Zeitschrift für Analysis und ihre Anwendungen (C) European Mathematical Society Journal for Analysis and its Applications Volume 32 (2013), 339–348 DOI: 10.4171/ZAA/1488

On a Singular Logistic Equation with the p -Laplacian

Dang Dinh Hai

Abstract. We prove the existence and nonexistence of positive solutions for the boundary value problems

$$
\begin{cases}\n-\Delta_p u = g(x, u) - \frac{h(x)}{u^{\alpha}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$, $p > 1$, Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, $\alpha \in (0,1), g : \Omega \times (0,\infty) \to \mathbb{R}$ is possibly singular at $u = 0$. An application to a singular logistic-like equation is given.

Keywords. Sup-supersolutions, singular, positive solutions Mathematics Subject Classification (2010). Primary 35J, secondary 35J75, 35J92

1. Introduction

Consider the boundary value problem

$$
\begin{cases}\n-\Delta_p u = g(x, u) - \frac{h(x)}{u^{\alpha}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(1)

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$, $p > 1$, Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, $h : \Omega \to \mathbb{R}$, $g : \Omega \times (0, \infty) \to \mathbb{R}$, and $0 < \alpha < 1$.

In [4, Theorem 5.3], Drabek and Hernandez show that the logistic equation involving the p-Laplacian

$$
\begin{cases}\n-\Delta_p u = \lambda m(x)u^{p-1} - u^{\gamma - 1} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(2)

D. D. Hai: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA; email: dang@math.msstate.edu

where $1 < p < \gamma, m \in L^{r}(\Omega), r > \frac{N(\gamma-1)}{p(\gamma-p)}, m(x) \geq m_0 > 0$ in Ω , has a unique positive solution u with $u \in W_0^{1,p}$ $\lambda_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ for $\lambda > \lambda_1$. Here λ_1 denotes the first eigenvalue of

$$
\begin{cases}\n-\Delta_p u = \lambda m(x)|u|^{p-2}u & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega.\n\end{cases}
$$
\n(3)

Note that the nonlinearity $g(x, u) = \lambda m(x)u^{p-1} - u^{\gamma-1}$ is continuous in u for a.e. $x \in \Omega$, and satisfies

$$
\lim_{u \to \infty} \frac{g(x, u)}{m(x)u^{p-1}} = -\infty, \quad \lim_{u \to 0^+} \frac{g(x, u)}{m(x)u^{p-1}} = \lambda > \lambda_1.
$$
 (4)

uniformly for $x \in \Omega$.

When $p = 2$, Lee et al. [8] consider the singular problem

$$
\begin{cases}\n-\Delta u = \lambda u - f(u) - \frac{c}{u^{\alpha}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(5)

where λ, c, α are positive constants with $\alpha < 1, f : [0, \infty) \to \mathbb{R}$ is continuous and satisfies

$$
\lambda u - M \le f(u) \le Au^q
$$

for all $u \geq 0$, where M, A, q are positive constants with $q > 1$. Under these assumptions, they show that (5) has a solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ for $\lambda > \frac{2\lambda_1}{1+\alpha}$ and c is sufficiently small [8, Theorem 2.1]. Here λ_1 corresponds to $m(x) \equiv 1$. Note that the nonlinearity $g(u) = \lambda u - f(u)$ is continuous and satisfies

$$
\limsup_{u \to \infty} \frac{g(u)}{u} \le 0, \quad \liminf_{u \to 0^+} \frac{g(u)}{u} \ge \lambda > \frac{2\lambda_1}{1+\alpha}.
$$
 (6)

Note that for $f(u) = u^q$, (5) is a singular perturbation problem of (2) with $p = 2$ and $m(x) \equiv 1$, but the result in [8] is not as good as the corresponding one in [4] when $c = 0$. In this paper, we shall study positive solutions to the general problem (1) when h is a bounded function with small sup_{Ω} h and $g(.,u)$ is allowed to be singular at $u = 0$ and satisfies a weaker condition than (4) and (6). To be precise, we shall assume the following:

- (A1) $m \in L^{\infty}(\Omega)$ and there exists a constant $m_0 > 0$ such that $m(x) \geq m_0$ for a.e. $x \in \Omega$.
- $(A2)$ $q : \Omega \times (0, \infty) \to \mathbb{R}$ is continuous and

$$
\limsup_{u \to \infty} \frac{g(x, u)}{m(x)u^{p-1}} < \lambda_1, \quad \liminf_{u \to 0^+} \frac{g(x, u)}{m(x)u^{p-1}} > \lambda_1
$$

uniformly for $x \in \Omega$.

(A3) There exists $\alpha \in (0,1)$ such that

$$
\limsup_{u\to 0^+} u^\alpha g(x,u) < \infty
$$

uniformly for $x \in \Omega$.

In particular, our result can be applied to the following singular perturbation problem of (2)

$$
\begin{cases}\n-\Delta_p u = \lambda m(x)u^{p-1} - u^{\gamma - 1} - \frac{h(x)}{u^{\alpha}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(7)

where $1 < p < \gamma$, $\alpha \in (0,1)$, m is as above, gives the existence of a positive solution $u \in C^{1,\beta}(\overline{\Omega})$ for some $\beta \in (0,1)$ when $\lambda > \lambda_1$ and sup_{Ω} h is sufficiently small. Also, if h is a constant, there exists a constant $h^* > 0$ such that (7) has a positive solution for $h < h^*$ and no positive solution for $h > h^*$.

Our main result complements the result in [4] and improves the corresponding result in [8] in many ways. Our approach is based on the method of suband supersolutions developed in [6] for singular problems. However, the type of nonlinearities $q(u)$ covered in [6] does not apply here as it requires

$$
\lim_{u \to \infty} \frac{g(u)}{u^{p-1}} = 0 \quad \text{and} \quad g(u) > 0 \quad \text{for } u \text{ large,}
$$

whereas the one in this paper allows

$$
\lim_{u \to \infty} \frac{g(u)}{u^{p-1}} = -\infty \quad \text{and} \quad g(u) \to -\infty \quad \text{as } u \to \infty.
$$

Let λ_1 be the first eigenvalue of (3) with a positive, normalized corresponding eigenfunction ϕ_1 , i.e., $||\phi_1||_{\infty} = 1$. It is well known that $\lambda_1 > 0, \phi_1 \in$ $C^1(\bar{\Omega})$, $\frac{\partial \phi_1}{\partial n}$ < 0 on $\partial \Omega$, where *n* denotes the outer unit normal vector on $\partial \Omega$ $(see |1|).$

By a positive solution of (1) we mean a function $u \in C^{1,\beta}(\overline{\Omega})$ for some $\beta \in (0,1)$ with $u = 0$ and $\frac{\partial u}{\partial n} < 0$ on $\partial \Omega$ such that

$$
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \xi \, dx = \int_{\Omega} \left(g(x, u) - \frac{h(x)}{u^{\alpha}} \right) \xi \, dx
$$

for all $\xi \in W_0^{1,p}$ $\int_0^{1,p}(\Omega)$. Here *n* denotes the outer unit normal vector. Our main result is

Theorem 1.1. Let $h \in L^{\infty}(\Omega)$ and suppose (A1)-(A3) hold. Then there exists a constant $\eta > 0$ such that Problem (1) has a positive solution when $\sup_{\Omega} h < \eta$. Moreover, if h is a constant, then there exists a positive number h^* such that (1) has a positive solution for $h < h^*$ and no positive solutions for $h > h^*$.

2. Preliminary results

We shall denote the norms in $L^p(\Omega)$, $W_0^{1,p}$ $C^1, p(\Omega), C^1(\bar{\Omega})$ and $C^{1,\alpha}(\bar{\Omega})$ by $\|\cdot\|_p, \|\cdot\|_{1,p}$, $|.|_1$ and $|.|_{1,\alpha}$, respectively.

For $x \in \Omega$, let $d(x)$ denote the distance from x to $\partial\Omega$. The following regularity result in [6, Lemma 3.1] plays a key role in the proof of the main results:

Lemma 2.1. Let $h \in L^{\infty}_{loc}(\Omega)$ and suppose there exist numbers $\alpha \in (0,1)$ and $C > 0$ such that

$$
|h(x)| \le \frac{C}{d^{\alpha}(x)}\tag{8}
$$

for a.e. $x \in \Omega$. Let $u \in W_0^{1,p}$ $\chi_0^{1,p}(\Omega)$ be the solution of

$$
\begin{cases}\n-\Delta_p u = h & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega.\n\end{cases}
$$
\n(9)

Then there exist constants $\beta \in (0,1)$ and $M > 0$ depending only on C, α, Ω such that $u \in C^{1,\beta}(\overline{\Omega})$ and $|u|_{1,\beta} < M$.

Remark 2.2. (i) Since $\frac{\partial \phi_1}{\partial n} < 0$ on $\partial \Omega$, there exists a constant $k > 0$ such that $\phi_1(x) \geq kd(x)$ for $x \in \Omega$. Hence Lemma 2.1 holds if (8) is replaced by

$$
|h(x)| \le \frac{C}{\phi_1^{\alpha}(x)}
$$

for a.e. $x \in \Omega$.

(ii) Note that under the assumptions of Lemma 2.1, (9) has a unique solution $u \in W_0^{1,p}$ $\chi_0^{1,p}(\Omega)$. Indeed, define $A: W_0^{1,p}$ $W_0^{1,p}(\Omega) \to W_0^{-1,p'}$ $\hat{h}_0^{-1,p'}(\Omega)$ and $\hat{h} \in W_0^{-1,p'}$ $\binom{r-1,p'}{0}$ where $p' = \frac{p}{n}$ $\frac{p}{p-1}$, by

$$
\langle Au, \xi \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \xi \, dx, \quad \hat{h}(\xi) = \int_{\Omega} h \xi \, dx.
$$

By Hardy's inequality (see e.g. [2, p. 194]), we obtain

$$
|\hat{h}(\xi)| \le C \int_{\Omega} \left| \frac{\xi}{d^{\alpha}} \right| dx \le C ||d||_{\infty}^{1-\alpha} \int_{\Omega} \left| \frac{\xi}{d} \right| dx \le \tilde{C} ||\xi||_{1,p}
$$

for all $\xi \in W_0^{1,p}$ $\tilde{C}^{1,p}(\Omega)$, where \tilde{C} is a constant independent of ξ . Thus $\hat{h} \in W_0^{-1,p'}$ $\chi_0^{-1,p}(\Omega)$. Since A is continuous, coercive, and strictly monotone, it follows from the Minty-Browder Theorem (see [2, p. 88]) that there exists a unique $u \in W_0^{1,p}$ $C_0^{1,p}(\Omega)$ such that $Au = \hat{h}$.

Lemma 2.3. Let $\varepsilon > 0$ and let $h, h_{\varepsilon} \in L^{\infty}_{loc}(\Omega)$ satisfy (8). Let $u, u_{\varepsilon} \in W_0^{1,p}$ $\binom{r1,p}{0}$ be the solutions of

$$
\begin{cases}\n-\Delta_p u = h & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

and

$$
\begin{cases}\n-\Delta_p u_{\varepsilon} = h_{\varepsilon} & \text{in } \Omega \\
u_{\varepsilon} = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

respectively. Suppose $||h_{\varepsilon} - h||_1 \to 0$ as $\varepsilon \to 0$. Then

$$
|u_{\varepsilon} - u|_1 \to 0
$$

 $as \varepsilon \to 0.$

Proof. By Lemma 2.1, there exist $\beta \in (0,1)$, $M > 0$ such that $u, u_{\varepsilon} \in C^{1,\beta}(\overline{\Omega})$ and

$$
|u|_{1,\beta}, |u_{\varepsilon}|_{1,\beta} < M. \tag{10}
$$

Multiplying the equation $-\Delta_p u_{\varepsilon} - (-\Delta_p u) = h_{\varepsilon} - h$ in Ω by $u_{\varepsilon} - u$ and integrating, we obtain

$$
\int_{\Omega} (|\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_{\varepsilon} - \nabla u) \ dx \le 2M ||h_{\varepsilon} - h||_{1}.
$$
 (11)

By [9, Lemma 30.1], for $x, y \in \mathbb{R}^n$,

$$
(|x| + |y|)^{2 - \min(p, 2)} (|x|^{p-2}x - |y|^{p-2}y) \cdot (x - y) \ge C_0 |x - y|^{\max(p, 2)},\tag{12}
$$

where $C_0 = (\frac{1}{2})^{p-1}$ if $p \ge 2$, $C_0 = p - 1$ if $p < 2$.

Using (12) with $x = \nabla u_{\varepsilon}, y = \nabla u$ and the fact that $|x| + |y| < 2M$, we obtain from (11) that

$$
C_1 \int_{\Omega} |\nabla (u_{\varepsilon} - u)|^q dx \le 2M ||h_{\varepsilon} - h||_1,
$$

where $C_1 = C_0 \cdot (2M)^{\min(p,2)-2}$ and $q = \max(p, 2)$.

Hence, by Poincaré's inequality,

$$
||u_{\varepsilon} - u||_{q} \to 0 \tag{13}
$$

as $\varepsilon \to 0$. Suppose $|u_{\varepsilon} - u|_1 \not\to 0$ as $\varepsilon \to 0$. Then there exists a sequence (ε_n) which converges to 0 such that

$$
|u_{\varepsilon_n} - u|_1 \nrightarrow 0 \quad \text{as } n \to \infty \tag{14}
$$

By (10), (u_{ε_n}) is bounded in $C^{1,\beta}(\bar{\Omega})$, and since $C^{1,\beta}(\bar{\Omega})$ is compactly embedded in $C^1(\overline{\Omega})$, there exist $v \in C^1(\overline{\Omega})$ and a subsequence $(u_{\varepsilon_{n_k}})$ of (u_{ε_n}) such that

$$
|u_{\varepsilon_{n_k}} - v|_1 \to 0 \quad \text{as } k \to \infty. \tag{15}
$$

From (13) and (15), we see that $u = v$ and so $|u_{\varepsilon_{n_k}} - u|_1 \to 0$ as $k \to \infty$, a contradiction with (14). This completes the proof of Lemma 2.3.

Next, we recall some results in sub- and supersolutions method for singular boundary value problems in [6, Appendix A]. Related results can be found in [3]. Consider the problem

$$
\begin{cases}\n-\Delta_p u = h(x, u) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(16)

where $h : \Omega \times (0, \infty) \to \mathbb{R}$ is continuous.

Let $\phi, \psi \in C^1(\overline{\Omega})$. Suppose there exist constants $c_0, C, \alpha > 0$ with $\alpha < 1$ such that $\phi(x), \psi(x) \geq c_0 d(x)$ for $x \in \Omega$ and

$$
|h(x, w)| \le \frac{C}{d^{\alpha}(x)}\tag{17}
$$

for a.e. $x \in \Omega$ and all $w \in C(\overline{\Omega})$ with $\phi \leq w \leq \psi$ in Ω . Suppose ϕ, ψ are suband supersolutions of (16) respectively, i.e., for all $\xi \in W_0^{1,p}$ $\zeta_0^{1,p}(\Omega)$ with $\xi \geq 0$,

$$
\int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi. \nabla \xi \, dx \le \int_{\Omega} h(x, \phi) \xi \, dx ,
$$

$$
\int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi. \nabla \xi \, dx \ge \int_{\Omega} h(x, \psi) \xi \, dx,
$$

and $\phi \leq 0 \leq \psi$ on $\partial\Omega$. Note that the integrals on the right-hand side are defined by virtue of Hardy's inequality.

Lemma 2.4. Under the above assumptions, there exists a constant $\beta \in (0,1)$ such that (16) has a solution $u \in C^{1,\beta}(\overline{\Omega})$ with $\phi \leq u \leq \psi$ in Ω .

3. Proof of the main result

Now, we are ready to give the proof of the main result.

Proof of Theorem 1.1. By (A2), there exists $\lambda_0 > \lambda_1$ and $\delta_0 > 0$ such that

$$
g(x, u) \ge \lambda_0 m(x) u^{p-1}
$$
\n(18)

for $x \in \Omega$ and $u \in (0, \delta_0]$. Choose $\delta \in (0, 1)$ so that $\lambda_0 \delta^{p-1} > \lambda_1$.

For $\varepsilon > 0$, let $z_{\varepsilon} > 0$ be the solution of

$$
-\Delta_p z_{\varepsilon} = h_{\varepsilon} \equiv \begin{cases} \lambda_1 m(x) (\delta_0 \phi_1)^{p-1} & \text{in } \{\phi_1 > \varepsilon\} \\ -\phi_1^{-\alpha} & \text{in } \{\phi_1 < \varepsilon\} \end{cases}, \quad z_{\varepsilon} = 0 \text{ on } \partial \Omega.
$$

Note that the existence of z_{ε} follows from Lemma 2.1 and Remark 2.2. Since

$$
-\Delta_p(\delta_0 \phi_1) = h \equiv \lambda_1 m(x) (\delta_0 \phi_1)^{p-1} \quad \text{in } \Omega,
$$

the weak maximum principle [10, Lemma A.2] implies $z_{\varepsilon} \le \delta_0 \phi_1 \le \delta_0$ in Ω . Next,

$$
||h_{\varepsilon} - h||_1 = \int_{\phi_1 < \varepsilon} |\lambda_1 m(x) (\delta_0 \phi_1)^{p-1} + \phi_1^{-\alpha} || dx \le C_0 \int_{\phi_1 < \varepsilon} \phi_1^{-\alpha} dx
$$

and since $\int_{\Omega} \phi_1^{-\alpha} dx < \infty$ (see [7, p. 726], it follows that $||h_{\varepsilon} - h||_1 \to 0$ as $\varepsilon \to 0$. By Lemma 2.3, $|z_{\varepsilon} - \delta_0 \phi_1|_1 \to 0$ as $\varepsilon \to 0$. Hence $|z_{\varepsilon} - \delta_0 \phi_1|_1 < \frac{\delta_0(1-\delta)}{k}$ $\frac{1-o}{k}$, if ε is sufficiently small, where $k > 0$ is such that $\frac{d}{\phi_1} \leq k$ in Ω .

By the Mean Value Theorem,

$$
|z_{\varepsilon}(x) - \delta_0 \phi_1(x)| \le \frac{\delta_0(1-\delta)}{k} d(x) \le \delta_0(1-\delta)\phi_1(x)
$$

for $x \in \Omega$, which implies

$$
z_{\varepsilon} \ge \delta \delta_0 \phi_1 \quad \text{in } \Omega \tag{19}
$$

if ε is sufficiently small, which we assume.

Suppose $\sup_{\Omega} h < \eta$, where

$$
\eta = \min \left\{ (\lambda_0 \delta^{p-1} - \lambda_1) m_0 \delta^{\alpha} (\delta_0 \varepsilon)^{p-1+\alpha}, (\delta \delta_0)^{\alpha} \right\}.
$$

We shall verify that z_{ε} is a subsolution of (1). Let $\xi \in W_0^{1,p}$ $\zeta_0^{1,p}(\Omega)$ with $\xi \geq 0$. Then

$$
\int_{\Omega} |\nabla z_{\varepsilon}|^{p-2} \nabla z_{\varepsilon} \cdot \nabla \xi \, dx = -\int_{\Omega} (\Delta_p z_{\varepsilon}) \xi \, dx
$$
\n
$$
= \lambda_1 \int_{\phi_1 > \varepsilon} m(x) (\delta_0 \phi_1)^{p-1} \xi \, dx - \int_{\phi_1 < \varepsilon} \frac{\xi}{\phi_1^{\alpha}} \, dx. \tag{20}
$$

In the set $\{\phi_1 > \varepsilon\}$, we have

$$
(\lambda_0 \delta^{p-1} - \lambda_1) m(x) (\delta_0 \phi_1)^{p-1} \ge (\lambda_0 \delta^{p-1} - \lambda_1) m_0 (\delta_0 \varepsilon)^{p-1} \ge \frac{\eta}{(\delta \delta_0 \varepsilon)^\alpha},
$$

which, together with (18) , (19) , implies

$$
g(x, z_{\varepsilon}) - \frac{h(x)}{z_{\varepsilon}^{\alpha}} \ge \lambda_0 m(x) z_{\varepsilon}^{p-1} - \frac{1}{z_{\varepsilon}^{\alpha}} \sup_{\Omega} h
$$

\n
$$
\ge \lambda_0 \delta^{p-1} m(x) (\delta_0 \phi_1)^{p-1} - \frac{\eta}{(\delta \delta_0 \varepsilon)^{\alpha}}
$$

\n
$$
\ge \lambda_1 m(x) (\delta_0 \phi_1)^{p-1}
$$
\n(21)

in $\{\phi_1 > \varepsilon\}$. On the other hand, since $\eta \leq (\delta \delta_0)^{\alpha}$,

$$
g(x, z_{\varepsilon}) - \frac{h(x)}{z_{\varepsilon}^{\alpha}} \ge -\frac{1}{z_{\varepsilon}^{\alpha}} \sup_{\Omega} h \ge -\frac{\eta}{(\delta \delta_0 \phi_1)^{\alpha}} \ge -\frac{1}{\phi_1^{\alpha}} \quad \text{in } \Omega. \tag{22}
$$

Combining (20) – (22) , we obtain

$$
\int_{\Omega} |\nabla z_{\varepsilon}|^{p-2} \nabla z_{\varepsilon} \cdot \nabla \xi \, dx \leq \int_{\Omega} \left(g(x, z_{\varepsilon}) - \frac{h(x)}{z_{\varepsilon}^{\alpha}} \right) \xi \, dx,
$$

i.e., z_{ε} is a subsolution of (1).

Next, in view of (A2) and (A3), there exist constants $b \in (0, \lambda_1)$ and $d_0 > 0$ such that

$$
g(x, u) \le bm(x)u^{p-1} + \frac{d_0}{u^{\alpha}} \tag{23}
$$

for all $u > 0$ and a.e. $x \in \Omega$. Choose $\gamma \in (0, 1)$ and $\tilde{\lambda}_1, M_0 > 0$ so that

$$
(1+\gamma)^{p-1}\left(b+\frac{d_0}{m_0M_0^{p-1+\alpha}}\right) < \tilde{\lambda}_1 < \lambda_1,\tag{24}
$$

and

$$
\frac{(1+\gamma)^{p-1}||h||_{\infty}}{m_0 M_0^{p-1+\alpha}} < \lambda_1 - \tilde{\lambda}_1. \tag{25}
$$

Let ψ_{ε} be the solution of

$$
-\Delta_p \psi_{\varepsilon} = \begin{cases} \lambda_1 m(x) \phi_1^{p-1} & \text{in } \{\phi_1 > \varepsilon\} \\ \lambda_1 m(x) + \phi_1^{-\alpha} & \text{in } \{\phi_1 < \varepsilon\} \end{cases}, \quad \psi_{\varepsilon} = 0 \quad \text{on } \partial \Omega.
$$

Then, since $-\Delta_p \phi_1 = \lambda_1 m(x) \phi_1^{p-1}$ in Ω , it follows from Lemma 2.3 that $|\psi_{\varepsilon} - \phi_1|_1 \to 0$ as $\varepsilon \to 0$. Hence, if ε is small enough,

$$
(1 - \gamma)\phi_1 \le \psi_\varepsilon \le (1 + \gamma)\phi_1 \quad \text{in } \Omega,\tag{26}
$$

which we assume. We shall verify that $Z_{\varepsilon} = M \psi_{\varepsilon}$ is a supersolution for (1) with $Z_{\varepsilon} \geq z_{\varepsilon}$ in Ω if M is large enough. Let $\xi \in W_0^{1,p}$ $\zeta_0^{1,p}(\Omega)$ with $\xi \geq 0$. Then we have

$$
\int_{\Omega} |\nabla Z_{\varepsilon}|^{p-2} \nabla Z_{\varepsilon} \cdot \nabla \xi \, dx = \lambda_1 \int_{\phi_1 > \varepsilon} m(x) (M\phi_1)^{p-1} \xi \, dx \n+ M^{p-1} \int_{\phi_1 < \varepsilon} (\lambda_1 m(x) + \phi_1^{-\alpha}) \xi \, dx.
$$
\n(27)

Suppose $M > \frac{M_0}{(1-\gamma)\varepsilon}$. Then

$$
Z_{\varepsilon} \ge M(1 - \gamma)\varepsilon > M_0 \tag{28}
$$

in $\{\phi_1 > \varepsilon\}$. Since $M\phi_1 \ge (1+\gamma)^{-1}Z_{\varepsilon}$ in Ω , it follows from (23)-(25) that in $\{\phi_1 > \varepsilon\}, \frac{g(x, Z_{\varepsilon})}{m(x)(M\phi_1)}$ $\frac{g(x,\overline{Z}_{\varepsilon})}{m(x)(M\phi_1)^{p-1}} \leq \frac{(1+\gamma)^{p-1}g(x,\overline{Z}_{\varepsilon})}{m(x)\overline{Z}_{\varepsilon}^{p-1}}$ $\frac{(-\gamma)^{p-1}g(x,Z_{\varepsilon})}{m(x)Z_{\varepsilon}^{p-1}} \, \leq \, (1+\gamma)^{p-1}\left(b+\frac{d_0}{m(x)Z_{\varepsilon}^{p-1}}\right)$ $\overline{m(x)Z_{\varepsilon}^{p-1+\alpha}}$ ≤ $(1+\gamma)^{p-1}\left(b+\frac{d_0}{m_0M_0^{p-1+\alpha}}\right)$ $\Big) < \tilde{\lambda}_1$, and

$$
\frac{||h||_{\infty}}{m(x)(M\phi_1)^{p-1}Z_{\varepsilon}^{\alpha}} \le \frac{(1+\gamma)^{p-1}||h||_{\infty}}{m(x)Z_{\varepsilon}^{p-1+\alpha}} \le \frac{(1+\gamma)^{p-1}||h||_{\infty}}{m_0M_0^{p-1+\alpha}} < \lambda_1 - \tilde{\lambda}_1.
$$

Hence

$$
g(x, Z_{\varepsilon}) - \frac{h(x)}{Z_{\varepsilon}^{\alpha}} \le g(x, Z_{\varepsilon}) + \frac{||h||_{\infty}}{Z_{\varepsilon}^{\alpha}} \le \lambda_1 m(x) (M\phi_1)^{p-1}
$$
(29)

in $\{\phi_1 > \varepsilon\}$. From (23), (24), and (26), we get

$$
g(x, Z_{\varepsilon}) - \frac{h(x)}{Z_{\varepsilon}^{\alpha}} \leq bm(x)Z_{\varepsilon}^{p-1} + \frac{d_0 + ||h||_{\infty}}{Z_{\varepsilon}^{\alpha}}
$$

$$
\leq b(1 + \gamma)^{p-1}m(x)(M\phi_1)^{p-1} + \frac{d_0 + ||h||_{\infty}}{(M(1 - \gamma))^{\alpha}}\phi_1^{-\alpha}
$$
 (30)

$$
\leq \lambda_1 m(x)M^{p-1} + M^{p-1}\phi_1^{-\alpha},
$$

if M is large enough so that $M^{p-1+\alpha} > (d_0+||h||_{\infty})(1-\gamma)^{-\alpha}$, which we assume. Combining (27), (29), and (30), we get

$$
\int_{\Omega} |\nabla Z_{\varepsilon}|^{p-2} \nabla Z_{\varepsilon} \cdot \nabla \xi \, dx \ge \int_{\Omega} \left(g(x, Z_{\varepsilon}) - \frac{h(x)}{Z_{\varepsilon}^{\alpha}} \right) \xi \, dx,
$$

i.e., Z_{ε} is a supersolution of (1) with $Z_{\varepsilon} \geq z_{\varepsilon}$ for large M.

Finally, it follows from (A3) and (19) that there exists a constant $K > 0$ depending on $||Z_{\varepsilon}||_{\infty}$ such that

$$
|g(x,w)| \le \frac{K}{w^\alpha} \le \frac{K}{z_\varepsilon^\alpha} \le \frac{K}{(\delta \delta_0 \phi_1)^\alpha}
$$

for all $w \in C(\overline{\Omega})$ with $z_{\varepsilon} \leq w \leq Z_{\varepsilon}$ in Ω . The existence of a positive solution for (1) now follows from Lemma 2.4.

Next, suppose that h is a constant. Then, as in the above, we see that there exists a constant $h_0 > 0$ such that (1) has a positive solution for $h < h_0$. We claim that (1) has no positive solutions for large h. Indeed, let u be a positive solution of (1) with $h > 0$. Multiplying the equation $-\Delta_p u = g(x, u) - \frac{h}{u^{\alpha}}$ in Ω by u and integrating, we obtain, by (23) ,

$$
\int_{\Omega} |\nabla u|^p dx = \int_{\Omega} g(x, u)u \, dx - h \int_{\Omega} u^{1-\alpha} \, dx
$$

\n
$$
\leq b \int_{\Omega} m(x)u^p \, dx + (d_0 - h) \int_{\Omega} u^{1-\alpha} \, dx
$$

\n
$$
\leq b \int_{\Omega} m(x)u^p \, dx
$$

for $h \geq d_0$. Since

$$
\lambda_1 = \inf_{\substack{u \in W_0^{1,p}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} m(x) u^p dx},
$$

it follows that $\left(1-\frac{b}{\lambda}\right)$ $\frac{b}{\lambda_1}$ $\int_{\Omega} |\nabla u|^p dx \leq 0$, which implies $u \equiv 0$, a contradiction. Hence the claim is proved.

Define $h^* = \sup\{h > 0 : (1)$ has a positive solution}. Then $h^* \in (0, \infty)$ and (1) has no positive solutions for $h > h^*$. Let $h < h^*$. Then there exists $\tilde{h} > h$ such that (1) with $h = \tilde{h}$ has a positive solution $u_{\tilde{h}}$. Since

$$
g(x,u_{\tilde{h}})-\frac{\tilde{h}}{\tilde{u}_{h}^{\alpha}}\ \leq g(x,u_{\tilde{h}})-\frac{h}{\tilde{u}_{h}^{\alpha}}\ ,
$$

in Ω , it follows that $u_{\tilde{h}}$ is a subsolution for (1). As above, we obtain a supersolution Z_{ε} for (1) with $Z_{\varepsilon} \geq u_{\tilde{h}}$ in Ω , and the existence of a positive solution to (1) follows. This completes the proof of Theorem 1.1. \Box

References

- [1] Anane, A., Simplicité et isolation de la premier propre du p -Laplacian avec poids (in French). C. R. Acad. Sci. Paris, Ser. I Math. 305 (1987), 725 – 728.
- [2] Brezis, H., Analyse Fonctionnelle, Théorie ét Applications (in French). Second edition. Paris: Masson 1983.
- [3] Decoster, C. and Nicaise, S., Lower and upper solutions for elliptic problems in nonsmooth domains. J. Diff. Equ. 244 (2008), 599 – 629.
- [4] Drabek, P. and Hernandez, J., Existence and uniqueness of positive solutions for some quasilinear elliptic problems. *Nonlinear Anal.* 44 (2001), $189 - 204$.
- [5] Giacomoni, J., Schindler, I. and Takac, P., Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 117 – 158.
- [6] Hai, D. D., On a class of singular p-Laplacian boundary value problems. J. Math. Anal. Appl. 383 (2011), 619 – 626.
- [7] Lazer, A. C. and Mckenna, P. J., On a singular nonlinear elliptic boundaryvalue problem. *Proc. Amer. Math. Soc.* 111 (1991), $721 - 730$.
- [8] Lee, E., Shivaji, R. and Ye, J., Positive solutions for infinite semipositone problems with falling zeros. Nonlinear Anal. 72 (2010), $4475 - 4479$.
- [9] Oden, T., Qualitative Methods in Nonlinear Mechanics. Englewood Cliffs (NJ): Prentice-Hall 1986.
- [10] Sakaguchi, S., Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 14 (1987), $403 - 421.$

Received March 18, 2011; revised July 16, 2012