sn, xn(sn))‖ > d+ δ.

Hence, in view of the uniform continuity of the mapping f we obtain

‖(U(t2,n, sn)− U(t1,n, sn))f(s′, xn(sn))‖ > d,
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for n sufficiently large. Further, we choose points y1, y2, . . . , yk ∈ E such that
f(s′, X([0, t])) ⊂

⋃k
i=1B(yi, β(f(s′, X([0, t])))+ δ). Then there is a point yj and

a subsequence of (f(s′, xn(sn))), (which is further denoted by (f(s′, xn(sn))))
such that

‖f(s′, xn(sn))− yj‖ ≤ β(f(s′, X([0, t]))) + δ ≤ kfβ(X([0, t])) + δ.

Next, arguing analogously as in Lemma 3.2 we derive

‖U(t2,n, sn)f(s′, xn(sn))− U(t1,n, sn)f(s′, xn(sn))‖
≤ 2N(t)‖f(s′, xn(sn))− yj‖+ ‖U(t2,n, sn)yj − U(t1,n, sn)yj‖
≤ 2N(t)(kfβ(X([0, t])) + δ) + ‖U(t2,n, sn)yj − U(t1,n, sn)yj‖.

Letting n→∞ and using the properties of the evolution system {U(t, s)}, this
estimate implies lim supn→∞‖U(t2,n, sn)f(s′, xn(sn))−U(t1,n, sn)f(s′, xn(sn))‖≤
2N(t)(kfβ(X([0, t])) + δ). This contradicts (16). The remainder of the proof
proceeds analogously as the proof of Lemma 3.2 and is therefore omitted.

Now, we can formulate the second existence result.

Theorem 3.6. If the Banach space E is separable then under assumptions
(HA), (Hg’), (Hf’), (H1) and (H3), Equation (1) with initial condition (2) has
at least one mild solution x = x(t) ∈ C(J,E).

Proof. Similarly as in proof of Theorem 3.4 we can show that the mapping
F : B(θ, r) → B(θ, r) is continuous and we define analogously the sequence
(Ωn)n∈N. Let us put

vn(t) = sup
s≤t

β(Ωn(s)), v∞(t) = lim
n→∞

vn(t).

Using (Hg’)(ii) and (Hf’)(ii) we get

β(Ωn+1(s)) = β(FΩn(s))

≤ β(HΩn(s)) + β(GΩn(s))

≤ N(s)β(g(Ωn)) + β
(∫ s

0

U(s, τ)f(τ,Ωn(τ))dτ
)

≤ kgN(s) sup
s≤T

β(Ωn(s)) +

∫ s

0

β(U(s, τ)f(τ,Ωn(τ)))dτ

≤ kgN(s)vn(T ) +N(s)

∫ s

0

β(f(τ,Ωn(τ))dτ

≤ kgN(s)vn(T ) + kfN(s)

∫ s

0

β(Ωn(τ))dτ

≤ kgN(s)vn(T ) + kfN(s)

∫ s

0

vn(τ)dτ.
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Hence vn+1(t) = sups≤t β(Ωn+1(s)) ≤ kgN(t)vn(T ) + kfN(t)
∫ t
0
vn(τ)dτ. Letting

n→∞ we obtain

v∞(t) ≤ kgN(t)v∞(T ) + kfN(t)

∫ t

0

v∞(τ)dτ.

Now, put t = T . Using (H3) we get

v∞(T ) = 0. (17)

Then, keeping in mind Lemmas 2.5 and 3.5 we have wn+1(t) = ωt0(Ωn+1) =
ωt0(FΩn) and

wn+1(t) ≤ ωt0(HΩn) + ωt0(GΩn)

≤ 2N(t)β(g(Ωn)) + 2kf tN(t)β(Ωn([0, t]))

≤ 2kgN(t)vn(T ) + 2kf tN(t)(ωt0(Ωn) + sup
τ≤t

β(Ωn(τ)))

≤ 2kgN(t)vn(T ) + 2kf tN(t)(wn(t) + vn(t)).

Letting n→∞ and putting t = T we obtain

w∞(T ) ≤ 2kfTN(T )w∞(T ) + (2kgN(T ) + 2kfTN(T ))v∞(T ),

w∞(T )(1− 2kfTN(T )) ≤ (2kgN(T ) + 2kfTN(T ))v∞(T ).

Linking above established fact, (17) and (H3) we get w∞(T ) = 0. This implies
that limn→∞ µ(Ω∞) = 0 and therefore the set Ω∞ =

⋂∞
n=0 Ωn is nonempty,

compact and convex. Using the classical Schauder fixed point principle for the
operator F : Ω∞ → Ω∞ we infer that the operator F has at least one fixed
point in x ∈ Ω∞. This completes the proof.

4. Final remarks

In this section we are going to discuss hypotheses (Hf)(iii), (Hf’)(ii), (H1),
(Hg)(ii) and (Hg’)(ii). We provide more convenient sufficient conditions allowing
to replace these hypotheses.

First, we list some assumptions:

(F1) The mappings f1, f2 : J × E → E satisfy Carathéodory conditions.

(F2) The mapping f1(·, x) is continuous on J for each x ∈ E.

(F3) The mapping f2 is compact on C(J,E).

(F4) There exists a constant kf ≥ 0 such that

‖f1(t, x)− f1(t, y)‖ ≤ kf‖x− y‖

for any t ∈ J and for all x, y ∈ E.
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(F5) There are two integrable functions af , bf : J → R+ such that

‖f(t, x)‖ ≤ af (t) + bf (t)‖x‖

for a.e. t ∈ J and for each x ∈ E.

Moreover, we define the mapping f : J × E → E by the formula

f(t, x) = f1(t, x) + f2(t, x).

Proposition 4.1. Under the assumptions (F1)–(F4) the mapping f satisfies
the hypotheses (Hf)(iii).

Proof. Let us take a nonempty and bounded subset X of C(J,E) and fix arbi-
trarily t ∈ J and ε > 0. Moreover, we put r = β(X([0, t])). Then there exist
points a1, a2, . . . , an ∈ E such that

X([0, t]) ⊂
n⋃
i=1

B(ai, r + ε).

Keeping in mind the continuity of the function f1(·, ai) on J for i = 1, 2, . . . , n
we deduce that there is a partition 0 = s0 < s1 < · · · < sm = t of the interval
[0, t] such that for each s ∈ [sj−1, sj] we have

‖f1(s, ai)− f1(sj, ai)‖ ≤ ε (18)

for i = 1, 2, . . . , n. Let us fix s ∈ J and x ∈ X. Choosing j and i such that
s ∈ [sj−1, sj] and

x(s) ∈ B(ai, r + ε) (19)

we obtain from (F4), (18) and (19)

‖f1(s, x(s))− f1(sj, ai)‖ ≤ ‖f1(s, x(s))− f1(s, ai)‖+ ‖f1(s, ai)− f1(sj, ai)‖
≤ kf‖x(s)− ai‖+ ε

≤ kf (r + ε) + ε.

This implies that f1([0, t] × X) ⊂
⋃n
i=1

⋃m
j=1B(f1(sj, ai), kf (r + ε) + ε) and

therefore

β(f1([0, t]×X)) ≤ kf (r + ε) + ε, β(f1([0, t]×X)) ≤ kfβ(X([0, t])).

Linking this inequality and (F3) we get

β(f([0, t]×X)) ≤ β(f1([0, t]×X)) + β(f2([0, t]×X)) ≤ kfβ(X([0, t])).

Proposition 4.2. Under the assumptions (F1), (F3), (F4) the mapping f sat-
isfies hypothesis (Hf’)(ii).
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The similar proof is omitted.
Now we discuss hypothesis (H1). The mapping g is usually defined in two

ways:

g(x) =
n∑
i=1

cix(ti), (20)

where 0 ≤ t1 < t2 < · · · < tn ≤ T, c1, c2, . . . , cn are given constants, or

g(x) =

∫ T

0

h(t, x(t))dt. (21)

The function h involved in formula (21) will be studied under the following
assumptions:

(G1) The mapping h : J × E → E satisfies Carathéodory conditions.

(G2) There are two integrable functions ah, bh : J → R+ such that

‖h(t, x)‖ ≤ ah(t) + bh(t)‖x‖

for a.e. t ∈ J and each x ∈ E.

(G3) There exists a constant kh ≥ 0 such that

‖h(t, x)− h(t, y)‖ ≤ kh‖x− y‖

for any t ∈ J and for all x, y ∈ E. Moreover, the function h(·, x) is
continuous on J for each x ∈ E.

(G4) There exists a integrable function k : J → R+ such that

β(h(t, Y )) ≤ k(t)β(Y )

for a.e. t ∈ J and every a bounded subset Y ⊂ E.

Now we can formulate the next proposition.

Proposition 4.3. If the mapping g is given by formula (20), f satisfies (F5)
and moreover

N(T )
n∑
i=1

|ci|+N(T )

∫ T

0

bf (t)dt < 1,

then the hypothesis (H1) is satisfied.

Proof. It is easy to check that r can be given by the formula

r = N(T )

∫ T

0

af (t)dt ·

(
1−N(T )

n∑
i=1

|ci| −N(T )

∫ T

0

bf (t)dt

)−1
.
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Proposition 4.4. Assume that g is given by formula (21), the conditions (F5),
(G1), (G2) are satisfied and moreover

N(T )

∫ T

0

bh(t)dt+N(T )

∫ T

0

bf (t)dt < 1.

Then the hypothesis (H1) is satisfied.

The similar proof is omitted.
Now we discuss hypotheses (Hg)(ii) and (Hg’)(ii).

Proposition 4.5. If g is given by formula (20), then the hypotheses (Hg)(ii)
and (Hg’)(ii) are satisfied with the constant kg =

∑n
i=1 |ci|.

Proof. We will prove (Hg)(ii). Let X be a nonempty and bounded subset of
C(J,E). Then

β(g(X)) ≤ β
( n∑
i=1

ciX(ti)
)
≤

n∑
i=1

|ci|β(X(ti)) ≤
n∑
i=1

|ci| · β(X(J)).

The proof for (Hg’)(ii) is omitted.

Proposition 4.6. Let g be described by (21) and suppose that conditions (G1)
and (G4) are satisfied. Then the hypothesis (Hg’)(ii) is fulfilled with the constant

kg =
∫ T
0
k(t)dt.

Proof. Let X be a nonempty and bounded subset of C(J,E). We have

β(g(X)) ≤ β

(∫ T

0

h(t,X(t))dt

)
≤
∫ T

0

k(t)β(X(t))dt ≤
∫ T

0

k(t)dt·sup
t∈J

β(X(t))

and therefore kg =
∫ T
0
k(t)dt.

Proposition 4.7. If g is defined by (21) and the conditions (G1) and (G3) are
fulfilled, then the hypothesis (Hg)(ii) is satisfied with the constant kg ≤ Tkh.

The proof is similar to the proof of Proposition 4.1 and will be omitted.
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