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1. Introduction, main results and discussion

We consider a linear system of singular ordinary differential equations (ODEs)
of the form

tu′(t) = A(t)u(t) + f(t), 0 < t ≤ T, (1)

where A = (ap,q)
n
p,q=1 ∈ Cm

n×n[0, T ], m ≥ 0, n ∈ N, is a given matrix function,
and f = (f1, . . . , fn)T ∈ Cm

n [0, T ] is a given vector function. We are interested
in conditions guaranteeing the existence of a unique solution u ∈ Cm

n [0, T ]. Also
the computation of such solution will be commented.

A system of type (1) for n = 2 appears, e.g., when a solution u = u(|x|)
of the PDE 4u + au = f with a = a(|x|), f = f(|x|) is determined where
x = (x1, x2, x3) or x = (x1, x2), see [5, 10]. Another example is connected with
the regular system of ODEs v′(x) = B(x)v(x) + g(x), 0 ≤ x <∞, of arbitrary
dimension n assuming that finite limits limx→∞B(x) and limx→∞ g(x) exist,
and a solution is required to have a finite limit limx→∞ u(x). With the change
of variables x = − log t, u(t) = v(− log t) the problem takes the form (1) with
T = 1, A(t) = −B(− log t), f(t) = −g(− log t) having finite limits as t→ 0.

Unique solvability of system (1) in Cm
n [0, T ] can be described completely in

terms of the spectrum σ(A(0)), i.e. the set of eigenvalues of the matrix A(0).
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The main results of the paper, the following Theorems 1.1 and 1.3, provide the
precise statement; see also Theorem 1.11. Notations used are fairly standard,
see Section 2 if needed.

Theorem 1.1. Assume that A ∈ Cn×n[0, T ] and

max
λk∈σ(A(0))

Reλk < 0. (2)

Then system (1) has a unique solution u ∈ Cn[0, T ] (with u′ ∈ Cn(0, T ]) for any
f ∈ Cn[0, T ]. If A ∈ Cn×n[0, T ] is such that the limit

lim
t→0

A(t)− A(0)

tβ
∈ Cn×n exists for a β > 0, (3)

then condition (2) is also necessary for the unique solvability of (1) in Cn[0, T ]
for all f ∈ Cn[0, T ].

Observe that u = tµv is a solution to (1) iff v is a solution to system

tv′(t) = (A(t)− µI)v(t) + g(t), g(t) = t−µf(t). (4)

Applying to system (4), Theorem 1.1 we obtain the following

Corollary 1.2. Assume A ∈ Cn×n[0, T ] and

max
λk∈σ(A(0))

Re(λk − µ) < 0 for a µ ∈ C. (5)

Then system (1) has a unique solution of the form u = tµv, v ∈ Cn[0, T ], for
any f = tµg, g ∈ Cn[0, T ]; v is a unique solution in Cn[0, T ] of system (4).

Assuming (3), condition (5) becomes necessary and sufficient for the unique
solvability of system (4) in Cn[0, T ] for all g ∈ Cn[0, T ].

Theorem 1.3. Assume that A ∈ Cm
n×n[0, T ] for an m ≥ 1. Then the following

assertions (i), (ii) and (iii) are equivalent:

(i) it holds that

m > max
λk∈σ(A(0))

Reλk and σ(A(0)) ∩ N0 = ∅; (6)

(ii) system (1) has a unique solution u in Cm
n [0, T ] for any f ∈ Cm−1

n [0, T ] such

that f− ∈ Cm−1
n [0, T ], where f−(t) := f(t)−f(0)

t
, 0 < t ≤ T , f−(0) = f ′(0);

(iii) system (1) has a unique solution u in Cm
n [0, T ] for any f ∈ Cm

n [0, T ].

Corollary 1.4. Let A ∈ Cm
n×n[0, T ] for an m ≥ 1. Then the following assertions

(i′), (ii′) and (iii′) are equivalent:
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(i′) for a µ ∈ C, it holds that

m+ Reµ > max
λk∈σ(A(0))

Reλk and
(
σ(A(0))− µ

)
∩ N0 = ∅; (7)

(ii′) for any f of the form f(t) = tµg(t), g ∈ Cm−1
n [0, T ], g− ∈ Cm−1

n [0, T ],
system (1) has a unique solution of the form u(t) = tµv(t), v ∈ Cm

n [0, T ];

(iii′) for any f of the form f(t) = tµg(t), g ∈ Cm
n [0, T ], system (1) has a unique

solution of the form u(t) = tµv(t), v ∈ Cm
n [0, T ].

In (ii′) and (iii′), v is a unique solution of system (4) in Cm
n [0, T ].

Remark 1.5. Let A ∈ Cm
n×n[0, T ], f(t) = tµg(t), µ ∈ N, g ∈ Cm

n [0, T ], and
let (7) be fulfilled. Then a solution of system (1) of the form u(t) = tµv(t) with
v ∈ Cm

n [0, T ], although unique among the solutions of this form, need not be a
unique in Cm

n [0, T ].

For a unique solution u? ∈ Cm
n [0, T ] of (1), existence of which is ensured

by condition (6), no boundary conditions are permitted. Imposing boundary
conditions may lead to a solution of lesser regularity. About the solvability of
boundary value problems for linear and nonlinear singular systems of ODEs
and about discretization methods for solving the boundary value problems see
[1, 10, 11, 18]. In linear case, the problem setting in these works concerns (1)
with f(t) = tg(t), smooth g; in nonlinear case, a restriction of similar type is
set.

If the problem setting requires additional linear constraints, such as for ex-
ample initial value, final value, multi-point or integral constraints, a solution
u = u? +

∑
ckuk may be constructed due to linearity of the problem by com-

bining u? with a suitable linear combination of solutions uk of the associated
homogeneous system tu′(t) = A(t)u(t). Fortunately, under generic conditions,
the computation of uk can be reduced to the solving inhomogeneous problems
like (1) with smooth free terms. Below we formulate some results in this direc-
tion. The proof of the following Theorem 1.6 will be omitted since it consists
in an elementary check of the claims of the theorem.

Theorem 1.6. Let d1, d2, . . . , d`, 1 ≤ ` ≤ n, be a Jordan chain of root vectors
of A(0) to an eigenvalue λ0 ∈ σ(A(0)), i.e.

d1 6= 0, (A(0)− λ0I)d1 = 0, (A(0)− λ0I)dk = dk−1, k = 2, . . . , `,

and let v1, . . . , v` satisfy the following recursive systems of ODEs:

tv′1(t) = (A(t)− λ0I)v1(t) + (A(t)− A(0))d1,

tv′k(t) = (A(t)− λ0I)vk(t) + (A(t)− A(0))dk − vk−1, k = 2, . . . , `.
(8)
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Then the vector functions

u1(t) = tλ0
(
d1 + v1(t)

)
,

u2(t) = tλ0
[(
d2 + v2(t)

)
+ log t

(
d1 + v1(t)

)]
,

u3(t) = tλ0
[(
d3 + v3(t)

)
+ log t

(
d2 + v2(t)

)
+

(log t)2

2!

(
d1 + v1(t)

)]
,

...

u`(t) = tλ0
[(
d` + v`(t)

)
+ log t

(
d`−1 + v`−1(t)

)
+ · · ·+ (log t)`−1

(`− 1)!

(
d1 + v1(t)

)]
are solutions to the homogeneous system tu′(t) = A(t)u(t).

Note that the vector functions

u1(t) = tλ0d1,

u2(t) = tλ0
[
d2 + log t d1

]
,

...

u`(t) = tλ0
[
d` + log t d`−1 + · · ·+ (log t)`−1

(`− 1)!
d1

]
are solutions to the system tu′(t) = A(0)u(t), cf. [4, 10].

Let us comment on the solvability of systems (8). The following Theorem 1.7
is a consequence of Corollary 1.2 (case m = 0) and of the implication (i′)⇒(iii′)
in Corollary 1.4 (case m ≥ 1) recursively applied to systems (8); a more detailed
argument is presented in Section 6.

Theorem 1.7. Let A ∈ Cm
n×n[0, T ], m ≥ 0. Let d1, d2, . . . , d` be a Jordan chain

of the root vectors of A(0) to an eigenvalue λ0 ∈ σ(A(0)).
In case m = 0, assuming (3) and

max
λk∈σ(A(0))

Re(λk − λ0) < β (9)

(with β > 0 from (3)), systems (8) have unique solutions of the form vk =
tβwk ∈ Cn[0, T ], k = 1, . . . , `; wk are unique solutions in Cn[0, T ] of the recursive
systems

tw′1(t) = (A(t)− (λ0 + β)I)w1(t) + t−β(A(t)− A(0))d1,

tw′k(t) = (A(t)− (λ0 + β)I)wk(t) + t−β(A(t)− A(0))dk − wk−1,

k = 2, . . . , `.

(10)

In case m ≥ 1, assuming that

m > max
λk∈σ(A(0))

Re(λk − λ0) and λk − λ0 /∈ N for ∀λk ∈ σ(A(0)), (11)
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systems (8) have unique solutions of the form vk = twk ∈ Cm
n [0, T ];

wk ∈ Cm−1
n [0, T ], k = 1, . . . , `, are unique solutions in Cm−1

n [0, T ] of recursive
systems (10) for β = 1.

Remark 1.8. In case m ≥ 1, assuming A− ∈ Cm
n×n[0, T ],

m > max
λk∈σ(A(0))

Re(λk − λ0)− 1 and λk − λ0 /∈ N for ∀λk ∈ σ(A(0)), (12)

it holds that wk ∈ Cm
n [0, T ], k = 1, . . . , `, for the solutions of recursive sys-

tems (10) with β=1. Here A−(t)= 1
t
(A(t)−A(0)) for 0<t≤T , A−(0)=A′(0).

Remark 1.9. For λ0 ∈ σ(A(0)) of a biggest real part compared with the real
parts of other λk ∈ σ(A(0)), assumptions (9) and λk − λ0 6∈ N in (11), (12) are
fulfilled.

Remark 1.10. Besides the solutions vk = tβwk or vk = twk introduced in
Theorem 1.7, systems (8) have solutions vk = −dk, k = 1, . . . , `, to which there
corresponds the trivial solution of the system tu′(t) = A(t)u(t).

Consider the case of possibly nonempty σ(A(0)) ∩ N0, cf. Theorem 1.3. If
f ∈ Cm

n [0, T ], A ∈ Cm
n×n[0, T ], m ≥ 1, and if (1) still has a solution u ∈ Cm

n [0, T ]
then differentiating k times the equality tu′(t) = A(t)u(t) + f(t) and setting
t = 0 we see that u(k)(0), k = 0, . . . , `−1, is a solution of the recursive algebraic
system

(kI − A(0))u
(k)
0 = f (k)(0) +

k−1∑
j=0

(
k
j

)
A(k−j)(0)u

(j)
0 , k = 0, . . . , `− 1, (13)

where 1 ≤ ` ≤ m; for k = 0 (13) means that A(0)u0 = −f(0). Thus the
solvability of (1) implies the consistency of (13).

Theorem 1.11. Let f ∈ Cm
n [0, T ], A ∈ Cm

n×n[0, T ] for an m ≥ 1, m >
maxλk∈σ(A(0)) Reλk, and 1 ≤ ` ≤ m,

σ (A(0)) ∩ {`, `+ 1, · · · } = ∅. (14)

Then (1) is solvable in Cm
n [0, T ] iff (13) is consistent. To any solution u

(j)
0 ,

j = 0, . . . , ` − 1, of (13) there corresponds a unique solution u ∈ Cm
n [0, T ] of

the problem

tu′(t) = A(t)u(t) + f(t), 0 < t ≤ T, u(j)(0) = u
(j)
0 , j = 0, . . . , `− 1. (15)

Remark 1.12. If (13) is consistent for an ` ∈ N satisfying (14) then (13)
remains to be consistent for bigger `. So we always can use the smallest ` ∈ N
satisfying (14). Sometimes ` = min{`′ ∈ N : `′ > maxλk∈σ(A(0)) Reλk} is
preferable in numerics.
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Remark 1.13. Theorem 1.11 is in a good accordance with the results of [2]
about (not necessarily linear) Fuchsian systems of PDEs. If either σ(A(0))∩N0

= ∅ or σ(A(0)) ∩ N0 = {0}, then Theorem 1.11 can be applied for ` = 1, and
under conditions f ∈ Cm

n [0, T ], A ∈ Cm
n×n[0, T ], m ≥ 1, m > maxλk∈σ(A(0)) Reλk,

A(0)u0 = −f(0), we obtain that the problem tu′ = Au + f , u(0) = u0 has a
unique solution u ∈ Cm

n [0, T ]; of course, for infinite smooth f and A also the
the solution is infinite smooth. The last formulation can be derived also by
interpreting the results of [2]; moreover, a further consequence of [2] is that the
solution is analytic if A and f are analytic. This analyticity result can be exten-
ded to the case of a more general structure of σ(A(0))∩N0 as in Theorem 1.11.

Example 1.14. For the scalar equation

tu′(t) = u(t) + f(t)

we have σ(A(0)) = {1}, (14) is fulfilled for ` = 2, and the consistency con-

ditions (13) have the form u
(0)
0 + f(0) = 0, f ′(0) = 0. By Theorem 1.11 the

equation has a unique solution u ∈ Cm[0, T ], m ≥ 2, satisfying u(0) = u
(0)
0 ,

u′(0) = u
(1)
0 with an arbitrary u

(1)
0 , provided that f ∈ Cm[0, T ] satisfies the con-

sistency conditions; this can be easily seen also directly. On the other hand, for
f(t) =

∫ t
0

ds
log s

, 0 ≤ t ≤ T , T < 1, which belongs to C1[0, T ]\C2[0, T ] and satisfies

the consistency conditions for u
(0)
0 = 0, all solutions u(t) =

∫ t
0

log(− log s)ds+ct
of the equation live outside C1[0, T ]. This demonstrates that the smoothness
conditions of Theorem 1.11 cannot be essentially relaxed.

The proof of Theorem 1.1 and 1.3 is based on the reduction of (1) to a
system of cordial Volterra integral equations and on the extension of some results
[12, 13] from scalar cordial equations to systems of such equations. Namely,
rewriting (1) for an α > 0 in the form (D1 + αI)u = (A + αI)u + f, where
(D1u)(t) = tu′(t) and I is the identity operator, we obtain that system (1) is
equivalent to the system of integral equations

u = Vϕα(A+ αI)u+ Vϕαf, (16)

where Vϕα = (D1 + αI)−1, Vϕαf = (Vϕαf1, . . . , Vϕαfn)T for f = (f1, . . . , fn)T,

(Vϕαw)(t) = t−α
∫ t

0

sα−1w(s)ds =

∫ t

0

1

t

(s
t

)α−1

w(s)ds for w ∈ C[0, T ].

The operator Vϕα , α ∈ C, Reα > 0, often occurs in literature, see, e.g., [6–9,12],
it is an example of cordial Volterra integral operators [12, 13]. In Section 3 we
recall and extend some results about the mapping and spectral properties of
(scalar) cordial Volterra integral operators. The inversion of D1 + αI between
appropriate spaces and the properties of Vϕα = (D1 + αI)−1 ∈ L(Cm[0, T ]) are
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discussed in Section 4; for our final needs we study the inversion of D1 + αI
not only for α > 0 but also for complex α, in particular, for Reα < 0 when
integral

∫ t
0
sα−1w(s)ds may diverge. Nevertheless, for Reα > −m, α 6= −j,

j = 0, . . . ,m−1, the inverse Ṽϕα = (D1+αI)−1 ∈ L(Cm
n [0, T ]) is still well defined

and corresponds to the understanding of the divergent integral
∫ t

0
sα−1w(s)ds

in the sense of the Hadamard finite part; it holds Ṽϕα = Vϕα for Reα > 0. In
Section 5 we prove that the spectrum of Vϕα(A + αI) ∈ L(Cm

n [0, T ]) coincides
with that for of Vϕα(A(0)+αI) ∈ L(Cm

n [0, T ]). This is a central technical result
that enables to complete the proof of Theorems 1.1 and 1.3 in Section 6.

The criteria of the existence of a unique solution u ∈ Cm
n [0, T ] to system (1)

or to problem (15) formulated by Theorems 1.1, 1.3 and 1.11 are needed when
polynomial collocation, spline collocation and other discretization methods are
constructed and justified for system (1) either directly, or through equivalent
systems of cordial Volterra integral equations, cf. [13–15] in the scalar case.
These are possible topics for separate works. It is sufficient to solve (1) on a
small interval [0, T0], T0 < T , and continue on [T0, T ] using standard methods
treated, e.g., in [3].

2. Notations

We use the notations N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}, R = (−∞,∞),
C = R + iR, λ = Reλ+ i Imλ for λ ∈ C. Introduce the disk

Kb =
{
λ ∈ C : | λ− b

2
|≤ b

2

}
, b > 0. (17)

We denote by Pm the set of polynomials of degree ≤ m. We denote by D
and D1 the differential operators (Du)(t) =u′(t) and (D1u)(t) = tu′(t), respec-
tively. A right inverse D−j of Dj, j ∈ N, is given by

(D−ju)(t) :=
1

(j − 1)!

∫ t

0

(t− s)j−1u(s)ds. (18)

In the sequel, we use the abbreviated notation Cm = Cm[0, T ], m ∈ N0, for
the space of m times continuously differentiable (scalar) functions on [0, T ];

‖u‖Cm = max
0≤k≤m

max
0≤t≤T

|u(k)(t)|.

For m ∈ N0, r ∈ R, the space Cm,r = Cm,r(0, T ] consists of the functions
u ∈ Cm(0, T ] such that finite limits limt→0 t

k−ru(k)(t), k = 0, . . . ,m, exist;

‖u‖Cm,r = max
0≤k≤m

sup
0<t≤T

tk−r|u(k)(t)|.
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It holds C = C0 = C0,0, Cm ⊂ Cm,0, Cm′,r′ ⊂ Cm,r for m′ ≥ m ≥ 0, r′ ≥ r,

Cm,m = {u ∈ Cm : u(0) = · · · = u(m−1)(0) = 0} ⊂ Cm,

Cm = Cm,m ⊕ Pm−1 = (I − Πm)Cm ⊕ ΠmC
m for m ≥ 1,

(19)

where (Πmu)(t) =
∑m−1

j=0
u(j)(0)
j!

tj is the Taylor projector in Cm.

As usual, u = (u1, . . . , un)T ∈ Cm
n means that up ∈ Cm, p = 1, . . . , n, and

A = (ap,q)
n
p,q=1 ∈ Cm

n×n means that ap,q ∈ Cm, p, q = 1, . . . , n. Similar sense
have the inclusions u ∈ Cm,r

n and A ∈ Cm,r
n×n. We use the norms

‖u‖Cmn = max
1≤p≤n

‖up‖Cm , ‖u‖Cm,νn
= max

1≤p≤n
‖up‖Cm,ν .

By L1,r(0, 1), r ∈ R, we denote the space of functions ϕ : (0, 1) → C such
that

‖ϕ‖L1,r :=

∫ 1

0

xr|ϕ(x)|dx <∞.

For Banach spaces X and Y , L(X, Y ) means the space of linear bounded
operators from X into Y , and L(X) = L(X,X). By %L(X)(V ) we denote the
resolvent set of an operator V ∈ L(X), and by σL(X)(V ) = C \ %L(X)(V ) its
spectrum. We use the abbreviated notations of the type

σm(V ) = σL(Cmn )(V ), %m(V ) = %L(Cmn )(V ) for V ∈ L(Cm
n ),

σm,r(V ) = σL(Cm,rn )(V ), %m,r(V ) = %L(Cm,rn )(V ) for V ∈ L(Cm,r
n ).

3. Scalar cordial Volterra integral operators

Let us recall and slightly extend some results [12,13,16] concerning scalar cordial
Volterra integral operators. For a “core” ϕ ∈ L1(0, 1) and a coefficient function
a ∈ C, the cordial Volterra integral operators Vϕ and Vϕ,a are defined by

(Vϕu)(t) =

∫ t

0

1

t
ϕ
(s
t

)
u(s)ds =

∫ 1

0

ϕ(x)u(tx)dx, 0 ≤ t ≤ T, u ∈ C, (20)

(Vϕ,au)(t) =

∫ t

0

1

t
ϕ
(s
t

)
a(s)u(s)ds, 0 ≤ t ≤ T, u ∈ C.

Denote

ϕ̂(λ) :=

∫ 1

0

xλϕ(x)dx

for λ ∈ C for which the integral converges. (Function ϕ̂ is a shifted Mellin trans-
form of function ϕ extended by the zero value from interval (0, 1) to (0,∞).)
From (20), the second representation form, it immediately follows that

Vϕwλ = ϕ̂(λ)wλ, where wλ(t) = tλ, 0 < t ≤ T. (21)
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Differentiating (20), the second representation form, we observe that for u∈Cm,
m≥0,

(Vϕu)(m)(t) =

∫ 1

0

ϕ(x)xmu(m)(tx)dx. (22)

From this we conclude that

(Vϕu)(m)(0) = ϕ̂(m)u(m)(0) for u ∈ Cm, m ≥ 0, ϕ ∈ L1(0, 1). (23)

Theorem 3.1. (See [12, 13]). For ϕ ∈ L1(0, 1), a ∈ Cm, m ≥ 0, it holds that
Vϕ, Vϕ,a ∈ L(Cm) and

σ0(Vϕ)=
{
ϕ̂(λ) : Reλ≥0

}
∪
{
0
}
, (24)

σm(Vϕ)=
{
ϕ̂(λ) : Reλ≥m

}
∪
{
0
}
∪
{
ϕ̂(j) : j=0, 1, . . . ,m−1

}
for m≥1, (25)

σm(Vϕ,a)= σm(Vϕ,a(0))=a(0)σm(Vϕ) for m≥0. (26)

If a(0) = 0, then Vϕ,a ∈ L(Cm) is compact.

Lemma 3.2. For ϕ ∈ L1(0, 1), µ ∈ C, the set (µI − Vϕ)Cm ⊂ Cm, m ≥ 0, is
dense in Cm iff µ 6= ϕ̂(j) for j = 0, 1, . . . ,m.

Proof. Assume that µ 6= ϕ̂(j), j = 0, 1, . . . ,m. For given v ∈ Cm and ε > 0,

take a polynomial vN =
∑N

j=0 cjt
j such that ‖vN − v‖Cm ≤ ε

2
, and define

vN,δ =
∑N

j=0 cjwj,δ, where wj,δ(t) = tj if ϕ̂(j) 6= µ, and wj,δ(t) = tj+δ with a

parameter δ > 0 if ϕ̂(j) = µ (this may happen for j ≥ m + 1); since ϕ̂(λ) is

analytic for Reλ > 0, it holds ϕ̂(j+ δ) 6= µ for sufficiently small δ > 0. Further,

define the function uN,δ =
∑N

j=0 cjyj,δ, where yj,δ(t) = tj

µ−ϕ̂(j)
if ϕ̂(j) 6= µ, and

yj,δ(t) = tj+δ

µ−ϕ̂(j+δ)
if ϕ̂(j) = µ. By (21) (µI − Vϕ)yj,δ = wj,δ, j = 0, . . . , N ,

hence (µI − Vϕ)uN,δ = vN,δ, thus vN,δ ∈ (µI − Vϕ)Cm. We can choose δ > 0 so

small that ‖vN,δ − vN‖Cm ≤ ε
2
, then ‖vN,δ − v‖Cm ≤ ε, and we conclude that

(µI − Vϕ)Cm is dense in Cm.

Conversely, let µ = ϕ̂(j) for some j ∈ {0, . . . ,m}. Then due to (23)

(µu− Vϕu)(j)(0) = µu(j)(0)− ϕ̂(j)u(j)(0) = 0, ∀u ∈ Cm,

thus (µI − Vϕ)Cm ⊂ {v ∈ Cm : v(j)(0) = 0}, and the closed subspace in the
right hand side of the inclusion is not dense in Cm.

Theorem 3.3. (See [16]). For ϕ ∈ L1,r(0, 1), a ∈ Cm, m ≥ 0, r ∈ R, it holds

Vϕ ∈ L(Cm,r), σm,r(Vϕ) =
{
ϕ̂(λ) : Reλ ≥ r

}
∪
{

0
}
, (27)

Vϕ,a ∈ L(Cm,r), σm,r(Vϕ,a) = σm,r(Vϕ,a(0)) = a(0)σm,r(Vϕ). (28)

If a(0) = 0, then Vϕ,a ∈ L(Cm,r) is compact.
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4. The resolvent of D1 as an integral operator

Clearly, D1 +αI ∈ L(Cm+1,r, Cm,r). Its inversion is described in Lemma 4.1; in
Lemma 4.2 the inversion in the spaces of type Cm will be treated. The operator
(D1 + αI)−1 occurs to be cordial and formulae (24)–(28) can be applied for it.

Lemma 4.1. For m ≥ 0, r ∈ R, α ∈ C, r + Reα > 0, the operator D1 + αI ∈
L(Cm+1,r, Cm,r) is invertible, (D1 +αI)−1 = Vϕα ∈ L(Cm,r, Cm+1,r) ⊂ L(Cm,r),
where ϕα ∈ L1,r(0, 1) is defined by ϕα(x) = xα−1, 0 < x < 1, and Vϕα is the
cordial operator

(Vϕαf)(t) =

∫ t

0

1

t

(s
t

)α−1

f(s)ds = t−α
∫ t

0

sα−1f(s)ds, 0 < t ≤ T. (29)

It holds (see notation (17))

σm,r(Vϕα) = K 1
r+Reα

. (30)

Proof. First, for f ∈ Cm,r it is easy to check that Vϕαf ∈ Cm+1,r and that
u = Vϕαf satisfies (D1 + αI)u = f . Second, the nontrivial solutions of the
first order linear homogeneous ODE (D1 + αI)u = 0 are given by u(t) = ct−α,
c = const 6= 0, and they live outside Cm,r due to the condition r + Reα > 0.
This proves the first claim of the Lemma. For ϕα(x) = xα−1, formula (30) is a
consequence of (27), see [12].

For m ≥ 1, u ∈ Cm = Cm,m⊕Pm−1, Πmu =
∑m−1

j=0
u(j)(0)
j!

tj ∈ Pm−1, it holds

u− Πmu ∈ Cm,m; by Lemma 4.1 Vϕα(u− Πmu) ∈ Cm+1,m ⊂ Cm provided that
m+ Reα > 0. Setting onto α ∈ C the conditions

Reα > −m, α 6= −j, j = 0, . . . ,m− 1, (31)

we can define the Hadamard finite part integral operator Ṽϕα = f.p.Vϕα ∈ L(Cm)
by (cf. [5, 17])

Ṽϕαu = Vϕα(u− Πmu) + ṼϕαΠmu = Vϕα(u− Πmu) +
m−1∑
j=0

u(j)(0)
j!(j+α)

tj, u ∈ Cm.

Formally ṼϕαΠmu differs from

(VϕαΠmu)(t) = t−α
∫ t

0

sα−1

m−1∑
j=0

u(j)(0)
j!

sjds = t−α
m−1∑
j=0

u(j)(0)
j!(j+α)

lim
ε→0

sj+α
∣∣t
s=ε

by omitting the divergent terms that correspond to negative j+Reα. Note that
Ṽϕα = Vϕα for Reα > 0. For 0 ≤ m ≤ m′, operator Ṽϕα ∈ L(Cm′) is a restriction
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of Ṽϕα ∈ L(Cm) from Cm to Cm′ . Note also that (Ṽϕα)tj = tj

j+α
= (D1+αI)−1tj,

j ∈ N0, independently of m > −Reα used in the construction of Ṽϕα .

As easily seen, Cm+1,m ∩ Pm−1 = {0}, thus we can generate the direct sum
Cm+1,m ⊕ Pm−1; we equip it with a norm

‖u+ vm‖Cm+1,m⊕Pm−1
= ‖u‖Cm+1,m +‖vm‖Pm−1 for u ∈ Cm+1,m, vm ∈ Pm−1

(in our considerations, it is not essential which norm is used in Pm−1). The
operator D1 +αI∈ L(Cm+1,m, Cm,m) is invertible by Lemma 3.2, and D1 +αI ∈
L(Pm−1,Pm−1) is invertible due to (31). We obtain that the inverse to

D1 + αI ∈ L(Cm+1,m ⊕ Pm−1, C
m) = L(Cm+1,m ⊕ Pm−1, C

m,m ⊕ Pm−1)

exists and is given by Ṽϕα = (D1 + αI)−1 ∈ L(Cm, Cm+1,m ⊕ Pm−1) ⊂ L(Cm).
Let us summarize.

Lemma 4.2. For Reα > 0, the operator D1 + αI ∈ L(C1,0, C) is invertible,
(D1 + αI)−1 = Vϕα ∈ L(C,C1,0) ⊂ L(C) (see (29)), and

σ0(Vϕα) = K 1
Reα
. (32)

For m ≥ 1, m+Reα > 0, α 6= −j, j = 0, . . . ,m−1, the operator D1 +αI ∈
L(Cm+1,m ⊕ Pm−1, C

m) is invertible, and

(D1 + αI)−1 = Ṽϕα ∈ L(Cm, Cm+1,m ⊕ Pm−1) ⊂ L(Cm),

σm(Ṽϕα) = K 1
m+Reα

∪
{

1
α+j

: j = 0, . . . ,m− 1
}
, (33)

K 1
m+Reα

∩
{

1
α+j

: j = 0, . . . ,m− 1
}

= ∅.

Proof. The first claim is a reformulation of Lemma 4.1 for m = 0, r = 0. The
second claim follows from Lemma 4.1 and the considerations after it.

Lemma 4.3. For m ≥ 1, α > 0, it holds that

(D1 + αI)Cm = tCm−1 ⊕ C, Vϕα(tCm−1 ⊕ C) = Cm, (34)

where tCm−1 = {f : f(t) = tg(t), g ∈ Cm−1}.

Proof. Since (D1 + αI)−1 = Vϕα for α > 0, it is sufficient to prove the first one
of formulae (34). For g ∈ Cm, it holds t−1(g(t)− g(0))

)
∈ Cm−1 and

(D1 + αI)g = t
(
g′ + αt−1(g(t)− g(0))

)
+ αg(0) ∈ tCm−1 ⊕ C,
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thus (D1 + αI)Cm ⊂ tCm−1 ⊕ C. To prove the inverse inclusion, we take an
f = tg + f(0) ∈ tCm−1 ⊕ C with g ∈ Cm−1, and we show that that there is a
u ∈ Cm such that (D1 + αI)u = tg + f(0). Clearly u = Vϕα(tg + f(0)), so we
have to check that u ∈ Cm. Since (see (20))

Vϕα(f(0)) = f(0)

∫ 1

0

xα−1dx =
f(0)

α
∈ C,

it remains to prove that Vϕα(tg) ∈ Cm for g ∈ Cm−1. Consider the case m = 1.
To check that Vϕα(tg) ∈ C1 for g ∈ C, observe that, of course, Vϕα(tg) ∈ C,
and also DVϕα(tg) ∈ C. Indeed,

DVϕα(tg) =
d

dt

(∫ t

0

1

t

(s
t

)α−1

sg(s)ds

)
= g(t)−

∫ t

0

1

t2

(s
t

)α−1

sg(s)ds− (α− 1)

∫ t

0

1

t

(s
t

)α−2 s

t
g(s)ds

= g(t)−
∫ t

0

1

t

(s
t

)α
g(s)ds− (α− 1)

∫ t

0

1

t

(s
t

)α−1

g(s)ds

= g − Vϕα+1g − (α− 1)Vϕαg ∈ C.

For m ≥ 2, we have (see (22))

Vϕα(tg) =

∫ 1

0

xα−1xtg(xt)dx =

∫ 1

0

xαtg(xt)dx ∈ C,

DkVϕα(tg) =

∫ 1

0

xα
(
d

dt

)k (
tg(xt)

)
dx

=

∫ 1

0

xα
(
txkg(k)(xt) + kxk−1g(k−1)(xt)

)
dx

= Vϕα+k+1
(tg(k)) + kVϕα+kg

(k−1) ∈ C, k = 1, . . . ,m− 1,

DmVϕα(tg) = DVϕα+m+1(tg
(m−1)) + (m− 1)Vϕα+mg

(m−1);

treating the term DVϕα+m+1(tg
(m−1)) with g(m−1)∈C similarly as above the term

DVϕα(tg) for g∈C we obtain that also DmVϕα(tg)∈C, hence Vϕα(tg)∈Cm.
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5. Operator Vϕα,A = Vϕα
A, α > 0, n ∈ N

For a given matrix function A ∈ Cn×n and a parameter value α > 0, consider
the operator Vϕα,A = VϕαA defined by

(Vϕα,Au)(t) =

∫ t

0

1

t

(s
t

)α−1

A(s)u(s)ds, 0 ≤ t ≤ T ; u ∈ Cn.

Lemma 5.1. For α > 0, A ∈ Cm
n×n, m ≥ 0, it holds

σm(Vϕα,A(0)) =
⋃

λk∈σ(A(0))

λkσm(Vϕα), (35)

or according to (32), (33)

σ0(Vϕα,A(0)) =
⋃

λk∈σ(A(0))

λkK 1
α
, (36)

σm(Vϕα,A(0)) =
⋃

λk∈σ(A(0))

λk

(
K 1

m+α
∪
{

1
α+j

: j = 0, . . . ,m− 1
})
, m ≥ 1. (37)

Proof. We have to prove only (35) which is equivalent to

%m(Vϕα,A(0)) =
⋂

λk∈σ(A(0))

λk%m(Vϕα). (38)

It is µ ∈ %m(Vϕ,A(0)) iff the system

µu = VϕA(0)u+ f (39)

has a unique solution u ∈ Cm
n for every f ∈ Cm

n . Represent A(0) in the Jordan
form A(0) = EΛE−1 where E ∈ Cn×n is a (constant) invertible matrix and Λ
is a block diagonal matrix with the Jordan blocks

Λk =


λk 1 0 . . . 0
0 λk 1 . . . 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 . . . λk

 ∈ Cnk×nk , λk ∈ σ(A(0)),
∑
k

nk = n.

It holds %m(Vϕα,A(0)) = %m(Vϕα,Λ). With respect to v = Eu system (39) has the
form

µv = Vϕα,Λv + g, g = Ef, (40)
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which splits into the subsystems of the type

µvnk = λkVϕαvn,k + gnk ,

µvj = λkVϕαvj + Vϕαvj+1 + gj,
j = nk − 1, nk − 2, . . . , 1 (41)

(we solve the equations recursively in the presented inverse order; actually the
bounds for j depend on the position of Λk in Λ; for simplicity we wrote (41) as
if Λk were on the first position). Solving the scalar equations (41) recursively
we conclude with the help of Theorem 3.1 that such a subsystem has for any
g ∈ Cm

nk
a unique solution v ∈ Cm

nk
iff µ ∈ %m(λkVϕα) = λk%m(Vϕα). Thus the

full system (40) is uniquely solvable in Cm
n for any g ∈ Cm

n , and system (39)
is uniquely solvable in Cm

n for any f ∈ Cm
n iff µ ∈ ∩λk∈σ(A(0))λk%m(Vϕα). This

proves (38).

Lemma 5.2. For α > 0, A ∈ Cm
n×n, m ≥ 0, the range set (µI − Vϕα,A(0))C

m
n is

dense in Cm
n iff µ 6= λk

i+α
for i = 0, 1, . . . ,m and all eigenvalues λk ∈ σ(A(0)).

Proof. Since µI − Vϕα,A(0) = E(µI − Vϕα,Λ)E−1, the claim of the Lemma is
equivalent to the following one: for any λk ∈ σ(A(0)), g ∈ Cm

nk
and ε > 0, there

is a v ∈ Cm
nk

such that ‖(µI−Vϕα,Λk)v−g‖Cmnk ≤ ε if µ 6= λk
i+α

, i = 0, 1, . . . ,m. In
this form the claim is a consequence of Lemma 3.2 which we apply recursively
to equations (41).

Theorem 5.3. For α > 0, A ∈ Cm
n×n, m ≥ 0, it holds Vϕα,A ∈ L(Cm

n ) and

σm(Vϕα,A) = σm(Vϕα,A(0)). (42)

If A(0) = 0, then Vϕα,A ∈ L(Cm
n ) is compact.

Proof. The claim that Vϕ,A ∈ L(Cm
n ) and the claim about the compactness of

operator Vϕ,A ∈ L(Cm
n ) in case A(0) = 0 follow from corresponding claims of

Theorem 3.1, so we have to prove only (42).
We shall prove the inclusion σm(Vϕα,A) ⊂ σm(Vϕα,A(0)) by a contradiction

argument. So suppose that for some µ0 ∈ σm(Vϕα,A) it holds µ0 ∈ %m(Vϕα,A(0)).
Since 0 ∈ K 1

m+α
⊂ σm(Vϕα,A(0)) (see (37)), it holds µ0 6= 0. The operator

µ0I − Vϕα,A ∈ L(Cm
n ) is Fredholm of index 0, since µ0I − Vϕα,A(0) ∈ L(Cm

n ) is
invertible and Vϕα,A − Vϕα,A(0) = Vϕα,A−A(0) ∈ L(Cm

n ) is compact. Hence µ0 is
an eigenvalue of Vϕα,A; let u0 be an eigenfunction:

µ0u0 = VϕαAu0, 0 6= u0 ∈ Cm
n . (43)

Consider first the case m = 0. Rewrite (43) in the form

µ0u0−VϕαA(0)u0 =Vϕα(Au0−A(0))u0, u0 =(µ0I−VϕαA(0))−1Vϕα(Au0−A(0))u0.



Linear System of Singular ODEs 363

Clearly |(Vϕαf)(t)| ≤ 1
α

max0≤s≤t |f(s)|, 0 ≤ t ≤ T. With the help of the Jordan
representation A(0) = EΛE−1, reducing system (39) to the form (40), it is easy
to see that

|((µ0I − VϕαA(0))−1f)(t)| ≤ c max
0≤s≤t

|f(s)|, 0 ≤ t ≤ T,

where the constant c is independent of t and f ∈ Cn. Thus

|u0(t)| ≤ c

α
max
0≤s≤t

|A(s)− A(0)| max
0≤s≤t

|u0(s)|, 0 ≤ t ≤ T.

Since |A(s) − A(0)| → 0 as s → 0, a consequence is that u0(t) = 0 on some
interval 0 ≤ t ≤ t0, t0 ∈ (0, T ]. For t0 ≤ t ≤ T (43) is a regular Volterra system,
and we obtain that u0(t) = 0 on the whole interval 0 ≤ t ≤ T . This contradicts
the choice of u0 and proves the inclusion σm(Vϕα,A) ⊂ σm(Vϕα,A(0)) for m = 0.

Let now m≥1. Differentiating equality (43) we show below that u
(i)
0 (0)=0,

i = 0, . . . ,m−1, and u
(m)
0 = 0, implying u0 = 0 and obtaining so again a desired

contradiction. For u ∈ Cm
n we have

(Vϕα,Au)(t) =

∫ t

0

1

t

(s
t

)α−1

A(s)u(s)ds =

∫ 1

0

xα−1A(tx)u(tx)dx,

(Vϕα,Au)(i)(t) =
i∑

j=0

(
i

j

)∫ 1

0

xi+α−1A(j)(tx)u(i−j)(tx)dx, i = 0, 1, . . . ,m,

(Vϕ,Au)(i)(0) =
1

i+ α

i∑
j=0

(
i

j

)
A(j)(0)u(i−j)(0), i = 0, 1, . . . ,m.

According to (36), (37), µ0∈%m(Vϕ,A(0)) implies that µ0 6= λk
i+α

for i=0,1, . . . ,m−1
and any λk ∈ σ(A(0)). Therefore we obtain recursively that

µ0u0(0) = 1
α
A(0)u0(0), hence u0(0) = 0,

µ0u
′
0(0) = 1

1+α
A(0)u′0(0), hence u′0(0) = 0,

...
...

...

µu
(m−1)
0 (0) = 1

m−1+α
A(0)u

(m−1)
0 (0), hence u

(m−1)
0 (0) = 0.

For v0 = u
(m)
0 we obtain the equality

µ0v0 = Vϕm+αA(0)v0 + Vϕm+α(A− A(0))v0 +
m∑
j=1

(
m

j

)
Vϕm+αA

(j)D−jv0;

see (18) for the definition ofD−j. From (36), (37) we observe that %m(Vϕα,A(0)) ⊂
%0(Vϕm+α,A(0)), thus µ0 ∈ %0(Vϕm+α,A(0)), and

v0 = (µ0I − Vϕm+αA(0))−1Vϕm+α

[
(A− A(0))v0 +

m∑
j=1

(
m

j

)
A(j)D−jv0

]
. (44)
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Similarly as above we obtain from this that v0(t) ≡ 0 as claimed, and the proof
of the inclusion σm(Vϕα,A) ⊂ σm(Vϕα,A(0)) is completed.

According (36) and (37), to establish the inverse inclusion σm(Vϕα,A(0)) ⊂
σm(Vϕα,A), we have to prove that

λkK 1
m+α
⊂ σm(Vϕα,A) for any λk ∈ σ(A(0)), (45)

in case m ≥ 1 also{
λk
α+j

: j = 0, 1, . . . ,m− 1
}
⊂ σm(Vϕα,A) for any λk ∈ σ(A(0)). (46)

Note that 1
m+α

∈ K 1
m+α

. Since the spectrum is closed, to prove (45), it suffices

to establish that

λkK 1
m+α
\ { λk

m+α
} ⊂ σm(Vϕα,A) for any λk ∈ σ(A(0)).

We shall prove this inclusion by a contradiction argument. So, suppose that
for some µ0 ∈ λkK 1

m+α
⊂ σm(Vϕα,A(0)), λk ∈ σ(A(0)), µ0 6= λk

m+α
, it holds that

µ0 ∈ %m(Vϕα,A), i.e. µ0I − Vϕα,A has a bounded inverse in L(Cm
n ). Due to the

compactness of Vϕα,A − Vϕα,A(0) ∈ L(Cm
n ), operator µ0I − Vϕα,A(0) ∈ L(Cm

n )
is Fredholm of index 0, hence (µ0I − Vϕα,A(0))C

m
n is a closed subspace of Cm

n .

Further, 1
i+α

/∈ K 1
m+α

, thus µ0 6= λk
i+α

for i = 0, 1, . . . ,m, and by Lemma 5.2

the range (µ0I − Vϕα,A(0))C
m
n is dense in Cm

n , hence (µ0I − Vϕα,A(0))C
m
n = Cm

n ,
and µ0I − Vϕα,A(0) ∈ L(Cm

n ) as a Fredholm operator of index 0 has the inverse
(µ0I − Vϕα,A(0))

−1 ∈ L(Cm
n ), i.e. µ0 ∈ %m(Vϕα,A(0)). This contradicts the choice

of µ0 and proves (45).
The inclusion (46) can be proved examining spectral projectors of Vϕα,A(0)

and Vϕα,A corresponding to the isolated point λk
α+j

, 0≤j≤m−1, of σm(Vϕα,A(0)).

Technically the argument is same as in case n = 1, see [13], therefore we omit

the details. The proof of Theorem 5.3 is finished.

6. Proof of Theorems 1.1, 1.3, 1.7 and 1.11

Lemma 6.1. For A ∈ Cm
n×n, m ≥ 0, α > 0, condition (6) is equivalent to the

condition 1 ∈ ρm(Vϕα(A(0) + αI)).

Proof. Formulae (36), (37) for A(0) + αI (in the role of A(0)) yield

σ0(Vϕα(A(0)+αI))=
⋃

λk∈σ(A(0))

(λk+α)K 1
α

σm(Vϕα(A(0)+αI))=
⋃

λk∈σ(A(0))

(
(λk+α)K 1

m+α
∪
{
λk+α
α+j

: j=0, . . . ,m−1
})
, m≥1.
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The inclusion 1 ∈ (λk + α)K 1
m+α

means that∣∣∣∣1− λk + α

2(m+ α)

∣∣∣∣ ≤ ∣∣∣∣ λk + α

2(m+ α)

∣∣∣∣ , or |2m+ α− λk| ≤ |λk + α|,

that after elementary simplifications takes the form m ≤ Reλk. The equality
1 = λk+α)

α+j
takes place iff λk = j. The claim of the Lemma follows from these

observations.

Proof of Theorem 1.1 (sufficiency part). Assume that A ∈ Cn×n[0, T ] satisfies
(2). Observe that condition (2) is equivalent to (6) for m = 0 and implies by
Lemma 6.1 and Theorem 5.3 that 1 ∈ ρ0(Vϕα(A(0) + αI)) = ρ0(Vϕα(A + αI)).
Hence equation u = Vϕα(A+αI)u+f is uniquely solvable in Cn for any f ∈ Cn.
In particular, equation (16) is uniquely solvable in Cn since Vϕα maps Cn into Cn.
Equations (1) and (16) are equivalent, so (1) has for any f ∈ Cn a unique
solution u ∈ C. The sufficiency part of Theorem 1.1 and together with it also
Corollary 1.2 are proved.

Proof of Theorem 1.7 (case m = 0). Assume that A∈Cn×n satisfies (3) and (9).
Due to (3),

(A(t)−A(0))dk = tβgk(t), gk(t) :=
A(t)− A(0)

tβ
dk ∈ Cn, k = 1, . . . , `. (47)

Applying Corollary 1.2 with µ = β to the first system in (8), condition (5) reads
as maxλk∈σ(A(0)) Re(λk−λ0−β) < 0 that is fulfilled due to assumption (9), and
we obtain that the system has a unique solution of the form v1 = tβw1 with w1

determined as the unique solution in Cn of the first system in (10). Now we see
in the same way that the second one of systems (8) has a unique solution of
the form v2 = tβw2 with w2 ∈ Cn[0, T ] determined as the unique solution of the
second system in (10). Continuing in this way we obtain that all systems (8)
have unique solutions of the form v1 = tβw1, . . . , v` = tβw` where w1, . . . , w`
are unique solutions in Cn[0, T ] of the recursive systems (10). This proves
Theorem 1.7 for m = 0.

Proof of Theorem 1.1 (necessity part). Assume (3) and that system (1) has for
any f ∈ Cn a unique solution u ∈ Cn. Then the inverse (D1 −A(t))−1 ∈ L(Cn)
exists; the boundedness is a consequence of the closedness, the closedness is a
consequence of the closedness of D1 − A(t) in Cn, the closedness of D1 − A(t)
in Cn follows from the closedness of D1 − αI in Cn, and the closedness of the
latter operator is a consequence of the boundedness of (D1−αI)−1 ∈ L(Cn) for
α > 0, see Lemma 4.2.

We shall prove (2) by a contradiction argument. So, suppose that
γ := maxλk∈σ(A(0)) Reλk ≥ 0 and choose a λ0 ∈ σ(A(0)) with Reλ0 = γ. With
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this choice condition (9) is satisfied. By Theorems 1.6 and 1.7 (just shown for
m = 0), homogeneous system tu′(t) = A(t)u(t) has a solution

u0(t) = tλ0(d0 + tw(t)), (48)

where w ∈ Cn, A(0)d0 = λ0d
0, 0 6= d0 ∈ Cn. Note that u0 ∈ Cn if γ = Reλ0 > 0

or if λ0 = 0. In these cases (1) is solvable in Cn non-uniquely (if solvable)
contradicting our assumption about unique solvability. In the case λ0 = βi,
0 6= β ∈ R,

u0(t) = tβi(d0 + tw(t)) = [cos(log(βt)) + i sin(log(βt))](d0 + tw(t)).

Observe that u0 /∈Cn but uε := tεu0∈Cn for any ε>0, and that (D1−A(t))uε=
εuε, hence (D1−A(t))−1uε = ε−1uε, implying that the operator (D1−A(t))−1 is
unbounded in Cn. But we saw that actually (D1 − A(t))−1 ∈ L(Cn). Thus the
hypothesis that γ := maxλk∈σ(A(0)) Reλk ≥ 0 contradicts the unique solvability
in Cn of system (1) for all f ∈ Cn. The proof of Theorem 1.1 is completed.

Proof of Theorem 1.3. Implications (i)⇒(ii)⇒(iii). Let A ∈ Cm
n×n, m ≥ 1.

(i)⇒(ii). Assume (i) and take an arbitrary f ∈ Cm−1
n such that f−−f−(0) ∈

Cm−1
n , where f−(t) = f(t)−f(0)

t
. Then f = tf− + f(0) ∈ tCm−1

n ⊕ Cn, and by
Lemma 4.3, f = (D1 + αI)gα, where gα = Vαf ∈ Cm

n . System (16) takes the
form

u = Vϕα(A+ αI)u+ gα, gα = Vαf ∈ Cm
n ,

and has a unique solution in Cm
n since by Lemma 6.1 and Theorem 5.3 (i) implies

that 1 ∈ ρm(Vϕα(A(0) + αI)) = ρm(Vϕα(A+ αI)). Hence also system (1) has a
unique solution in Cm

n , and the implication (i)⇒(ii) holds true.
(ii)⇒(iii). This implication is clear since f− ∈ Cm−1

n for f ∈ Cm
n .

Together with implications (i)⇒(ii)⇒(iii) we have established also the im-
plications (i′)⇒(ii′)⇒(iii′) for the assertions of Corollary 1.4.

Proof of Theorem 1.7 (case m ≥ 1). Assume that A ∈ Cm
n×n, m ≥ 1, and that

condition (11) is fulfilled. For systems (8) condition (11) can be interpreted as
the assertion (i′) of Corollary 1.4 with µ = 1 and m is replaced by m− 1. Also
the free terms

(A(t)− A(0))dk = tgk(t), gk(t) :=
A(t)− A(0)

t
dk ∈ Cm−1

n , k = 1, . . . , `,

are of suitable form to apply the implication (i′)⇒(iii′) which says, on the first
step of recursion, that the first one of systems (8) has a unique solution of the
form v1 = tw1, where w1 ∈ Cm−1

n is the unique solution of the first system
in (10). Rewriting corresponding equality (8) in the form

v′1 = (A(t)− λ0I)v1 + t−1(A(t)− A(0))d1



Linear System of Singular ODEs 367

we observe that v′1 ∈ Cm−1
n , hence v1 ∈ Cm

n . After that we recursively ob-
tain similar relations vk = twk, k = 2, . . . , `, for the solutions vk ∈ Cm

n and
wk ∈ Cm−1

n of the next systems in (8) and (10). The proof of Theorem 1.7 is
completed.

Proof of Theorem 1.3. Implication (iii)⇒(i). Assume (iii). We first prove by
a contradiction argument that then m > maxλk∈σ(A(0)) Reλk. So, suppose that
m ≤ γ = maxλk∈σ(A(0)) Reλk. Here with small changes, we repeat the argument
from the proof of the necessity part of Theorem 1.1. It follows from (iii) that
a bounded inverse (D1 − A(t))−1 ∈ L(Cm

n ) exists. Take a λ0 ∈ σ(A(0)) with
Reλ0 = γ. By Theorems 1.6 and 1.7, homogeneous system tu′(t) = A(t)u(t)
has a solution u0 of the form (48) with tw ∈ Cm

n . If γ = Reλ0 > m or
λ0 = m, then u0 ∈ Cm

n , and (1) is solvable in Cm
n non-uniquely (if solvable) that

contradicts (iii). If λ0 = m+ βi, 0 6= β ∈ R, then

u0(t) = tm[cos(log(βt)) + i sin(log(βt))](d0 + tw(t)).

Now u0 /∈ Cm
n but uε := tεu0 ∈ Cm

n for any ε > 0, and (D1−A(t))uε = εuε, hence
(D1−A(t))−1uε = ε−1uε, and operator (D1−A(t))−1 is unbounded in Cm

n that
contradicts the previous observations. Thus the relation m ≤ γ contradicts (iii),
and (iii) really implies that m > maxλk∈σ(A(0)) Reλk.

If k ∈ σ(A(0))∩N0 then k ≤ m−1; denote k0 = min {k : k ∈ σ(A(0)) ∩ N0}.
The subsystem of (13) with k = k0 is unsolvable for certain f ∈ Cm

n , hence (1)
is unsolvable in Cm

n for this f . So (iii) implies that σ(A(0)) ∩ N0 = ∅. The
proof of Theorem 1.3 is completed.

Proof of Theorem 1.11. Assume the conditions of Theorem 1.11. For f ∈ Cm
n ,

m ≥ `, a vector function u ∈ Cm
n is a solution of system (1) iff

D`(tu′ − Au− f) = 0, [Dk(tu′ − Au− f)]t=0 = 0, k = 0, . . . , `− 1. (49)

Since Dk(tu′) = ku(k)+tu(k+1), DkAu =
∑k

j=0

(
k
j

)
A(k−j)u(j), k = 0, . . . , `−1, the

latter conditions in (49) mean that u(k)(0), k = 0, . . . , `− 1, satisfy (13). From
this we immediately obtain that the consistency of system (13) is necessary for
the solvability of (1) in Cm

n . Further, every u ∈ Cm
n has a unique representation

u = D−`v +
∑`−1

k=0
u
(k)
0

k!
tk with v = D`u ∈ Cm−`

n . We obtain the following

reformulation of the equivalence: a vector function u = D−`v +
∑`−1

k=0
u
(k)
0

k!
tk ∈

Cm
n with v ∈ Cm−`

n and u
(k)
0 , k = 0, . . . , ` − 1, satisfying (13) is a solution of

problem (15) iff v = u(`) is a solution of the equation

tv′=(A(0)−`I)v+
[
D`AD−`−A(0)

]
v+g, g=f (`)+D`A

`−1∑
k=0

u
(k)
0

k!
tk∈ Cm−`

n . (50)
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To prove Theorem 1.11, it is sufficient to show that (50) is uniquely solvable
in Cm−`

n for any g ∈ Cm−`
n .

Assumption m > maxλk∈σ(A(0)) Reλk of the Theorem can be reformulated
as m− ` > maxλ′k∈σ(A(0)−`I) Reλk′ ; due to (14), we have σ(A(0)− `I)∩N0 = ∅.
Thus conditions (6) are fulfilled for the operator A(0) − `I, with m − ` in
the role of m, and we conclude with the help of Theorem 1.3 (with the help of
Theorem 1.1 in case ` = m) that the inverse V = (D1−A(0)+`I)−1 ∈ L(Cm−`

n )
exists. Hence (50) is equivalent to the equation

v = Bv + V g, B = V
[
D`AD−` − A(0)

]
∈ L(Cm−`

n ), V g ∈ Cm−`
n . (51)

Operator B ∈ L(Cm−`
n ) is compact. Indeed,

D`AD−`u− A(0)u = (A− A(0))u+
∑̀
j=1

(
`
j

)
A(j)D−ju,

operator D−j ∈ L(Ck
n) is compact for j ≥ 1, k ≥ 0, whereas the compactness of

V (A−A(0)) ∈ L(Cm−`
n ) is a consequence of the cordial structure of V ; a more

detailed argument follows soon. Hence (51) and (50) have a unique solution
v ∈ Cm−`

n for any g ∈ Cm−`
n if the homogenous equation v = Bv has in Cm−`

n

only the trivial solution v = 0. This is really the case. Indeed, to a solution
v ∈ Cm−`

n of v = Bv, or of (50) with g = 0, there corresponds a solution
u = D−`v ∈ Cm

n of problem tu′ = Au, u(k)(0) = 0, k = 0, . . . , ` − 1 (note that

f (k)(0) = u
(k)
0 = 0, k = 0, . . . , ` − 1, satisfy (13)). Due to zero initial values, u

can be represented u = t`w, w ∈ Cm−`
n . Further, (7) is fulfilled for µ = ` and m

replaced by m− `. By Corollary 1.4 system tu′ = Au has a unique solution of
the form u = t`w, w ∈ Cm−`

n , and it is u = 0. Thus D−`v = 0, v = 0.
It remains to show that V (A − A(0)) ∈ L(Cm−`

n ) is compact. To examine
the structure of the operator V = (D1 − A(0) + `I)−1, consider the system

tu′ = (A(0)− `I)u+ f, f ∈ Cm−`
n .

Represent A(0) = EΛE−1, where the block diagonal matrix Λ = (Λk) is the
Jordan form of A(0), see Section 5 for details. Note that ED1E

−1 = D1, so
with respect to v = Eu the system takes the form tv′ = (Λ− `I)v + g, g = Ef.
This system splits into independent subsystems: to a nk×nk block Λk−`I with
λk − ` ∈ σ(A(0)− `I) on the main diagonal, there corresponds the subsystem

D1vnk = (λk−`)vnk+gnk , D1vj = (λk−`)vj+vj+1+gj, j = nk−1, nk−2, . . . , 1.

The inverse (D1− λkI + `I)−1 = Ṽϕ`−λk =: Wk ∈ L(Cm−`) exists by Lemma 4.2
since (m− `)+Re(`−λk) > 0, `−λk 6= −j for j = 0, . . . ,m− `−1, due to (14).
We find recursively that

vnk = Wkgnk , vnk−1 = Wkgnk−1 +W 2
k gnk , . . . , v1 = Wkg1 +W 2

k g2 + · · ·+W nk
k gnk .
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A summary is that

V := (D1 + `I − A(0))−1 = E(D1 + `I − Λ)−1E−1,

where (D1 + `I −Λ)−1 ∈ L(Cm−`
n ) is a block diagonal operator with the blocks

(D1 + `I − λkI)−1 ∈ L(Cm−`
nk

) corresponding to the blocks Λk of Λ = (Λk), and
(D1 + `I − λkI)−1 ∈ L(Cm−`

nk
) is given by

(D1 + `I − λkI)−1 =


Wk W 2

k . . . W nk
k

0 Wk . . . W nk−1
k

...
...

. . .
...

0 0 . . . Wk

 , Wk = Ṽϕ`−λk ∈ L(Cm−`).

So the elements of the matrix operator V (A − A(0)) consist of linear com-
binations of some scalar operators of the form Bkj = W j

k (bkj − bkj(0)) with
certain bkj ∈ Cm determined by matrices A(t) and E; due to Theorem 3.3,
Bkj ∈ L(Cm−`,m−`) are compact that due to decomposition (19) implies that
Bkj ∈ L(Cm−`) and V (A− A(0)) ∈ L(Cm−`

n ) are compact.
The proof of Theorem 1.11 is completed.

The compactness of B ∈ L(Cm
n ) is a helpful property of system (51) when

discretization methods are constructed and justified. For a comparison, note
that the operator Vϕα(A + αI) ∈ L(Cm

n ) of system (16) is noncompact, and a
special applicability condition is needed when spline collocation type methods
are applied to (16), see [8, 15] for details in the scalar case.

In case σ(A(0)) ∩ N0 = ∅ system (1) is equivalent to (51) for ` = 0, i.e. to
system u = (D1−A(0))−1(A−A(0))u+(D1−A(0))−1f with respect to u itself.
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