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On a Singular Logistic Equation
with the p -Laplacian

Dang Dinh Hai

Abstract. We prove the existence and nonexistence of positive solutions for the
boundary value problems−∆pu = g(x, u)− h(x)

uα
in Ω

u = 0 on ∂Ω,

where ∆pu = div(|∇u|p−2∇u), p > 1, Ω is a bounded domain in Rn with smooth
boundary ∂Ω, α ∈ (0, 1), g : Ω × (0,∞) → R is possibly singular at u = 0. An
application to a singular logistic-like equation is given.
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1. Introduction

Consider the boundary value problem−∆pu = g(x, u)− h(x)

uα
in Ω

u = 0 on ∂Ω,
(1)

where ∆pu = div(|∇u|p−2∇u), p > 1,Ω is a bounded domain in Rn with smooth
boundary ∂Ω, h : Ω→ R, g : Ω× (0,∞)→ R, and 0 < α < 1.

In [4, Theorem 5.3], Drabek and Hernandez show that the logistic equation
involving the p-Laplacian{

−∆pu = λm(x)up−1 − uγ−1 in Ω

u = 0 on ∂Ω,
(2)
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where 1 < p < γ,m ∈ Lr(Ω), r > N(γ−1)
p(γ−p) , m(x) ≥ m0 > 0 in Ω, has a unique

positive solution u with u ∈ W 1,p
0 (Ω) ∩ L∞(Ω) for λ > λ1. Here λ1 denotes the

first eigenvalue of {
−∆pu = λm(x)|u|p−2u in Ω

u = 0 on ∂Ω.
(3)

Note that the nonlinearity g(x, u) = λm(x)up−1 − uγ−1 is continuous in u for
a.e. x ∈ Ω, and satisfies

lim
u→∞

g(x, u)

m(x)up−1
= −∞, lim

u→0+

g(x, u)

m(x)up−1
= λ > λ1. (4)

uniformly for x ∈ Ω.
When p = 2, Lee et al. [8] consider the singular problem{

−∆u = λu− f(u)− c

uα
in Ω

u = 0 on ∂Ω,
(5)

where λ, c, α are positive constants with α < 1, f : [0,∞) → R is continuous
and satisfies

λu−M ≤ f(u) ≤ Auq

for all u ≥ 0, where M,A, q are positive constants with q > 1. Under these
assumptions, they show that (5) has a solution u ∈ C2(Ω) ∩C(Ω̄) for λ > 2λ1

1+α

and c is sufficiently small [8, Theorem 2.1]. Here λ1 corresponds to m(x)≡ 1.
Note that the nonlinearity g(u) = λu− f(u) is continuous and satisfies

lim sup
u→∞

g(u)

u
≤ 0, lim inf

u→0+

g(u)

u
≥ λ >

2λ1

1 + α
. (6)

Note that for f(u) = uq, (5) is a singular perturbation problem of (2) with
p = 2 and m(x) ≡ 1, but the result in [8] is not as good as the corresponding
one in [4] when c = 0. In this paper, we shall study positive solutions to the
general problem (1) when h is a bounded function with small supΩ h and g(., u)
is allowed to be singular at u = 0 and satisfies a weaker condition than (4)
and (6). To be precise, we shall assume the following:

(A1) m ∈ L∞(Ω) and there exists a constant m0 > 0 such that m(x) ≥ m0 for
a.e. x ∈ Ω.

(A2) g : Ω× (0,∞)→ R is continuous and

lim sup
u→∞

g(x, u)

m(x)up−1
< λ1, lim inf

u→0+

g(x, u)

m(x)up−1
> λ1

uniformly for x ∈ Ω.
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(A3) There exists α ∈ (0, 1) such that

lim sup
u→0+

uαg(x, u) <∞

uniformly for x ∈ Ω.

In particular, our result can be applied to the following singular perturbation
problem of (2) −∆pu = λm(x)up−1 − uγ−1 − h(x)

uα
in Ω

u = 0 on ∂Ω,
(7)

where 1 < p < γ, α ∈ (0, 1), m is as above, gives the existence of a positive
solution u ∈ C1,β(Ω̄) for some β ∈ (0, 1) when λ > λ1 and supΩ h is sufficiently
small. Also, if h is a constant, there exists a constant h∗ > 0 such that (7) has
a positive solution for h < h∗ and no positive solution for h > h∗.

Our main result complements the result in [4] and improves the correspond-
ing result in [8] in many ways. Our approach is based on the method of sub-
and supersolutions developed in [6] for singular problems. However, the type of
nonlinearities g(u) covered in [6] does not apply here as it requires

lim
u→∞

g(u)

up−1
= 0 and g(u) > 0 for u large,

whereas the one in this paper allows

lim
u→∞

g(u)

up−1
= −∞ and g(u)→ −∞ as u→∞.

Let λ1 be the first eigenvalue of (3) with a positive, normalized correspond-
ing eigenfunction φ1, i.e., ||φ1||∞ = 1. It is well known that λ1 > 0, φ1 ∈
C1(Ω̄), ∂φ1

∂n
< 0 on ∂Ω, where n denotes the outer unit normal vector on ∂Ω

(see [1]).
By a positive solution of (1) we mean a function u ∈ C1,β(Ω̄) for some

β ∈ (0, 1) with u = 0 and ∂u
∂n
< 0 on ∂Ω such that∫

Ω

|∇u|p−2∇u · ∇ξ dx =

∫
Ω

(
g(x, u)− h(x)

uα

)
ξ dx

for all ξ ∈ W 1,p
0 (Ω). Here n denotes the outer unit normal vector. Our main

result is

Theorem 1.1. Let h ∈ L∞(Ω) and suppose (A1)-(A3) hold. Then there exists
a constant η > 0such that Problem (1) has a positive solution when supΩ h < η.
Moreover, if h is a constant, then there exists a positive number h∗ such that (1)
has a positive solution for h < h∗ and no positive solutions for h > h∗.
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2. Preliminary results

We shall denote the norms in Lp(Ω), W 1,p
0 (Ω), C1(Ω̄) and C1,α(Ω̄) by ‖.‖p, ‖.‖1,p,

|.|1 and |.|1,α, respectively.
For x ∈ Ω, let d(x) denote the distance from x to ∂Ω. The following regu-

larity result in [6, Lemma 3.1] plays a key role in the proof of the main results:

Lemma 2.1. Let h ∈ L∞loc(Ω) and suppose there exist numbers α ∈ (0, 1) and
C > 0 such that

|h(x)| ≤ C

dα(x)
(8)

for a.e. x ∈ Ω. Let u ∈ W 1,p
0 (Ω) be the solution of{−∆pu = h in Ω

u = 0 on ∂Ω.
(9)

Then there exist constants β ∈ (0, 1) and M > 0 depending only on C, α,Ω such
that u ∈ C1,β(Ω̄) and |u|1,β < M .

Remark 2.2. (i) Since ∂φ1
∂n
<0 on ∂Ω, there exists a constant k>0 such that

φ1(x) ≥ kd(x) for x ∈ Ω. Hence Lemma 2.1 holds if (8) is replaced by

|h(x)| ≤ C

φα1 (x)

for a.e. x ∈ Ω.

(ii) Note that under the assumptions of Lemma 2.1, (9) has a unique solution

u∈W 1,p
0 (Ω). Indeed, define A : W 1,p

0 (Ω)→W−1,p′

0 (Ω) and ĥ∈W−1,p′

0 (Ω),
where p′ = p

p−1
, by

〈Au, ξ〉 =

∫
Ω

|∇u|p−2∇u · ∇ξ dx, ĥ(ξ) =

∫
Ω

hξ dx.

By Hardy’s inequality (see e.g. [2, p. 194]), we obtain

|ĥ(ξ)| ≤ C

∫
Ω

∣∣∣∣ ξdα
∣∣∣∣ dx ≤ C||d||1−α∞

∫
Ω

∣∣∣∣ξd
∣∣∣∣ dx ≤ C̃||ξ||1,p

for all ξ ∈ W 1,p
0 (Ω), where C̃ is a constant independent of ξ. Thus

ĥ ∈ W−1,p′

0 (Ω). Since A is continuous, coercive, and strictly monotone,
it follows from the Minty-Browder Theorem (see [2, p. 88]) that there
exists a unique u ∈ W 1,p

0 (Ω) such that Au = ĥ.
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Lemma 2.3. Let ε > 0 and let h, hε ∈ L∞loc(Ω) satisfy (8). Let u, uε ∈ W 1,p
0 (Ω)

be the solutions of {−∆pu = h in Ω

u = 0 on ∂Ω,

and {−∆puε = hε in Ω

uε = 0 on ∂Ω,

respectively. Suppose ||hε − h||1 → 0 as ε→ 0. Then

|uε − u|1 → 0

as ε→ 0.

Proof. By Lemma 2.1, there exist β ∈ (0, 1), M > 0 such that u, uε ∈ C1,β(Ω̄)
and

|u|1,β, |uε|1,β < M. (10)

Multiplying the equation −∆puε − (−∆pu) = hε − h in Ω by uε − u and inte-
grating, we obtain∫

Ω

(|∇uε|p−2∇uε − |∇u|p−2∇u) · (∇uε −∇u) dx ≤ 2M ||hε − h||1. (11)

By [9, Lemma 30.1], for x, y ∈ Rn,

(|x|+ |y|)2−min(p,2)(|x|p−2x− |y|p−2y) · (x− y) ≥ C0|x− y|max(p,2), (12)

where C0 = (1
2
)p−1 if p ≥ 2, C0 = p− 1 if p < 2.

Using (12) with x = ∇uε, y = ∇u and the fact that |x| + |y| < 2M, we
obtain from (11) that

C1

∫
Ω

|∇(uε − u)|qdx ≤ 2M ||hε − h||1,

where C1 = C0 · (2M)min(p,2)−2 and q = max(p, 2).
Hence, by Poincaré’s inequality,

||uε − u||q → 0 (13)

as ε → 0. Suppose |uε − u|1 6→ 0 as ε → 0. Then there exists a sequence (εn)
which converges to 0 such that

|uεn − u|1 6→ 0 as n→∞ (14)

By (10), (uεn) is bounded in C1,β(Ω̄), and since C1,β(Ω̄) is compactly embedded
in C1(Ω̄), there exist v ∈ C1(Ω̄) and a subsequence (uεnk ) of (uεn) such that

|uεnk − v|1 → 0 as k →∞. (15)

From (13) and (15), we see that u = v and so |uεnk − u|1 → 0 as k → ∞, a
contradiction with (14). This completes the proof of Lemma 2.3.
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Next, we recall some results in sub- and supersolutions method for singular
boundary value problems in [6, Appendix A]. Related results can be found
in [3]. Consider the problem{−∆pu = h(x, u) in Ω

u = 0 on ∂Ω,
(16)

where h : Ω× (0,∞)→ R is continuous.
Let φ, ψ ∈ C1(Ω̄). Suppose there exist constants c0, C, α > 0 with α < 1

such that φ(x), ψ(x) ≥ c0d(x) for x ∈ Ω and

|h(x,w)| ≤ C

dα(x)
(17)

for a.e. x ∈ Ω and all w ∈ C(Ω̄) with φ ≤ w ≤ ψ in Ω. Suppose φ, ψ are sub-
and supersolutions of (16) respectively, i.e., for all ξ ∈ W 1,p

0 (Ω) with ξ ≥ 0,∫
Ω

|∇φ|p−2∇φ.∇ξ dx ≤
∫

Ω

h(x, φ)ξ dx ,∫
Ω

|∇ψ|p−2∇ψ.∇ξ dx ≥
∫

Ω

h(x, ψ)ξ dx,

and φ ≤ 0 ≤ ψ on ∂Ω. Note that the integrals on the right-hand side are defined
by virtue of Hardy’s inequality.

Lemma 2.4. Under the above assumptions, there exists a constant β ∈ (0, 1)
such that (16) has a solution u ∈ C1,β(Ω̄) with φ ≤ u ≤ ψ in Ω.

3. Proof of the main result

Now, we are ready to give the proof of the main result.

Proof of Theorem 1.1. By (A2), there exists λ0 > λ1 and δ0 > 0 such that

g(x, u) ≥ λ0m(x)up−1 (18)

for x ∈ Ω and u ∈ (0, δ0]. Choose δ ∈ (0, 1) so that λ0δ
p−1 > λ1.

For ε > 0, let zε > 0 be the solution of

−∆pzε = hε ≡

{
λ1m(x)(δ0φ1)p−1 in {φ1 > ε}
− φ−α1 in {φ1 < ε}

, zε = 0 on ∂Ω.

Note that the existence of zε follows from Lemma 2.1 and Remark 2.2. Since

−∆p(δ0φ1) = h ≡ λ1m(x)(δ0φ1)p−1 in Ω,
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the weak maximum principle [10, Lemma A.2] implies zε ≤ δ0φ1 ≤ δ0 in Ω.
Next,

||hε − h||1 =

∫
φ1<ε

|λ1m(x)(δ0φ1)p−1 + φ−α1 | dx ≤ C0

∫
φ1<ε

φ−α1 dx

and since
∫

Ω
φ−α1 dx < ∞ (see [7, p. 726], it follows that ||hε − h||1 → 0 as

ε→ 0. By Lemma 2.3, |zε − δ0φ1|1 → 0 as ε→ 0. Hence |zε − δ0φ1|1 < δ0(1−δ)
k

,

if ε is sufficiently small, where k > 0 is such that d
φ1
≤ k in Ω.

By the Mean Value Theorem,

|zε(x)− δ0φ1(x)| ≤ δ0(1− δ)
k

d(x) ≤ δ0(1− δ)φ1(x)

for x ∈ Ω, which implies
zε ≥ δδ0φ1 in Ω (19)

if ε is sufficiently small, which we assume.

Suppose supΩ h < η, where

η = min
{

(λ0δ
p−1 − λ1)m0δ

α(δ0ε)
p−1+α, (δδ0)α

}
.

We shall verify that zε is a subsolution of (1). Let ξ ∈ W 1,p
0 (Ω) with ξ ≥ 0.

Then∫
Ω

|∇zε|p−2∇zε · ∇ξ dx = −
∫

Ω

(∆pzε)ξ dx

= λ1

∫
φ1>ε

m(x)(δ0φ1)p−1ξ dx−
∫
φ1<ε

ξ

φα1
dx.

(20)

In the set {φ1 > ε}, we have

(λ0δ
p−1 − λ1)m(x)(δ0φ1)p−1 ≥ (λ0δ

p−1 − λ1)m0(δ0ε)
p−1 ≥ η

(δδ0ε)α
,

which, together with (18), (19), implies

g(x, zε)−
h(x)

zαε
≥ λ0m(x)zp−1

ε − 1

zαε
sup

Ω
h

≥ λ0δ
p−1m(x)(δ0φ1)p−1 − η

(δδ0ε)α

≥ λ1m(x)(δ0φ1)p−1

(21)

in {φ1 > ε}. On the other hand, since η ≤ (δδ0)α,

g(x, zε)−
h(x)

zαε
≥ − 1

zαε
sup

Ω
h ≥ − η

(δδ0φ1)α
≥ − 1

φα1
in Ω. (22)



346 D. D. Hai

Combining (20)–(22), we obtain∫
Ω

|∇zε|p−2∇zε · ∇ξ dx ≤
∫

Ω

(
g(x, zε)−

h(x)

zαε

)
ξ dx,

i.e., zε is a subsolution of (1).
Next, in view of (A2) and (A3), there exist constants b ∈ (0, λ1) and d0 > 0

such that

g(x, u) ≤ bm(x)up−1 +
d0

uα
(23)

for all u > 0 and a.e. x ∈ Ω. Choose γ ∈ (0, 1) and λ̃1,M0 > 0 so that

(1 + γ)p−1

(
b+

d0

m0M
p−1+α
0

)
< λ̃1 < λ1, (24)

and
(1 + γ)p−1||h||∞
m0M

p−1+α
0

< λ1 − λ̃1. (25)

Let ψε be the solution of

−∆pψε =

{
λ1m(x)φ1

p−1 in {φ1 > ε}
λ1m(x) + φ−α1 in {φ1 < ε}

, ψε = 0 on ∂Ω.

Then, since −∆pφ1 = λ1m(x)φ1
p−1 in Ω, it follows from Lemma 2.3 that

|ψε − φ1|1 → 0 as ε→ 0. Hence, if ε is small enough,

(1− γ)φ1 ≤ ψε ≤ (1 + γ)φ1 in Ω, (26)

which we assume. We shall verify that Zε = Mψε is a supersolution for (1) with
Zε ≥ zε in Ω if M is large enough. Let ξ ∈ W 1,p

0 (Ω) with ξ ≥ 0. Then we have∫
Ω

|∇Zε|p−2∇Zε · ∇ξ dx = λ1

∫
φ1>ε

m(x)(Mφ1)p−1ξ dx

+ Mp−1

∫
φ1<ε

(λ1m(x) + φ−α1 )ξ dx.

(27)

Suppose M > M0

(1−γ)ε
. Then

Zε ≥M(1− γ)ε > M0 (28)

in {φ1 > ε}. Since Mφ1 ≥ (1 + γ)−1Zε in Ω, it follows from (23)-(25) that

in {φ1 > ε}, g(x,Zε)
m(x)(Mφ1)p−1 ≤ (1+γ)p−1g(x,Zε)

m(x)Zp−1
ε

≤ (1 + γ)p−1
(
b+ d0

m(x)Zp−1+α
ε

)
≤

(1 + γ)p−1
(
b+ d0

m0M
p−1+α
0

)
< λ̃1, and

||h||∞
m(x)(Mφ1)p−1Zα

ε

≤ (1 + γ)p−1||h||∞
m(x)Zp−1+α

ε

≤ (1 + γ)p−1||h||∞
m0M

p−1+α
0

< λ1 − λ̃1.
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Hence

g(x, Zε)−
h(x)

Zα
ε

≤ g(x, Zε) +
||h||∞
Zα
ε

≤ λ1m(x)(Mφ1)p−1 (29)

in {φ1 > ε}. From (23), (24), and (26), we get

g(x, Zε)−
h(x)

Zα
ε

≤ bm(x)Zp−1
ε +

d0 + ||h||∞
Zα
ε

≤ b(1 + γ)p−1m(x)(Mφ1)p−1 +
d0 + ||h||∞

(M(1− γ))α
φ−α1

≤ λ1m(x)Mp−1 +Mp−1φ−α1 ,

(30)

if M is large enough so that Mp−1+α > (d0 + ||h||∞)(1−γ)−α, which we assume.
Combining (27), (29), and (30), we get∫

Ω

|∇Zε|p−2∇Zε · ∇ξ dx ≥
∫

Ω

(
g(x, Zε)−

h(x)

Zα
ε

)
ξ dx,

i.e., Zε is a supersolution of (1) with Zε ≥ zε for large M .
Finally, it follows from (A3) and (19) that there exists a constant K > 0

depending on ||Zε||∞ such that

|g(x,w)| ≤ K

wα
≤ K

zαε
≤ K

(δδ0φ1)α

for all w ∈ C(Ω̄) with zε ≤ w ≤ Zε in Ω. The existence of a positive solution
for (1) now follows from Lemma 2.4.

Next, suppose that h is a constant. Then, as in the above, we see that there
exists a constant h0 > 0 such that (1) has a positive solution for h < h0. We
claim that (1) has no positive solutions for large h. Indeed, let u be a positive
solution of (1) with h > 0. Multiplying the equation −∆pu = g(x, u)− h

uα
in Ω

by u and integrating, we obtain, by (23),∫
Ω

|∇u|pdx =

∫
Ω

g(x, u)u dx− h
∫

Ω

u1−α dx

≤ b

∫
Ω

m(x)up dx+ (d0 − h)

∫
Ω

u1−α dx

≤ b

∫
Ω

m(x)up dx

for h ≥ d0. Since

λ1 = inf
u∈W 1,p

0 (Ω)
u6=0

∫
Ω
|∇u|pdx∫

Ω
m(x)up dx

,
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it follows that
(

1− b
λ1

) ∫
Ω
|∇u|p dx ≤ 0, which implies u ≡ 0, a contradiction.

Hence the claim is proved.

Define h∗ = sup{h > 0 : (1) has a positive solution}. Then h∗ ∈ (0,∞)
and (1) has no positive solutions for h > h∗. Let h < h∗. Then there exists
h̃ > h such that (1) with h = h̃ has a positive solution uh̃. Since

g(x, uh̃)−
h̃

ũαh
≤ g(x, uh̃)−

h

ũαh
,

in Ω, it follows that uh̃ is a subsolution for (1). As above, we obtain a super-
solution Zε for (1) with Zε ≥ uh̃ in Ω, and the existence of a positive solution
to (1) follows. This completes the proof of Theorem 1.1.
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