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On a Singular Logistic Equation
with the p-Laplacian
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Abstract. We prove the existence and nonexistence of positive solutions for the
boundary value problems

u=0 on 012,

where Apu = div(|Vu|P~2Vu),p > 1, Q is a bounded domain in R” with smooth
boundary 99, a € (0,1),9 : © x (0,00) — R is possibly singular at v = 0. An
application to a singular logistic-like equation is given.
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1. Introduction

Consider the boundary value problem

—Ayu = g(z,u) — h(z) in Q2
uO(

u=20 on 0f),

(1)

where A,u = div(|VulP~2Vu), p > 1,Qis a bounded domain in R™ with smooth
boundary 92, h: Q2 - R, g: Q x (0,00) > R, and 0 < a < 1.

In [4, Theorem 5.3], Drabek and Hernandez show that the logistic equation
involving the p-Laplacian

~Ayu = ()P — w07 in Q)
{ LU = Am(z)u u in @)

u=>0 on 0f),

D. D. Hai: Department of Mathematics and Statistics, Mississippi State University,
Mississippi State, MS 39762, USA; email: dang@math.msstate.edu



340 D. D. Hai

T N(y=1)
where 1 < p < v,m € L"(Q),r > pEEmE

positive solution u with u € Wy (Q) N L=(Q) for A > A;. Here \; denotes the
first eigenvalue of

m(z) > mp > 0 in €, has a unique

(3)

—Apu = Am(z)|ul?u  in Q
u=20 on 0f).

Note that the nonlinearity g(z,u) = dm(x)uP~! — u?~! is continuous in u for
a.e. x € ), and satisfies

u—oo m(x)uP~! u—0t m(x)upt -

A > AL (4)

uniformly for x € €.
When p = 2, Lee et al. [8] consider the singular problem

—Au=\u— u—i in Q
{ flw) =2 )

u=">0 on 0f),

where A, ¢, a are positive constants with o < 1, f : [0,00) — R is continuous
and satisfies
Au—M < f(u) < Au?

for all uw > 0, where M, A, q are positive constants with ¢ > 1. Under these
assumptions, they show that (5) has a solution u € C?*(Q) N C(Q) for A > %
and c is sufficiently small [8, Theorem 2.1]. Here A\; corresponds to m(z)=1.
Note that the nonlinearity g(u) = Au — f(u) is continuous and satisfies
limsupM <0, liminfM >\ > 2—)\1 (6)
u—oco U u—0t U 1+«
Note that for f(u) = w9, (5) is a singular perturbation problem of (2) with
p = 2 and m(z) = 1, but the result in [8] is not as good as the corresponding
one in [4] when ¢ = 0. In this paper, we shall study positive solutions to the
general problem (1) when A is a bounded function with small supg, h and g(., u)
is allowed to be singular at u = 0 and satisfies a weaker condition than (4)
and (6). To be precise, we shall assume the following:

(A1) m € L*(£2) and there exists a constant mgy > 0 such that m(z) > my for
a.e. x € (.
(A2) g:9Q x(0,00) = R is continuous and

lim sup M < Ay, liminf M

> A
u—oo m(x)url u—0t m(z)up~! !

uniformly for x € Q.
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(A3) There exists a € (0,1) such that

limsup u®g(z,u) < 0o
u—0t

uniformly for z € Q.

In particular, our result can be applied to the following singular perturbation
problem of (2)

_ 4 h(z) .
—Ayu = dm(z)uPt — w7t — ~e  n Q (7)

u=>0 on 0,

where 1 < p < v, a € (0,1), m is as above, gives the existence of a positive
solution u € C+#(Q) for some 3 € (0,1) when A > A\; and supg h is sufficiently
small. Also, if h is a constant, there exists a constant h* > 0 such that (7) has
a positive solution for h < h* and no positive solution for A > h*.

Our main result complements the result in [4] and improves the correspond-
ing result in [8] in many ways. Our approach is based on the method of sub-
and supersolutions developed in [6] for singular problems. However, the type of
nonlinearities g(u) covered in [6] does not apply here as it requires

lim 9(u) =0 and g(u) >0 for u large,

U—$00 up—l

whereas the one in this paper allows

lim @

=—o0 and g¢g(u) = —o0 asu— 0.
u—oo yP~1

Let A\; be the first eigenvalue of (3) with a positive, normalized correspond-
ing eigenfunction ¢y, i.e., ||41]loc = 1. It is well known that A\; > 0,¢; €
cH(Q), % < 0 on 012, where n denotes the outer unit normal vector on 92
(see [1]).

By a positive solution of (1) we mean a function u € C'#(2) for some
B € (0,1) with u =0 and 2* < 0 on 99 such that

/Q |VulP?Vu - V¢ do = /Q (g(x,u) - %) ¢ dx

for all £ € WyP(Q). Here n denotes the outer unit normal vector. Our main
result is

Theorem 1.1. Let h € L*>(Q) and suppose (A1)-(A3) hold. Then there ezists
a constant n > Osuch that Problem (1) has a positive solution when supg h < 1.
Moreover, if h is a constant, then there exists a positive number h* such that (1)
has a positive solution for h < h* and no positive solutions for h > h*.
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2. Preliminary results

We shall denote the norms in LP(Q), W, *(€2), C1(Q) and C*(Q) by |||, lI-/l1.p»
|.]1 and |.]1 4, respectively.

For z € ), let d(x) denote the distance from x to 9). The following regu-
larity result in [6, Lemma 3.1] plays a key role in the proof of the main results:

Lemma 2.1. Let h € L;2.(2) and suppose there exist numbers o € (0,1) and
C > 0 such that

)| < s 0

for a.e. x € Q. Let u € WyP(Q) be the solution of

—Ayu=nh inQ 0
{ u=0 on Jf. (9)

Then there exist constants 5 € (0,1) and M > 0 depending only on C, o, Q2 such

that uw € CYP(Q) and |u| g < M.

Remark 2.2. (i) Since % <0 on 0f), there exists a constant k>0 such that
o1(x) > kd(x) for x € Q. Hence Lemma 2.1 holds if (8) is replaced by

|h(z)] <

for a.e. z € Q.
(ii) Note that under the assumptions of Lemma 2.1, (9) has a unique solution

uwe WEP(Q). Indeed, define A: WiP(Q) — Wy " (Q) and he W, 7' (),

where p' = ;%7 by

<Au,§>:/ﬂ|VU|p_2Vu-V§ dr, ﬁ(g):/ﬂhg d.

By Hardy’s inequality (see e.g. [2, p. 194]), we obtain

el <c [ |

for all £ € VVO1 ?(Q), where C' is a constant independent of ¢. Thus
he Wy Ly /(Q) Since A is continuous, coercive, and strictly monotone,
it follows from the Minty-Browder Theorem (see [2, p. 88]) that there
exists a unique u € W, *(Q2) such that Au = h.

de < Cll€]|1

dxscuduioa/\ﬁ
qld
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Lemma 2.3. Let € > 0 and let h, h. € L°.(Q) satisfy (8). Let u,u. € W,*(Q)

loc
be the solutions of
{ —Ayu=nh inQ

u=0 on 0,

and
{ —Apu. =he  in

u: =0  on 09,
respectively. Suppose ||he — h||1 — 0 as € — 0. Then
|ue —uly — 0
as € — 0.

Proof. By Lemma 2.1, there exist 8 € (0,1), M > 0 such that u,u. € C#(Q)
and
\u|1,ﬂ, |ug|1,ﬁ < M. (10)

Multiplying the equation —A,u. — (=Ayu) = h. — h in Q by u. — u and inte-
grating, we obtain

/(|Vu€|p_2Vu6 — |VulP~2Vu) - (Vu. — Vu) dv < 2M||h. — hl|;. (11)
Q

By [9, Lemma 30.1], for z,y € R™,
(J] + [y~ PD (|22 — [yP2y) - (¢ — y) > Colo —y[™P2, (12)

where Co = (3)P 1 ifp>2,Co=p—1ifp<2.
Using (12) with 2 = Vu,,y = Vu and the fact that |z| + |y| < 2M, we
obtain from (11) that

C’l/ |V (ue —w)|?dx < 2M||h. — h||1,
Q
where C) = Cp - (2M)™P2=2 and ¢ = max(p, 2).
Hence, by Poincaré’s inequality,
|ue — ullg — 0 (13)

as € — 0. Suppose |u. —uly 4 0 as € — 0. Then there exists a sequence (&,,)
which converges to 0 such that

|ue, —uly A0 asn — oo (14)

By (10), (u.,) is bounded in C*#(£2), and since C*#(Q) is compactly embedded
in C1(Q), there exist v € C*(Q2) and a subsequence (te,, ) of (ue,) such that

|Ue,, —v[1 =0 ask— oo (15)

From (13) and (15), we see that u = v and so |u., —ul; — 0as k — o0, a
contradiction with (14). This completes the proof of Lemma 2.3. O
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Next, we recall some results in sub- and supersolutions method for singular
boundary value problems in [6, Appendix A]. Related results can be found
in [3]. Consider the problem

{ —Apu = h(z,u) in Q

u=20 on 012, (16)

where h : 2 x (0,00) — R is continuous.

Let ¢,% € C'(Q). Suppose there exist constants ¢y, C,a > 0 with a < 1
such that ¢(z), ¥ (z) > cod(z) for x € Q and
C
h < 1
e 0)] < s (17)

for a.e. x € Q and all w € C(£2) with ¢ < w < ¢ in Q. Suppose ¢, are sub-
and supersolutions of (16) respectively, i.e., for all £ € VVO1 P(Q) with £ >0,

/ |Vo[P2Vp.VE dr < / h(z, ¢)¢ dx
Q Q
[1vup2vevedo= [ v da,
Q Q

and ¢ < 0 < 1 on 0f2. Note that the integrals on the right-hand side are defined
by virtue of Hardy’s inequality.

Lemma 2.4. Under the above assumptions, there exists a constant 5 € (0,1)
such that (16) has a solution u € CYP(Q) with ¢ < u < 1 in Q.

3. Proof of the main result

Now, we are ready to give the proof of the main result.

Proof of Theorem 1.1. By (A2), there exists Ay > A; and Jp > 0 such that
g(x,u) > Aom(z)uP™! (18)

for z € Q and u € (0, §]. Choose ¢ € (0,1) so that \gd?~! > \;.
For € > 0, let z. > 0 be the solution of

Am(z)(Sopr)P ™" in {¢y > e}
— ¢ in {¢y <e}’

Note that the existence of z, follows from Lemma 2.1 and Remark 2.2. Since

—Apze =he. = { z. =0 on 0.

—Ap<(50¢1> =h= Alm(x)((sogzﬁl)p*l in Q,
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the weak maximum principle [10, Lemma A.2] implies z. < dg¢p; < g in Q.
Next,

he — B|s = / (@) (Gt + ¢70 dz < Co | o7° da
P1<e

p1<e

and since [, ¢7" dx < oo (see [7, p. 726], it follows that |[h. — h||; — 0 as
e — 0. By Lemma 2.3, |z. — dp¢1]1 — 0 as € — 0. Hence |z. — dop1]1 < &kﬂs),
if ¢ is sufficiently small, where k£ > 0 is such that d% < kin Q.

By the Mean Value Theorem,

do(1 —9)

() — o ()] < 2

d(z) < 0o(1 = 6)¢1(z)

for z € ), which implies
Ze Z 550¢1 in Q (19)
if ¢ is sufficiently small, which we assume.

Suppose supq h < 1, where
n= min {()\0517_1 — Al)moéa(éoff)p_l—’—a, (550>o¢} .

We shall verify that z is a subsolution of (1). Let & € W,”(Q) with € > 0.
Then

/Q V2 [P?Vz, - VE do = — /Q (A,2.)€ dx

Y
= )\1/ m(z)(op1)P ¢ da —/ — du.
P1>¢ P1<e (bl
In the set {¢ > ¢}, we have
(o1 = A)m (@) (So1)P~ > (o0~ — M)mo(Goe)P! > ——
((5(508)05
which, together with (18), (19), implies
g(x, z) — hz) > Aom(z)zP~! — 1 sup h
z L2V
> N6 (@) (Soy )Pt — ! (21)
> Xo0? " 'm(z)(do1) (0302)°
> Aim() (8061 )"~
in {¢; > €}. On the other hand, since n < (dd¢)?,
h(x) 1 n 1
T, %) — > ——suph > — >—— in () 22
9l 2) 22 22 0 (0001)™ by (22)
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Combining (20)—(22), we obtain

/Q|Vzg|1”—2Vz8 -V dr < /Q (g(m,zg) — hi?) ¢ du,

i.e., z. is a subsolution of (1).
Next, in view of (A2) and (A3), there exist constants b € (0, A1) and dy > 0
such that

d
g(z,u) < bm(z)uP" + = (23)
uOC
for all w > 0 and a.e. x € Q2. Choose 7 € (0,1) and A1, My > 0 so that
(14 )" <b + L) <A <X\ (24)
moMé)_H_a 7
e (142~ 1
+ ) 00 Y
<A — A 25
mOMg—1+(X 1 1 ( )

Let 1. be the solution of

B Alm(l')(ﬁlpil n {¢1 > 6} B
Apdjs - {Alm(x) +¢1_a in {¢1 < 6} y wg =0 on 89

Then, since —A,¢; = Aym(z)$P~ in Q, it follows from Lemma 2.3 that
|the — ¢1]1 — 0 as e — 0. Hence, if € is small enough,

(1= <. < (1+7)p1 inQ, (26)

which we assume. We shall verify that Z. = M1, is a supersolution for (1) with
Z. > 2z in Q if M is large enough. Let £ € Wol’p(Q) with £ > 0. Then we have

/ \VZ.|P*VZ. V¢ dr = )\1/ m(z)(M@)P~1¢ do
Q P1>¢ (27)
+ Mpl/ (Am(x) + ¢7%)E du.
P1<e

Suppose M > (1 . Then

I
Ze =2 M(1—7)e > Mo (28)
in {¢ > e}. Since M¢; > (1 +v)"'Z. in Q, it follows from (23) (25) that
9(x.2¢) A+ 1g(,2Zc) 1 '
in {le > E} 2) (M1 )P < @)zt < (]_ + ,y)p (b+ m( )Zp 1+a) <

(1+’}/)p ! (b+w> < /\1, and

p—1 p—1
[12]]oo < P Al o (4"l

<M=\
m(@) (Mo 128 = ()22 T mgMpe o
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Hence ) )
00,20 = 2 < ot 2) + 0= < Amlo)bto @)
in {¢1 > e}. From (23), (24), and (26), we get

h
g(x, Z.) — Z(? < bm(z)Z"~! +

€

<UL+ )Mo+ g (30)

< )xlm(a:)Mp_l + Mp_lgbl_a,

if M is large enough so that MP~1% > (dg+||h||s) (1 —7) ™%, which we assume.
Combining (27), (29), and (30), we get

<g<x, Z)- M) ¢ dr.

/ IVZ.P2VZ. - VE da > /
Q zZ

Q

i.e., Z. is a supersolution of (1) with Z. > z. for large M.
Finally, it follows from (A3) and (19) that there exists a constant K > 0
depending on ||Z.||~ such that

for all w € C(Q) with z. < w < Z. in Q. The existence of a positive solution
for (1) now follows from Lemma 2.4.

Next, suppose that h is a constant. Then, as in the above, we see that there
exists a constant hy > 0 such that (1) has a positive solution for h < hy. We
claim that (1) has no positive solutions for large h. Indeed, let u be a positive
solution of (1) with A > 0. Multiplying the equation —Ayu = g(z,u) — u% in €
by w and integrating, we obtain, by (23),

/ |\Vul|Pde = / g(z, u)u dr — h/ u'™ dx
Q Q

<b/m JuP dx + (do — h)/uladx
Q
<b/m YuP dz

VulPd
)\1 — inf le U| £z

wewy () Jo m(z)ur do’
u#0

for h > dy. Since
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it follows that (1 — /\%) Jo [VulP da < 0, which implies u = 0, a contradiction.
Hence the claim is proved.
Define h* = sup{h > 0 : (1) has a positive solution}. Then h* € (0, 00)

and (1) has no positive solutions for h > h*. Let h < h*. Then there exists
h > h such that (1) with h = h has a positive solution u;. Since

h h
g(I,Ua) - @ S g(xauﬁ) - a_% )

in €, it follows that w;, is a subsolution for (1). As above, we obtain a super-
solution Z, for (1) with Z. > w;, in ©, and the existence of a positive solution
to (1) follows. This completes the proof of Theorem 1.1. O
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