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Implicit Difference Methods for
Differential Functional Parabolic Equations

with Dirichlet’s Condition
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Abstract. Classical solutions of nonlinear second-order partial differential functional
equations of parabolic type with Dirichlet’s condition are approximated in the paper
by solutions of associated implicit difference functional equations. The functional
dependence is of the Volterra type. Nonlinear estimates of the generalized Perron type
for given functions are assumed. The convergence and stability results are proved
with the use of discrete functional inequalities and the comparison technique. In
particular, these theorems cover quasi-linear equations. However, such equations are
also treated separately. The known results on similar difference methods can be
obtained as particular cases of our simple result.
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1. Introduction

Let functions f : ∆→ R and ϕ : E0 ∪ ∂0E → R be given (the relevant sets are
defined in Section 2.1). Consider a nonlinear second-order partial differential
functional equation of parabolic type of the form

∂tz (t, x) = f (t, x, z, ∂xz (t, x) , ∂xxz (t, x)) (1)

with the initial condition and the boundary condition of the Dirichlet type

z (t, x) = ϕ (t, x) on E0 ∪ ∂0E, (2)
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where ∂xz = (∂x1z, . . . , ∂xnz), ∂xxz =
[
∂xixjz

]n
i,j=1

. The aim of this paper is

to give a consistent, convergent and stable implicit finite difference method
for finding an approximate solution of problem (1), (2). The equation may be
nonlinear with respect to second derivatives. Such an equation is called strongly
nonlinear. The functional dependence is of the Volterra type (e.g., delays or
Volterra type integrals).

Partial differential equations of parabolic type give mathematical models of
nonstationary processes of heat exchange or mass transport. Some complicated
kinds of these phenomena involve equations with a functional term. Differential
difference equations (e.g., with time or spatial delays) describe fast heat changes
in nuclear reactors, while differential integral equations are used for integral heat
sources in an anisotropic medium. Both can be connected with our equation.
Such equations also describe nuclear reactor dynamics.

We prove a theorem on error estimates between an exact and approximate
solutions of implicit discrete functional equations of the Volterra type. The
error is estimated by a solution of the initial comparison problem for a recurrent
discrete inequality. We also give a theorem on the existence of the exact solution.
We apply this general idea in the investigation of the convergence and stability of
implicit difference functional schemes generated by problem (1), (2). A similar
technique for explicit problems was studied by Z. Kamont, H. Leszczyński [6,8]
and by L. Sapa, K. Kropielnicka [13,26]. Moreover, such a technique for implicit
quasi-linear problems was considered by Z. Kamont [10].

Let aij : ∆A → R and F : ∆F → R, i, j = 1, . . . , n, be given functions
(see Section 2.1). If we assume that each aij is non-positive or non-negative
in ∆A, then these results in particular cover a quasi-linear differential functional
equation of the form

∂tz (t, x) =
n∑

i,j=1

aij (t, x, z) ∂xixjz (t, x) + F (t, x, z, ∂xz (t, x)) . (3)

To omit this condition, another scheme is also studied.

We assume the existence of a classical solution of problems (1), (2) and
(3), (2). Theorems on the existence and uniqueness of such solutions for some
special parabolic differential functional equations with different boundary con-
ditions can be found in [3–5,21,31] and the references therein.

Our results can be extended to weakly coupled systems.

Explicit or implicit difference methods for general strongly nonlinear para-
bolic differential functional equations with Dirichlet’s or a nonlinear boundary
condition have been considered by Z. Kamont, K. Kropielnicka, H. Leszczyński,
M. Malec, C. M ↪aczka, W. Voigt, M. Rosati, M. Netka [6, 8, 9, 15–17, 20] and
others. In those papers, the Lipschitz or Perron conditions with respect to z
are assumed. In our paper, we generalize the Perron estimate, multiplying a
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function σ by some nondecreasing function ρ (see assumption (F4) in Section 4).
The similar generalized Perron type estimate was introduced by L. Sapa in [26]
and was considered in [13] also, where the explicit methods were studied. If f is
differentiable with respect to z, then our generalization admits ∂zf unbounded
with respect to p, q. This considerably extends the class of problems which
are solvable with the method described. Under the assumptions adopted, our
nonlinear equation includes as special cases the quasi-linear equation (3) and
a strongly nonlinear equation with a quasi-linear term (see Examples 6.1, 6.2).
Neither of these cases appears in the cited papers. This result is new, even
for equations without a functional term or another type (see [11, 14, 18, 19]).
Moreover, unlike [9], we do not assume the strong monotonicity condition with
respect to z. Add that, unlike [26], the Courant-Friedrichs-Levy condition on
the steps of a mesh is omitted (see Remark 5.6). These are the main results of
our paper.

An implicit finite difference method for quasi-linear parabolic differential
functional equations similar to (3) with Dirichlet’s condition has been considered
by K. Kropielnicka [12].

The results concerning numerical methods, differential functional and dif-
ference functional inequalities or the uniqueness theory, appearing in the papers
of P. Besala and G. Paszek [1,2], C. V. Pao [22–24], R. Redheffer and W. Wal-
ter [25, 30], J. Szarski [27–29] and numerous others, do not apply to nonlinear
equations and quasi-linear equations with such a general functional dependence
as in our paper.

The paper is organized in the following way. In Section 2 notation is intro-
duced and some definitions are formulated. Section 3 deals with the theorems
on the existence and uniqueness of the exact solution and on error estimates
of approximate solutions for discrete functional equations of the Volterra type.
The assumptions for the differential functional problem (1), (2), the definition
of the implicit finite difference functional scheme and the assumptions on the
steps of a mesh are given in Section 4. In Section 5 the convergence of the im-
plicit difference methods for (1), (2) and (3), (2) is proved. Finally, in Section 6
the numerical examples are presented.

2. Notation and definitions

2.1. Sets and function spaces. Let T > 0, X = (X1, . . . , Xn), τ0 ≥ 0,
τ = (τ1, . . . , τn), where Xi > 0, τi ≥ 0 for i = 1, . . . , n, be given. Define

E = [0, T ]× (−X,X) ⊂ R1+n,

E0 = [−τ0, 0]× [−X − τ,X + τ ] ⊂ R1+n,

∂0E = [0, T ]× ([−X − τ,X + τ ] \ (−X,X)) ⊂ R1+n.

(4)
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Let, moreover,

Ω = E ∪ E0 ∪ ∂0E,

Ωt = Ω ∩ ([−τ0, t]×Rn) , t ∈ [0, T ] .
(5)

Denote by Mn×n the class of all n× n symmetric real matrices. Define the
sets

∆ = E × C (Ω,R)×Rn ×Mn×n,

∆A = E × C (Ω,R) ,

∆F = E × C (Ω,R)×Rn.

(6)

The maximum norms in Rn and Mn×n are denoted by ‖ · ‖, while in the
space of continuous functions C (Ω,R) by ‖ · ‖Ω.

For a fixed t ∈ [0, T ],

‖z‖Ωt
= max

{∣∣z (t̃, x)∣∣ :
(
t̃, x
)
∈ Ωt

}
(7)

is a seminorm in C (Ω,R), where z ∈ C (Ω,R).
For a fixed t ∈ [0, T ], the symbol ‖ ‖C(Ω,R)t

stands for a semi-norm in the
space of linear and continuous functionals L (C (Ω,R) ,R), generated by the
semi-norm ‖ ‖Ωt in the space C (Ω,R), i.e.

‖A‖C(Ω,R)t
= inf{µ ≥ 0 : ∀h ∈ C (Ω,R) |Ah| ≤ µ ‖h‖Ωt

}, (8)

where A ∈ L (C (Ω,R) ,R).

2.2. Discretization, difference and interpolating operators. We use vec-
torial inequalities to mean that the same inequalities hold between the corre-
sponding components. We write x � y = (x1y1, . . . , xnyn) for x = (x1, . . . , xn) ,
y = (y1, . . . , yn) ∈ Rn. Define a mesh on the set Ω in the following way. Let
(h0, h

′) = h, h′ = (h1, . . . , hn), stand for the steps of the mesh. Denote by H
the set of all h such that there exist N0 ∈ Z and N = (N1, . . . , Nn) ∈ Nn

with the properties: N0h0 = τ0, N � h′ = X + τ . Obviously, H 6= ∅ and there
are K0 ∈ N and K = (K1, . . . , Kn) ∈ Zn such that K0h0 ≤ T < (K0 + 1)h0,
K � h′ < X ≤ (K + 1) � h′. For h ∈ H and (µ,m) ∈ Z1+n, m = (m1, . . . ,mn),

we define nodal points
(
t(µ), x(m)

)
, x(m) =

(
x

(m1)
1 , . . . , x

(mn)
n

)
, in the following

way

t(µ) = µh0, x(m) = m � h′.

For h ∈ H, we put

R1+n
h =

{(
t(µ), x(m)

)
: (µ,m) ∈ Z1+n

}
. (9)



Implicit Difference Methods 317

Define the discrete sets

Eh = E ∩R1+n
h ,

E0.h = E0 ∩R1+n
h ,

∂0Eh = ∂0E ∩R1+n
h ,

Ωh = Eh ∪ E0.h ∪ ∂0Eh,

Ωh.µ = Ωh ∩
([
−τ0, t

(µ)
]
×Rn

)
, µ = 0, . . . , K0.

(10)

Let, moreover,

E+
h =

{(
t(µ), x(m)

)
∈ Eh : 0 ≤ µ ≤ K0 − 1

}
, (11)

Ih =
{
t(µ) : 0 ≤ µ ≤ K0

}
, I+

h =
{
t(µ) : 0 ≤ µ ≤ K0 − 1

}
. (12)

For a mesh function z : Ωh ⊃ Ah → R and a point
(
t(µ), x(m)

)
∈ Ah, we

put z(µ,m) = z
(
t(µ), x(m)

)
, |z|(µ,m) = |z(µ,m)|. We denote the space of all such

functions by F (Ah,R) and call it the space of mesh functions. In F (Ah,R), we
introduce the maximum norm

‖z‖Ah = max
{∣∣z(µ,m)

∣∣ :
(
t(µ), x(m)

)
∈ Ah

}
, (13)

where z ∈ F (Ah,R).
For a fixed µ ∈ {0, 1, . . . , K0},

‖z‖Ωh.µ
= max

{∣∣z(µ̃,m)
∣∣ :
(
t(µ̃), x(m)

)
∈ Ωh.µ

}
(14)

is a seminorm in the space F (Ωh,R), where z ∈ F (Ωh,R). For a function
z : Ih ⊃ Ah → R+, we put z(µ) = z

(
t(µ)
)
, t(µ) ∈ Ah, where R+ = [0,+∞).

Put χ = 1 + 2n2 and

Λ = {λ = (λ1, . . . , λn) : λi ∈ {−1, 0, 1}, i = 1, . . . , n, |λ| ≤ 2}, (15)

where |λ| = |λ1| + · · · + |λn|. Note that χ is the number of elements of Λ. Let
ψ : Λ→ {1, . . . , χ} be a function such that ψ (λ) 6= ψ

(
λ
)

for λ 6= λ. Put

i0 = ψ (0) . (16)

We assume that ≺ is an order in Λ defined in the following way: λ ≺ λ if
ψ (λ) ≤ ψ

(
λ
)
. Elements of the space Rχ we denote by ξ = (ξ1, . . . , ξχ). For

a function z ∈ F (Ωh,R) and a point
(
t(µ), x(m)

)
∈ Eh we define the vector

z<µ,m> = (z1, . . . , zχ) ∈ Rχ, zi = z(µ,m+ψ−1(i)), i = 1, . . . , χ, where ψ−1 is the
inverse function of ψ.

Write Γ = {(i, j) : 1 ≤ i, j ≤ n, i 6= j} and suppose that Γ+,Γ− ⊂ Γ are
such that Γ+ ∪Γ− = Γ, Γ+ ∩Γ− = ∅ (in particular, it may happen that Γ+ = ∅
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or Γ− = ∅). We assume that (i, j) ∈ Γ+ when (j, i) ∈ Γ+ and (i, j) ∈ Γ− when
(j, i) ∈ Γ−.

Let z ∈ F (Ωh,R) and
(
t(µ), x(m)

)
∈ Eh. Set

δ+
i z

(µ,m) =
1

hi

[
z(µ,m+ei) − z(µ,m)

]
, δ−i z

(µ,m) =
1

hi

[
z(µ,m) − z(µ,m−ei)

]
, (17)

where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith entry, i = 1, . . . , n. We apply
the difference quotients δ0, δ = (δ1, . . . , δn), δ(2) = [δij]

n
i,j=1 given by

δ0z
(µ,m) =

1

h0

[
z(µ+1,m) − z(µ,m)

]
,

δiz
(µ,m) =

1

2

[
δ+
i z

(µ,m) + δ−i z
(µ,m)

]
for i = 1, . . . , n,

δiiz
(µ,m) = δ+

i δ
−
i z

(µ,m) for i = 1, . . . , n,

δijz
(µ,m) =

1

2

[
δ+
i δ
−
j z

(µ,m) + δ−i δ
+
j z

(µ,m)
]

for (i, j) ∈ Γ−,

δijz
(µ,m) =

1

2

[
δ+
i δ

+
j z

(µ,m) + δ−i δ
−
j z

(µ,m)
]

for (i, j) ∈ Γ+.

(18)

We use these operators to approximate derivatives in equations (1) and (3).
We say that an operator Gh : F (Ωh,R) → C (Ω,R) is an interpolating

operator if it has the properties:

(i) for all z ∈ C1,2 (Ω,R)

lim
h→0
‖Gh [Z]− z‖Ω = 0,

where Z := z|Ωh is the restriction of z to Ωh,

(ii) there is D > 0 such that for all z, z ∈ F (Ωh,R)

‖Gh [z]−Gh [z]‖Ω
t(µ)
≤ D ‖z − z‖Ωh.µ

, µ = 0, . . . , K0.

We apply these operators to approximate the functional term in equations (1)
and (3). An example of Gh is the well-known linear operator Th introduced
in [7]. For Th we may put D = 1.

3. Discrete functional equations and inequalities

We consider an implicit discrete functional equation with the initial boundary
condition. Next, we give two theorems respectively on the existence and unique-
ness of a solution of this problem and on the estimate of the difference between
the exact and approximate solutions. They will be applied in the proofs of the
theorems on a convergence of the difference methods in Section 5.
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Suppose that a functional Fh : E+
h × F (Ωh,R) × Rχ → R is given. For(

t(µ), x(m), z, ξ
)
∈ E+

h×F (Ωh,R)×Rχ, we write Fh [z, ξ](µ,m) = Fh
(
t(µ), x(m), z, ξ

)
.

Given ϕh ∈ F(E0.h ∪ ∂0Eh,R), we consider the discrete functional equation

z(µ+1,m) = Fh [z, z<µ+1,m>](µ,m) (19)

with the initial boundary condition

z(µ,m) = ϕ
(µ,m)
h on E0.h ∪ ∂0Eh. (20)

Note that the numbers z(µ+1,m+ψ−1(i)), i = 1, . . . , χ, appear in z<µ+1,m> so
(19), (20) is an implicit problem.

We say that the functional Fh satisfies the Volterra condition when for
all
(
t(µ), x(m)

)
∈ E+

h , z, z ∈ F (Ωh,R) and ξ ∈ Rχ, if z|Ωh.µ = z|Ωh.µ , then

Fh [z, ξ](µ,m) = Fh [z, ξ](µ,m). Observe that the Volterra condition states that
the value of Fh at

(
t(µ), x(m), z, ξ

)
depends on

(
t(µ), x(m), ξ

)
and the restriction

of the function z to the set Ωh.µ only. However, this well-known condition does
not imply the existence of a solution for (19), (20) so we give a suitable theorem.

The following assumptions on Fh will be needed.

Assumption H[Fh].
(H1) Fh, h ∈ H, is of the Volterra type.

(H2) There exist the partial derivatives ∂ξiFh on E+
h × F (Ωh,R) × Rχ,

i = 1, . . . , χ, and ∂ξi0Fh [z, ·](µ,m) is bounded for each
(
t(µ), x(m), z

)
∈

E+
h × F (Ωh,R), where i0 is defined in (16).

(H3) The conditions
∂ξiFh [z, ξ](µ,m) ≥ 0, i = 1, . . . , χ, i 6= i0, (21)

χ∑
i=1

∂ξiFh [z, ξ](µ,m) = 0 (22)

are satisfied at each
(
t(µ), x(m), z, ξ

)
∈ E+

h × F (Ωh,R)×Rχ.

Theorem 3.1. If assumption H[Fh] is satisfied, then there exists exactly one
solution v ∈ F (Ωh,R) of problem (19), (20).

Proof. We use induction on µ and the Banach fixed-point theorem. By (20), the
vectors v(µ,·), µ = −N0, . . . , 0, are known. Suppose that 0 ≤ µ ≤ K0− 1 is fixed
and that the solution v of problem (19), (20) is given on Ωh.µ. We prove that
the vector v(µ+1,·) exists and that it is unique. Define ṽ ∈ F (Ωh,R) as follows:
ṽ(µ̃,m) = v(µ̃,m) for

(
t(µ̃), x(m)

)
∈ Ωh.µ, ṽ(µ̃,m) = 0 for

(
t(µ̃), x(m)

)
∈ Ωh\Ωh.µ.

It is sufficient to show that there exists exactly one solution of the system of
equations

z(µ+1,m) = Fh [ṽ, z<µ+1,m>](µ,m) , −K ≤ m ≤ K, (23)
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with the boundary condition

z(µ+1,m) = ϕ
(µ+1,m)
h on ∂0Eh. (24)

From (H2) there is Qh > 0 such that Qh ≥ −∂ξi0Fh [ṽ, ξ](µ,m), ξ ∈ Rχ,
−K≤m≤K. It is clear that system (23) is equivalent to the following one

z(µ+1,m) =
1

Qh + 1

[
Qhz

(µ+1,m) + Fh [ṽ, z<µ+1,m>](µ,m)
]
, (25)

−K ≤ m ≤ K. Define

Sh =
{
x(m) : x(m) ∈ [−X − τ,X + τ ]

}
,

∂0Sh =
{
x(m) : x(m) ∈ [−X − τ,X + τ ] \ (−X,X)

}
.

We consider the space of mesh functions F (Sh,R). For ζ ∈ F (Sh,R), we write
ζ(m) =ζ

(
x(m)

)
and for a point x(m)∈(−X,X), we put ζ<m>=(ζ1, . . . , ζχ)∈Rχ,

ζi = ζ(m+ψ−1(i)), i = 1, . . . , χ. The norm in the space F (Sh,R) is defined as
‖ζ‖∗ = max

{∣∣ζ(m)
∣∣ : x(m) ∈ Sh

}
. Consider the complete metric space

Xh =
{
ζ ∈ F (Sh,R) : ζ(m) = ϕ

(µ+1,m)
h , x(m) ∈ ∂0Sh

}
with a metric generated by the norm ‖ ‖∗. We apply the operator Wh : Xh → Xh

defined by

Wh [ζ](m) =
1

Qh + 1

[
Qhζ

(m) + Fh [ṽ, ζ<m>](µ,m)
]

for x(m) ∈ Sh\∂0Sh (26)

and
Wh [ζ](m) = ϕ

(µ+1,m)
h for x(m) ∈ ∂0Sh. (27)

We prove that ∥∥Wh [ζ]−Wh

[
ζ
]∥∥
∗ ≤

Qh

Qh + 1

∥∥ζ − ζ∥∥∗ on Xh. (28)

It follows from (26) and the mean value theorem that

Wh [ζ](m) −Wh

[
ζ
](m)

=
1

Qh + 1

[
Qh

(
ζ − ζ

)(m)
+

χ∑
i=1

∂ξiFh
[
ṽ, P (m)

](µ,m) (
ζ − ζ

)(m+ψ−1(i))
]

=
1

Qh + 1

[(
Qh + ∂ξi0Fh

[
ṽ, P (m)

](µ,m)
) (
ζ − ζ

)(m)

+

χ∑
i 6=i0,i=1

∂ξiFh
[
ṽ, P (m)

](µ,m) (
ζ − ζ

)(m+ψ−1(i))
]

(29)



Implicit Difference Methods 321

for x(m) ∈ Sh \ ∂0Sh, where P (m) ∈ Rχ are intermediate points. The above
relation and (H3) give the estimate∣∣∣Wh [ζ](m) −Wh

[
ζ
](m)

∣∣∣ ≤ Qh

Qh + 1

∥∥ζ − ζ∥∥∗ for x(m) ∈ Sh \ ∂0Sh. (30)

According to (27) we have Wh [ζ](m) − Wh

[
ζ
](m)

= 0 for x(m) ∈ ∂0Sh. This
completes the proof of (28). It follows from the Banach fixed-point theorem
that the operator Wh has exactly one fixed point ζ∗ ∈ Xh and consequently,
v(µ+1,·) := ζ∗ is the unique solution of (23), (24). Hence the proof is complete
by induction.

Let Yh ⊂ F (Ωh,R) be a fixed subset. Suppose that a function w ∈ Yh, a
function γ : I+

h → R+ and γ0 ∈ R+ satisfy the conditions∣∣∣z(µ+1,m) −Fh [z, z<µ+1,m>](µ,m)
∣∣∣ ≤ γ(µ) on E+

h , (31)∣∣∣z(µ,m) − ϕ(µ,m)
h

∣∣∣ ≤ γ0 on E0.h ∪ ∂0Eh. (32)

The function w satisfying the above relations is considered an approximate solu-
tion of (19), (20). We give a theorem on the estimate of the difference between
the exact and approximate solutions of (19), (20).

Theorem 3.2. Suppose that Assumption H[Fh] is satisfied and

(i) σh : I+
h ×R+ → R+ is nondecreasing with respect to the second variable

and∣∣∣Fh [z, z<µ+1,m>](µ,m)−Fh [z, z<µ+1,m>](µ,m)
∣∣∣≤σh (t(µ), ‖z − z‖Ωh.µ

)
(33)

for
(
t(µ), x(m)

)
∈ E+

h , z ∈ F (Ωh,R), z ∈ Yh,

(ii) w ∈ Yh and there are γ : I+
h → R+, γ0 ∈ R+ such that relations

(31), (32) hold,

(iii) β : Ih → R+ is nondecreasing and satisfies the recurrent inequality

β(µ+1) ≥ σh
(
t(µ), β(µ)

)
+ γ(µ), µ = 0, . . . , K0 − 1, (34)

and β(0) ≥ γ0.

Then
‖w − v‖Ωh.µ

≤ β(µ), µ = 0, . . . , K0, (35)

where v ∈ F (Ωh,R) is the unique solution of problem (19), (20).

Proof. The existence of the unique solution v ∈ F (Ωh,R) of (19), (20) follows
immediately from Theorem 3.1. We prove assertion (35) by induction on µ.
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It follows from (20), (32) and assumptions (ii), (iii) that inequality (35) is
satisfied for µ = 0.

Assuming (35) to hold for a fixed µ, 0 ≤ µ ≤ K0 − 1, we prove it for µ+ 1.
Define m̃ ∈ Zn as follows

|w − v|(µ+1,m̃) = max
{
|w − v|(µ+1,m) :

(
t(µ+1), x(m)

)
∈ Ωh

}
. (36)

We show that

|w − v|(µ+1,m̃) ≤ β(µ+1). (37)

If
(
t(µ+1), x(m̃)

)
∈ ∂0Eh, then (37) follows from assumption (iii). Consider the

case when
(
t(µ+1), x(m̃)

)
∈ Eh. Equation (19) gives

(w − v)(µ+1,m̃)

= Fh [w,w<µ+1,m̃>](µ,m̃)−Fh [v, w<µ+1,m̃>](µ,m̃)+ w(µ+1,m̃)

−Fh [w,w<µ+1,m̃>](µ,m̃)+ Fh [v, w<µ+1,m̃>](µ,m̃)−Fh [v, v<µ+1,m̃>](µ,m̃).

(38)

From (38), assumption (H2) and the mean value theorem, we obtain

(w − v)(µ+1,m̃)
[
1− ∂ξi0Fh

[
v, P (µ+1,m̃)

](µ,m̃)
]

= Fh [w,w<µ+1,m̃>](µ,m̃) −Fh [v, w<µ+1,m̃>](µ,m̃) −Fh [w,w<µ+1,m̃>](µ,m̃)

+ w(µ+1,m̃) +

χ∑
i 6=i0,i=1

∂ξiFh
[
v, P (µ+1,m̃)

](µ,m̃)
(w − v)(µ+1,m̃+ψ−1(i))

(39)

where P (µ+1,m̃) ∈ Rχ is an intermediate point. Relations (31), (39), assumptions
(H3), (i)–(iii) and the induction assumption lead to the estimate

|w − v|(µ+1,m̃)
[
1− ∂ξi0Fh

[
v, P (µ+1,m̃)

](µ,m̃)
]

≤ σh
(
t(µ), β(µ)

)
+ γ(µ) + |w − v|(µ+1,m̃)

χ∑
i 6=i0,i=1

∂ξiFh
[
v, P (µ+1,m̃)

](µ,m̃)
.

(40)

Inequality (40) and assumptions (H3), (iii) imply (37). Hence, by the induction
assumption and the monotonicity of β, the proof is complete by induction.

Remark 3.3. Let the assumptions of Theorem 3.2 be satisfied with

σh (t, y) := (1 + Lh0) y, (t, y) ∈ I+
h ×R+,

where L ≥ 0 and there is γ̃ ∈ R+ such that γ(µ) ≤ h0γ̃, µ = 0, . . . , K0−1. Then
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(i) if L > 0, then

‖w−v‖Ωh.µ
≤(1+Lh0)µ γ0 + γ̃

(1+Lh0)µ−1

L
≤ exp (LT )γ0 + γ̃

exp (LT )−1

L

for µ = 0, . . . , K0;

(ii) if L = 0, then
‖w − v‖Ωh.µ

≤ γ0 + µh0γ̃ ≤ γ0 + T γ̃

for µ = 0, . . . , K0.

These estimates may be obtained by solving the initial comparison problem

β(µ+1) = (1 + Lh0) β(µ) + γ(µ), β(0) = γ0, µ = 0, . . . , K0 − 1 (41)

(see assumption (iii)).

4. Differential and difference functional problems

We need the following assumptions on the functions f , ϕ, the interpolating
operator Gh and the regularity of a solution u of (1), (2).

Assumption F [f, u,Gh].

(F1) f of variables (t, x, z, p, q) ∈ ∆ is continuous on ∆.

(F2) There exist the partial derivatives

∂pf = (∂p1f, . . . , ∂pnf) , ∂qf =
[
∂qijf

]n
i,j=1

on ∆ and ∂pif , ∂qijf , i, j = 1, . . . , n, are bounded on ∆.

(F3) The matrix ∂qf is symmetric and

∂qijf (P ) ≥ 0 and ∂qijf (P ) 6≡ 0 for (i, j) ∈ Γ+,

∂qijf (P ) ≤ 0 for (i, j) ∈ Γ−

at each P ∈ ∆.

(F4) There are functions σ : [0, T ]×R+ → R+, ρ : R2
+ → R+ such that:

(i) σ is continuous and nondecreasing with respect to both variables,
moreover, σ (t, 0) = 0 for t ∈ [0, T ],

(ii) ρ is nondecreasing with respect to both variables,

(iii) for each c ≥ 0 and ε, ε0 ≥ 0, the maximal solution of the Cauchy
problem

ω
′
(t) = cσ (t,Dω (t)) + ε, ω (0) = ε0 (42)

is defined on [0, T ] and the function ω̃ (t) = 0 for t ∈ [0, T ] is the
maximal solution of (42) for each c ≥ 0 and ε, ε0 = 0, where D
appears in the definition of the interpolating operator Gh,
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(iv) the generalized Perron type estimate

|f (t, x, z, p, q)− f (t, x, z, p, q)| ≤ ρ (‖p‖ , ‖q‖)σ
(
t, ‖z − z‖Ωt

)
(43)

holds on ∆.

(F5) u ∈ C1,2 (Ω,R) is a solution of (1), (2).

(F6) For each z, z ∈ F (Ωh,R) if z|Ωh.µ = z|Ωh.µ , then Gh [z] |Ω
t(µ)

= Gh [z] |Ω
t(µ)

,
µ = 0, . . . , K0, h ∈ H.

Remark 4.1. Assumptions (i) and (iv) in (F4) imply that the function f is of
the Volterra type. That is, if (t, x) ∈ E and z, z ∈ C (Ω,R), z|Ωt = z|Ωt , then
f (t, x, z, p, q) = f (t, x, z, p, q) for p ∈ Rn, q ∈Mn×n.

Remark 4.2. It is required in assumption (F3) that for each (i, j) ∈ Γ the
function gij (P ) = sign ∂qijf (P ), P ∈ ∆, is non-positive on ∆ or non-negative
on ∆. This assumption can be also considered as a definition of the sets Γ+

and Γ−. Moreover, simple calculations show that assumption (F6) is true for
Gh = Th (see [7]).

Remark 4.3. Let the Fréchet derivative ∂zf (t, x, z, p, q) ∈ L (C (Ω,R) ,R) for
(t, x, z, p, q) ∈ ∆. Assumption (F4) holds for example if ‖∂zf (t, x, z, p, q)‖C(Ω,R)t

≤ ρ (‖p‖, ‖q‖) on ∆, where ρ : R2
+ → R+ is nondecreasing with respect to both

variables, e.g. ρ (y1, y2) = ay1 + by2 + c, a, b, c = const ≥ 0, y1, y2 ∈ R+ (see
Examples 6.1–6.3). Then we may put σ (t, y) = y, t ∈ [0, T ], y ∈ R+. It is
true in particular for all f satisfying the Lipschitz condition with respect to z.
Examples of nonlinear σ are given in [7, 9].

We now define an implicit finite difference functional scheme which will be
applied to approximate a classical solution of the differential functional problem
(1), (2). It is the system of algebraic equations{

δ0z
(µ,m) = f

(
t(µ), x(m), Gh [z] , δz(µ+1,m), δ(2)z(µ+1,m)

)
z(µ,m) = ϕ

(µ,m)
h on E0.h ∪ ∂0Eh,

(44)

where ϕh ∈ F (E0.h ∪ ∂0Eh,R) is a given function, Gh is a given interpolating
operator and z ∈ F (Ωh,R).

We shall use the following assumptions on the steps h of the mesh Ωh.

Assumption S[h].

(S1) The steps h =
(
h0, h

′) ∈ H are such that

−hi
2
|∂pif (P )|+ ∂qiif (P )− hi

n∑
j 6=i,j=1

1

hj

∣∣∂qijf (P )
∣∣ ≥ 0 (45)

at each P ∈ ∆, i = 1, . . . , n.

(S2) There is c0 > 0 such that hih
−1
j ≤ c0 for i, j = 1, . . . , n.
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Remark 4.4. For the mixed derivatives ∂qijf , (i, j) ∈ Γ, the sign conditions
are formulated in assumption (F3) (see Remark 4.2). Moreover, inequality (45)
can be fulfilled only in case ∂qiif (P ) ≥ 0 at each P ∈ ∆, i = 1, . . . , n.

5. Theoretical study of the scheme

5.1. Convergence of the difference method. We now turn to the main
problem of this paper, the convergence of the difference method (44). We begin
with a useful lemma.

For ξ = (ξ1, . . . , ξχ) ∈ Rχ we put

δ+
i ξi0 =

1

hi

[
ξψ(ei) − ξi0

]
, δ−i ξi0 =

1

hi

[
ξi0 − ξψ(−ei)

]
, (46)

i = 1, . . . , n (see (16)). The expressions

δξi0 = (δ1ξi0 , . . . , δnξi0) , δ(2)ξi0 = [δijξi0 ]
n
i,j=1

are defined in the following way

δiξi0 =
1

2

[
δ+
i ξi0 + δ−i ξi0

]
for i = 1, . . . , n,

δiiξi0 = δ+
i δ
−
i ξi0 for i = 1, . . . , n,

δijξi0 =
1

2

[
δ+
i δ
−
j ξi0 + δ−i δ

+
j ξi0

]
for (i, j) ∈ Γ−,

δijξi0 =
1

2

[
δ+
i δ

+
j ξi0 + δ−i δ

−
j ξi0

]
for (i, j) ∈ Γ+.

(47)

Consider the functional Fh : E+
h × F (Ωh,R)×Rχ → R defined by

Fh [z, ξ](µ,m) = z(µ,m) + h0f
(
t(µ), x(m), Gh [z] , δξi0 , δ

(2)ξi0
)
. (48)

Note that

Fh [z, z<µ+1,m>](µ,m) = z(µ,m) + h0f
(
t(µ), x(m), Gh [z] , δz(µ+1,m), δ(2)z(µ+1,m)

)
.

Therefore difference scheme (44) and problem (19), (20) with Fh defined in (48)
are the same.

Lemma 5.1. Let Assumptions F[f, u,Gh] and S[h] hold. Then the functional Fh
defined by (48) satisfies Assumption H[Fh].

The proof of the above lemma is analogous to that of [9, Lemma 4.6] and
it is therefore omitted (see also the proof of Lemma 5.4).
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Let U := u|Ωh ∈ F (Ωh,R) be the restriction of a solution u ∈ C1,2 (Ω,R) of
the differential functional problem (1), (2) to the mesh Ωh and let v ∈ F (Ωh,R)
be the solution of the finite difference functional scheme (44). We say that the
difference method (44) is uniformly convergent if

lim
h→0
‖U − v‖Ωh

= 0.

Theorem 5.2. Let Assumptions F[f, u,Gh] and S[h] hold and suppose that there
is a function γ0 : H → R+ such that∣∣∣ϕ(µ,m) − ϕ(µ,m)

h

∣∣∣ ≤ γ0 (h) on E0.h ∪ ∂0Eh and lim
h→0

γ0 (h) = 0. (49)

Under these assumptions:

(i) there exists the unique solution v ∈ F (Ωh,R) of (44),

(ii) there is an α : H → R+ such that

‖U − v‖Ωh.µ
≤ α (h) for 0 ≤ µ ≤ K0 and lim

h→0
α (h) = 0. (50)

Proof. Let Fh : E+
h × F (Ωh,R) ×Rχ → R be defined by (48). The existence

of the unique solution v ∈ F (Ωh,R) of (44) follows from Theorem 3.1 and
Lemma 5.1.

To prove (ii) we apply Theorem 3.2 and Lemma 5.1. The solution v satisfies
(19), (20) and there is a function γ : H → R+ such that∣∣∣U (µ+1,m) −Fh [U,U<µ+1,m>](µ,m)

∣∣∣ ≤ h0γ (h) on E+
h

and limh→0 γ (h) = 0. Let a constant d ≥ 0 be such that

|∂xiu (t, x)| ,
∣∣∂xixju (t, x)

∣∣ ≤ d for (t, x) ∈ Ω, i, j = 1, . . . , n (51)

(see (F5)). We denote by Yh the class of all functions z ∈ F (Ωh,R) with the
property:∣∣δiz(µ,m)

∣∣ , ∣∣δijz(µ,m)
∣∣ ≤ d for

(
t(µ), x(m)

)
∈ Eh, i, j = 1, . . . , n.

Obviously, U ∈ Yh. Suppose that z ∈ F (Ωh,R), z ∈ Yh and
(
t(µ), x(m)

)
∈ E+

h .
We prove that ∣∣∣Fh [z, z<µ+1,m>](µ,m) −Fh [z, z<µ+1,m>](µ,m)

∣∣∣
≤ ‖z − z‖Ωh.µ

+ h0ρ (d, d)σ
(
t(µ), D ‖z − z‖Ωh.µ

)
.

(52)

It follows from Assumption F [f, u,Gh] that∣∣∣Fh [z, z<µ+1,m>](µ,m)−Fh [z, z<µ+1,m>](µ,m)
∣∣∣

≤‖z−z‖Ωh.µ
+h0ρ

(∥∥δz(µ+1,m)
∥∥,∥∥δ(2)z(µ+1,m)

∥∥)σ(t(µ),‖Gh[z]−Gh[z]‖Ω
t(µ)

)
.

(53)
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The use of the monotonicity of ρ, σ and the properties of the interpolating
operator Gh in (53) implies (52).

Denote by η : Ih → R+ the solution of the initial comparison difference
problem{

η(µ+1) = η(µ) + h0ρ (d, d)σ
(
t(µ), Dη(µ)

)
+ h0γ (h) , µ = 0, . . . , K0 − 1,

η(0) = γ0 (h) .
(54)

It follows from Theorem 3.2 and Lemma 5.1 that

‖U − v‖Ωh.µ
≤ η(µ), µ = 0, . . . , K0. (55)

Consider the Cauchy problem

ω
′
(t) = ρ (d, d)σ (t,Dω (t)) + γ (h) , ω (0) = γ0 (h) (56)

and its maximal solution ω (·;h) : [0, T ]→ R+ (see (F4)). It easily follows that

η(µ) ≤ ω
(
t(µ);h

)
≤ ω (T ;h) for µ = 0, . . . , K0 (57)

and limh→0 ω (t;h) = 0 uniformly on [0, T ]. Put α (h) = ω (T ;h). The proof is
complete.

5.2. Quasi-linear equation. We are interested in the mumerical approxima-
tion of a classical solution of problem (3), (2).

We need the following assumptions on the functions F , ϕ, coefficients aij,
the interpolating operator Gh and the regularity of a solution u of (3), (2), as
well as on the steps h of the mesh Ωh.

Assumption QF [F,A, u,Gh].

(QF1) F of variables (t, x, z, p) ∈ ∆F and aij, i, j = 1, . . . , n, of variables
(t, x, z) ∈ ∆A, are continuous on ∆F and ∆A, respectively.

(QF2) There exists the partial derivative ∂pF = (∂p1F, . . . , ∂pnF ) on ∆F and
∂piF , i = 1, . . . , n, are bounded on ∆F ; aij, i, j = 1, . . . , n, are bounded
on ∆A.

(QF3) A = [aij]
n
i,j=1 is symmetric.

(QF4) There are functions σ : [0, T ]×R+ → R+, ρ1 : R+ → R+ such that:

(i) σ is continuous and nondecreasing with respect to both variables,
moreover, σ (t, 0) = 0 for t ∈ [0, T ],

(ii) ρ1 is nondecreasing,

(iii) for each c ≥ 0 and ε, ε0 ≥ 0, the maximal solution of the Cauchy
problem

ω
′
(t) = cσ (t,Dω (t)) + ε, ω (0) = ε0 (58)

is defined on [0, T ] and the function ω̃ (t) = 0 for t ∈ [0, T ] is the
maximal solution of (58) for each c ≥ 0 and ε, ε0 = 0, where D
appears in the definition of the interpolating operator Gh,
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(iv) the generalized Perron type estimate and Perron type estimate

|F (t, x, z, p)− F (t, x, z, p)| ≤ ρ1 (‖p‖)σ
(
t, ‖z − z‖Ωt

)
, (59)

|aij (t, x, z)− aij (t, x, z)| ≤ σ
(
t, ‖z − z‖Ωt

)
, (60)

where i, j = 1, . . . , n, hold on ∆F and ∆A, respectively.

(QF5) u ∈ C1,2 (Ω,R) is a solution of (3), (2).

(QF6) For each z, z ∈ F (Ωh,R) if z|Ωh.µ = z|Ωh.µ , then Gh[z] |Ω
t(µ)

=Gh[z] |Ω
t(µ)
,

µ = 0, . . . , K0, h ∈ H.

Assumption QS[h].

(QS1) The steps h =
(
h0, h

′) ∈ H are such that

−hi
2
|∂piF (P )|+ aii (t, x, z)− hi

n∑
j 6=i,j=1

1

hj
|aij (t, x, z)| ≥ 0 (61)

for all (t, x, z) ∈ ∆A and P ∈ ∆F , i = 1, . . . , n.

(QS2) There is c0 > 0 such that hih
−1
j ≤ c0 for i, j = 1, . . . , n.

Remark 5.3. Assumptions (i) and (iv) in (QF4) imply that the function F and
coefficients aij are of the Volterra type; see Remark 4.1.

We now put

f (t, x, z, p, q) =
n∑

i,j=1

aij (t, x, z) qij + F (t, x, z, p) (62)

for (t, x, z, p, q) ∈ ∆, and consider difference method (44) with this f for (2), (3).
If we apply Theorem 5.2, then we need Assumptions QF[F,A, u,Gh], QS[h] and
the following assumption on the matrix A: for each (i, j) ∈ Γ, the function

ãij (t, x, z) = sign aij (t, x, z) for (t, x, z) ∈ ∆A

is non-positive on ∆A or non-negative on ∆A (see (F3)). It is easily seen that
ρ (y1, y2) = n2y2 + ρ1 (y1) for y1, y2 ∈ R+ satisfies (F4).

We prove that the condition of the coefficients aij being of the same sign
in ∆A can be omitted if we modify the difference operator δ(2). More precisely,
we consider problem (44) with δ0, δ, δii, i = 1, . . . , n, given in Section 2, and
we define δij, i, j = 1, . . . , n, i 6= j, by

δijz
(µ+1,m) =

1

2

[
δ+
i δ
−
j z

(µ+1,m)+δ−i δ
+
j z

(µ+1,m)
]

if aij
(
t(µ), x(m), Gh[z]

)
<0,

δijz
(µ+1,m) =

1

2

[
δ+
i δ

+
j z

(µ+1,m)+δ−i δ
−
j z

(µ+1,m)
]

if aij
(
t(µ), x(m), Gh[z]

)
≥0,

(63)
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where z ∈ F (Ωh,R),
(
t(µ), x(m)

)
∈ Eh. Observe that the finite difference func-

tional scheme (44) with f given by (62) and δij by (63) depends on the sign of
aij at

(
t(µ), x(m), Gh [z]

)
and this sign does not have to be the same in ∆A.

Consider the functional Fh : E+
h × F (Ωh,R)×Rχ → R defined by

Fh [z, ξ](µ,m) = z(µ,m) + h0

n∑
i,j=1

aij
(
t(µ), x(m), Gh [z]

)
δijξi0

+ h0F
(
t(µ), x(m), Gh [z] , δξi0

) (64)

(see (48)). The expressions δξi0 , δiiξi0 , i = 1, . . . , n, are defined by (47), (46)
and

δijξi0 =
1

2

[
δ+
i δ
−
j ξi0 + δ−i δ

+
j ξi0

]
if aij

(
t(µ), x(m), Gh [z]

)
< 0,

δijξi0 =
1

2

[
δ+
i δ

+
j ξi0 + δ−i δ

−
j ξi0

]
if aij

(
t(µ), x(m), Gh [z]

)
≥ 0,

(65)

where ξ ∈ Rχ, z ∈ F (Ωh,R),
(
t(µ), x(m)

)
∈ E+

h , i, j = 1, . . . , n, i 6= j. Note that

Fh [z, z<µ+1,m>](µ,m) = z(µ,m) + h0

n∑
i,j=1

aij
(
t(µ), x(m), Gh [z]

)
δijz

(µ+1,m)

+ h0F
(
t(µ), x(m), Gh [z] , δz(µ+1,m)

)
.

It is clear that difference scheme (44), with f defined in (62) and δij modified
in (63), and problem (19), (20) with Fh defined in (64) are the same.

Lemma 5.4. Let Assumptions QF[F,A, u,Gh] and QS[h] hold. Then the func-
tional Fh defined by (64) satisfies Assumption H[Fh].

Proof. It follows from Remark 5.3 and the properties of Gh that assumption
(H1) is satisfied.

Write Q(µ,m) [z] =
(
t(µ), x(m), Gh [z]

)
, P (µ,m) [z, ξ] =

(
t(µ), x(m), Gh [z] , δξi0).

Define the sets

Γ
(µ,m)
+ =

{
(i, j) ∈ Γ : aij

(
Q(µ,m) [z]

)
≥ 0
}
, Γ

(µ,m)
− = Γ \ Γ

(µ,m)
+ .

Let, moreover,

Λ = {λ ∈ Λ : ∃ i ∈ {1, . . . , n} λ = ei or λ = −ei} ,

Λ
(µ,m)
+ =

{
λ ∈ Λ : ∃ (i, j) ∈ Γ

(µ,m)
+ λ = ei + ej or λ = −ei − ej

}
,

Λ
(µ,m)
− =

{
λ ∈ Λ : ∃ (i, j) ∈ Γ

(µ,m)
− λ = ei − ej or λ = −ei + ej

}
,

Λ(µ,m)
∗ = Λ \

(
{0} ∪ Λ ∪ Λ

(µ,m)
+ ∪ Λ

(µ,m)
−

)
.
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By (QF2), (QF3), we have

∂ξi0Fh [z, ξ](µ,m) = −2h0

n∑
i=1

1

h2
i

aii
(
Q(µ,m) [z]

)
+ h0

∑
(i,j)∈Γ

1

hihj

∣∣aij (Q(µ,m) [z]
)∣∣ ,

∂ξψ(ei)
Fh [z, ξ](µ,m) =

h0

2hi
∂piF

(
P (µ,m) [z, ξ]

)
+
h0

h2
i

aii
(
Q(µ,m) [z]

)
− h0

n∑
j 6=i,j=1

1

hihj

∣∣aij (Q(µ,m) [z]
)∣∣ ,

∂ξψ(−ei)
Fh [z, ξ](µ,m) = − h0

2hi
∂piF

(
P (µ,m) [z, ξ]

)
+
h0

h2
i

aii
(
Q(µ,m) [z]

)
− h0

n∑
j 6=i,j=1

1

hihj

∣∣aij (Q(µ,m) [z]
)∣∣ ,

∂ξψ(ei+ej)
Fh [z, ξ](µ,m) = ∂ξψ(−ei−ej)

Fh [z, ξ](µ,m)

=
h0

2hihj
aij
(
Q(µ,m) [z]

)
, (i, j) ∈ Γ

(µ,m)
+ ,

∂ξψ(ei−ej)
Fh [z, ξ](µ,m) = ∂ξψ(−ei+ej)

Fh [z, ξ](µ,m)

= − h0

2hihj
aij
(
Q(µ,m) [z]

)
, (i, j) ∈ Γ

(µ,m)
− ,

∂ξψ(λ)
Fh [z, ξ](µ,m) = 0, λ ∈ Λ(µ,m)

∗ ,

i = 1, . . . , n. The above relations and assumption (QS1) imply (H2), (H3). This
completes the proof.

Theorem 5.5. Let Assumptions QF[F,A, u,Gh] and QS[h] hold and suppose
that there is a function γ0 : H → R+ such that∣∣∣ϕ(µ,m) − ϕ(µ,m)

h

∣∣∣ ≤ γ0 (h) on E0.h ∪ ∂0Eh and lim
h→0

γ0 (h) = 0. (66)

Under these assumptions:

(i) there exists the unique solution v ∈ F (Ωh,R) of (44),

(ii) there is an α : H → R+ such that

‖U − v‖Ωh.µ
≤ α (h) for 0 ≤ µ ≤ K0 and lim

h→0
α (h) = 0. (67)

Proof. The proof of this theorem is similar to that of Theorem 5.2. We apply
Theorems 3.1, 3.2 and Lemma 5.4. Let Fh : E+

h × F (Ωh,R) × Rχ → R be
defined by (64).
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The existence of the unique solution v ∈ F (Ωh,R) of (44) follows from
Theorem 3.1 and Lemma 5.4.

To prove (ii) we apply Theorem 3.2 and Lemma 5.4. The solution v satisfies
(19), (20) and there is a function γ : H → R+ such that∣∣∣U (µ+1,m) −Fh [U,U<µ+1,m>](µ,m)

∣∣∣ ≤ h0γ (h) on E+
h

and limh→0 γ (h) = 0. Let a constant d ≥ 0 be such that

|∂xiu (t, x)| ,
∣∣∂xixju (t, x)

∣∣ ≤ d for (t, x) ∈ Ω, i, j = 1, . . . , n (68)

(see (QF5)). We denote by Yh the class of all functions z ∈ F (Ωh,R) with the
property:∣∣δiz(µ,m)

∣∣ , ∣∣δijz(µ,m)
∣∣ ≤ d for

(
t(µ), x(m)

)
∈ Eh, i, j = 1, . . . , n.

Obviously, U ∈ Yh. Suppose that z ∈ F (Ωh,R), z ∈ Yh and
(
t(µ), x(m)

)
∈ E+

h .
We prove that∣∣∣Fh [z, z<µ+1,m>](µ,m) −Fh [z, z<µ+1,m>](µ,m)

∣∣∣
≤ ‖z − z‖Ωh.µ

+ h0

(
n2d+ ρ1 (d)

)
σ
(
t(µ), D ‖z − z‖Ωh.µ

)
.

(69)

It follows from Assumption QF [F,A, u,Gh] that∣∣∣Fh [z, z<µ+1,m>](µ,m)−Fh [z, z<µ+1,m>](µ,m)
∣∣∣

≤ ‖z−z‖Ωh.µ

+ h0

[
n∑

i,j=1

∣∣δijz(µ+1,m)
∣∣+ρ1

(∥∥δz(µ+1,m)
∥∥)]σ(t(µ), ‖Gh[z]−Gh[z]‖Ω

t(µ)

)
.

(70)

The use of the monotonicity of ρ1, σ and the properties of the interpolating
operator Gh in (70) implies (69).

An analysis similar to that in the proof of Theorem 5.2 shows that asser-
tion (67) is satisfied with α (h) = ω (T ;h), where ω (·;h) : [0, T ] → R+ is the
maximal solution of the Cauchy problem (56) with ρ (y1, y2) = n2y2 + ρ1 (y1),
y1, y2 ∈ R+. This concludes the proof.

Remark 5.6. Observe that we do not assume in Theorems 5.2 and 5.5 the
Courant-Friedrichs-Levy conditions

1− 2h0

n∑
i=1

1

h2
i

∂qiif (P ) + h0

∑
(i,j)∈Γ

1

hihj

∣∣∂qijf (P )
∣∣ ≥ 0, (71)
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1− 2h0

n∑
i=1

1

h2
i

aii (t, x, z) + h0

∑
(i,j)∈Γ

1

hihj
|aij (t, x, z)| ≥ 0, (72)

P ∈ ∆, (t, x, z) ∈ ∆A respectively, which are typical in explicit methods
(see [26]).

Remark 5.7. Let Assumptions of Theorems 5.2 or 5.5 hold and let f be
Lipschitz continuous with respect to z, p, q. Put Gh = Th, where Th is well-
known interpolating operator introduced in [7]. It follows from the properties
of the difference quotients and Th that if u ∈ C2,3 (Ω,R) and γ0 = O (‖h‖),
then U − v = O (‖h‖), and if u ∈ C2,4 (Ω,R) and γ0 = O (h0 + ‖h′‖2), then
U − v = O

(
h0 + ‖h′‖2

)
.

Remark 5.8. Suppose that the assumptions of Theorems 5.2 or 5.5 are satisfied
and, moreover, there is a constant c > 0 such that∥∥δw(µ,m)

∥∥ , ∥∥δ(2)w(µ,m)
∥∥ ≤ c on Eh (73)

for all solutions w ∈ F (Ωh,R) of perturbed finite difference functional schemes
of (44). It follows from an analysis of the proofs of these theorems that the
difference methods presented are stable. It is enough to replace U by w. If
ρ, ρ1 = const, then condition (73) can be omitted.

Remark 5.9. All the results of this paper can be extended to weakly coupled
differential functional systems. One part of each system may be strongly nonlin-
ear and the other quasi-linear. This is a new result even in the case of systems
without functional terms. For simplicity we consider one equation only.

6. Numerical results

To illustrate the class of problems which can be treated with our methods, we
consider a strongly nonlinear differential equation with a quasi-linear term and
two quasi-linear differential integral equations with deviated variables. Dirich-
let’s problems below cannot be solved with the numerical methods known to
date.

Put n = 2. Let E = [0, 0.01]× (−0.01, 0.01)2, E0 = {0}× [−0.01, 0.01]2 and
∂E0 = [0, 0.01]×

(
[−0.01, 0.01]2 \ (−0.01, 0.01)2).

Example 6.1. Consider the strongly nonlinear differential equation

∂tz (t, x, y) = arctan [∂xxz (t, x, y) + ∂xyz (t, x, y) + ∂yyz (t, x, y)]

+ [2 + cos z (t, x, y)] [∂xxz (t, x, y) + ∂xyz (t, x, y)

+∂yyz (t, x, y)] + [sin z (t, x, y)] ∂xz (t, x, y) + g (t, x, y)

(74)
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for (t, x, y) ∈ E, with the initial-boundary condition

z (t, x, y) = sin t cos (x+ y) for (t, x, y) ∈ E0 ∪ ∂E0, (75)

where g (t, x, y) = arctan [3 sin t cos (x+ y)] + (6 sin t+ cos t) cos (x+ y) + 3 sin t
cos(x+ y) cos [sin t cos (x+ y)] + sin t sin (x+ y) sin [sin t cos (x+ y)].

Observe that the right-hand side of (74) has a strongly nonlinear term and a
quasi-linear term. Note that f (t, x, y, z, p, q) = arctg

(
q11 + 1

2
q12+ 1

2
q21 + q22

)
+

[2 + cos z (t, x, y)]
(
q11 + 1

2
q12 + 1

2
q21 + q22

)
+ [sin z (t, x, y)] p1 + g (t, x, y) does

not fulfill neither the Lipschitz nor the classical Perron conditions, but the gen-
eralized Perron condition (43) is true with ρ (y1, y2) = y1 + 3y2 and σ (t, y) = y.
The function u (t, x, y) = sin t cos (x+ y) is an analytic solution of (74), (75).
Put h0 = h1 = h2 = 10−3. For each t(µ) we use one hundred iterations of the
Newton method to solve the implicit difference scheme. Let εmax, εmean be the
largest and mean values, respectively, of the errors |U − v| at time t(µ).

t(µ) εmax εmean
0.001 1.31× 10−6 4.61× 10−7

0.002 1.31× 10−6 4.64× 10−7

0.003 1.31× 10−6 4.64× 10−7

0.004 1.31× 10−6 4.64× 10−7

0.005 1.31× 10−6 4.64× 10−7

0.006 1.31× 10−6 4.64× 10−7

0.007 1.31× 10−6 4.64× 10−7

0.008 1.31× 10−6 4.64× 10−7

0.009 1.31× 10−6 4.64× 10−7

0.010 1.31× 10−6 4.64× 10−7

Table 1: Errors of the difference method with Th

Note that the Courant-Friedrichs-Levy condition (71) for such steps is not
satisfied and the explicit method given in [26] is not convergent. In fact, the
errors εmax, εmean of that method exceeded 1046 and 1044, respectively.

Example 6.2. Consider the quasi-linear differential integral equation with de-
viated variables

∂tz (t, x, y) =

[
2 + cos

(∫ x

−x

∫ y

−y
z (t, ξ, ζ) dζdξ

)]
× [∂xxz (t, x, y) + ∂xyz (t, x, y) + ∂yyz (t, x, y)]

+ [sin z (t, x, y)] ∂xz (t, x, y) + z (0.5t, 0, 0) + g (t, x, y)

(76)

for (t, x, y) ∈ E, with the initial-boundary condition

z (t, x, y) = sin t cos (x+ y) for (t, x, y) ∈ E0 ∪ ∂E0, (77)
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where g(t, x, y)=(6 sin t+cos t) cos(x+y) + 3 sin t cos(x+y) cos(4 sin t sinx sin y)
+ sin t sin(x+y) sin[sin t cos(x+y)]− sin(0.5t).

Note that f (t, x, y, z, p, q) =
[
2 + cos

(∫ x
−x

∫ y
−y z (t, ξ, ζ) dζdξ

)] (
q11 + 1

2
q12

+ 1
2
q21 + q22

)
+ [sin z (t, x, y)] p1 + z (0.5t, 0, 0) +g (t, x, y) does not fulfill neither

the Lipschitz nor the classical Perron conditions, but the generalized Perron
condition (43) is true with ρ (y1, y2) = y1 + 12y2 + 1 and σ (t, y) = y. The
function u (t, x, y) = sin t cos (x+ y) is an analytic solution of (76), (77). Put
h0 = h1 = h2 = 10−3. For each t(µ) we use the method of an inverse matrix to
solve the implicit difference scheme. Let εmax, εmean be the largest and mean
values, respectively, of the errors |U − v| at time t(µ).

t(µ) εmax εmean
0.001 9.99× 10−4 7.03× 10−4

0.002 1.99× 10−3 1.40× 10−3

0.003 2.99× 10−3 2.11× 10−3

0.004 3.99× 10−3 2.81× 10−3

0.005 4.99× 10−3 3.51× 10−3

0.006 5.99× 10−3 4.22× 10−3

0.007 6.99× 10−3 4.92× 10−3

0.008 7.99× 10−3 5.63× 10−3

0.009 8.99× 10−3 6.33× 10−3

0.010 9.99× 10−3 7.03× 10−3

Table 2: Errors of the difference method with Th

Note that the Courant-Friedrichs-Levy condition (72) for such steps is not
satisfied and the explicit method given in [26] is not convergent. In fact, the
errors εmax, εmean of that method exceeded 1042 and 1040, respectively.

Example 6.3. Consider the quasi-linear differential integral equation with de-
viated variables

∂tz (t, x, y) = ∂xxz (t, x, y) + ∂yyz (t, x, y)

+

[
cos

(∫ x

−x

∫ y

−y
z (t, ξ, ζ) dζdξ

)]
∂xyz (t, x, y)

+ [sin z (t, x, y)] ∂xz (t, x, y) + z (0.5t, 0, 0) + g (t, x, y)

(78)

for (t, x, y) ∈ E, with the initial-boundary condition

z (t, x, y) = sin t cos (x+ y) for (t, x, y) ∈ E0 ∪ ∂E0, (79)

where g(t, x, y) = (2 sin t+cos t) cos(x+y) + sin t cos(x+y) cos(4 sin t sinx sin y)
+ sin t sin(x+y) sin[sin t cos(x+y)]− sin(0.5t).
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Note that f(t, x, y, z, p, q) = q11 + q22 + 1
2

[
cos
(∫ x
−x

∫ y
−y z(t, ξ, ζ) dζdξ

)]
q12

+1
2

[
cos
(∫ x
−x

∫ y
−y z(t, ξ, ζ) dζdξ

)]
q21 + [sin z(t, x, y)] p1 + z(0.5t, 0, 0) + g(t, x, y)

does not fulfill neither the Lipschitz nor the classical Perron conditions, but
the generalized Perron condition (43) is true with ρ (y1, y2) = y1 + 6y2 + 1 and
σ (t, y) = y. The function u (t, x, y) = sin t cos (x+ y) is an analytic solution of
(78), (79). Put h0 = h1 = h2 = 10−3. For each t(µ) we use the method of an
inverse matrix to solve the implicit difference scheme. Let εmax, εmean be the
largest and mean values, respectively, of the errors |U − v| at time t(µ).

t(µ) εmax εmean
0.001 9.98× 10−4 7.03× 10−4

0.002 1.99× 10−3 1.40× 10−3

0.003 2.99× 10−3 2.11× 10−3

0.004 3.99× 10−3 2.81× 10−3

0.005 4.99× 10−3 3.51× 10−3

0.006 5.99× 10−3 4.22× 10−3

0.007 6.99× 10−3 4.92× 10−3

0.008 7.99× 10−3 5.63× 10−3

0.009 8.99× 10−3 6.33× 10−3

0.010 9.99× 10−3 7.03× 10−3

Table 3: Errors of the difference method with Th

Note that the Courant-Friedrichs-Levy condition (72) for such steps is not
satisfied and the explicit method given in [26] is not convergent. In fact, the
errors εmax, εmean of that method exceeded 1021 and 1020, respectively.

The results shown in the tables are consistent with our mathematical anal-
ysis. The tables of errors are typical of difference methods.
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