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Abstract. We give some Voronovskaja formula for linear combinations of general-
ized sampling operators and we furnish also a quantitative version in terms of the
classical Peetre K-functional. This provides a better order of approximation in the
asymptotic formula. We apply the general theory to various kernels: Bochner-Riesz
kernel, translates of B-splines and Jackson type kernel.
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1. Introduction

In the study of the order of approximation to a function f by sequences of
linear operators Tn, it is well known that if Tn is positive the rate of (pointwise)
convergence is at most O(n−2) for functions which are not smoother than C2.
The existence of derivatives of higher order of f(x) cannot improve this order
of approximation. This is due to the Korovkin theorem which states that the
optimal rate of convergence cannot be faster than C2-functions (see [1]). It is
therefore interesting to construct (non-positive) linear operators to improve the
order of approximation. A classical approach is based on the construction of
suitable linear combinations of positive linear operators. This idea comes from
the classical work of P. L. Butzer for Bernstein polynomials [13] and has then
been developed by several authors (see e.g. [3, 18,23,28–30]).

In recent years we have developed a theory for the study of linear com-
binations of the Mellin integral operators which includes the Mellin-Gauss-
Weierstrass operator, the Mellin-Picard operator, moment operator and others,
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see [8,9,11,12,22]. This approach for integral operators is very suitable because
from the original kernel, we obtain a new kernel, not necessarily positive, which
generate a Mellin operator of the same kind.

Now we apply the same approach in the study of linear combinations of
certain discrete operators not necessarily positive. An important class of such
operators is given by the generalized sampling series introduced by P. L. Butzer
and his school in Aachen (see [15,16,25]), which have fundamental applications
in signal processing, in particular in linear prediction by samples from the past
of the signal to reconstruct. These operators are defined by

(Gnf)(x) =
+∞∑

k=−∞

ϕ

(
n

(
x− k

n

))
f

(
k

n

)
, n ∈ N, x ∈ R,

where ϕ : R→ R is a continuous function and the signal f belongs to suitable
function spaces.

Thus, it is certainly of interest to investigate the order of pointwise or
uniform convergence of Gnf to f. Under certain moment conditions on the
kernel function ϕ, in [16] it is proved that the rate of uniform convergence, in
the space of all the uniformly continuous and bounded functions on R, may
be of order O(n−r), for any integer r ∈ N. However, largest is the constant r,
the harder it is to build examples of kernels which satisfy the above mentioned
moment conditions. These examples are mainly costructed by means of the
solutions of certain linear systems based on the Poisson summation formula (see
[14,16]). In the present paper we consider a simple approach for the construction
of linear combinations of generalized sampling operators, which give a better
order of pointwise or uniform convergence. In particular we are interested in
the asymptotic behaviour, which gives Voronovskaja type formulae for these
combinations. Given α1, α2, . . . , αs ∈ R \ {0} such that α1 + · · · + αs = 1, we
define the operator:

(Gs
nf)(x) =

s∑
i=1

αi(Ginf)(x),

and we look for coefficients αi such that certain moments of higher order are null.
In this way we obtain a linear system whose solution gives an operator with a
high order of approximation. We apply this method to suitable particular cases:
we examine the Bochner-Riesz kernel, a Jackson type kernel and a kernel defined
by combinations of translates of central B-splines. The latter operators are of
interest in the linear prediction theory, since they have a compact support. We
furnish also certain quantitative versions of the asymptotic formulae, in terms
of the Peetre K-functional (see [2, 17, 21, 24]), using an approach introduced
in [19].

Note that the new operators Gs
nf are not of the same type of the original

ones, because they are not generated by a single kernel function ϕ, unlike what
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happens for Mellin operators. Indeed, in Mellin frame, a linear combination
produces a new kernel which generates another (non-positive) Mellin operator.

2. Convergence properties of generalized sampling series

Let L∞(R) be the space of all the essentially bounded real functions defined on
R and by C0 = C0(R) the subspace of all uniformly continuous and bounded
functions f : R → R, provided with the usual supnorm ‖f‖∞. For k ≥ 1 by
Ck = Ck(R) we denote the space whose elements f are k-times continuosly
differentiable and f (k) ∈ C0.

Let ϕ ∈ C0 be fixed. For any ν ∈ N0 = N ∪ {0} and u ∈ R let us define

mν(ϕ, u) :=
+∞∑

k=−∞

ϕ(u− k)(k − u)ν ,

Mν(ϕ) := sup
u∈R

+∞∑
k=−∞

|ϕ(u− k)||k − u|ν .

Let the function ϕ satisfy the following assumptions:

i) for every u ∈ R we have

m0(ϕ, u) =
+∞∑

k=−∞

ϕ(u− k) = 1,

ii) for every u ∈ R we have for ν = 1, 2, . . . , r − 1,

mν(ϕ, u) = 0, mr(ϕ, u) = Ar

for a given constant Ar ∈ R \ {0},
iii) Mr(ϕ) < +∞ and

lim
w→+∞

∑
|k−u|>w

|ϕ(u− k)||k − u|r = 0

uniformly with respect to u ∈ R.
From now on we will write mν(ϕ) = mν(ϕ, u) for ν ∈ N0 and u ∈ R. Note that
(see [6]) for µ, ν ∈ N0 with µ < ν, Mν(ϕ) < +∞ implies Mµ(ϕ) < +∞. When ϕ
has compact support, we immediately have that Mν(ϕ) < +∞ for every ν ∈ N0

and iii) holds.
For n ∈ N, the generalized sampling operator generated by ϕ is defined as

(see e.g. [15,16,25])

(Gnf)(x) =
+∞∑

k=−∞

ϕ

(
n

(
x− k

n

))
f

(
k

n

)
, x ∈ R.
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Under the above assumptions we have L∞(R) ⊂
⋂
n∈N DomGn where DomGn

is the space of all functions f : R → R for which the series defining Gnf(x) is
absolutely convergent for every x ∈ R.

At first we consider some quantitative estimates of the uniform convergence
in the space C0 in terms of the classical modulus of continuity. For ε > 0, we
define the (usual) modulus of continuity of C0 by

ω(f, ε) := sup
|x−y|<ε

|f(x)− f(y)|.

We have the following theorem (similar estimates can be found in [10]).

Theorem 2.1. Let f ∈ C0, δ > 0 and j ∈ N be fixed. If Assumption i) holds
and Mj(ϕ) < +∞, we have

‖Gnf − f‖∞ ≤M0(ϕ)ω(f, δ) +
2‖f‖∞
njδj

Mj(ϕ).

Proof. For every x ∈ R, we obtain

|(Gnf)(x)−f(x)| ≤
+∞∑

k=−∞

|ϕ(nx−k)|
∣∣∣∣f(kn

)
−f(x)

∣∣∣∣
≤
∑
| k
n
−x|<δ

|ϕ(nx−k)|ω(f, δ) +
∑
| k
n
−x|≥δ

|ϕ(nx−k)|
∣∣∣∣f(kn

)
−f(x)

∣∣∣∣
≤M0(ϕ)ω(f, δ) + 2‖f‖∞

∑
|k−nx|≥nδ

|ϕ(nx−k)| |nx−k|
j

|nx−k|j

≤M0(ϕ)ω(f, δ) +
2‖f‖∞
njδj

Mj(ϕ).

Thus the assertion follows from the arbitrariness of x.

Another result is the following.

Theorem 2.2. Let f ∈ C0, δ > 0. If Assumption i) holds and M1(ϕ) < +∞,
we have

‖Gnf − f‖∞ ≤ ω(f, δ)

(
M0(ϕ) +

M1(ϕ)

nδ

)
.

Proof. Since ω(f, λδ) ≤ (λ+ 1)ω(f, δ), for λ > 0, we have

|(Gnf)(x)− f(x)| ≤
+∞∑

k=−∞

|ϕ(nx− k)|ω
(
f,

∣∣∣∣kn − x
∣∣∣∣)

≤
+∞∑

k=−∞

|ϕ(nx− k)|
(

1 +
| k
n
− x|
δ

)
ω(f, δ)

≤ ω(f, δ)

(
M0(ϕ) +

M1(ϕ)

nδ

)
.

Thus the assertion follows from the arbitrariness of x.
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Remark 2.3. a) If we take, δ = 1
n

in Theorem 2.2, we get

‖Gnf − f‖∞ ≤ C ω

(
f,

1

n

)
,

where C = M0(ϕ) +M1(ϕ).

b) If f ∈ Cr∩C0, under the assumptions i), ii), iii), using the Taylor formula
with integral remainder, we can obtain the following uniform estimate (see
also [16]):

‖Gnf − f‖∞ ≤
Mr(ϕ)

nr r!
‖f (r)‖∞.

Now we state an asymptotic formula for Gnf, for a particular case see [5,6],
in which only the case r = 2 is studied.

Theorem 2.4. Let f ∈ L∞(R) be a function such that f (r)(x) exists at a point
x ∈ R. Under the Assumptions i)–iii) we obtain

lim
n→+∞

nr[(Gnf)(x)− f(x)] = Ar
f (r)(x)

r!
.

Proof. Using the local Taylor formula for the function f, there exists a bounded
function h such that limy→0 h(y) = 0 and

f

(
k

n

)
= f(x)+f ′(x)

(
k

n
− x
)

+· · ·+ f (r)(x)

r!

(
k

n
− x
)r

+h

(
k

n
− x
)(

k

n
− x
)r
.

Thus we have

nr[(Gnf)(x)− f(x)] = Ar
f (r)(x)

r!
+

+∞∑
k=−∞

ϕ

(
n

(
x− k

n

))
h

(
k

n
− x
)

(k − nx)r.

Now we estimate the term

I :=
+∞∑

k=−∞

ϕ(nx− k)h

(
k

n
− x
)

(k − nx)r.

Let ε > 0 be fixed. There exists δ > 0 such that |h(y)| ≤ ε for every |y| ≤ δ.
Moreover there exists w > 0 such that for every w > w∑

|k−u|>w

|ϕ(u− k)||k − u|r < ε

uniformly with respect to u ∈ R. Let n be such that δn > w, for every n > n,
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so we have

|I| ≤
∑
| k
n
−x|<δ

∣∣∣∣ϕ(nx− k)h

(
k

n
− x
)∣∣∣∣ |k − nx|r

+
∑
| k
n
−x|≥δ

∣∣∣∣ϕ(nx− k)h

(
k

n
− x
)∣∣∣∣ |k − nx|r

≤ εMr(ϕ) + ‖h‖∞
∑

|k−nx|≥nδ

|ϕ(nx− k)||k − nx|r

≤ ε(Mr(ϕ) + ‖h‖∞).

Thus, passing to the limit, we have limn→+∞ n
r[(Gnf)(x) − f(x)] = Ar

f (r)(x)
r!

,
that is the assertion.

Remark 2.5. Following the same reasoning as in [6], we can relax the bound-
edness assumption on f assuming that there are r + 1 positive constants a0,
a1, . . . , ar such that

|f(x)| ≤ a0 + a1x+ · · ·+ arx
r, for every x ∈ R.

Our next aim is to determine the order of approximation in Theorem 2.4,
using the classical Peetre K-functional defined by ([24]):

K(ε, f) ≡ K(ε, f, C0, C1) := inf{‖f − g‖∞ + ε‖g′‖∞ : g ∈ C1}

for f ∈ C0 and ε ≥ 0. The K-functional is related to the modulus of continu-
ity ω, by means of the following lemma (see [2, 17, 24]).

Lemma 2.6. For every f ∈ C0 we have

K
(ε

2
, f, C0, C1

)
=

1

2
ω̃(f, ε), ε ≥ 0.

Here ω̃(f, ·) denotes the least concave majorant of ω(f, ·), (see [2, 17]).

Our next result is based on the following version of the Taylor formula
(see [19]):

f(x) =
m∑
k=0

f (k)(x0)

k!
(x− x0)k +Rm(f ;x0, x),

for x0, x ∈ R, m ≥ 1 in which the remainder Rm(f ;x0, x) is estimated by

|Rm(f ;x0, x)| ≤ |x− x0|
m

m!
ω(f (m); |x− x0|).

In [19] the following estimate of the remainder Rm(f ;x0, x) in terms of ω̃, is
also established:
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Lemma 2.7. For m ∈ N0 let f ∈ Cm and x, x0 ∈ R. Then we have

|Rm(f ;x0, x)| ≤ |x− x0|
m

m!
ω̃

(
f (m),

|x− x0|
m+ 1

)
.

We now give a quantitative version of Theorem 2.4.

Theorem 2.8. Let f ∈ Cr and x ∈ R be fixed. Under the assumptions of
Theorem 2.4, if moreover Mr+1(ϕ) < +∞ we have∣∣∣∣nr[(Gnf)(x)− f(x)]− Ar

f (r)

r!

∣∣∣∣ ≤ Mr(ϕ)

r!
ω̃

(
f (r),

1

r + 1

1

n

Mr+1(ϕ)

|Ar|

)
.

Proof. The proof follows by the same arguments as in [6, Theorem 2].

3. Linear combinations of generalized sampling series

In this section, using a direct method, we will construct suitable linear com-
binations of generalized sampling operators in order to improve the order of
approximation in Voronovskaja formula. In what follows, we will assume that
the moments mν(ϕ) of the function ϕ are independent of u ∈ R for every ν ∈ N,
when they exist.

3.1. General theory. Let αi, i = 1, . . . , s be non-zero real numbers such that
α1 + · · ·+αs = 1 and for n ∈ N let us consider the following linear combination

(Gs
nf)(x) =

s∑
i=1

αi(Ginf)(x), x ∈ R.

We define for ν ∈ N0 and x ∈ R

Ms
ν(ϕ, n) :=

s∑
i=1

αi

+∞∑
k=−∞

ϕ(inx− k)

(
k

in
− x
)ν

.

Note that

Ms
ν(ϕ, n) = mν(ϕ)

s∑
i=1

αi
(in)ν

.

By the assumption ii) we have that Ms
ν(ϕ, n) = 0, for ν = 1, . . . , r − 1.

Concerning the uniform estimate with the modulus of continuity ω, we have
the following:

Corollary 3.1. Under the assumptions of Theorem 2.2, there is an absolute
constant D > 0 such that

‖Gs
nf − f‖∞ ≤ Dω

(
f,

1

n

)
.
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Proof. By Theorem 2.2 with δ = 1
in
, there is a constant C > 0 independent of i

such that

‖Gs
nf − f‖∞ ≤

s∑
i=1

|αi|‖Ginf − f‖∞ ≤ C

s∑
i=1

|αi|ω
(
f,

1

in

)
≤ Dω

(
f,

1

n

)
,

where D := C
∑s

i=1 |αi|.

Note that also in this case, we can obtain an analogous uniform estimate
for functions f ∈ Cr (see Remark 2.3b)).

Now we show that the above linear combinations provide a better order in
the Voronovskaja formula. In particular we will obtain an order strictly greater
than r in Theorem 2.4 for functions belonging to Cj for j > r.

Theorem 3.2. Let f ∈ L∞(R) be a function such that f (j)(x) exists at a point
x ∈ R with j ≥ r. Under the assumptions of Theorem 2.4, if moreover Mj(ϕ)
is finite for every ν = r + 1, . . . , j then

(Gs
nf)(x)− f(x) =

j∑
ν=r

f (ν)(x)

ν!

mν(ϕ)

nν

s∑
i=1

αi
iν

+ o(n−j), n→ +∞.

Proof. Following similar arguments as in Theorem 2.4, using the local Tay-
lor formula for the function f, there exists a bounded function h such that
limy→0 h(y) = 0 and

f

(
k

in

)
= f(x)+f ′(x)

(
k

in
−x
)

+ · · ·+ f (j)(x)

j!

(
k

in
−x
)j

+ h

(
k

in
−x
)(

k

in
−x
)j
.

We have

(Gs
nf)(x)− f(x)

=
s∑
i=1

αi

+∞∑
k=−∞

ϕ(inx− k)

(
f

(
k

in

)
− f(x)

)

=

j∑
ν=1

f (ν)(x)

ν!
Ms

ν(ϕ, n) +
s∑
i=1

αi

+∞∑
k=−∞

ϕ(inx− k)h

(
k

in
− x
)(

k

in
− x
)j

=

j∑
ν=r

f (ν)(x)

ν!

mν(ϕ)

nν

s∑
i=1

αi
iν

+ I

where

I =
s∑
i=1

αi

+∞∑
k=−∞

ϕ(inx− k)h

(
k

in
− x
)(

k

in
− x
)j
.
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Now we evaluate I. Let ε> 0 be fixed. There exists δ > 0 such that |h(y)| ≤ ε
for every |y| ≤ δ. So, using the same method as in Theorem 2.4, we get

|I| ≤
s∑
i=1

|αi|
(in)j

(εMj(ϕ) + ‖h‖∞o(1)) = o(n−j).

Now, we assume thatMs
ν(ϕ, n) = 0, for ν = r, . . . , j−1, for an integer j > r

and Ms
j(ϕ, n) 6= 0. This implies that mj(ϕ) := Aj 6= 0. In this instance, from

Theorem 3.2 we can obtain the following Voronovskaja formula, for functions f
such that f (j) exists at the point x:

lim
n→+∞

nj[(Gs
nf)(x)− f(x)] =

f (j)(x)

j!
Aj

s∑
i=1

αi
ij
.

As in Section 2 we can obtain the following quantitative version of the above
Voronovskaja formula.

Theorem 3.3. Let f ∈ Cj, j > r and x ∈ R be fixed. Under the assumptions
of Theorem 3.2, if moreover Mj+1(ϕ) < +∞ we have∣∣∣∣nj[(Gs

nf)(x)− f(x)]− f (j)(x)

j!
Aj

s∑
i=1

αi
ij

∣∣∣∣ ≤ 2E

j!
Mj(ϕ)K

(
Mj+1(ϕ)

2|Aj|(j + 1)n
, f (j)

)
where E :=

∑s
i=1 |αi|.

Proof. We have for x ∈ R∣∣∣∣(Gs
nf)(x)− f(x)− f (j)(x)

j!nj
Aj

s∑
i=1

αi
ij

∣∣∣∣
=

∣∣∣∣ s∑
i=1

αi

+∞∑
k=−∞

ϕ(inx− k)h

(
k

in
− x
)(

k

in
− x
)j ∣∣∣∣.

Now, putting Rj(f, x,
k
in

) = h( k
in
− x)( k

in
− x)j and using Lemma 2.7, we get

I :=

∣∣∣∣ s∑
i=1

αi

+∞∑
k=−∞

ϕ(inx− k)h

(
k

in
− x
)(

k

in
− x
)j ∣∣∣∣

≤
s∑
i=1

|αi|
+∞∑

k=−∞

|ϕ(inx− k)|
| k
in
− x|j

j!
ω̃

(
f (j),

| k
in
− x|

j + 1

)

= 2
s∑
i=1

|αi|
+∞∑

k=−∞

|ϕ(inx− k)|
| k
in
− x|j

j!
K

( | k
in
− x|

2(j + 1)
, f (j)

)
.
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For any g ∈ Cj+1 we have

I ≤ 2
s∑
i=1

|αi|
+∞∑

k=−∞

|ϕ(inx− k)|
| k
in
− x|j

j!

(
‖(f − g)(j)‖∞ +

| k
in
− x|

2(j + 1)
‖g(j+1)‖∞

)

=
2

j!

s∑
i=1

|αi|
+∞∑

k=−∞

|ϕ(inx− k)|
∣∣∣∣ kin − x

∣∣∣∣j
×
(
‖(f − g)(j)‖∞ +

‖g(j+1)‖∞
2(j + 1)

∑+∞
k=−∞ |ϕ(inx− k)|| k

in
− x|j+1∑+∞

k=−∞ |ϕ(inx− k)|| k
in
− x|j

)
.

Taking the infimum over all the functions g ∈ Cj+1 we finally get

I ≤ 2E

j!nj
Mr(ϕ)K

(
Mj+1(ϕ)

2|Aj|(j + 1)n
, f (j)

)
.

3.2. The construction of specific linear combinations. Let ν1,..., νs−1∈N,
with ν1 = r < ν2 < · · · < νs−1, be integers such thatmνj(ϕ) 6= 0, j = 1, . . . , s−1,
and assume that mν(ϕ) = 0, for r < ν < νs−1, ν 6= νi. We look for constants αi
in such a way that Ms

νj
(ϕ, n) = 0 for j = 1, . . . s − 1. We obtain the following

linear system 

s∑
i=1

αi = 1

s∑
i=1

αi
ir

= 0

...
s∑
i=1

αi
iνs−1

= 0.

The solution gives a linear combination with order at least νs−1 + 1 for func-
tions f for which f (νs−1+1)(x) exists.

For example, we examine the case s = 2. In this instance the linear system
reduces to {

α1 + α2 = 1

α1 +
α2

2r
= 0

with solution α1 = − 1
2r−1 , α2 = 2r

2r−1 . So

(G2
nf)(x) = − 1

2r − 1
(Gnf)(x) +

2r

2r − 1
(G2nf)(x)
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and for every j ≥ r + 1 we obtain, for functions f for which f (j)(x) exists,

(G2
nf)(x)− f(x) =

j∑
ν=r+1

f (ν)(x)

ν!

mν(ϕ)

nν

(
− 1

2r − 1
+

2r−ν

2r − 1

)
+ o(n−j)

=

j∑
ν=r+1

f (ν)(x)

ν!

mν(ϕ)

nν
2r−ν − 1

2r − 1
+ o(n−j).

In particular, for j = r + 1, we get

lim
n→+∞

nr+1((G2
nf)(x)− f(x)) = −f

(r+1)(x)

(r + 1)!

1

2(2r − 1)
mr+1(ϕ).

Concerning the case s = 3, putting ν1 = r and denoting ν2 = µ > r, the
linear system reduces to 

α1 + α2 + α3 = 1

α1 +
α2

2r
+
α3

3r
= 0

α1 +
α2

2µ
+
α3

3µ
= 0

with solution α1 = 2µ−r−3µ−r
H

, α2 = 2µ(3µ−r−1)
H

, α3 = 3µ(1−2µ−r)
H

, where we have
put H := 2µ−r − 3µ−r + 2µ · 3µ−r − 2µ + 3µ − 3µ2µ−r. So we obtain the linear
combination

(G3
nf)(x) = α1(Gnf)(x) + α2(G2nf)(x) + α3(G3nf)(x)

and for every j ≥ µ+ 1 we get, for functions f for which f (j)(x) exists,

(G3
nf)(x)− f(x)

=

j∑
ν=µ+1

f (ν)(x)

ν!

mν(ϕ)

nν

(
α1 +

α2

2ν
+
α3

3ν

)
+ o(n−j)

=

j∑
ν=µ+1

f (ν)(x)

ν!

mν(ϕ)

nν
1

H

(
2µ−r − 3µ−r +

3µ−r − 1

2ν−µ
+

1− 2µ−r

3ν−µ

)
+ o(n−j).

In particular if j = µ+ 1 we obtain

lim
n→+∞

nµ+1((G3
nf)(x)− f(x)) =

f (µ+1)(x)

(µ+ 1)!

(
2µ−r+2 − 3µ−r+1 − 1

6H

)
mµ+1(ϕ).
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4. Examples

In this section we will apply the previous theory to various specific exam-
ples of interest in sampling and prediction theory. We limit ourselves to the
Voronovskaja formulae. Their quantitative versions are obtained in a similar
way. In the following, given a function g ∈ L1(R), we define the Fourier trans-
form of g as

ĝ(v) =

∫ +∞

−∞
g(u)e−iuvdu, v ∈ R.

I) Bochner-Riesz kernel. Let us consider the Bochner-Riesz kernel defined
by (see e.g. [14,27])

ϕ(x) ≡ bγ(x) =
2γ√
2π

Γ(γ + 1)(|x|)−
1
2
−γJ 1

2
+γ(|x|)

for γ > 0, where Jλ is the Bessel function of order λ. It is well known that

b̂γ(v) =

{
(1− v2)γ, |v| ≤ 1
0, |v| > 1.

Using the Poisson summation formula

(−i)j
+∞∑

k=−∞

ϕ(u− k)(u− k)j ∼
+∞∑

k=−∞

ϕ̂(j)(2πk)ei2πku,

we have for u ∈ R

m0(b
γ) =

+∞∑
k=−∞

bγ(u− k) = b̂γ(0) = 1

and

m1(b
γ) = −

+∞∑
k=−∞

bγ(u−k)(u−k) = 0, m2(b
γ) =

+∞∑
k=−∞

bγ(u−k)(u−k)2 = 2γ.

Moreover, in [6] it is shown that for γ > 3 we have M3(b
γ) < +∞ and

lim
r→+∞

∑
k 6∈Ur(u)

|bγ(u− k)|(u− k)2 = 0,

uniformly with respect to u ∈ R, so condition iii) holds for r = 2 and as a
consequence the following Voronovskaja formula for the Bochner-Riesz sampling
operators, denoted by Bn is given limn→+∞ n

2((Bnf)(x) − f(x)) = γf ′′(x),
provided that f ′′ exists at the point x.
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Concerning the linear combinations, we begin with the case s = 2. Using
the Poisson formula, we easily get

m3(b
γ)=−

+∞∑
k=−∞

bγ(u−k)(u−k)3 =0, m4(b
γ)=

+∞∑
k=−∞

bγ(u−k)(u−k)4 =12γ(γ−1).

Then, from the general theory, we have, for functions f for which f (j)(x) exists,
j > 3,

(B2
nf)(x)− f(x) =

j∑
ν=3

f (ν)(x)

ν!

mν(ϕ)

nν

(
−1

3
+

22−ν

3

)
+ o(n−j)

=

j∑
ν=4

f (ν)(x)

ν!

mν(ϕ)

nν
22−ν − 1

3
+ o(n−j).

In particular, for j = 4, limn→+∞ n
4((B2

nf)(x)−f(x)) = −f (4)(x)
8

γ(γ−1) follows.

Now we consider the case s = 3. Since we have m3(b
γ) = 0, in this case we

look for coefficients α1, α2, α3 such thatM3
2(b

γ, n) =M3
4(b

γ, n) = 0, i.e., we put
ν1 = r = 2, ν2 = µ = 4. We obtain the system

α1 + α2 + α3 = 1

α1 +
α2

4
+
α3

9
= 0

α1 +
α2

16
+
α3

81
= 0.

Since in this instance H = −120, its solution is given by α1 = 1
24
, α2 = −16

15
,

α3 = 81
40
. We obtain the linear combination

(B3
nf)(x) =

1

24
(Bnf)(x)− 16

15
(B2nf)(x) +

81

40
(B3nf)(x).

Again, by the Poisson formula, we have

m5(b
γ) = −

+∞∑
k=−∞

bγ(u− k)(u− k)5 = 0

and

m6(b
γ) =

+∞∑
k=−∞

bγ(u− k)(u− k)6 = 120γ(γ − 1)(γ − 2).

Then we have, for j ≥ 6,

(B3
nf)(x)− f(x) =

j∑
ν=6

f (ν)(x)

ν!

mν(ϕ)

nν

(
1

24
− 1

15 · 2ν−4
+

1

40 · 3ν−4

)
+ o(n−j).
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For j = 6 we get limn→+∞ n
6((B3

nf)(x)− f(x)) = f (6)(x)
216

γ(γ − 1)(γ − 2).

II) Translates of central B-splines. Let us consider the central B-splines of
order h ∈ N defined by

Bh(x) :=
1

(h− 1)!

h∑
`=0

(−1)`
(
h
`

)(
h

2
+ x− `

)h−1
+

where xr+ := max{xr, 0}. It is well known that the Fourier transform of the
functions Bh is given by

B̂h(v) =

(
sin v

2
v
2

)h
, v ∈ R, h ∈ N

(see [16, 26]). We apply the previous theory to the kernel function defined by

ϕ(x) =

(
3− h

24

)
Bh(x− 1) +

(
h

12
− 3

)
Bh(x− 2) +

(
1− h

24

)
Bh(x− 3)

for a fixed h ≥ 6. The Fourier transform of ϕ is given by

ϕ̂(v) = B̂h(v)

((
3− h

24

)
e−iv +

(
h

12
− 3

)
e−2iv +

(
1− h

24

)
e−3iv

)
.

By elementary calculations we have

ϕ̂(0) = 1, ϕ̂′(0) = 0, ϕ̂′′(0) = 0, ϕ̂′′′(0) =

(
6− h

2

)
i, ϕ̂(4)(0) = −h

2

48
−251h

120
+36,

ϕ̂(5)(0) =

(
5

12
h2 +

5

2
h− 150

)
i, ϕ̂(6)(0) = −540− 1255

63
h+

125

48
h2 +

5

288
h3.

Then, since ϕ̂(j)(2kπ) = 0 for every k 6= 0, we have by the Poisson summation
formula

m1(ϕ) = m2(ϕ) = 0, m3(ϕ) = −6 +
h

2
, m4(ϕ) = −h

2

48
− 251h

120
+ 36

and

m5(ϕ) =
5h2

12
+

5h

2
− 150, m6(ϕ) = 540 +

1255

63
h− 125

48
h2 − 5

288
h3.

Since ϕ has compact support contained in the interval [1 − h
2
, 3 + h

2
], we

have that Mν(ϕ) < +∞ for every ν ∈ N and conditions ii) and iii) are satisfied
with r = 3, if h 6= 12. In this case we obtain the following Voronovskaja formula
for the sampling operators generated by ϕ, denoted by Sn :

lim
n→+∞

n3((Snf)(x)− f(x)) =
h− 12

12
f ′′′(x),
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provided that f ′′′ exists at the point x.
If h = 12 then we obtain a formula of fourth order taking into account that

in this instance m3(ϕ) = 0. So, we have r = 4 and

lim
n→+∞

n4((Snf)(x)− f(x)) =
79

240
f (4)(x),

provided that f (4) exists at the point x.
Concerning the linear combinations, we consider the case s = 2. If h 6= 12,

we have ν1 = r = 3 and we look for coefficients α1, α2 such that M2
3(ϕ, n) = 0.

The solutions are α1 = −1
7
, α2 = 8

7
and the operator takes the form

(S2
nf)(x) = −1

7
(Snf)(x) +

8

7
(S2nf)(x).

Then, from the general theory, we have, for functions f for which f (j)(x) exists,

(S2
nf)(x)− f(x) =

j∑
ν=4

f (ν)(x)

ν!

mν(ϕ)

nν
23−ν − 1

7
+ o(n−j).

In particular, for j = 4, limn→+∞ n
4((S2

nf)(x)−f(x))=−f (4)(x)
4!

1
14

(
36− h2

48
− 251h

120

)
follows.

If h = 12 we take r = 4 and so we look for coefficients α1, α2 such that
M2

4(ϕ, n) = 0. In this case the solution is α1 = − 1
15
, α2 = 16

15
and the operator

takes the form

(S2
nf)(x) = − 1

15
(Snf)(x) +

16

15
(S2nf)(x).

Then, from the general theory if j ≥ 5 we have, for functions f for which f (j)(x)
exists,

(S2
nf)(x)− f(x) =

j∑
ν=5

f (ν)(x)

ν!

mν(ϕ)

nν
24−ν − 1

15
+ o(n−j).

In particular, we obtain, for j = 5, limn→+∞ n
5((S2

nf)(x)− f(x)) = f (5)(x)
60

.

Now we consider the case s = 3. At first we consider h 6= 12. In this case
we look for coefficients α1, α2, α3 such that M3

3(ϕ, n) =M3
4(ϕ, n) = 0, i.e., we

put ν1 = r = 3, ν2 = µ = 4. We obtain the system
α1 + α2 + α3 = 1

α1 +
α2

8
+
α3

27
= 0

α1 +
α2

16
+
α3

81
= 0.
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Since in this instance H = −50, its solution is given by α1 = 1
50
, α2 = −16

25
,

α3 = 81
50
. We obtain the linear combination

(S3
nf)(x) =

1

50
(Snf)(x)− 16

25
(S2nf)(x) +

81

50
(S3nf)(x).

Then we have, for j ≥ 5,

(S3
nf)(x)− f(x) =

j∑
ν=5

f (ν)(x)

ν!

mν(ϕ)

nν

(
− 1

50

)(
−1 +

1

2ν−5
− 1

3ν−4

)
+ o(n−j).

For j = 5 we get limn→+∞ n
5((S3

nf)(x)− f(x)) = f (5)(x)
18000

(
5h2

12
+ 5h

2
− 150

)
.

Moreover if h = 12 we look for coefficients α1, α2, α3 such thatM3
4(ϕ, n) =

M3
5(ϕ, n) = 0, i.e., we put ν1 = r = 4, ν2 = µ = 5. We obtain the system

α1 + α2 + α3 = 1

α1 +
α2

16
+
α3

81
= 0

α1 +
α2

32
+

α3

243
= 0.

Since in this instance H = −180, its solution is given by α1 = 1
180
, α2 = −16

45
,

α3 = 27
20
. We obtain the linear combination

(S3
nf)(x) =

1

180
(Snf)(x)− 16

45
(S2nf)(x) +

27

20
(S3nf)(x).

Then we have, for j ≥ 6,

(S3
nf)(x)− f(x) =

j∑
ν=6

f (ν)(x)

ν!

mν(ϕ)

nν

(
− 1

180

)(
−1 +

1

2ν−6
− 1

3ν−5

)
+ o(n−j).

For h = 12 we get m6(ϕ) = 7855
21

and so in particular, for j = 6, we obtain

limn→+∞ n
6((S3

nf)(x)− f(x)) = 1571
1632960

f (6)(x).

The method can be applied to many other examples of this type, starting
from combinations of translates of type

ϕ(x) = a0Bh(x− b0) + a1Bh(x− b1) + a2Bh(x− b2)

for suitable real numbers a0, a1, a2 and b0, b1, b2 such that a0 + a1 + a2 = 1 and
b0 < b1 < b2 (see [6]).
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III) Generalized Jackson kernel. Let us consider the generalized Jackson
operators with kernel

ϕ(x) = Jγ,β(x) = cγ,βsinc2β
(

x

2γβπ

)
,

with x ∈ R, β ∈ N, γ ≥ 1, cγ,β is a normalization constant and sinc u := sin(πu)
πu

.

It is well known (see [4, 14]) that Jγ,β is bandlimited to the interval [− 1
γ
, 1
γ
]. In

this instance, our operator takes the form

(Jn,γ,βf)(x) =
+∞∑

k=−∞

Jγ,β(nx− k)f

(
k

n

)
, n ∈ N, x ∈ R.

Since Jγ,β is bandlimited to [− 1
γ
, 1
γ
] and using the Poisson summation formula

we have that

(−i)j
+∞∑

k=−∞

Jγ,β(u− k)(u− k)j = Ĵ
(j)
γ,β(0), u ∈ R.

Therefore, see also [7], we easily get

m1(Jγ,β) = −iĴ ′γ,β(0) = 0, m2(Jγ,β) = −Ĵ ′′γ,β(0) =

∫ +∞

−∞
x2Jγ,β(x)dx =: Aγ,β

and

m3(Jγ,β) = 0, m4(Jγ,β) = −
∫ +∞

−∞
x4Jγ,β(x)dx =: −Bγ,β.

Conditions i) and ii) are satisfied with r = 2. Moreover if β ≥ 3 then (see
[4, Remark 3.2(d)] ), also condition iii) is satisfied and the following Voronov-
skaja formula for the generalized Jackson operator holds (see [7])

lim
n→+∞

n2[(Jn,γ,βf)(x)− f(x)] = Aγ,β
f ′′(x)

2
,

at every point x ∈ R in which f ′′(x) exists.
As to the calculation of the constant Aγ,β we have

Aγ,β = 16cγ,ββ
3γ3
∫ +∞

0

sin2β x

x2β−2
dx.

For example, for β = 3, using [20, Formula 12, p. 454], we get cγ,3 = 10
33πγ

,

Aγ,3 = 180
11
γ2. Concerning the linear combinations, we begin with the case s = 2.

From the general theory we get α1 = −1
3

and α2 = 4
3
. So we have

(J2
n,γ,βf)(x) = −1

3
(Jn,γ,βf)(x) +

4

3
(J2n,γ,βf)(x).
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Then, from the general theory, for j ≥ 4, we have, for functions f for which
f (j)(x) exists,

(J2
n,γ,βf)(x)− f(x) =

j∑
ν=3

f (ν)(x)

ν!

mν(Jγ,β)

nν

(
−1

3
+

22−ν

3

)
+ o(n−j)

=

j∑
ν=4

f (ν)(x)

ν!

mν(Jγ,β)

nν
22−ν − 1

3
+ o(n−j).

In particular, for j = 4, we get limn→+∞ n
4((J2

n,γ,βf)(x)−f(x)) = Bγ,β
1
96
f (4)(x)

at every point x ∈ R in which f (4)(x) exists.
As to the calculation of the constant Bγ,β we have

Bγ,β = 64cγ,ββ
5γ5
∫ +∞

0

sin2β x

x2β−4
dx.

For example, for β = 3, we get cγ,3 = 10
33πγ

, Bγ,3 = 9720
11
γ4.

Now we consider the case s = 3. Since we have m3(Jγ,β) = 0, in this case
we look for coefficients α1, α2, α3 such thatM3

2(Jγ,β, n) =M3
4(Jγ,β, n) = 0, i.e.,

we put ν1 = r = 2, ν2 = µ = 4. We obtain the same system as before with
H = −120 and α1 = 1

24
, α2 = −16

15
, α3 = 81

40
. We obtain the linear combination

(J3
n,γ,βf)(x) =

1

24
(Jn,γ,βf)(x)− 16

15
(J2n,γ,βf)(x) +

81

40
(J3n,γ,βf)(x).

Again, by the Poisson formula, we have for β ≥ 4

m5(Jγ,β) = 0, m6(Jγ,β) =

∫ +∞

−∞
x6Jγ,β(x)dx =: Cγ,β.

Then, for j ≥ 6 and for every function f for which f (j)(x) exists

(J3
n,γ,βf)(x)− f(x) =

j∑
ν=6

f (ν)(x)

ν!

mν(Jγ,β)

nν

(
1

24
− 1

15·2ν−4
+

1

40·3ν−4

)
+ o(n−j).

In particular, for j = 6, limn→+∞ n
6((J3

n,γ,βf)(x)− f(x)) = f (6)(x)
25920

Cγ,β follows.

As to the calculation of the constant Cγ,β we have

Cγ,β = 128cγ,ββ
6γ6
∫ +∞

0

sin2β x

x2β−6
dx

and for β = 4 we get Cγ,4 = 3225600
151

γ5.
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[3] Anastassiou, G. A. and Mezei, R. A., Uniform convergence with rates for
smooth Poisson-Cauchy type singular integral operators. Math. Comput.
Modelling 50 (2009)(11–12), 1553 – 1570.

[4] Bardaro, C., Butzer, P. L., Stens, R. L. and Vinti, G., Kantorovich-type gen-
eralized Sampling series in the setting of Orlicz spaces. Sampl. Theory Signal
Image Process. 6 (2007), 29 – 52.

[5] Bardaro, C. and Mantellini, I., A Voronovskaya-type theorem for a general class
of discrete operators. Rocky Mountain J. Math. 39 (2009)(5), 1411 – 1442.

[6] Bardaro, C. and Mantellini, I., A quantitative Voronovskaja formula for gen-
eralized sampling operators. East J. Approx. 15 (2009)(4), 459 – 471.

[7] Bardaro, C. and Mantellini, I., A quantitative asymptotic formula for a general
class of discrete operators. Comput. Math. Appl. 60 (2010), 2859 – 2870.

[8] Bardaro, C. and Mantellini, I., Approximation properties for linear combina-
tions of moment type operators. Comput. Math. Appl. 62 (2011), 2304 – 2313.

[9] Bardaro, C. and Mantellini, I., Asymptotic behaviour of Mellin-Fejer convolu-
tion operators. East J. Approx. 17 (2011)(2), 181 – 201.

[10] Bardaro, C. and Mantellini, I., On convergence properties for a class of
Kantorovich discrete operators. Numer. Funct. Anal. Optimiz. 33 (2012)(4),
374 – 396.

[11] Bardaro, C. and Mantellini, I., On the iterates of Mellin-Fejer convolution
operators. Acta Appl. Math. 121 (2012), 213 – 229.

[12] Bardaro, C. and Mantellini, I., On Voronovskaja formula for linear combina-
tions of Mellin-Gauss-Weierstrass operators. Appl. Math. Comput. 218 (2012),
10171 – 10179.

[13] Butzer, P. L., Linear combinations of Bernstein polynomials. Canadian J.
Math. 5 (1953), 559 – 567.

[14] Butzer, P. L. and Nessel, R. J., Fourier Analysis and Approximation, 1. New
York: Academic Press 1971.

[15] Butzer, P. L. and Stens, R. L., Sampling theory for not necessarily band-limited
functions: an historical overview. SIAM Review 34 (1992), 40 – 53.

[16] Butzer, P. L. and Stens, R. L., Linear prediction by samples from the past.
In: Advanced Topics in Shannon Sampling and Interpolation Theory (ed.:
R. J. Marks II). Springer Texts Electrical Engrg. New York: Springer 1993,
pp. 157 – 183.



298 C. Bardaro and I. Mantellini

[17] De Vore, R. A. and Lorentz, G. G., Constructive Approximation. Grundlehren
Math. Wiss. 303. Berlin: Springer 1993.

[18] Ditzian, Z. and Totik, V., Moduli of Smoothness. Springer Ser. Comput.
Math. 9. New York: Springer 1987.

[19] Gonska, H., Pitul, P. and Rasa, I., On Peano’s form of the Taylor remain-
der, Voronovskaja’s theorem and the commutator of positive linear opera-
tors. In: Numerical Analysis and Approximation Theory (Proceedings Cluj-
Napoca (Romania) 2006; eds.: O. Agratini et al.). Casa Cărţii de ştiinţă 2006,
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