© European Mathematical Society

Zeitschrift für Analysis und ihre Anwendungen Journal for Analysis and its Applications Volume 32 (2013), 339–348 DOI: 10.4171/ZAA/1488

On a Singular Logistic Equation with the *p*-Laplacian

Dang Dinh Hai

Abstract. We prove the existence and nonexistence of positive solutions for the boundary value problems

$$\begin{cases} -\Delta_p u = g(x, u) - \frac{h(x)}{u^{\alpha}} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u), p > 1, \ \Omega$ is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, $\alpha \in (0,1), g : \Omega \times (0,\infty) \to \mathbb{R}$ is possibly singular at u = 0. An application to a singular logistic-like equation is given.

Keywords. Sup-supersolutions, singular, positive solutions Mathematics Subject Classification (2010). Primary 35J, secondary 35J75, 35J92

1. Introduction

Consider the boundary value problem

$$\begin{cases} -\Delta_p u = g(x, u) - \frac{h(x)}{u^{\alpha}} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u), \ p > 1, \Omega$ is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega, \ h: \Omega \to \mathbb{R}, \ g: \Omega \times (0, \infty) \to \mathbb{R}$, and $0 < \alpha < 1$.

In [4, Theorem 5.3], Drabek and Hernandez show that the logistic equation involving the p-Laplacian

$$\begin{cases} -\Delta_p u = \lambda m(x) u^{p-1} - u^{\gamma-1} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(2)

D. D. Hai: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA; email: dang@math.msstate.edu

where $1 \frac{N(\gamma-1)}{p(\gamma-p)}, m(x) \ge m_{0} > 0$ in Ω , has a unique positive solution u with $u \in W_{0}^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ for $\lambda > \lambda_{1}$. Here λ_{1} denotes the first eigenvalue of

$$\begin{cases} -\Delta_p u = \lambda m(x) |u|^{p-2} u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(3)

Note that the nonlinearity $g(x, u) = \lambda m(x)u^{p-1} - u^{\gamma-1}$ is continuous in u for a.e. $x \in \Omega$, and satisfies

$$\lim_{u \to \infty} \frac{g(x, u)}{m(x)u^{p-1}} = -\infty, \quad \lim_{u \to 0^+} \frac{g(x, u)}{m(x)u^{p-1}} = \lambda > \lambda_1.$$
(4)

uniformly for $x \in \Omega$.

When p = 2, Lee et al. [8] consider the singular problem

$$\begin{cases} -\Delta u = \lambda u - f(u) - \frac{c}{u^{\alpha}} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(5)

where λ, c, α are positive constants with $\alpha < 1, f : [0, \infty) \to \mathbb{R}$ is continuous and satisfies

$$\lambda u - M \le f(u) \le A u^q$$

for all $u \ge 0$, where M, A, q are positive constants with q > 1. Under these assumptions, they show that (5) has a solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ for $\lambda > \frac{2\lambda_1}{1+\alpha}$ and c is sufficiently small [8, Theorem 2.1]. Here λ_1 corresponds to $m(x) \equiv 1$. Note that the nonlinearity $g(u) = \lambda u - f(u)$ is continuous and satisfies

$$\limsup_{u \to \infty} \frac{g(u)}{u} \le 0, \quad \liminf_{u \to 0^+} \frac{g(u)}{u} \ge \lambda > \frac{2\lambda_1}{1+\alpha}.$$
 (6)

Note that for $f(u) = u^q$, (5) is a singular perturbation problem of (2) with p = 2 and $m(x) \equiv 1$, but the result in [8] is not as good as the corresponding one in [4] when c = 0. In this paper, we shall study positive solutions to the general problem (1) when h is a bounded function with small $\sup_{\Omega} h$ and g(., u) is allowed to be singular at u = 0 and satisfies a weaker condition than (4) and (6). To be precise, we shall assume the following:

- (A1) $m \in L^{\infty}(\Omega)$ and there exists a constant $m_0 > 0$ such that $m(x) \ge m_0$ for a.e. $x \in \Omega$.
- (A2) $g: \Omega \times (0, \infty) \to \mathbb{R}$ is continuous and

$$\limsup_{u \to \infty} \frac{g(x,u)}{m(x)u^{p-1}} < \lambda_1, \quad \liminf_{u \to 0^+} \frac{g(x,u)}{m(x)u^{p-1}} > \lambda_1$$

uniformly for $x \in \Omega$.

(A3) There exists $\alpha \in (0, 1)$ such that

$$\limsup_{u \to 0^+} u^{\alpha} g(x, u) < \infty$$

uniformly for $x \in \Omega$.

In particular, our result can be applied to the following singular perturbation problem of (2)

$$\begin{cases} -\Delta_p u = \lambda m(x) u^{p-1} - u^{\gamma-1} - \frac{h(x)}{u^{\alpha}} & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(7)

where $1 , <math>\alpha \in (0, 1)$, *m* is as above, gives the existence of a positive solution $u \in C^{1,\beta}(\overline{\Omega})$ for some $\beta \in (0, 1)$ when $\lambda > \lambda_1$ and $\sup_{\Omega} h$ is sufficiently small. Also, if *h* is a constant, there exists a constant $h^* > 0$ such that (7) has a positive solution for $h < h^*$ and no positive solution for $h > h^*$.

Our main result complements the result in [4] and improves the corresponding result in [8] in many ways. Our approach is based on the method of suband supersolutions developed in [6] for singular problems. However, the type of nonlinearities g(u) covered in [6] does not apply here as it requires

$$\lim_{u \to \infty} \frac{g(u)}{u^{p-1}} = 0 \quad \text{and} \quad g(u) > 0 \quad \text{for } u \text{ large},$$

whereas the one in this paper allows

$$\lim_{u \to \infty} \frac{g(u)}{u^{p-1}} = -\infty \quad \text{and} \quad g(u) \to -\infty \quad \text{as } u \to \infty.$$

Let λ_1 be the first eigenvalue of (3) with a positive, normalized corresponding eigenfunction ϕ_1 , i.e., $||\phi_1||_{\infty} = 1$. It is well known that $\lambda_1 > 0, \phi_1 \in C^1(\bar{\Omega}), \frac{\partial \phi_1}{\partial n} < 0$ on $\partial \Omega$, where *n* denotes the outer unit normal vector on $\partial \Omega$ (see [1]).

By a positive solution of (1) we mean a function $u \in C^{1,\beta}(\overline{\Omega})$ for some $\beta \in (0,1)$ with u = 0 and $\frac{\partial u}{\partial n} < 0$ on $\partial \Omega$ such that

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \xi \, dx = \int_{\Omega} \left(g(x, u) - \frac{h(x)}{u^{\alpha}} \right) \xi \, dx$$

for all $\xi \in W_0^{1,p}(\Omega)$. Here *n* denotes the outer unit normal vector. Our main result is

Theorem 1.1. Let $h \in L^{\infty}(\Omega)$ and suppose (A1)-(A3) hold. Then there exists a constant $\eta > 0$ such that Problem (1) has a positive solution when $\sup_{\Omega} h < \eta$. Moreover, if h is a constant, then there exists a positive number h^* such that (1) has a positive solution for $h < h^*$ and no positive solutions for $h > h^*$.

2. Preliminary results

We shall denote the norms in $L^p(\Omega)$, $W_0^{1,p}(\Omega)$, $C^1(\overline{\Omega})$ and $C^{1,\alpha}(\overline{\Omega})$ by $\|\cdot\|_p$, $\|.\|_{1,p}$, $\|.|_1$ and $\|.|_{1,\alpha}$, respectively.

For $x \in \Omega$, let d(x) denote the distance from x to $\partial\Omega$. The following regularity result in [6, Lemma 3.1] plays a key role in the proof of the main results:

Lemma 2.1. Let $h \in L^{\infty}_{loc}(\Omega)$ and suppose there exist numbers $\alpha \in (0,1)$ and C > 0 such that

$$|h(x)| \le \frac{C}{d^{\alpha}(x)} \tag{8}$$

for a.e. $x \in \Omega$. Let $u \in W_0^{1,p}(\Omega)$ be the solution of

$$\begin{cases} -\Delta_p u = h & in \ \Omega\\ u = 0 & on \ \partial\Omega. \end{cases}$$
(9)

Then there exist constants $\beta \in (0, 1)$ and M > 0 depending only on C, α, Ω such that $u \in C^{1,\beta}(\overline{\Omega})$ and $|u|_{1,\beta} < M$.

Remark 2.2. (i) Since $\frac{\partial \phi_1}{\partial n} < 0$ on $\partial \Omega$, there exists a constant k > 0 such that $\phi_1(x) \ge kd(x)$ for $x \in \Omega$. Hence Lemma 2.1 holds if (8) is replaced by

$$|h(x)| \le \frac{C}{\phi_1^{\alpha}(x)}$$

for a.e. $x \in \Omega$.

(ii) Note that under the assumptions of Lemma 2.1, (9) has a unique solution $u \in W_0^{1,p}(\Omega)$. Indeed, define $A: W_0^{1,p}(\Omega) \to W_0^{-1,p'}(\Omega)$ and $\hat{h} \in W_0^{-1,p'}(\Omega)$, where $p' = \frac{p}{p-1}$, by

$$\langle Au,\xi\rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \xi \, dx, \quad \hat{h}(\xi) = \int_{\Omega} h\xi \, dx.$$

By Hardy's inequality (see e.g. [2, p. 194]), we obtain

$$|\hat{h}(\xi)| \le C \int_{\Omega} \left| \frac{\xi}{d^{\alpha}} \right| dx \le C ||d||_{\infty}^{1-\alpha} \int_{\Omega} \left| \frac{\xi}{d} \right| dx \le \tilde{C} ||\xi||_{1,p}$$

for all $\xi \in W_0^{1,p}(\Omega)$, where \tilde{C} is a constant independent of ξ . Thus $\hat{h} \in W_0^{-1,p'}(\Omega)$. Since A is continuous, coercive, and strictly monotone, it follows from the Minty-Browder Theorem (see [2, p. 88]) that there exists a unique $u \in W_0^{1,p}(\Omega)$ such that $Au = \hat{h}$.

Lemma 2.3. Let $\varepsilon > 0$ and let $h, h_{\varepsilon} \in L^{\infty}_{loc}(\Omega)$ satisfy (8). Let $u, u_{\varepsilon} \in W^{1,p}_0(\Omega)$ be the solutions of

$$\begin{cases} -\Delta_p u = h & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

and

$$\begin{cases} -\Delta_p u_{\varepsilon} = h_{\varepsilon} & \text{in } \Omega\\ u_{\varepsilon} = 0 & \text{on } \partial\Omega, \end{cases}$$

respectively. Suppose $||h_{\varepsilon} - h||_1 \to 0$ as $\varepsilon \to 0$. Then

$$|u_{\varepsilon} - u|_1 \to 0$$

 $as \; \varepsilon \to 0.$

Proof. By Lemma 2.1, there exist $\beta \in (0,1)$, M > 0 such that $u, u_{\varepsilon} \in C^{1,\beta}(\overline{\Omega})$ and

$$|u|_{1,\beta}, \ |u_{\varepsilon}|_{1,\beta} < M. \tag{10}$$

Multiplying the equation $-\Delta_p u_{\varepsilon} - (-\Delta_p u) = h_{\varepsilon} - h$ in Ω by $u_{\varepsilon} - u$ and integrating, we obtain

$$\int_{\Omega} (|\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_{\varepsilon} - \nabla u) \, dx \le 2M ||h_{\varepsilon} - h||_{1}.$$
(11)

By [9, Lemma 30.1], for $x, y \in \mathbb{R}^n$,

$$(|x| + |y|)^{2-\min(p,2)}(|x|^{p-2}x - |y|^{p-2}y) \cdot (x-y) \ge C_0|x-y|^{\max(p,2)},$$
(12)

where $C_0 = (\frac{1}{2})^{p-1}$ if $p \ge 2$, $C_0 = p-1$ if p < 2.

Using (12) with $x = \nabla u_{\varepsilon}, y = \nabla u$ and the fact that |x| + |y| < 2M, we obtain from (11) that

$$C_1 \int_{\Omega} |\nabla (u_{\varepsilon} - u)|^q dx \le 2M ||h_{\varepsilon} - h||_1,$$

where $C_1 = C_0 \cdot (2M)^{\min(p,2)-2}$ and $q = \max(p,2)$.

Hence, by Poincaré's inequality,

$$||u_{\varepsilon} - u||_q \to 0 \tag{13}$$

as $\varepsilon \to 0$. Suppose $|u_{\varepsilon} - u|_1 \not\to 0$ as $\varepsilon \to 0$. Then there exists a sequence (ε_n) which converges to 0 such that

$$u_{\varepsilon_n} - u|_1 \not\to 0 \quad \text{as } n \to \infty$$
 (14)

By (10), (u_{ε_n}) is bounded in $C^{1,\beta}(\overline{\Omega})$, and since $C^{1,\beta}(\overline{\Omega})$ is compactly embedded in $C^1(\overline{\Omega})$, there exist $v \in C^1(\overline{\Omega})$ and a subsequence (u_{ε_n}) of (u_{ε_n}) such that

$$|u_{\varepsilon_{n_k}} - v|_1 \to 0 \quad \text{as } k \to \infty.$$
 (15)

From (13) and (15), we see that u = v and so $|u_{\varepsilon_{n_k}} - u|_1 \to 0$ as $k \to \infty$, a contradiction with (14). This completes the proof of Lemma 2.3.

Next, we recall some results in sub- and supersolutions method for singular boundary value problems in [6, Appendix A]. Related results can be found in [3]. Consider the problem

$$\begin{cases} -\Delta_p u = h(x, u) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(16)

where $h: \Omega \times (0, \infty) \to \mathbb{R}$ is continuous.

Let $\phi, \psi \in C^1(\overline{\Omega})$. Suppose there exist constants $c_0, C, \alpha > 0$ with $\alpha < 1$ such that $\phi(x), \psi(x) \ge c_0 d(x)$ for $x \in \Omega$ and

$$|h(x,w)| \le \frac{C}{d^{\alpha}(x)} \tag{17}$$

for a.e. $x \in \Omega$ and all $w \in C(\overline{\Omega})$ with $\phi \leq w \leq \psi$ in Ω . Suppose ϕ, ψ are suband supersolutions of (16) respectively, i.e., for all $\xi \in W_0^{1,p}(\Omega)$ with $\xi \geq 0$,

$$\int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi . \nabla \xi \, dx \le \int_{\Omega} h(x, \phi) \xi \, dx ,$$
$$\int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi . \nabla \xi \, dx \ge \int_{\Omega} h(x, \psi) \xi \, dx,$$

and $\phi \leq 0 \leq \psi$ on $\partial \Omega$. Note that the integrals on the right-hand side are defined by virtue of Hardy's inequality.

Lemma 2.4. Under the above assumptions, there exists a constant $\beta \in (0, 1)$ such that (16) has a solution $u \in C^{1,\beta}(\overline{\Omega})$ with $\phi \leq u \leq \psi$ in Ω .

3. Proof of the main result

Now, we are ready to give the proof of the main result.

Proof of Theorem 1.1. By (A2), there exists $\lambda_0 > \lambda_1$ and $\delta_0 > 0$ such that

$$g(x,u) \ge \lambda_0 m(x) u^{p-1} \tag{18}$$

for $x \in \Omega$ and $u \in (0, \delta_0]$. Choose $\delta \in (0, 1)$ so that $\lambda_0 \delta^{p-1} > \lambda_1$.

For $\varepsilon > 0$, let $z_{\varepsilon} > 0$ be the solution of

$$-\Delta_p z_{\varepsilon} = h_{\varepsilon} \equiv \begin{cases} \lambda_1 m(x) (\delta_0 \phi_1)^{p-1} & \text{in } \{\phi_1 > \varepsilon\} \\ -\phi_1^{-\alpha} & \text{in } \{\phi_1 < \varepsilon\} \end{cases}, \quad z_{\varepsilon} = 0 \quad \text{on } \partial\Omega.$$

Note that the existence of z_{ε} follows from Lemma 2.1 and Remark 2.2. Since

$$-\Delta_p(\delta_0\phi_1) = h \equiv \lambda_1 m(x) (\delta_0\phi_1)^{p-1} \quad \text{in } \Omega,$$

the weak maximum principle [10, Lemma A.2] implies $z_{\varepsilon} \leq \delta_0 \phi_1 \leq \delta_0$ in Ω . Next,

$$||h_{\varepsilon} - h||_{1} = \int_{\phi_{1} < \varepsilon} |\lambda_{1} m(x) (\delta_{0} \phi_{1})^{p-1} + \phi_{1}^{-\alpha}| \, dx \le C_{0} \int_{\phi_{1} < \varepsilon} \phi_{1}^{-\alpha} \, dx$$

and since $\int_{\Omega} \phi_1^{-\alpha} dx < \infty$ (see [7, p. 726], it follows that $||h_{\varepsilon} - h||_1 \to 0$ as $\varepsilon \to 0$. By Lemma 2.3, $|z_{\varepsilon} - \delta_0 \phi_1|_1 \to 0$ as $\varepsilon \to 0$. Hence $|z_{\varepsilon} - \delta_0 \phi_1|_1 < \frac{\delta_0(1-\delta)}{k}$, if ε is sufficiently small, where k > 0 is such that $\frac{d}{\phi_1} \leq k$ in Ω .

By the Mean Value Theorem,

$$|z_{\varepsilon}(x) - \delta_0 \phi_1(x)| \le \frac{\delta_0(1-\delta)}{k} d(x) \le \delta_0(1-\delta)\phi_1(x)$$

for $x \in \Omega$, which implies

$$z_{\varepsilon} \ge \delta \delta_0 \phi_1 \quad \text{in } \Omega \tag{19}$$

if ε is sufficiently small, which we assume.

Suppose $\sup_{\Omega} h < \eta$, where

$$\eta = \min\left\{ (\lambda_0 \delta^{p-1} - \lambda_1) m_0 \delta^{\alpha} (\delta_0 \varepsilon)^{p-1+\alpha}, (\delta \delta_0)^{\alpha} \right\}.$$

We shall verify that z_{ε} is a subsolution of (1). Let $\xi \in W_0^{1,p}(\Omega)$ with $\xi \geq 0$. Then

$$\int_{\Omega} |\nabla z_{\varepsilon}|^{p-2} \nabla z_{\varepsilon} \cdot \nabla \xi \, dx = -\int_{\Omega} (\Delta_p z_{\varepsilon}) \xi \, dx$$
$$= \lambda_1 \int_{\phi_1 > \varepsilon} m(x) (\delta_0 \phi_1)^{p-1} \xi \, dx - \int_{\phi_1 < \varepsilon} \frac{\xi}{\phi_1^{\alpha}} \, dx.$$
(20)

In the set $\{\phi_1 > \varepsilon\}$, we have

$$(\lambda_0 \delta^{p-1} - \lambda_1) m(x) (\delta_0 \phi_1)^{p-1} \ge (\lambda_0 \delta^{p-1} - \lambda_1) m_0 (\delta_0 \varepsilon)^{p-1} \ge \frac{\eta}{(\delta \delta_0 \varepsilon)^{\alpha}},$$

which, together with (18), (19), implies

$$g(x, z_{\varepsilon}) - \frac{h(x)}{z_{\varepsilon}^{\alpha}} \ge \lambda_0 m(x) z_{\varepsilon}^{p-1} - \frac{1}{z_{\varepsilon}^{\alpha}} \sup_{\Omega} h$$

$$\ge \lambda_0 \delta^{p-1} m(x) (\delta_0 \phi_1)^{p-1} - \frac{\eta}{(\delta \delta_0 \varepsilon)^{\alpha}}$$

$$\ge \lambda_1 m(x) (\delta_0 \phi_1)^{p-1}$$
(21)

in $\{\phi_1 > \varepsilon\}$. On the other hand, since $\eta \leq (\delta \delta_0)^{\alpha}$,

$$g(x, z_{\varepsilon}) - \frac{h(x)}{z_{\varepsilon}^{\alpha}} \ge -\frac{1}{z_{\varepsilon}^{\alpha}} \sup_{\Omega} h \ge -\frac{\eta}{(\delta \delta_0 \phi_1)^{\alpha}} \ge -\frac{1}{\phi_1^{\alpha}} \quad \text{in } \Omega.$$
 (22)

Combining (20)–(22), we obtain

$$\int_{\Omega} |\nabla z_{\varepsilon}|^{p-2} \nabla z_{\varepsilon} \cdot \nabla \xi \ dx \le \int_{\Omega} \left(g(x, z_{\varepsilon}) - \frac{h(x)}{z_{\varepsilon}^{\alpha}} \right) \xi \ dx,$$

i.e., z_{ε} is a subsolution of (1).

Next, in view of (A2) and (A3), there exist constants $b \in (0, \lambda_1)$ and $d_0 > 0$ such that

$$g(x,u) \le bm(x)u^{p-1} + \frac{d_0}{u^{\alpha}}$$
(23)

for all u > 0 and a.e. $x \in \Omega$. Choose $\gamma \in (0, 1)$ and $\tilde{\lambda}_1, M_0 > 0$ so that

$$(1+\gamma)^{p-1}\left(b+\frac{d_0}{m_0 M_0^{p-1+\alpha}}\right) < \tilde{\lambda}_1 < \lambda_1,$$
(24)

and

$$\frac{(1+\gamma)^{p-1}||h||_{\infty}}{m_0 M_0^{p-1+\alpha}} < \lambda_1 - \tilde{\lambda}_1.$$
(25)

Let ψ_{ε} be the solution of

$$-\Delta_p \psi_{\varepsilon} = \begin{cases} \lambda_1 m(x) \phi_1^{p-1} & \text{in } \{\phi_1 > \varepsilon\} \\ \lambda_1 m(x) + \phi_1^{-\alpha} & \text{in } \{\phi_1 < \varepsilon\} \end{cases}, \quad \psi_{\varepsilon} = 0 \quad \text{on } \partial\Omega$$

Then, since $-\Delta_p \phi_1 = \lambda_1 m(x) \phi_1^{p-1}$ in Ω , it follows from Lemma 2.3 that $|\psi_{\varepsilon} - \phi_1|_1 \to 0$ as $\varepsilon \to 0$. Hence, if ε is small enough,

$$(1-\gamma)\phi_1 \le \psi_{\varepsilon} \le (1+\gamma)\phi_1 \quad \text{in } \Omega,$$
 (26)

which we assume. We shall verify that $Z_{\varepsilon} = M\psi_{\varepsilon}$ is a supersolution for (1) with $Z_{\varepsilon} \geq z_{\varepsilon}$ in Ω if M is large enough. Let $\xi \in W_0^{1,p}(\Omega)$ with $\xi \geq 0$. Then we have

$$\int_{\Omega} |\nabla Z_{\varepsilon}|^{p-2} \nabla Z_{\varepsilon} \cdot \nabla \xi \, dx = \lambda_1 \int_{\phi_1 > \varepsilon} m(x) (M\phi_1)^{p-1} \xi \, dx + M^{p-1} \int_{\phi_1 < \varepsilon} (\lambda_1 m(x) + \phi_1^{-\alpha}) \xi \, dx.$$
(27)

Suppose $M > \frac{M_0}{(1-\gamma)\varepsilon}$. Then

$$Z_{\varepsilon} \ge M(1-\gamma)\varepsilon > M_0 \tag{28}$$

in $\{\phi_1 > \varepsilon\}$. Since $M\phi_1 \ge (1+\gamma)^{-1}Z_{\varepsilon}$ in Ω , it follows from (23)-(25) that in $\{\phi_1 > \varepsilon\}$, $\frac{g(x,Z_{\varepsilon})}{m(x)(M\phi_1)^{p-1}} \le \frac{(1+\gamma)^{p-1}g(x,Z_{\varepsilon})}{m(x)Z_{\varepsilon}^{p-1}} \le (1+\gamma)^{p-1} \left(b + \frac{d_0}{m(x)Z_{\varepsilon}^{p-1+\alpha}}\right) \le (1+\gamma)^{p-1} \left(b + \frac{d_0}{m_0M_0^{p-1+\alpha}}\right) < \tilde{\lambda}_1$, and $||h||_{\infty} \qquad (1+\gamma)^{p-1} ||h||_{\infty} \qquad (1+\gamma)^{p-1} ||h||_{\infty}$

$$\frac{||h||_{\infty}}{m(x)(M\phi_1)^{p-1}Z_{\varepsilon}^{\alpha}} \le \frac{(1+\gamma)^{p-1}||h||_{\infty}}{m(x)Z_{\varepsilon}^{p-1+\alpha}} \le \frac{(1+\gamma)^{p-1}||h||_{\infty}}{m_0M_0^{p-1+\alpha}} < \lambda_1 - \tilde{\lambda}_1.$$

Hence

$$g(x, Z_{\varepsilon}) - \frac{h(x)}{Z_{\varepsilon}^{\alpha}} \le g(x, Z_{\varepsilon}) + \frac{||h||_{\infty}}{Z_{\varepsilon}^{\alpha}} \le \lambda_1 m(x) (M\phi_1)^{p-1}$$
(29)

in $\{\phi_1 > \varepsilon\}$. From (23), (24), and (26), we get

$$g(x, Z_{\varepsilon}) - \frac{h(x)}{Z_{\varepsilon}^{\alpha}} \le bm(x)Z_{\varepsilon}^{p-1} + \frac{d_0 + ||h||_{\infty}}{Z_{\varepsilon}^{\alpha}} \le b(1+\gamma)^{p-1}m(x)(M\phi_1)^{p-1} + \frac{d_0 + ||h||_{\infty}}{(M(1-\gamma))^{\alpha}}\phi_1^{-\alpha} \le \lambda_1 m(x)M^{p-1} + M^{p-1}\phi_1^{-\alpha},$$
(30)

if M is large enough so that $M^{p-1+\alpha} > (d_0 + ||h||_{\infty})(1-\gamma)^{-\alpha}$, which we assume. Combining (27), (29), and (30), we get

$$\int_{\Omega} |\nabla Z_{\varepsilon}|^{p-2} \nabla Z_{\varepsilon} \cdot \nabla \xi \ dx \ge \int_{\Omega} \left(g(x, Z_{\varepsilon}) - \frac{h(x)}{Z_{\varepsilon}^{\alpha}} \right) \xi \ dx,$$

i.e., Z_{ε} is a supersolution of (1) with $Z_{\varepsilon} \geq z_{\varepsilon}$ for large M.

Finally, it follows from (A3) and (19) that there exists a constant K > 0 depending on $||Z_{\varepsilon}||_{\infty}$ such that

$$|g(x,w)| \leq \frac{K}{w^{\alpha}} \leq \frac{K}{z_{\varepsilon}^{\alpha}} \leq \frac{K}{(\delta \delta_0 \phi_1)^{\alpha}}$$

for all $w \in C(\overline{\Omega})$ with $z_{\varepsilon} \leq w \leq Z_{\varepsilon}$ in Ω . The existence of a positive solution for (1) now follows from Lemma 2.4.

Next, suppose that h is a constant. Then, as in the above, we see that there exists a constant $h_0 > 0$ such that (1) has a positive solution for $h < h_0$. We claim that (1) has no positive solutions for large h. Indeed, let u be a positive solution of (1) with h > 0. Multiplying the equation $-\Delta_p u = g(x, u) - \frac{h}{u^{\alpha}}$ in Ω by u and integrating, we obtain, by (23),

$$\int_{\Omega} |\nabla u|^p dx = \int_{\Omega} g(x, u)u \, dx - h \int_{\Omega} u^{1-\alpha} \, dx$$
$$\leq b \int_{\Omega} m(x)u^p \, dx + (d_0 - h) \int_{\Omega} u^{1-\alpha} \, dx$$
$$\leq b \int_{\Omega} m(x)u^p \, dx$$

for $h \ge d_0$. Since

$$\lambda_1 = \inf_{\substack{u \in W_0^{1,p}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} m(x) u^p dx},$$

it follows that $\left(1 - \frac{b}{\lambda_1}\right) \int_{\Omega} |\nabla u|^p dx \leq 0$, which implies $u \equiv 0$, a contradiction. Hence the claim is proved.

Define $h^* = \sup\{h > 0 : (1) \text{ has a positive solution}\}$. Then $h^* \in (0, \infty)$ and (1) has no positive solutions for $h > h^*$. Let $h < h^*$. Then there exists $\tilde{h} > h$ such that (1) with $h = \tilde{h}$ has a positive solution $u_{\tilde{h}}$. Since

$$g(x, u_{\tilde{h}}) - \frac{\tilde{h}}{\tilde{u}_{h}^{\alpha}} \le g(x, u_{\tilde{h}}) - \frac{h}{\tilde{u}_{h}^{\alpha}}$$

in Ω , it follows that $u_{\tilde{h}}$ is a subsolution for (1). As above, we obtain a supersolution Z_{ε} for (1) with $Z_{\varepsilon} \geq u_{\tilde{h}}$ in Ω , and the existence of a positive solution to (1) follows. This completes the proof of Theorem 1.1.

References

- Anane, A., Simplicité et isolation de la premier propre du p-Laplacian avec poids (in French). C. R. Acad. Sci. Paris, Ser. I Math. 305 (1987), 725 – 728.
- [2] Brezis, H., Analyse Fonctionnelle, Théorie ét Applications (in French). Second edition. Paris: Masson 1983.
- [3] Decoster, C. and Nicaise, S., Lower and upper solutions for elliptic problems in nonsmooth domains. J. Diff. Equ. 244 (2008), 599 – 629.
- [4] Drabek, P. and Hernandez, J., Existence and uniqueness of positive solutions for some quasilinear elliptic problems. *Nonlinear Anal.* 44 (2001), 189 204.
- [5] Giacomoni, J., Schindler, I. and Takac, P., Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. *Ann. Sc. Norm. Super. Pisa Cl. Sci.* (5) 6 (2007), 117 – 158.
- [6] Hai, D. D., On a class of singular p-Laplacian boundary value problems. J. Math. Anal. Appl. 383 (2011), 619 – 626.
- [7] Lazer, A. C. and Mckenna, P. J., On a singular nonlinear elliptic boundaryvalue problem. Proc. Amer. Math. Soc. 111 (1991), 721 – 730.
- [8] Lee, E., Shivaji, R. and Ye, J., Positive solutions for infinite semipositone problems with falling zeros. *Nonlinear Anal.* 72 (2010), 4475 4479.
- [9] Oden, T., Qualitative Methods in Nonlinear Mechanics. Englewood Cliffs (NJ): Prentice-Hall 1986.
- [10] Sakaguchi, S., Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 14 (1987), 403 – 421.

Received March 18, 2011; revised July 16, 2012