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Characterisation by Local Means of
Anisotropic Lizorkin-Triebel Spaces

with Mixed Norms
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Abstract. This is a contribution to the theory of Lizorkin-Triebel spaces having
mixed Lebesgue norms and quasi-homogeneous smoothness. We discuss their char-
acterisation in terms of general quasi-norms based on convolutions. In particular,
this covers the case of local means, in Triebel’s terminology. The main step is an
extension of some crucial inequalities due to Rychkov to the case with mixed norms.
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1. Introduction

This paper is devoted to a study of anisotropic Lizorkin-Triebel spaces F s,~a
~p,q (Rn)

with mixed norms, which has grown out of work of the first and third author,
cf. [12, 13].

First Sobolev embeddings and completeness of the scale F s,~a
~p,q (Rn) were cov-

ered in [12]. As the foundation for this, the Nikol’skĭı-Plancherel-Polya inequal-
ity for sequences of functions in the mixed-norm space L~p(Rn) was established
in [12] with fairly elementary proofs. Then a detailed trace theory for hyper-
planes in Rn was worked out in [13], e.g. with the novelty that the well-known
borderline s = 1

p
has to be shifted upwards in some cases, because of the mixed

norms.
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In the present paper we obtain some general characterisations of the space
F s,~a
~p,q (Rn), that may be specialised to kernels of local means. We have at least two

motivations for this. One is that local means have emerged in the last decade
as the natural foundation for a discussion of wavelet bases for Sobolev spaces
and their generalisations to the Besov and Lizorkin-Triebel scales; cf. works
of Triebel [22, Theorem 1.20] and e.g. Vybiral [23, Theorem 2.12], Hansen [8,
Theorem 4.3.1].

Secondly, local means will be crucial for the entire strategy in our forthcom-
ing paper [9], in which we establish invariance of F s,~a

~p,q under diffeomorphisms in
order to carry over trace results from [13] to spaces over smooth domains. More
precisely, because of the anisotropic structure of the F s,~a

~p,q -spaces, we consider
them over smooth cylindrical sets in Euclidean space in [9] and develop results
for traces on the flat and curved parts of the boundary of the cylinder in [10].

To elucidate the importance of the results here and in [9, 10], we recall
that F s,~a

~p,q -spaces have applications to parabolic differential equations with initial
and boundary value conditions: when solutions are sought in a mixed-norm
Lebesgue space L~p (e.g. to allow for different properties in the space and time

directions), then F s,~a
~p,q -spaces are in general inevitable for a correct description

of non-trivial data on the curved boundary.

This conclusion was obtained in works of Weidemaier [24–26], who treated
several special cases; the reader may consult the introduction of [13] for details.

To give a brief review of the present results, we recall that the norm ‖·|F s,~a
~p,q ‖

of F s,~a
~p,q (Rn) is defined in a well-known Fourier-analytic way by splitting the

frequency space by means of a Littlewood-Paley partition of unity. But to

have “complete” freedom, it is natural first of all to work with convolutions

ψj ∗ f defined from more arbitrary sequences (ψj)j∈N0 of Schwartz functions

with dilations ψj = 2j|~a|ψ(2j~a·) for j ≥ 1. This requires both the Tauberian

conditions that ψ̂0(ξ), ψ̂(ξ) have no zeroes for |ξ|~a < 2ε and ε
2
< |ξ|~a < ε,

respectively; and the moment condition that Dαψ̂(0) = 0 for |α| ≤Mψ.

Secondly, one may work with anisotropic Peetre-Fefferman-Stein maximal
functions ψ∗j,~af , and with these our main result can be formulated as follows:

Theorem. If s < (Mψ + 1) min(a1, . . . , an) and 0 < pj < ∞, 0 < q ≤ ∞, the
following quasi-norms are equivalent on the space of temperate distributions:

‖f |F s,~a
~p,q ‖, ‖{2sjψj ∗ f}∞j=0|L~p(`q)‖, ‖{2sjψ∗j,~af}∞j=0|L~p(`q)‖. (1)

Thus f ∈ F s,~a
~p,q (Rn) if and only if one (hence all) of these expressions are finite.
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In the isotropic case, i.e., when ~a = (1, . . . , 1) and unmixed Lp-norms are
used, the theorem has been known since the important work of Rychkov [15],
albeit in another formulation. In our generalisation we follow Rychkov’s proof
strategy closely, but with some corrections; cf. Remark 1.1 below.

Another particular case is when the functions ψ0 and ψ have compact sup-
port, in which case the convolutions may be interpreted as local means, as
observed by Triebel [21]. Thus we develop the mentioned characterisations by
local means for the anisotropic F s,~a

~p,q -spaces in Theorem 5.2 below, and as far as
we know, already this part of their theory is a novelty. As indicated above, it
will enter directly into the proofs of our paper [9].

However, it deserves to be mentioned that the arguments in [9] also rely on
a stronger estimate than the inequalities underlying the above theorem. In fact
we need to consider parameter dependent functions ψθ, θ ∈ Θ (an index set),
that satisfy the moment conditions in a uniform way. Theorem 4.4 below gives
the precise details and our estimate of

‖ {2sj sup
θ∈Θ

ψ∗θ,j,~af}∞j=0 |L~p(`q)‖. (2)

Similar quasi-norms were introduced by Triebel in the proof of [21, Proposition
4.3.2] for the purpose of showing diffeomorphism invariance of the isotropic scale
F s
p,q(Rn). However, he only claimed the equivalence of the quasi-norms for f

belonging a priori to F s
p,q and details of proof were not given. Since our estimate

of (2) is valid for arbitrary distributions f ∈ S ′, it should be well motivated
that we develop this important tool with a full explanation here.

Remark 1.1. The fact that the arguments in [15] are incomplete was observed
in the Ph.D. thesis of M. Hansen [8, Remark 3.2.4], where it was exemplified that
in general a certain O-condition is unfulfilled; cf. Remark 4.7 below. Another
flaw is pointed out here in Remark 2.9. However, to obtain the full generality
with arbitrary temperate distributions in Proposition 4.6 below, we have pre-
ferred to reinforce the original proofs of Rychkov. Hence we have found it best
to aim at a self-contained exposition in this paper.

Contents. The paper is organized as follows. Section 2 reviews our notation
and gives a discussion of the anisotropic spaces of Lizorkin-Triebel type with a
mixed norm. Section 3 presents some maximal inequalities for mixed Lebesgue
norms. Quasi-norms defined from general systems of Schwartz functions sub-
jected to moment and Tauberian conditions are estimated in Section 4, following
works of Rychkov. In Section 5 these spaces are characterised by such general
norms, and by local means.
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2. Preliminaries

2.1. Notation. Vectors ~p = (p1, . . . , pn) with pi ∈ ]0,∞] for i = 1, . . . , n are
written 0 < ~p ≤ ∞, as throughout inequalities for vectors are understood
componentwise; as are functions, e.g. ~p ! = p1! · · · pn!.

By L~p(Rn) we denote the set of all functions u : Rn → C that are Lebesgue
measurable and such that

‖u |L~p(Rn)‖ :=
(∫

R

(
. . .
(∫

R
|u(x1, . . . , xn)|p1dx1

) p2
p1. . .

) pn
pn−1 dxn

) 1
pn
<∞, (3)

with the modification of using the essential supremum over xj in case pj =∞.
Equipped with this quasi-norm, L~p(Rn) is a quasi-Banach space; it is normed
if min(p1, . . . , pn) ≥ 1.

Furthermore, for 0 < q ≤ ∞ we shall use the notation L~p(`q)(Rn) for
the space of sequences (uk)k∈N0 = {uk}∞k=0 of Lebesgue measurable functions
fulfilling

‖ {uk}∞k=0 |L~p(`q)(Rn)‖ :=
∥∥∥( ∞∑

k=0

|uk|q
) 1
q
∣∣∣L~p(Rn)

∥∥∥ <∞, (4)

with supremum over k in case q =∞. For brevity, we write ‖uk |L~p(`q)‖ instead
of ‖ {uk}∞k=0 |L~p(`q)(Rn)‖; as customary for ~p = (p, . . . , p), we simplify L~p to Lp
etc. If max(p1, . . . , pn, q) <∞, sequences of C∞0 -functions are dense in L~p(`q).

The Schwartz space S(Rn) consists of all smooth, rapidly decreasing func-
tions; it is equipped with the family of seminorms, using 〈x〉2 := 1 + |x|2,

pM(ϕ) := sup
{
〈x〉M |Dαϕ(x)|

∣∣x ∈ Rn, |α| ≤M
}
, M ∈ N0, (5)

whereby Dα := (−i∂x1)
α1 · · · (−i∂xn)αn for each multi-index α ∈ Nn

0 ; or with

pα,β(ϕ) := sup
x∈Rn
|xαDβϕ(x)|, α, β ∈ Nn

0 . (6)

The Fourier transformation Fg(ξ) = ĝ(ξ) =
∫
Rn e

−ix·ξg(x) dx for g ∈ S(Rn)
extends by duality to the dual space S ′(Rn) of temperate distributions.

Throughout generic constants will mainly be denoted by c or C, and in case
their dependence on certain parameters is relevant this will be explicitly stated.

2.2. Lizorkin-Triebel spaces with a mixed norm. As a motivation for
the general mixed-norm Lizorkin-Triebel spaces F s,~a

~p,q (Rn), we first mention that

for 1 < ~p < ∞ a temperate distribution u belongs to a class F s,~a
~p,2 (Rn) having

natural numbers mj := s
aj

for each j = 1, . . . , n if and only if u belongs to the

mixed-norm Sobolev space W ~m,~a
~p (Rn), ~m = (m1, . . . ,mn), defined by

‖u |L~p(Rn)‖+
n∑
i=1

∥∥∥ ∂miu
∂xmii

∣∣∣L~p(Rn)
∥∥∥ <∞. (7)
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This expression defines the norm on W ~m,~a
~p , which is equivalent to that on F s,~a

~p,2 .
More generally, mixed-norm Lizorkin-Triebel spaces generalise the frac-

tional Sobolev (Bessel potential) spaces Hs,~a
~p (Rn), since for 1 < ~p <∞, s ∈ R,

u ∈ Hs,~a
~p (Rn) ⇐⇒ u ∈ F s,~a

~p,2 (Rn). (8)

Here the norms are also equivalent; the former is given by ‖F−1(〈ξ〉−s~a û(ξ)) |L~p‖,
whereby 〈ξ〉~a is an anisotropic version of 〈ξ〉 compatible with ~a; cf. the following.

To account for the Fourier-analytic definition of F s,~a
~p,q (Rn), we first recall the

anisotropic structure used for derivatives. Each coordinate xj in Rn is given a
weight aj ≥ 1, collected in ~a = (a1, . . . , an). Based on the quasi-homogeneous
dilation t~ax := (ta1x1, . . . , t

anxn) for t ≥ 0, and ts~ax := (ts)~ax for s ∈ R, in
particular t−~ax = (t−1)~ax, the anisotropic distance function |x|~a is introduced
for x 6= 0 as the unique t > 0 such that t−~ax ∈ Sn−1 (with |0|~a = 0); i.e.,

x2
1

t2a1
+ · · ·+ x2

n

t2an
= 1. (9)

For the reader’s convenience we recall that |·|~a is C∞ on Rn\{0} by the Implicit
Function Theorem. The formula |t~ax|~a = t|x|~a is seen directly, and this implies
the triangle inequality,

|x+ y|~a ≤ |x|~a + |y|~a. (10)

The relation to e.g. the Euclidean norm |x| can be deduced from

max
(
|x1|

1
a1 , . . . , |xn|

1
an

)
≤ |x|~a ≤ |x1|

1
a1 + · · ·+ |xn|

1
an . (11)

For the above-mentioned weight function, one can e.g. let 〈ξ〉~a = |(ξ, 1)|(~a,1),
using the anisotropic distance given by (~a, 1) on Rn+1; analogously to 〈ξ〉 in the
isotropic case.

We pick for convenience a fixed Littlewood-Paley decomposition, written
1 =

∑∞
j=0 Φj(ξ), in the anisotropic setting as follows: Let ψ ∈ C∞0 be a function

such that 0 ≤ ψ(ξ) ≤ 1 for all ξ, ψ(ξ) = 1 if |ξ|a ≤ 1, and ψ(ξ) = 0 if |ξ|a ≥ 3
2
.

Then we set Φ = ψ − ψ(2~a·) and define

Φ0(ξ) = ψ(ξ), Φj(ξ) = Φ(2−j~aξ), j = 1, 2, . . . (12)

Definition 2.1. The Lizorkin-Triebel space F s,~a
~p,q (Rn), where 0 < ~p < ∞ is a

vector of integral exponents, s ∈ R a smoothness index, and 0 < q ≤ ∞ a sum
exponent, is the space of all u ∈ S ′(Rn) such that

‖u |F s,~a
~p,q ‖ :=

∥∥∥( ∞∑
j=0

2jsq
∣∣F−1 (Φj(ξ)Fu(ξ)) (·)

∣∣q ) 1
q
∣∣∣L~p(Rn)

∥∥∥ <∞. (13)
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For simplicity, we omit ~a when ~a = (1, . . . , 1) and shall often set

uj(x) = F−1 (Φj(ξ)Fu(ξ)) (x), x ∈ Rn, j ∈ N0. (14)

Occasionally, we need to consider Besov spaces, which are defined similarly:

Definition 2.2. For 0 < ~p ≤ ∞, 0 < q ≤ ∞ and s ∈ R the Besov space
Bs,~a
~p,q (Rn) consists of all u ∈ S ′(Rn) such that

‖u |Bs,~a
~p,q‖ :=

( ∞∑
j=0

2jsq‖uj |L~p(Rn)‖q
) 1
q
<∞. (15)

Remark 2.3. The Lizorkin-Triebel spaces F s,~a
~p,q have a long history, as they

give back e.g. the mixed-norm Sobolev spaces W ~m
~p , cf. (7). Anisotropic Sobolev

(Bessel potential) spaces Hs,~a
p with 1 < p <∞ (partly for s > 0) have been in-

vestigated in the monographs of Nikol’skĭı [14] and Besov, Il’in and Nikol’skĭı [2];
here the point of departure was a definition based on derivatives and differences.
In the second edition [3] also Lizorkin-Triebel spaces with mixed norms were
treated in Ch. 6.29–30. For characterisation of F s,~a

p,q by differences we refer also
to Yamazaki [28, Theorem 4.1] and Seeger [17].

The F s,~a
~p,q -spaces were considered for n = 2 by Schmeisser and Triebel [18],

who used the Fourier-analytic characterisation, which we prefer for its efficacy
what concerns application of powerful tools from Fourier analysis and distribu-
tion theory. (The definition of the anisotropy in terms of | · |~a is a well-known
procedure going back to the 1960’s; historical remarks and some basic properties
of | · |~a can be found in e.g. [27].)

For later use we recall some properties of these classes. First standard
arguments, cf. [12, 13], yield the following:

Lemma 2.4. Each F s,~a
~p,q (Rn) is a quasi-Banach space, which is normed if both

~p ≥ 1 and q ≥ 1. More precisely, for u, v ∈ F s,~a
~p,q and d := min(1, p1, . . . , pn, q),

‖u+ v |F s,~a
~p,q ‖

d ≤ ‖u |F s,~a
~p,q ‖

d + ‖ v |F s,~a
~p,q ‖

d. (16)

Furthermore, there are continuous embeddings

S(Rn) ↪→ F s,~a
~p,q (Rn) ↪→ S ′(Rn), (17)

where S is dense in F s,~a
~p,q for q < ∞. Also, the classes F s,~a

~p,q do not depend on
the chosen anisotropic decomposition of unity (up to equivalent quasi-norms).

Lemma 2.5 ([13]). For λ > 0 so large that λ~a ≥ 1, the space F s,~a
~p,q coincides

with F λs,λ~a
~p,q and the corresponding quasi-norms are equivalent.
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The lemma suggests to introduce a normalisation for the vector ~a, and often
one has fixed the value of |~a| in the literature. In this paper we just adopt the
flexible framework with ~a ≥ 1, though.

Remark 2.6. In Lemma 2.5 the inequalities ~a ≥ 1 and λ~a ≥ 1 are redundant.
In fact one can define F s,~a

~p,q for arbitrary ~a > 0, as in [13]. This gives another
set-up on Rn, where (10), and hence (11), has to be changed, for then

|x+ y|d~a ≤ |x|d~a + |y|d~a, d = min(1, a1, . . . , an). (18)

The basic results on the F s,~a
~p,q -scale can then be derived similarly for ~a > 0; only

a few constants need to be slightly changed because of (18). Thus one finds
e.g. Lemma 2.5 for all λ > 0, cf. the end of Section 3 in [13] (the details in
[13, Section 3] only cover ~a ≥ 1, but are extended to all ~a > 0 as just indicated;
in fact ρ(x, y) = |x − y|~a is then a quasi-distance, a framework widely used by
e.g. Stein [20]). However, in view of this lemma, it is simplest henceforth just
to assume that F s,~a

~p,q is defined in terms of an anisotropy ~a ≥ 1; which has been
done throughout in the present paper.

2.3. Summation lemmas. For later reference we give two minor results.

Lemma 2.7. When (gj)j∈N0 is a sequence of nonnegative measurable functions
on Rn and δ > 0, then Gj(x) :=

∑∞
k=0 2−δ|j−k|gj(x) fulfils for 0 < ~p < ∞,

0 < q ≤ ∞ that
‖Gj |L~p(`q)‖ ≤ Cδ,q‖ gj |L~p(`q)‖, (19)

whereby the constant is Cδ,q = (
∑

k∈Z 2−δ|k|q̃)
1
q̃ for q̃ = min(1, q).

Like for the unmixed case in [15, Lemma 2], the above lemma is obtained
by pointwise application of Minkowski’s inequality to a convolution in `q(Z).

Lemma 2.8. Let (bj)j∈N0 and (dj)j∈N0 be two sequences in [0,∞] and 0 < r ≤ 1.
If for some j0 ≥ 0 there exists real numbers C,N0 > 0 such that

dj ≤ C2jN0 for j ≥ j0, (20)

and if for every N > 0 there exists a real number CN such that

dj ≤ CN

∞∑
k=j

2(j−k)Nbkd
1−r
k , for j ≥ j0, (21)

then the same constants CN , N > 0, fulfil that

drj ≤ CN

∞∑
k=j

2(j−k)Nrbk, for j ≥ j0. (22)
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Proof. With Dj,N = supk≥j 2(j−k)Ndk it follows from (21) that for j ≥ j0, N > 0,

Dj,N ≤ sup
k≥j

CN
∑
l≥k

2(j−l)Nbld
1−r
l ≤ CN(

∑
l≥j

2(j−l)Nrbl)D
1−r
j,N . (23)

Clearly Dj1,N = 0 implies dj = 0 for j ≥ j1, so (22) is trivial for such j. We
thus only need to consider the Dj,N > 0. Now (20) yields that Dj,N < ∞ for
all j ≥ j0 when N ≥ N0, so then (22) follows from (23) by division by D1−r

j,N .
Given any N ∈ ]0, N0[ , we may in the just proved cases of (22) decrease N0

to N , which gives a version of (22) with N in the exponent and the constant
CN0 . Analogously to (23), one therefore finds from the definition of Dj,N that

Dj,N ≤ C
1
r
N0

(
∑

l≥j 2(j−l)Nrbl)
1
r for j ≥ j0. Here the right-hand side may be

assumed finite (as else (22) is trivial for this N), whence we may proceed as
before by division in (23).

Remark 2.9. Lemma 2.8 was essentially crystallised by Rychkov [15, Lem-
ma 3], albeit with three unnecessary assumptions: dj < ∞ (a consequence of
(20)), that bj, dj > 0 and that j0 = 0. For our proof of Proposition 4.6 below,
it is essential to consider j0 > 0, and it would be cumbersome there to reduce
to strict positivity of bj, dj. In [15] no justification was given for this strictness
in the application of [15, Lemma 3], but this is remedied by Lemma 2.8 above.

3. Some maximal inequalities

In this section we obtain some maximal inequalities in the mixed-norm set-up.
This part of the theory of the F s,~a

~p,q -spaces is interesting in its own right, and
also important for the authors’ work [9]. Moreover, the methods are similar to
those adopted in the set-up in Section 4 below, but are rather cleaner here.

For distributions u that for some R > 0 and j ∈ N satisfy

supp û ⊂
{
ξ ∈ Rn

∣∣ |ξk| ≤ R 2jak , k = 1, . . . , n
}

(24)

the Peetre-Fefferman-Stein maximal function u∗(x) is given by

u∗(x) = sup
y∈Rn

|u(y)|∏n
l=1(1 +R 2jal |xl − yl|)rl

, ~r > 0. (25)

It obviously fulfils

|u(x)| ≤ u∗(x) ≤ ‖u |L∞‖, x ∈ Rn. (26)

When u in addition is in L~p, the Nikol’skĭı-Plancherel-Polya inequality for mixed
norms, cf. [12, Proposition 4], gives the finiteness of the right-hand side, hence u∗
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is finite everywhere. Thus, analogously to [11, Section 2], the maximal function
is continuous.

To prepare for the theorem below, we first show the following pointwise
estimate of u∗(x) by combining the proof ingredients from [11, Proposition 2.2],
which the reader may consult for more details. Now their order is crucial:

Proposition 3.1. When 0 < ~q,~r ≤ ∞ then there is a constant c~q,~r such that
every u ∈ S ′ fulfilling (24) also satisfies

u∗(x) ≤ c~q,~r

∥∥∥∥u(x−R−1 2−j~az)∏n
l=1(1 + |zl|)rl

∣∣∣∣L~q (Rn
z )

∥∥∥∥ for x ∈ Rn. (27)

Proof. Taking ψ ∈ S(Rn) with ψ̂ ≡ 1 on [−1, 1] × · · · × [−1, 1] and such that

supp ψ̂ ⊂ [−2, 2]× · · · × [−2, 2], we have u = F−1(ψ̂(R−12−j~a·)) ∗ u, which may
be written with an integral since u is C∞ with polynomial growth,

u(y) =

∫
· · ·
∫
Rn 2j|~a| ψ(R 2j~a(y − z))u(z) dz1 · · · dzn. (28)

Now ~q = (q<, q≥) is split into two groups q< and q≥ according to whether qk < 1
or qk ≥ 1 holds. The groups may be interlaced, but for simplicity this is ignored
in the notation; the important thing is to treat the two groups separately.

First (28) is estimated by the norm of L1(Rn), which then is controlled in
terms of the norm of L(q<,1≥), whereby interlacing of the groups q< and 1≥ is
unimportant: for fixed y, the spectrum of the integrand in (28) is contained in
[−3R 2ja1 , 3R 2ja1 ]×· · ·× [−3R 2jan , 3R 2jan ], so the Nikol’skĭı-Plancherel-Polya
inequality for mixed norms applies, cf. [12, Proposition 4], which for qk < 1
gives an estimate by the norms of Lqk with respect to zk; that is,

|u(y)| ≤ c
∏
qk<1

(3R 2jak)
1
qk
−1 ∥∥Rn2j|~a|ψ(R2j~a(y − ·))u

∣∣L(q<,1≥)

∥∥. (29)

(The integration order in this norm is as stated in (28).)
Secondly, using Hölder’s inequality in the variables where qk ≥ 1, and gath-

ering their dual exponents q∗k in (q≥)∗, gives for x ∈ Rn

|u(y)|∏
l(1 +R2jal |xl − yl|)rl

≤ c
∏
qk<1

(3R2jak)
1
qk
−1

∥∥∥∥ Rn2j|~a|u(z)∏
l(1 +R2jal |xl − zl|)rl

∣∣∣∣L~q∥∥∥∥
×
∥∥∥∏

l

(1 +R2jal |yl − zl|)rlψ(R2j~a(y − z))
∣∣∣L(∞<,(q≥)∗)

∥∥∥.
(30)

Since ψ ∈ S, a change of coordinates zk 7→ R−1 2−jakzk yields (27) with the

constant c~q,~r = c
∏

qk<1 3
1
qk
−1‖

∏n
l=1(1 + |zl|)rlψ |L(∞<,(q≥)∗)‖ <∞.
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We now obtain an elementary proof of the mixed-norm boundedness of u∗,
by adapting the proof of the isotropic Lp-result in [11, Theorem 2.1]:

Theorem 3.2. Let 0 < ~p ≤ ∞ and suppose

rl >
1

min(p1, . . . , pl)
, l = 1, . . . , n. (31)

Then there exists a constant c such that

‖u∗ |L~p‖ ≤ c ‖u |L~p‖ (32)

holds for all u ∈ L~p ∩ S ′ satisfying the spectral condition (24).

Proof. We use (27) with qk = min(p1, . . . , pk) for k = 1, . . . , n and calculate the
Lpj -norms successively on both sides. Since pj ≥ qk for all k ≥ j, we may apply
the generalised Minkowski inequality n−(j−1) times, as well as the translation
invariance of dx1, . . . , dxn, which gives

‖u∗ |L~p‖ ≤ c~q,~r

( n∏
l=1

‖(1 + |zl|)−rl |Lql‖
)
‖u |L~p‖. (33)

Here (31) yields the finiteness of the Lql-norms.

The following result is convenient for certain convolution estimates. Since
the embedding Bs,~a

~p,q (Rn) ↪→ C0(Rn)∩L∞(Rn) holds for s > ~a · 1
~p
, or for s = ~a · 1

~p

if q ≤ 1, it is a result pertaining to continuous functions.

Corollary 3.3. If C > 0 and ~r fulfils (31), d = min(1, p1, . . . , pn) yields∥∥∥ sup
|x−y|<C

|u(y)|
∣∣∣L~p(Rn

x)
∥∥∥ ≤ c ‖u |Bs,~a

~p,d‖ for s = ~a · ~r. (34)

Proof. Since ‖ · |L~p‖d is subadditive, simple arguments yield∥∥∥ sup
|x−y|<C

|u(y)|
∣∣∣L~p(Rn

x)
∥∥∥d ≤ ∥∥∥ sup

|x−y|<C

∞∑
j=0

|uj(y)|
∣∣∣L~p(Rn

x)
∥∥∥d

≤
∞∑
j=0

n∏
`=1

(1 + C 2ja`)d r`‖u∗j |L~p‖d.
(35)

Since
∏n

`=1(1 + C 2ja`)d r` ≤ (1 + C)d |~r| 2jd~a·~r, the right-hand side is seen to be

less than c ‖u |Bs,~a
~p,d‖d for s = ~a · ~r by application of Theorem 3.2.

Remark 3.4. In [9] Corollary 3.3 enters our estimates for certain u ∈ F s,~a
~p,q with∑n

`=1
a`

min(p1,... ,p`)
< s. Then one can pick ~r satisfying (31) and such that ~a·~r < s,

hence elementary embeddings yield ‖ sup|x−y|<C |u(y)| |L~p(Rn
x)‖ ≤ c ‖u |F s,~a

~p,q ‖.
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4. Rychkov’s inequalities

In the systematic theory of the F s,~a
~p,q -spaces, it is of course important to dispense

from the requirement in Definition 2.1 that the Schwartz functions Φj have
compact support. In so doing, we shall largely follow Rychkov’s treatment of
the isotropic case [15].

In the following ~a = (a1, . . . , an) is a fixed anisotropy with ~a ≥ 1; we set

a0 = min(a1, . . . , an). (36)

Throughout this section we consider ψ0, ψ ∈ S(Rn) that fulfil Tauberian condi-
tions in terms of some ε > 0 and/or a moment condition of order Mψ,

|Fψ0(ξ)| > 0 on {ξ | |ξ|~a < 2ε}, (37)

|Fψ(ξ)| > 0 on
{
ξ
∣∣∣ ε

2
< |ξ|~a < 2ε

}
, (38)

Dα(Fψ)(0) = 0 for |α| ≤Mψ. (39)

Hereby Mψ ∈ N0, or we take Mψ = −1 when the condition (39) is void. Note
that if (37) is verified for the Euclidean distance, it holds true also in the
anisotropic case, perhaps with a different ε; cf. (11).

In this section we also change notation by setting

ϕj(x) = 2j|~a|ϕ(2j~ax), ϕ ∈ S, j ∈ N. (40)

For ψ0 this gives rise to the sequence ψ0,j(x) :=2j|~a|ψ0(2j~ax), but we shall mainly
deal with (ψj)j∈N0 that mixes ψ0 and ψ. Note that ψ0 = ψ0,0.

To elucidate the Tauberian conditions, we recall in the lemma below a well-
known fact on Calderón’s reproducing formula:

u =
∞∑
j=0

λj ∗ ψj ∗ u, for u ∈ S ′(Rn). (41)

Lemma 4.1. When ψ0, ψ ∈ S fulfil the Tauberian conditions (37), (38) there
exist λ0, λ ∈ S fulfilling (41) for every u ∈ S ′. Moreover, it can be arranged

that λ̂0 and λ̂ are supported by the sets in (37), respectively (38).

Proof. By Fourier transformation (41) is carried over to

Fλ0(ξ)Fψ0(ξ) +
∞∑
j=1

Fλ(2−j~aξ)Fψ(2−j~aξ) = 1, ξ ∈ Rn. (42)

To find λ0, λ reduces to a Littlewood-Paley construction: taking h ∈ C∞0 such

that 0 ≤ h ≤ 1 on Rn, supph ⊂ {ξ | |ξ|~a < 2ε} and h(ξ) = 1 if |ξ|~a ≤ 3
2
ε, then

λ̂0 = h ψ̂0

−1
and λ̂ =

(
h−h(2~a·)

)
ψ̂
−1

fulfil (42) and the support inclusions.
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A general reference to Calderon’s formula could be [7, Chapter 6]. More
refined versions have been introduced by Rychkov [16].

To comment on the moment condition, we use for M ≥ −1 the subspace

SM :=
{
µ ∈ S(Rn)

∣∣∣Dα(Fµ)(0) = 0 for all |α| ≤M
}
. (43)

It is recalled that in addition to the pα,β in (6) also the following family of
seminorms induces the topology on S:

qN,α(ψ) :=

∫
Rn
〈x〉N |Dαψ(x)| dx, N ∈ N0, α ∈ Nn

0 . (44)

This is convenient for the fact that moment conditions, also in case of the
anisotropic dilation t~a, induce a rate of convergence to 0 in S:

Lemma 4.2. For α, β ∈ Nn
0 there is an estimate for 0 < t ≤ 1, ν ∈ S and

µ ∈ SM ,

pα,β(t−|~a|µ(t−~a ·) ∗ ν) ≤ Cα t
(M+1)a0 max p0,ζ(µ̂) · qM+1,γ(D̂βν), (45)

where the maximum is over all ζ with |ζ| ≤M + 1 or ζ ≤ α; and over γ ≤ α.

Proof. The continuity of F−1 = (2π)−nF : L1 → L∞ and Leibniz’ rule give that

pα,β(t−|~a|µ(t−~a ·) ∗ ν) = sup
z∈Rn

∣∣∣F−1
(
Dα
ξ (t−|~a|µ̂(t−~a ·) D̂βν)

)
(z)
∣∣∣

≤
∑
γ≤α

(
α

γ

)∫
ta·(α−γ)|Dα−γµ̂(t~aξ)| |DγD̂βν(ξ)| dξ.

(46)

For |α − γ| ≤ M the integral is estimated using a Taylor expansion of order
N := M − |α − γ|. All terms except the remainder vanish, because µ has
vanishing moments up to order M . The integral is therefore bounded by∫

t~a·(α−γ)
∣∣∣ ∑
|ζ|=N+1

N + 1

ζ!
(t~aξ)ζ

∫ 1

0

(1− θ)N∂ζξD
α−γ
ξ µ̂(θt~aξ)dθ

∣∣∣ |DγD̂βν(ξ)| dξ

≤ t(M+1)a0 max
|ζ|≤M+1

‖Dζµ̂ |L∞‖
∫
|ξ|N+1|DγD̂βν(ξ)| dξ

≤ t(M+1)a0 max
|ζ|≤M+1

p0,ζ(µ̂) qM+1,γ(D̂βν).

For |α− γ| ≥M + 1 the integral in (46) is easily seen to be estimated by

t(M+1)a0 max
ζ≤α

p0,ζ(µ̂) q0,γ(D̂βν). (47)

The claim is obtained by taking the largest of the bounds.
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4.1. Comparison of norms. For any ~r = (r1, . . . , rn) > 0 and f ∈ S ′(Rn) we
deal in this section with the non-linear maximal operators of Peetre-Fefferman-
Stein type induced by {ψj}j∈N0 ,

ψ∗j f(x) = sup
y∈Rn

|ψj ∗ f(y)|∏n
`=1(1 + 2ja` |x` − y`|)r`

, x ∈ Rn, j ∈ N0. (48)

For simplicity their dependence on ~a and ~r is omitted. (Compared to (25), no
R is in the denominator here, as ψj ∗ f need not have compact spectrum.)

To give the background, we recall an important technical result of Rychkov:

Proposition 4.3 ([15, (8’)]). Let ψ0, ψ ∈ S be given such that (39) holds, while
ϕ0, ϕ ∈ S fulfil the Tauberian conditions (37), (38) in terms of some ε′ > 0.
When 0 < p <∞, 0 < q ≤ ∞ and s < (Mψ +1) a0 there exists a constant c > 0
such that for f ∈ S ′,

‖2sjψ∗j f |Lp(`q)‖ ≤ c ‖2sjϕ∗jf |Lp(`q)‖. (49)

We shall extend this to a mixed-norm version, which even covers parameter-
dependent families of the spectral cut-off functions; this will be crucial for our
results in [9]. So if Θ denotes an index set and ψθ,0, ψθ ∈ S(Rn), θ ∈ Θ, we
set ψθ,j(x) := 2j|~a|ψθ(2

j~ax) for j ∈ N. Not surprisingly we need to assume that
the ψθ fulfil the same moment condition, i.e., uniformly with respect to θ:

Theorem 4.4. Let ψθ,0, ψθ ∈ S(Rn) be given such that (39) holds for some
Mψθ independent of θ ∈ Θ, while ϕ0, ϕ ∈ S(Rn) fulfil (37), (38) in terms of an
ε′ > 0. Also let 0 < ~p < ∞, 0 < q ≤ ∞ and s < (Mψθ + 1) a0. For a given ~r
in (48) and an integer M ≥ −1 chosen so large that (M + 1)a0 + s > 2~a · ~r, we
assume that

A := sup
θ∈Θ

max ‖DαFψθ |L∞‖ <∞,

B := sup
θ∈Θ

max ‖ (1 + |ξ|)M+1 DγFψθ(ξ) |L1‖ <∞,

C := sup
θ∈Θ

max ‖DαFψθ,0 |L∞‖ <∞,

D := sup
θ∈Θ

max ‖ (1 + |ξ|)M+1 DγFψθ,0(ξ) |L1‖<∞,

where the maxima are over all α with |α| ≤Mψθ +1 or α ≤ d~r+2e, respectively
γ ≤ d~r + 2e. Then there exists a constant c > 0 such that for f ∈ S ′(Rn),

‖2sj sup
θ∈Θ

ψ∗θ,jf |L~p(`q)‖ ≤ c(A+B + C +D) ‖2sjϕ∗jf |L~p(`q)‖. (50)
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Hereby dte denotes the smallest integer k ≥ t, and d~re := (dr1e, . . . , drne).
In the proof of the estimate (50) we choose λ0, λ ∈ S(Rn) by applying

Lemma 4.1 to the given ϕ0, ϕ ∈ S(Rn). Following [15], we then consider the
auxiliary integrals

Ij,k :=

∫
|ψθ,j ∗ λk(z)|

n∏
`=1

(1 + 2ka` |z`|)r` dz , j, k ∈ N0. (51)

The integrand may be estimated using that ψθ,j ∗ λk(z) = 2k|~a|ψθ,j−k ∗ λ(2k~az),
so the Binomial Theorem and Lemma 4.2 with β = 0, t−1 = 2j−k ≥ 1 yield

|ψθ,j ∗ λk(z)|
n∏
l=1

(1 + |2kalzl|)rl

≤ 2k|~a|
∑
α≤d~re

(
d~re
α

)
pα,0(ψθ,j−k ∗ λ)

≤ Cd~re2
(k−j)(Mψθ

+1)a0+k|~a|max′ p0,ζ(ψ̂θ) · qMψθ
+1,γ(λ̂),

(52)

where max′ denotes a maximum over finitely many multi-indices, in this case
over ζ fulfilling |ζ| ≤Mψθ + 1 or ζ ≤ d~re, respectively γ ≤ ~r.

Lemma 4.5. For any integer M ≥ −1 there exists a constant c = cM,Mψ ,~r,λ0,λ

such that for k, j ∈ N0,

Ij,k ≤ c (A+B + C +D)×
{

2(k−j)(Mψθ
+1)a0 for k ≤ j,

2−(k−j)((M+1)a0−~a·~r ) for j ≤ k
(53)

when ψθ,0, ψθ ∈ S and the ψθ fulfil (39) for some Mψθ independent of θ ∈ Θ.

Proof. First we consider the case j ≥ k ≥ 1, where (52) yields

Ij,k ≤ sup
z∈Rn
|ψθ,j ∗ λk(z)|

n∏
l=1

(1 + 2kal |zl|)rl+2

∫ n∏
l=1

2−kal(1 + |xl|)−2 dx

≤ C~r 2(k−j)(Mψθ
+1)a0 max′ ‖Dζψ̂θ |L∞‖ · qMψθ

+1,γ(λ̂)

≤ C~r,Mψθ
,λ 2(k−j)(Mψθ

+1)a0A.

(54)

For k ≥ j ≥ 1 one can replace 2kal in (51) by 2jal at the cost of the factor 2(k−j)~a·~r

in front of the integral. Then the roles of ψθ and λ can be interchanged, since
the support information on λ̂ yields λ ∈

⋂
M SM . This gives, with ρ = d~r + 2e,

Ij,k ≤ c2(k−j)~a·~r
∑
α≤ρ

(
ρ

α

)
pα,0(ψθ ∗ λk−j) ≤ CM,~r,λ2

−(k−j)((M+1)a0−~a·~r )B. (55)

Similar estimates are obtained for Ij,0, I0,k and I0,0 with C, D as factors.
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Using Lemma 4.5, the proof given in [15] is now extended to a

Proof of Theorem 4.4. The identity (41) gives for f ∈ S ′ and j ∈ N that

ψθ,j ∗ f =
∞∑
k=0

ψθ,j ∗ λk ∗ ϕk ∗ f. (56)

By Lemma 4.5 with M chosen so large that (M + 1)a0 + s > 2~a · ~r, there
exists a θ-independent constant c > 0 such that the summands can be crudely
estimated,

|ψθ,j ∗ λk ∗ ϕk ∗ f(y)|

≤ ϕ∗kf(y)

∫
|ψθ,j ∗ λk(z)|

n∏
l=1

(1 + 2kal |zl|)rl dz

≤ c (A+B + C +D)ϕ∗kf(y)×
{

2(k−j)(Mψθ
+1)a0 for k ≤ j,

2−(k−j)((M+1)a0−~a·~r ) for j ≤ k.

(57)

Here ϕ∗kf(y) ≤ ϕ∗kf(x) max
(
1, 2(k−j)~a·~r)∏n

l=1(1 + 2jal |xl− yl|)rl is easily verified
for x, y ∈ Rn and j, k ∈ N0 by elementary calculations, so therefore

sup
y∈Rn

|ψθ,j ∗ λk ∗ ϕk ∗ f(y)|∏n
l=1(1 + 2jal |xl − yl|)rl

≤ c(A+B + C +D)ϕ∗kf(x)×
{

2(k−j)(Mψθ
+1)a0 for k ≤ j,

2−(k−j)((M+1)a0−2~a·~r ) for j ≤ k.

(58)

Inserting into (56) and using that δ :=min
(
(Mψθ+1)a0−s, (M+1)a0−2~a·~r+s

)
>0

by the assumptions, the above implies for j ≥ 0,

2js sup
θ∈Θ

ψ∗θ,jf(x) ≤ c(A+B + C +D)
∞∑
k=0

2ksϕ∗kf(x) 2−|j−k|δ. (59)

Now Lemma 2.7 yields (50).

4.2. Control by convolutions. Since ψ̂ need not have compact support,
Proposition 3.1 is replaced by a pointwise estimate with a sum representing
the higher frequencies:

Proposition 4.6. Let ψ0, ψ ∈ S satisfy the Tauberian conditions (37), (38).
For N,~r, τ > 0 there exists a constant CN,~r,τ such that for f ∈ S ′ and j ∈ N0,

(
ψ∗j f(x)

)τ ≤ CN,~r,τ
∑
k≥j

2(j−k)Nτ

∫
2k|~a||ψk ∗ f(z)|τ∏n

l=1(1 + 2kal |xl − zl|)rlτ
dz. (60)
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As a proof ingredient we use the S ′-order of f ∈ S ′(Rn), written ordS′(f),
that is the smallest N ∈ N0 for which there exists c > 0 such that, cf. (5),

|〈f, ψ〉| ≤ c pN(ψ) for all ψ ∈ S(Rn). (61)

Remark 4.7. Our proof of Proposition 4.6 follows that of Rychkov [15], al-
though his exposition leaves a heavy burden with the reader, since the appli-
cation of Lemma 3 there is only justified when ordS′(f) is sufficiently small;
cf. the O-condition (66) below. In a somewhat different context, Rychkov gave
a verbal explanation after (2.17) in [16] (with similar reasoning in [8, 19]) that
perhaps could be carried over to the present situation. But we have found it
simplest to reinforce [15] by showing that the central O-condition is indeed ful-
filled whenever f is such that the right-hand side of (60) is finite. In so doing,
we give the full argument for the sake of completeness.

Proof. Step 1. First we choose two functions λ0, λ ∈ S with λ̂ = 0 around ξ = 0
by applying Lemma 4.1 to the given ψ0, ψ ∈ S. Using Calderón’s reproducing
formula, cf. (41), on f(2−j~a·), dilating and convolving with ψj, we obtain

ψj ∗ f = (λ0,j ∗ ψ0,j) ∗ (ψj ∗ f) +
∞∑

k=j+1

(ψj ∗ λk) ∗ (ψk ∗ f). (62)

To estimate ψj ∗ λk we use (52) for an arbitrary integer Mλ ≥ −1 to get

|ψj ∗ λk(z)| ≤ C~r
2j|~a| 2(j−k)(Mλ+1)a0∏n
l=1(1 + 2jal |zl|)rl

max′ p0,ζ(λ̂) · qMλ+1,γ(ψ̂). (63)

An analogous estimate is obtained for λ0,j ∗ψ0,j, when (52) is applied with t = 1,
Mλ0 = −1. Inserting these bounds into (62) yields for CMλ,~r = CMλ,~r,λ0,λ,ψ0,ψ,

|ψj ∗ f(y)| ≤ CMλ,~r

∞∑
k=j

2(j−k)(Mλ+1)a0

∫
2j|~a||ψk ∗ f(y − z)|∏n
l=1(1 + 2jal |zl|)rl

dz. (64)

Since j 7→ 2j~a·~r
∏n

l=1(1 + 2jal |xl − zl|)−rl is monotone increasing, (64) entails
that for N = (Mλ + 1)a0 − ~a · ~r,

ψ∗j f(x) ≤ CMλ,~r

∑
k≥j

2(j−k)(Mλ+1)a0

∫
2j|~a||ψk ∗ f(z)|∏n

l=1(1 + 2jal |xl − zl|)rl
dz

≤ CN
∑
k≥j

2(j−k)N

∫
2k|~a||ψk ∗ f(z)|τ∏n

l=1(1 + 2kal |xl − zl|)rlτ
dz (ψ∗kf(x))1−τ .

(65)

Here N can be lowered in the exponent, so (65) holds for all N ≥ −~a · ~r,
with N 7→ CN,~r piecewise constant; i.e., constant on intervals having the form
](k − 1)a0, ka0]− ~a · ~r for k ∈ N0. Obviously this yields (60) in case τ = 1.
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Step 2. To cover a given τ ∈ ]0, 1[ we apply Lemma 2.8 with bj as the
last integral in (65): because of the inequality (65), the estimate (60) with
CN,~r,τ = CN follows for all N > 0 by the lemma if we can only verify the last
assumption that, for some N0 > 0,

dj := ψ∗j f(x) = O
(
2jN0

)
. (66)

In case ω ≤ ~r for ω = ordS′ f , this estimate follows for all j ≥ 0 from standard
calculations by applying (61) to the numerator in ψ∗j f(x).

In the remaining cases, where ω > rl for some l ∈ {1, . . . , n}, we shall
show a similar estimate unless (60) is trivial. First we choose ~q such that
~q ≥ max(r1, . . . , rn, ω). Then (60) holds true for ~q and the right-hand side gets
larger by replacing each ql with rl in the denominator. Hence we have for N > 0,

|ψj ∗ f(y)|τ ≤ CN,~q,τ
∑
k≥j

2(j−k)Nτ

∫
2k|~a||ψk ∗ f(z)|τ∏n

l=1(1 + 2kal |yl − zl|)rlτ
dz. (67)

Using monotonicity as in Step 1, the above is seen to imply, say for N > ~a · ~r,
j ∈ N0 that(

ψ∗j f(x)
)τ ≤ CN,~q,τ

∑
k≥j

2(j−k)(N−~a·~r )τ

∫
2k|~a||ψk ∗ f(z)|τ∏n

l=1(1 + 2kal |xl − zl|)rlτ
dz. (68)

(The constant depends on ~q, i.e., on f .) We can assume the sum on the right-
hand side is finite for some j1 ≥ 0, N1 > ~a · ~r, for else (60) is trivial. Then

sup
m≥j1

2(j1−m)(N1−~a·~r )ψ∗mf(x)

≤ C
1
τ

N1,~q,τ

(∑
k≥j1

2(j1−k)(N1−~a·~r )τ

∫
2k|~a||ψk ∗ f(z)|τ∏

l(1 + 2kal |xl − zl|)rlτ
dz
) 1
τ
<∞.

(69)

This implies (66) at once for j ≥ j1 and N0 := N1 − ~a · ~r, so now Lemma 2.8
yields (60) for j ≥ j1. When considering the smallest such j1, the right-hand
side of (60) is infinite for every j < j1 (any N) so that (60) is trivial.

Step 3. For τ > 1 we deduce (64) with rl + 1 for all l and afterwards apply
Hölder’s inequality with dual exponents τ, τ ′ > 1 with respect to Lebesgue
measure and the counting measure. Simple calculations then yield (60).

Now we can briefly modify the arguments in [15] to obtain the next result.

Theorem 4.8. Let ψ0, ψ ∈ S satisfy the Tauberian conditions (37), (38). When
0 < ~p <∞, 0 < q ≤ ∞, −∞ < s <∞ and the ψ∗j f are defined for ~r satisfying

rl min(q, p1, . . . , pn) > 1, l = 1, . . . , n, (70)

then there exists a constant c > 0 such that for f ∈ S ′,

‖2sjψ∗j f |L~p(`q)‖ ≤ c ‖2sjψj ∗ f |L~p(`q)‖. (71)
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Proof. The proof relies on the Hardy-Littlewood maximal function

Mf(x) = sup
r>0

1

meas(B(0, r))

∫
B(0,r)

|f(x+ y)| dy. (72)

When applied only in one variable xl, we denote it by Ml; i.e., using the splitting
x = (x′, xl, x

′′) we have Mlu(x1, . . . , xn) := (Mu(x′, ·, x′′))(xl). By assumption
on ~r, we may pick τ such that max1≤l≤n

1
rl
< τ < min(q, p1, . . . , pn). This

implies that (1 + |zl|)−rl τ ∈ L1(R), and since it is also radially decreasing,

iterated application of the majorant property of the Hardy-Littlewood maximal

function, described in e.g. [20, p. 57], yields a bound of the convolution on the

right-hand side of (60), hence

ψ∗j f(x) ≤ C
1
τ

N,~r

(∑
k≥j

2(j−k)NτMn(. . .M2(M1|ψk ∗ f |τ ) . . .)(x)
) 1
τ . (73)

Here application of Lemma 2.7 gives

‖2jsψ∗j f |L~p(`q)‖ ≤ CN,~r ‖2jsτMn(. . . (M1|ψj ∗ f |τ ) . . .)|L ~p
τ
(` q

τ
)‖

1
τ , (74)

whence (71) follows by n-fold application of the maximal inequality of Bagby [1]
on the space L ~p

τ
(` q

τ
), since τ < min(q, p1, . . . , pn); cf. also [13, Section 3.4].

5. General quasi-norms and local means

First of all, Theorems 4.4, 4.8 give some very general characterisations of F s,~a
~p,q .

In fact the next result shows that in Definition 2.1 the Littlewood-Paley parti-
tion of unity is not essential: the quasi-norm can be replaced by a more general
one in which the summation to 1 or the compact supports, or both, are lost:

Theorem 5.1. Let s ∈ R, 0 < ~p < ∞, 0 < q ≤ ∞ and let ψ0, ψ in S(Rn) be
given such that the Tauberian conditions (37), (38) are fulfilled together with a
moment condition of order Mψ so that s < (Mψ + 1) min(a1, . . . , an), cf. (39).
When ψ∗j,~af is defined with ~r > min(q, p1, . . . , pn)−1, cf. (48), then the following
properties of f ∈ S ′(Rn) are equivalent:

(i) f ∈ F s,~a
~p,q (Rn),

(ii) ‖{2sjψj ∗ f}∞j=0|L~p(`q)‖ <∞,
(iii) ‖{2sjψ∗j,~af}∞j=0|L~p(`q)‖ <∞.

Moreover, the F s,~a
~p,q -quasi-norm is equivalent to those in (ii) and (iii).
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Proof. Since ψj ∗ f(x) ≤ ψ∗j,~af(x) is trivial, clearly (iii) =⇒ (ii); the converse
holds by Theorem 4.8. To obtain (iii) =⇒ (i), one may in the Lizorkin-Triebel
norm estimate the convolutions by (F−1Φ)∗j,~af , and the resulting norm is es-
timated by the one in (iii) by means of Theorem 4.4 (with a trivial index set
like Θ = {1}). That (i) =⇒ (iii) follows by using Theorem 4.4 to estimate
from above by the quasi-norm defined from (F−1Φ)∗j,~af , with all rl so large that
Theorem 4.8 gives control by the F−1Φj ∗ f .

From the above it is e.g. obvious that the space F s,~a
~p,q does not depend on

the Littlewood-Paley partition of unity in (12), and that different choices yield
equivalent quasi-norms.

As an immediate corollary of Theorem 5.1, there is the following character-
isation of F s,~a

~p,q in terms of integration kernels. It has been well known in the
isotropic case:

Theorem 5.2. Let k0, k
0 ∈ S(Rn) such that

∫
k0(x) dx 6= 0 6=

∫
k0(x) dx and

set k(x) = ∆Nk0(x) for some N ∈ N. When 0 < ~p < ∞, 0 < q ≤ ∞, and
s < 2N min(a1, . . . , an), then a distribution f ∈ S ′(Rn) belongs to F s,~a

~p,q (Rn) if
and only if

‖ f |F s,~a
~p,q ‖

∗ := ‖ k0 ∗ f |L~p‖+ ‖{2sjkj ∗ f}∞j=1 |L~p(`q)‖ <∞. (75)

Furthermore, ‖ f |F s,~a
~p,q ‖∗ is an equivalent quasi-norm on F s,~a

~p,q (Rn).

In (75), the functions kj, j ≥ 1 are given by kj(x) = 2j|~a|k(2j~ax); cf. (40).

Remark 5.3. Obviously, we may choose k0, k
0 such that both functions have

compact support. In this case Triebel termed k0 and k kernels of local means,
and in [21, 2.4.6] he proved that (75) is an equivalent quasi-norm on the f be-
longing a priori to the isotropic space F s

p,q. This was carried over to anisotropic,
but unmixed spaces by Farkas [5]. Extension to function spaces with gener-
alised smoothness has been done by Farkas and Leopold [6]; and to spaces of
dominating mixed smoothness by Vybiral [23] and Hansen [8].

Remark 5.4. Bui, Paluszinki and Taibleson [4] obtained a characterisation,
i.e., equivalence for all f ∈ S ′, in the isotropic (but weighted) case, which
Rychkov [15] simplified to the present discrete Littlewood-Paley decompositions.
Our Theorem 5.2 generalises this in two ways, i.e., we prove a characterisation
of F s,~a

~p,q that has anisotropies both in terms of ~a and mixed norms.
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H. Amann et al.). Pitman Res. Notes Math. Ser. 384. Harlow: Longman 1998,
pp. 189 – 200.

[25] Weidemaier, P., Maximal regularity for parabolic equations with inhomoge-
neous boundary conditions in Sobolev spaces with mixed Lp-norm. Electron.
Res. Announc. Amer. Math. Soc. 8 (2002), 47 – 51 (electronical).

[26] Weidemaier, P., Lizorkin-Triebel spaces of vector-valued functions and sharp
trace theory for functions in Sobolev spaces with a mixed Lp-norm in parabolic
problems. Math. Sbornik 196 (2005), 3 – 16.

[27] Yamazaki, M., A quasi-homogeneous version of paradifferential operators. I.
Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA Math.
33 (1986), 131 – 174.

[28] Yamazaki, M., A quasi-homogeneous version of paradifferential operators. II.
A symbol calculus. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986),
311 – 345.

Received July 5, 2012


