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Regularizability of Ill-Posed Problems
and the Modulus of Continuity
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Dedicated to Ulrich Tautenhahn, a friend and co-author,
who passed away too early at the age of 60.

Abstract. The regularization of linear ill-posed problems is based on their conditional
well-posedness when restricting the problem to certain classes of solutions. Given
such class one may consider several related real-valued functions, which measure the
well-posedness of the problem on such class. Among those functions the modulus
of continuity is best studied. For solution classes which enjoy the additional feature
of being star-shaped at zero, the authors develop a series of results with focus on
continuity properties of the modulus of continuity. In particular it is highlighted
that the problem is conditionally well-posed if and only if the modulus of continuity
is right-continuous at zero. Those results are then applied to smoothness classes in
Hilbert space. This study concludes with a new perspective on a concavity problem
for the modulus of continuity, recently addressed by two of the authors in [Trudy
Inst. Mat. i Mekh. UrO RAN 18 (2012)(1), 34–41].
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1. Introduction

We shall consider linear ill-posed problems, given in the form

yδ = Ax+ δξ, (1)

where A : X → Y denotes an injective and bounded linear operator acting
between Banach spaces X and Y . If the range R(A) ⊂ Y is non-closed,
then the Problems (1) are ill-posed, meaning that the inverse mapping
A−1 : R(A) ⊂ Y → X is not bounded and hence not continuous. However,
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one may restrict a problem as posed in (1) by introducing the a priori informa-
tion that x ∈ M ⊆ X, for a non-empty subset M . By doing so we may study
the following questions.

Question 1.1. Does the mapping A : M → Y have a bounded inverse?

If this is the case, then the mapping ΩM : [0,+∞)→ [0,+∞], given as

ΩM(δ) := sup {‖x− x′‖ : x, x′ ∈M, ‖Ax− Ax′‖ ≤ δ} , (2)

is of interest. The above function ΩM is analyzed in various studies, and we
mention [7, § 2.3] for a monograph.

Question 1.2. Is the Problem (1) regularizable on M in the sense of Tikhonov?

This question is related to the reconstruction of x from noisy data, and we
introduce the error criterion. If S is any mapping of the form

yδ ∈ Y → S(yδ) ∈ X,

then we let

e(S, x, δ) := sup
yδ:‖Ax−yδ‖≤δ

∥∥S(yδ)− x
∥∥ , δ > 0,

and the corresponding uniform error of any reconstruction S on the set M will
be given by

e(S,M, δ) := sup
x∈M

e(S, x, δ), δ > 0.

By regularizability on M in the sense of Tikhonov we mean that there is a
family Rδ of reconstructions such that for each x ∈M we have that

e(Rδ, x, δ) −→ 0 as δ → 0.

The question whether a problem is regularizable received attention very early
in the analysis of ill-posed problems (for an early study we refer to [12], and we
also mention the monograph [1, Chapter 1]). If the above is the case then we
call the restriction of A−1 on

A(M) := {z ∈ Y : z = Ax, x ∈M}

regularizable on A(M). In addition we may ask for uniform regularizability of
the Problem (1) on the set M , thus asking whether a family Rδ of reconstruc-
tions exists for which e(Rδ,M, δ)→ 0 as δ → 0.

While the first question studies intrinsic continuity features of the problem,
the latter question asks for the ability to find reconstruction methods, which
are capable to recover x based on noisy data yδ as δ is getting smaller. In this
study we will not address the regularizability problem in the sense of Tikhonov.
Instead we analyze uniform regularizability for classes M .
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2. Modulus of continuity

For a variety of classes of subsets M of X that contain the zero element,
instead of the function ΩM from (2) one can consider the function
ωM : [0,+∞)→ [0,+∞], defined as

ωM(δ) := sup {‖x‖ : x ∈M, ‖Ax‖ ≤ δ} ,

usually called modulus of continuity. Clearly, for 0 ∈ M we have that
ωM(δ) ≤ ΩM(δ) for all δ ≥ 0. The modulus of continuity is obviously a non-
decreasing function of δ.

2.1. Elementary properties. The following elementary properties are easily
verified.

Lemma 2.1. Let M,N ⊆ X be two subsets. Then for all δ ≥ 0 it holds

(i) ωM∪N(δ) = max {ωM(δ), ωN(δ)}.
(ii) ωM(δ) = ω−M(δ).

In particular, we have that ωM∪−M(δ) = ωM(δ).

Below we shall confine ourselves to sets M from the following class of sets.

Definition 2.2. A subset M ⊆ X is said to be star-shaped at zero if 0 ∈ M
and if x ∈ M implies αx ∈ M for all 0 ≤ α ≤ 1. Equivalently, for each C ≥ 1
we have that 1

C
M ⊆M .

Lemma 2.3. Suppose that M is star-shaped at zero. Then for all δ ≥ 0 and
all C ≥ 1 it holds

ωM(Cδ) ≤ CωM(δ) and ΩM(Cδ) ≤ CΩM(δ).

In particular, we have that ωM (t)
t
≤ ωM (s)

s
as well as ΩM (t)

t
≤ ΩM (s)

s
whenever

0 < s ≤ t.

Proof. Let C ≥ 1 be arbitrary. Then for all δ ≥ 0 it holds

ωM(Cδ) = sup {‖x‖ : x ∈M, ‖Ax‖ ≤ Cδ}

= C sup

{∥∥∥∥ 1

C
x

∥∥∥∥ :
1

C
x ∈ 1

C
M,

∥∥∥∥A 1

C
x

∥∥∥∥ ≤ δ

}
= C sup

{
‖z‖ : z ∈ 1

C
M, ‖Az‖ ≤ δ

}
= Cω 1

C
M(δ) ≤ CωM(δ).

Taking into account that ΩM = ωM−M , where we let

M −M := {x− y; x, y ∈ M},

and the fact that the difference of two star-shaped at zero sets is again star-
shaped at zero, the assertion for ΩM follows.
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We summarize the above elementary findings.

Proposition 2.4. Suppose that the set M ⊆ X is star-shaped at zero.

(i) Then the mapping ωM is non-decreasing, ωM(0) = 0, and the mapping

δ → ωM (δ)
δ

is non-increasing on (0,+∞).

(ii) Likewise the mapping ΩM is non-decreasing, ΩM(0) = 0, and the mapping

δ → ΩM (δ)
δ

is non-increasing on (0,+∞).

These elementary properties have immediate consequences for the continu-
ity properties of both ωM and ΩM .

2.2. Modulus functions.

Definition 2.5. We agree to call a mapping f : [0,+∞)→ [0,+∞] a modulus

function if it is non-decreasing, f(0) = 0, and t → f(t)
t

is non-increasing on
(0,+∞). It is called proper if for some t > 0 it has a finite value f(t) < +∞.

With this notion both the functions ωM and ΩM are modulus functions
provided that the set M is star-shaped at zero.

Proposition 2.6. Let f be any proper modulus function. Then

(i) the values f(t) are finite for every t > 0.

(ii) If f(t0) = 0 for some t0 > 0 then f(t) = 0 for all t ≥ 0.

(iii) The mapping f is continuous on (0,+∞), and

(iv) for every pair t1, t2 > 0 we have that f(t1 + t2) ≤ f(t1) + f(t2).

Proof. Suppose that f is finite at t0 > 0. Then it is finite for every 0 < t ≤ t0
by monotonicity. Also, if t > t0 then f(t)

t
≤ f(t0)

t0
< +∞, which proves the

assertion (i).
For the second assertion (ii), suppose that f(t0) = 0, and t0 > 0. Then, due

to monotonicity we have that f(t) = 0, 0 ≤ t ≤ t0. For any t1 > t0 we see that
0 ≤ f(t1) = f( t1

t0
t0) ≤ t1

t0
f(t0) = 0.

For proving (iii) let t > 0 be any real number. If f(t) = 0 then by item (ii), f

is identically zero, and the assertion is obvious. Otherwise, we first prove right

continuity of f at t. Let tn ↘ t. Then 1 ≤ f(tn)
f(t)
≤ tn

t
→ 1. Similarly, if tn ↗ t

then 1 ≤ f(t)
f(tn)

≤ t
tn
→ 1, which proves the continuity of f at t > 0.

The proof of the sub-additivity in item (iv) is well-known, and we recall
this here for convenience. Plainly, t1, t2 ≤ t1 + t2, and therefore

f(t1 + t2) = t1
f(t1 + t2)

t1 + t2
+ t2

f(t1 + t2)

t1 + t2
≤ t1

f(t1)

t1
+ t2

f(t2)

t2
= f(t1) + f(t2),

and this completes the proof of the proposition.
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Remark 2.7. Proposition 2.6(iv) yields that |f(t1) − f(t2)| ≤ f(|t1 − t2|),
t1, t2 ≥ 0. Therefore, proper modulus functions are sub-additive, and continuous
at every t > 0.

Within the classical context, the modulus of continuity, say ω, of a real
function on a bounded interval is non-decreasing, ω(0) = 0, and sub-additive,
see e.g. [8, § 6.1]. Therefore any such function is called modulus of continuity
if, in addition, it is continuous at zero.

Corollary 2.8. A proper modulus function is continuous on [0,+∞) if and
only if it is right-continuous at zero.

We conclude this subsection with gathering more, and important, properties
of modulus functions, we refer to [8, Lemma 6.1.4].

Proposition 2.9. For every proper modulus function f which is right-con-
tinuous at zero there is a concave right-continuous proper modulus function f∗
with

f(t) ≤ f∗(t) ≤ 2f(t), t > 0.

The constant 2 cannot be improved, in general.

We finally mention the following result.

Corollary 2.10. If a proper modulus function f does not vanish identically
then it tends to zero at most linearly, i.e., t = O(f(t)) as t↘ 0.

Proof. Suppose that f does not vanish identically and that it is finite for t0 > 0.
According to Proposition 2.6(i), f is finite on [0,+∞). Then the assertion is

immediate from the fact that f(t)
t

is non-increasing, which implies that for all

0 < t ≤ t0 we have that f(t) ≥ f(t0)
t0
t.

2.3. Conditional well-posedness. The right-continuity at zero of the func-
tions ωM and ΩM is intimately related to the continuity of the inverse A−1,
when considered as acting from A(M) ⊂ Y to X. Indeed, we have the following
proposition.

Proposition 2.11. Let M ⊆ X be star-shaped at zero. Then the modulus ωM
is right-continuous at zero if and only if the mapping A−1 restricted to A(M) is
continuous at zero.

Proof. One has that ωM is right-continuous at zero if and only if

∀ε>0 ∃δ̄ >0 such that ∀δ<δ̄ it holds ωM(δ)<ε

⇔ ∀ε>0 ∃δ̄ >0 such that ∀δ<δ̄ ∀y∈A(M) with ‖y‖≤δ it holds ‖A−1y‖<ε
⇔ ∀ε>0 ∃δ̄ >0 such that ∀y∈A(M) with ‖y‖<δ̄ it holds ‖A−1y‖<ε,

which is nothing else than A−1 : A(M)→ X is continuous at zero.
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We summarize the preceding discussion.

Definition 2.12. We call the Problem (1) conditionally well-posed on M if the
mapping A−1 restricted to A(M) is continuous.

A famous theorem by A. N. Tikhonov, see [11], asserts that the problem is
conditionally well-posed whenever the set M ⊂ X is compact. For some further
discussion and examples concerning conditional well-posedness we also refer to
[4, 5, 14].

Theorem 2.13. Suppose that the set M ⊆ X is star-shaped at zero. Then the
following assertions are equivalent:

(i) The Problem (1) is conditionally well-posed on M .

(ii) The modulus of continuity ωM is right-continuous at zero.

(iii) The modulus of continuity ωM is continuous on [0,∞).

Proof. The equivalence of the first two assertions is a consequence of Propo-
sition 2.11. The equivalence of the last two assertions follows from Corol-
lary 2.8.

Tikhonov’s result translates to the following statement.

Proposition 2.14. If the set M ⊂ X is compact and star-shaped at zero, then
we have ωM(δ) → 0 as δ → 0, and hence the modulus of continuity ωM is
continuous on [0,∞).

We present the following examples.

Example 2.15. Suppose that the operator A is injective and has a non-closed
range. By denoting with BX := {x ∈ X : ‖x‖ ≤ 1} the closed unit ball of X,
we show that for all δ > 0 it holds

ωBX (δ) = sup{‖x‖ : ‖x‖ ≤ 1, ‖Ax‖ ≤ δ} = 1.

Indeed, consider a fixed δ > 0. Obviously, ωBX (δ) ≤ 1. Since the range of A
is non-closed, there is no K > 0 such that ‖x‖ ≤ K‖Ax‖ for all x ∈ X. Thus

there exists a sequence {x̃n}n≥1 ⊂ X \ {0} such that ‖x̃n‖
‖Ãxn‖

→ +∞ as n→ +∞.

By defining for all n ≥ 1 xn := 1
‖x̃n‖ x̃n, one has that ‖xn‖ = 1 and ‖Axn‖ → 0 as

n→ +∞. Thus there exists n(δ) ≥ 1 such that ‖Axn‖ ≤ δ for all n ≥ n(δ) and
this provides the desired assertion. Consequently, the modulus of continuity ωM
is not right-continuous at zero for M = BX .

Example 2.16. If {0} 6= L ⊂ X is a finite-dimensional linear subspace then
we have ωM(δ) � δ as δ → 0 for M = L. Indeed, the image space A(L) is a
closed linear subspace in Y , and therefore A−1 : A(L)→ L is a bounded linear
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operator. Thus there is a constant C < +∞ for which ‖x‖ ≤ C ‖Ax‖ , x ∈ L.
But this yields that ωL(δ) ≤ Cδ for all δ > 0. Next, if ωL would vanish, say
at δ0 > 0, then {x ∈ L : ‖Ax‖ ≤ δ0} = {0}, which is not true. In the light of
Corollary 2.10 the above assertion is proved.

The above extremal decay rate, together with Lemma 2.1 gives rise to the
following

Conjecture 2.17. LetM ⊂ X be any set which is star-shaped at zero, and let L
be a finite-dimensional subspace of X. If ωM does not vanish identically then
ω(M + L, δ) � ω(M, δ) as δ → 0.

2.4. Regularizability. We now highlight the problem of the continuity of the
modulus of continuity to the regularizability problem. To this end we introduce
the local companion to the function ΩM from (2), and we introduce, given any
x ∈M , the function

Ωloc
M (x, δ) := sup {‖x− x′‖ : x′ ∈M, ‖Ax− Ax′‖ ≤ δ} .

Plainly, supx∈M Ωloc
M (x, δ) = ΩM(δ).

In agreement with the usual nomenclature we call a reconstruction S
interpolatory at level δ if for each x ∈M , and data yδ with

∥∥Ax− yδ∥∥ ≤ δ, we
have that S(yδ) ∈M and

∥∥AS(yδ)− yδ
∥∥ ≤ δ.

Lemma 2.18. Let S be any reconstruction.

(i) If S is interpolatory, then we have for each x ∈M that

e(S, x, δ) ≤ Ωloc
M (x,

2

δ
), δ > 0.

(ii) If the set M is centrally-symmetric, then

ωM(δ) ≤ e(S,M, δ), δ > 0.

(iii) If the set M is convex and centrally-symmetric, then for each x ∈ M it
holds

Ωloc
M (x, δ) ≤ ΩM(δ) = 2ωM

(
δ

2

)
, δ > 0

Thus, for convex centrally-symmetric sets M we have

ωM(δ) ≤ e(S,M, δ) ≤ 2ωM(δ), δ > 0, (3)

for any reconstruction S which is interpolatory at the level δ.
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Proof. Given data yδ and interpolatory reconstruction S we let x′ :=S(yδ)∈M .
Then

∥∥x−S(yδ)
∥∥≤Ωloc

M(x,2
δ
). Since this is true for any data yδwith

∥∥Ax−yδ∥∥≤δ
the proof of the first assertion (i) can be completed.

For the second assertion (ii) we argue as follows. For every x ∈M , and due
to symmetry also −x ∈ M with ‖Ax‖ = ‖A(−x)‖ ≤ δ the data yδ := 0 are
possible data, and we bound, using the triangle inequality

e(S,M, δ) ≥ max {‖S(0)− x‖ , ‖S(0) + x‖ } ≥ ‖x‖ .

Therefore we conclude that e(S,M, δ)≥sup {‖x‖ : x∈M, ‖Ax‖≤δ}=ωM(δ).

To prove item (iii) we fix any x ∈ M , and let x′ ∈ M be arbitrary. Then
x̂ := x−x′

2
∈ M , and we have that ‖Ax̂‖ ≤ δ

2
, provided that ‖Ax− Ax′‖ ≤ δ.

Thus, ‖x− x′‖ = 2 ‖x̂‖ ≤ 2ωM( δ
2
). Next we prove that 2ωM( δ

2
) ≤ ΩM(δ).

To this end, given 0 < ε ≤ ωM( δ
2
), let z ∈ M, ‖Az‖ ≤ δ

2
, be such that

‖z‖ ≥ ωM( δ
2
)− ε. This yields that z,−z ∈M, ‖A(z − (−z))‖ ≤ δ, and

‖z − (−z)‖ = 2 ‖z‖ ≥ 2ωM

(
δ

2

)
− 2ε,

hence that ΩM(δ) ≥ 2ωM( δ
2
). The bounds (3) are now easy consequences.

Remark 2.19. Indeed, interpolatory reconstructions always exist. To check
this, fix x ∈M and data yδ with

∥∥Ax− yδ∥∥ ≤ δ and consider the set

D(yδ) :=
{
z ∈M :

∥∥Az − yδ∥∥ ≤ δ
}
.

Since x ∈ D(yδ) this set is non-empty, and any selection S(yδ) ∈ D(yδ) will
yield an interpolatory reconstruction. If the set M ⊂ X is convex and com-
pact, then there is even a continuous selection by Michael’s continuous selection
theorem, we refer to [2, § 7] for details and extensions. For compact sets M the
construction of interpolatory reconstructions may be achieved by solving the
optimization problem

xqu := arg min
z∈M

∥∥Az − yδ∥∥ ,
which exists due to the compactness of M . It is readily checked that xqu∈D(yδ).
This construction goes back to Ivanov [6] and it is called method of quasi-
solutions, there.

Corollary 2.20. For convex centrally-symmetric sets M the Problem (1) is
uniformly regularizable on M if and only if the modulus of continuity ωM is
right-continuous at zero.
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3. Smoothness classes in Hilbert space

Here and in the subsequent section let X and Y be separable Hilbert spaces.
We recall that the linear operator A : X → Y is assumed to be bounded and
injective. For that case one can consider its self-adjoint companion H := A∗A,
where we set a := ‖H‖ = ‖A‖2.

The typical smoothness classes as considered in inverse problems, and we
mention source sets expressing general smoothness assumptions, and more re-
cently, level sets, are based on the distribution function

F 2
x (t) :=

∥∥χ(0,t](H)x
∥∥ 2 =

∫ t

0

d‖Eτx‖2, t ≥ 0,

which is well-defined and finite for each x ∈ X. Above, we let χ(0,t] be the
characteristic function of the interval (0, t], and Et = Et(H), 0 ≤ t ≤ a, be the
spectral resolution of the operator H. The following elementary properties are
easily seen, for a further discussion and consequences cf. [3].

Lemma 3.1. Let x ∈ X be arbitrary.

(i) The function t 7→ Fx(t) is right-continuous and non-decreasing.

(ii) If the operator H is injective then Fx(0) = 0.

(iii) For all 0 < t ≤ a we have that Fχ(0,t](H)x(τ) = Fχ(0,t](H)x(t), τ ≥ t.

For a class M ⊂ X we consider the associated function F̄M , given as

F̄M(t) := sup
x∈M

Fx(t), t ≥ 0.

This function is finite whenever M is bounded, and we thus will assume bound-
edness of M , throughout. It is also non-decreasing, and we have F̄M(0) = 0.
As it will turn out, the right-continuity of the function F̄M(t) at zero and the
right-continuity of the function ωM at zero are closely related, and we will dwell
into this, now. Best results are obtained for smoothness which is expressed
through sets M , which are determined in the vicinity of zero of the distribution
function Fx(t), t > 0, only.

Definition 3.2 (spectral smoothness). We call a smoothness class M spectral,
if for each t > 0 we have that x ∈M yields that χ(0,t](H)x ∈M .

Definition 3.3 (index function). We call a function ϕ : (0, a] → (0,∞) index
function if it is continuous and increasing with limt↘0 ϕ(t) = 0.

Example 3.4. For an index function ϕ we assign the smoothness classMϕ as

Mϕ := {x = ϕ(H)v : ‖v‖ ≤ 1} ,
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i.e., the image of the unit ball under the mapping ϕ(H). Such classes are
spectral since with x = ϕ(H)v ∈Mϕ we also have that

χ(0,t](H)x = χ(0,t](H)ϕ(H)v = ϕ(H)χ(0,t](H)v,

and
∥∥χ(0,t](H)v

∥∥ ≤ ‖v‖ ≤ 1. We mention that

F̄Mϕ(t) =
∥∥χ(0,t](H)ϕ(H)

∥∥ ≤ sup
0<s≤t

ϕ(s) = ϕ(t), 0 < t ≤ a,

such that F̄Mϕ is right-continuous at zero exactly if ϕ was an index function.

Example 3.5. For an index function ϕ we assign the level set Eϕ as

Eϕ := {x ∈ X : Fx(t) ≤ ϕ(t), 0 < t ≤ a} .

In view of Lemma 3.1(iii) such classes also constitute spectral smoothness
classes, and F̄Eϕ is right-continuous at zero for index functions ϕ.

Proposition 3.6. Suppose that the set M ⊂ X is bounded. If the function F̄M
is right-continuous at zero then ωM is also right-continuous at zero. Moreover,
for spectral smoothness classes M the converse also holds true.

Proof. To prove the first assertion we observe that for 0 < t < a we can estimate
the norm square as

‖x‖2 =

∫ t

0

dF 2
x (τ) +

∫ a

t

dF 2
x (τ) ≤ F 2

x (t) +
1

t

∫ a

t

τdF 2
x (τ).

From this it follows ‖x‖2 ≤ F 2
x (t) + 1

t
‖Ax‖2 and taking the supremum over the

set {x ∈M : ‖Ax‖ ≤ δ} we obtain for δ > 0 and all sufficiently small t > 0

ω2
M(δ) ≤ F̄ 2

M(t) +
δ2

t
. (4)

By setting t := δ and under the condition F̄M(t)→ 0 as t↘ 0 the upper bound
of ω2

M(δ) in (4) tends to zero as δ ↘ 0. Hence limδ↘0 ωM(δ) = 0. The second
assertion is proved by contraposition. Without loss of generality we assume
that M belongs to the unit ball in X. Suppose that there is some ε > 0 such
that for all t > 0 we have that F̄M(t) = supx∈M

∥∥χ(0,t](H)x
∥∥ > ε. Thus we can

find x̃t ∈ M with
∥∥χ(0,t](H)x̃t

∥∥ ≥ ε. We assign xt := χ(0,t](H)x̃t, t > 0, and
xt ∈ M since the set M was assumed to be spectral. We thus have that for
this ε > 0 we can find a family xt ∈ M, t > 0 with ‖xt‖ ≥ ε. We claim that
‖Axt‖ ≤ t. Indeed, taking into account item (iii) of Lemma 3.1 we bound

‖Axt‖ 2 =

∫ a

0

τdF 2
xt(τ) =

∫ t

0

τdF 2
xt(τ) ≤ t

∫ t

0

dF 2
xt(τ) ≤ t ‖xt‖ 2 ≤ t.

Consequently we see that ωM(
√
t) ≥ ε, t > 0, which is a contradiction. The

proof is complete.
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Remark 3.7. Tight bounds for the modulus of continuity ωMϕ can be ob-
tained under additional geometric (convexity) assumptions by means of general
interpolation results within the framework of variable Hilbert scales, and we
mention [13] for an early work on this. More recently this is pursued within the
framework of conditionally stability estimates, see the recent study [14].

Evidently, Proposition 3.6 provides us with a characterization for the convex
and centrally-symmetric smoothness classes Mϕ and Eϕ.

In many cases the set M is an ellipsoid in Hilbert space, i.e., there is an
operator G : Z → X, for a Hilbert space Z such that

M(G) := {Gv : ‖v‖ ≤ 1} , (5)

the image of the unit ball in Z under the mapping G. Such ellipsoids M(G) need
not be spectral smoothness classes, in general. An obvious exception occurs for
commuting operators G and H.

Example 3.8. In case that G = ϕ(H) : X → X is a function of H, where ϕ is
any index function we have M(G) =Mϕ. Hence the concept of ellipsoidal sets
generalizes general smoothness classes from Example 3.4.

For ellipsoids M(G) we can rewrite

F̄M(G)(t) = sup
‖v‖≤1

∥∥χ(0,t](H)Gv
∥∥ =

∥∥χ(0,t](H)G
∥∥ , 0 < t ≤ a.

where the latter is the operator norm of χ(0,t](H)G : Z → X.
The following was proved in [5, Thm. 4.4], and this shows that the bound

in Lemma 2.18(iii) can be attained for ellipsoidal sets.

Theorem 3.9. For each ellipsoid M(G) and each δ > 0 there is a linear recon-
struction method Sδ such that e(Sδ,M(G), δ) = ωM(G)(δ).

For compact operators A we have the following characterization.

Proposition 3.10. Suppose that A is a compact operator and H := A∗A. The
function F̄M(G) is right-continuous at zero exactly if the operator G is compact.

Proof. Since the operator H is self-adjoint and compact it has a monotone
Schmidt representation (svd) in the form Hx =

∑∞
j=1 sj〈x, uj〉uj, x ∈ X

with ‖H‖ = s1 ≥ s2 ≥ · · · ≥ 0, and orthonormal system uj, j = 1, 2, . . . .
Then the operator χ(0,t](H) is a finite co-dimensional orthogonal projection,
and hence it can be written as χ(0,t](H) = I − PN , where PN is the projection
onto the finite dimensional space XN := span({uj, sj > t}). Thus, we see that
supx∈M(G) Fx(t) = ‖(I − PN)G)‖ . As t↘ 0 the dimension of the spaces XN will
increase to +∞. From this we conclude that supx∈M(G) Fx(t)→ 0 if and only if
the operator G is approximable by finite rank operators, and thus compact. In
Hilbert space, as a consequence of its (metric) approximation property, the no-
tions of compactness and approximability coincide, see e.g. [9, Chapter 10].
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Conjecture 3.11. Suppose that A is compact and that the set M(G) is an
ellipsoid generated by the operator G, see (5). The modulus of continuity
ωM(G) is right-continuous at zero if and only if G is compact.

Remark 3.12. For commuting operators G and H this holds true, in view of
Proposition 3.6.

4. On the concavity of the modulus of continuity

Now, under the setting and notation of the previous section we (re)prove (see
[4, Theorem]) the concavity of the function ω2

M(
√
δ), 0 ≤ δ <∞, for M =Mϕ,

and M = Eϕ (for an index function ϕ, see Examples 3.4 and 3.5), by using some
tools of convex analysis.

For the beginning we notice that, according to the spectral theorem for
bounded self-adjoint linear operators in Hilbert spaces (see [10, Chapter VII]),
there exist a measurable space (Ω,A, µ), a unitary transformation U : X →
L2(Ω,A, µ) and a measurable function

f : Ω→ σ(H) \ {0} ⊆ (0, ‖H‖] ⊂ R

such that Tf := UHU∗ : L2(Ω,A, µ)→ L2(Ω,A, µ) is a multiplication operator
defined as

[Tf h](ω) := f(ω)h(ω) for all ω ∈ Ω.

By [4, Proposition 3] we get for an arbitrary set M ⊆ X that

ωM(δ) := ωM,A(δ) = ω
M,H

1
2
(δ) = ωUM,T√f

(δ) for all δ ≥ 0. (6)

In the formula above the second lower index in the modulus of the continuity
denotes the bounded linear operator to which this is associated, while UM :=
{Ux : x ∈M} stands for the image of the set M through the operator U .

For the images of the setsMϕ and Eϕ through the unitary transformation U
we have, according to [4, Lemma 1], the representations

UMϕ = {g ∈ L2(Ω,A, µ) : g = ϕ(f)h, ‖h‖L2(Ω,A,µ) ≤ 1},

and, respectively,

UEϕ =

{
g ∈ L2(Ω,A, µ) :

∫
0<f(ω)≤t

g2(ω) dµ(ω) ≤ ϕ2(t) ∀t ∈ (0, a]

}
.

The main result of this section follows.
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Theorem 4.1. Let A : X → Y be an injective and bounded linear operator with
non-closed range R(A) mapping between separable Hilbert spaces X and Y and
let ϕ : (0, ‖A‖2]→ (0,+∞) be an arbitrary index function. Then the functions

δ 7→ ω2
Mϕ

(
√
δ) and δ 7→ ω2

Eϕ(
√
δ)

are concave on the interval [0,+∞).

Proof. To prove that δ 7→ ω2
Mϕ

(
√
δ) is concave on [0,+∞), we let be

Θ(t) :=
√
t ϕ(t) for all 0 < t ≤ a. According to (6) and by making use of

the representation given for UMϕ above, it holds, for all δ ≥ 0,

− ω2
Mϕ

(
√
δ)

= inf
{
−‖g‖2

L2(Ω,A,µ) : g = ϕ(f)h, ‖h‖L2(Ω,A,µ) ≤ 1, ‖
√
fg‖2

L2(Ω,A,µ) ≤ δ
}

= inf
{
−‖ϕ(f)h‖2

L2(Ω,A,µ) : ‖h‖2
L2(Ω,A,µ) ≤ 1, ‖Θ(f)h‖2

L2(Ω,A,µ) ≤ δ
}
. (7)

It will be convenient to consider the duality pairing 〈·, ·〉 between L∞(Ω,A, µ)
and L1(Ω,A, µ). Because both the functions ϕ(f) and Θ(f) are uniformly
bounded, and the function k := h2 ≥ 0 belongs to L1(Ω,A, µ), the representa-
tion (7) rewrites as

−ω2
Mϕ

(
√
δ) = inf

{
〈−ϕ2(f), k〉 : 〈1, k〉 ≤ 1, 〈Θ2(f), k〉 ≤ δ, k ≥ 0

}
,

which results in −ω2
Mϕ

(
√
δ) = infk∈L1(Ω,A,µ) Ψ(k, δ), where the function Ψ :

L1(Ω,A, µ)× R→ R ∪ {+∞} is given as

Ψ(k, δ) =

{
〈−ϕ2(f), k〉, 〈1, k〉 ≤ 1, 〈Θ2(f), k〉 ≤ δ, k ≥ 0, δ ≥ 0,

∞, otherwise.

The function Ψ is a convex function in both variables, and this fact implies
the convexity of marginal function δ 7→ −ω2

Mϕ
(
√
δ) (cf. [15, Theorem 2.1.3(v)]),

which further yields the concavity of ω2
Mϕ

(
√
·) on [0,+∞), and which completes

the proof. The proof of the the concavity of δ 7→ ω2
Eϕ(
√
δ) is similar and hence

omitted.
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