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Matrix-Valued L1-Optimal
Controls in the Coefficients
of Linear Elliptic Problems
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Abstract. We consider optimal control problems for linear degenerate elliptic equa-
tions with mixed boundary conditions. In particular, we take the matrix-valued

coefficients A(x) of such systems as controls in L1(Ω;R
N(N+1)

2 ). One of the impor-
tant features of the admissible controls is the fact that eigenvalues of the coefficient
matrices may vanish in Ω. Equations of this type may exhibit non-uniqueness of
weak solutions. Using the concept of convergence in variable spaces and following
the direct method in the Calculus of variations, we establish the solvability of this
optimal control problem in the class of weak admissible solutions.
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1. Introduction

Material optimization is an emerging field in the engineering context of design
of advanced materials. The notions of advanced materials and meta-materials
have recently evolved where desired, possibly counterintuitive, material prop-
erties are realized via systematic model-based optimization of material param-
eters. Often, such an inverse engineering approach leads to micro-structures,
where mathematical optimization indicates singular behavior for the material
parameters. This is particulary true for optical meta-materials in the context
of cloaking. Following the exploration of electromagnetic cloaking on the base
physics by Pendry [24] and Leonhard [19], a subject that has become a major
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branch of modern physics, the mathematical theory of cloaking has been es-
tablished by Uhlmann, Lassas and coworkers (see the review article [15] and,
e.g., [16, 25]). The references given are by no means complete and rather ex-
emplary in nature. The notion of transformational optics has been developed
that allows, based on differential geometry, to construct Riemann metrics with
special features, such that objects are “hidden”. This is a question typically
posed in the context of inverse problems: given a set of data on the boundary,
as inputs and measured outputs, is it possible to reconstruct “objects” rep-
resented by, say, different material properties? If we can provide a situation,
represented by a Riemann metric, where this question can be answered in the
negative sense, we deal with non-identifiable objects. In the language of electro-
magneto-dynamics, this means that objects can then be invisible. The studies
of Uhlmann et al. [25] strongly indicate that the corresponding Riemann metrics
which are represented as coefficient matrices in elliptic systems, exhibit singular
behavior along the object to be cloaked. Indeed, eigenvalues of that matrix may
vanish or tend to infinity. Several other physical phenomena related to equi-
librium of continuous media modeled by elliptic problems concern media which
are “perfect” insulators or “perfect” conductors (see [11]) necessitate eigenval-
ues of the matrix A either to vanish somewhere or to be unbounded. These
circumstances appearing in modern technologies are the major motivation for
the paper.

The aim of this work is to study the existence of optimal controls in the
matrix-valued coefficients associated with a linear elliptic equation and mixed
boundary condition. The controls are taken as the matrix of the coefficients
in the main part of the elliptic operator. The most important feature of such
controls is the fact that eigenvalues of the matrix A may either vanish on subsets
with zero Lebesgue measure or be unbounded. In this case the precise answer for
the question of existence or non-existence of optimal solutions heavily depends
on the class of admissible controls chosen. The main questions are: what is
the right setting of the optimal control problem with L1-controls in coefficients,
and what is the right class of admissible solutions to the above problem? Using
the direct method in the Calculus of variations, we discuss the solvability of
this optimal control problem in a class of weak admissible solutions. It should
be emphasized that in contrast to the paper [8], we do not make use of any
relaxations for the original optimal control problem.

In this paper we deal with an optimal control problem in coefficients for
boundary value problems of the form

−div
(
A(x)∇y

)
= f in Ω

y = 0 on ΓD

∂y

∂νA
= g on ΓN ,

(1)
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where f ∈ L2(Ω) and g ∈ L2(ΓN) are given functions, the boundary of Ω consists
of two disjoint parts ∂Ω = ΓD∪ΓN , and A is a measurable positive-semidefinite
square symmetric matrix on a bounded open domain Ω in RN .

Even though numerous articles (see, for instance, [2, 7, 9, 12, 22, 23, 28] and
references therein) are devoted to variational and non variational approaches
to problems related to (1), only few deal with optimal control problems for
degenerate partial differential equations (see for example [4–6, 17, 18]). This
can be explained by several reasons. Firstly, boundary value problem (1) for
locally integrable matrix-valued function A may exhibit non-uniqueness of weak
solutions, as well as other surprising consequences. So, in general, the mapping
A 7→ y(A) can be multivalued. There are no reasons to expect that for every
admissible given data f ∈ L2(Ω), g ∈ L2(ΓN), and A ∈ L1(Ω;RN×N), prob-
lem (1) admits at least one weak solution. Besides, for every admissible control
function A, the weak solutions to the boundary value problem (1) belong to the
corresponding weighted Sobolev space W 1,2(Ω, A dx). In addition, even if the
elliptic equation is non-degenerate, i.e. admissible controls A(x) are such that

β‖ξ‖2
RN ≥ ξ · A(x)ξ ≥ α‖ξ‖2

RN ξ ∈ RN

with α > 0, the majority of optimal control problems in coefficients have no
solution (see for instance [21]).

In spite of the fact that the original boundary value problem is ill-possed,
in general, we show that the corresponding extremal problem has a practical
sense and is well-posed. This problem is, thus, yet another example for the
difference between well-posedness for optimal control problems for systems with
distributed parameters and partial differential equations.

2. Notation and preliminaries

Let Ω be a bounded open subset of RN (N ≥ 2) with Lipschitz boundary. We
assume that the boundary of Ω consists of two disjoint parts ∂Ω = ΓD ∪ ΓN
with Dirichlet boundary conditions on ΓD, and Neumann boundary conditions
on ΓN . Let the sets ΓD and ΓN have positive (N − 1)-dimensional measures.
Let χE be the characteristic function of a subset E ⊂ Ω, i.e. χE(x) = 1 if x ∈ E,
and χE(x) = 0 if x 6∈ E.

Let C∞0 (RN ; ΓD) =
{
ϕ ∈ C∞0 (RN) : ϕ = 0 on ΓD

}
. We define the Banach

space W 1,1(Ω; ΓD) as the closure of C∞0 (RN ; ΓD) in the classical Sobolev space
W 1,1(Ω). For any subset E ⊂ Ω we denote by |E| its N -dimensional Lebesgue
measure LN(E).



436 P. I. Kogut and G. Leugering

Symmetric matrices with degenerate eigenvalues. By SN := R
N(N+1)

2 we
denote the set of all symmetric matrices ξ = [ξij]

N
i,j=1, (ξij = ξji). We suppose

that SN is endowed with the Euclidian scalar product ξ · η = tr(ξ η) = ξijηij
and with the corresponding Euclidian norm ‖ξ‖SN = (ξ · ξ) 1

2 . Let

L1(Ω)
N(N+1)

2 = L1
(
Ω;SN

)
be the space of integrable functions whose values are symmetric matrices.

Let α ∈ R be a fixed positive value. Let ζad : Ω→ [0, α] be a given function
satisfying the properties

ζad ∈ L1(Ω), ζ−1
ad ∈ L

1(Ω), ζ−1
ad 6∈ L

∞(Ω).

Let Ψ∗ be a nonempty compact subset of L1(Ω) such that for any ζ∗ ∈ Ψ∗ the
following conditions hold true

ζad(x) < ζ∗(x) a.e. in Ω, (2)

ζ∗ : Ω→ R1
+ is smooth function along the boundary ∂Ω, (3)

ζ∗ = α on ∂Ω. (4)

By Mβ
α(Ω) we denote the set of all matrices A(x) = [ai j(x) ] ∈ SN such that

A(x) ≤ β(x)I a.e. in Ω, (5)

∃ ζ∗ ∈ Ψ∗ s.t. ζ∗I ≤ A(x) a.e. in Ω. (6)

Here β ∈ L1(Ω) is a given function such that β(x) > 0 a.e. in Ω, I is the identity
matrix in RN×N , and (5), (6) should be considered in the sense of quadratic
forms. Therefore, (5), (6) imply the following inequalities:

if A ∈ L1(Ω;SN), then ‖A(x)‖L1(Ω;SN ) ≤ ‖β‖L1(Ω) < +∞, (7)

ζ∗(x)‖ξ‖2
RN ≤ (A(x)ξ, ξ)RN a.e. in Ω, ∀ ξ ∈ RN . (8)

Remark 2.1. For every measurable matrix-valued function A : Ω→ SN we can
define the corresponding collection of its eigenvalues

{
λA1 , . . . , λ

A
N

}
, where each

λAk = λAk (x) is counted with its multiplicity. Then, in view of the properties (6)
of the class Ψ∗ and the Rayleigh quotient, we have: (λAk )−1 ∈ L1(Ω) for all
k = 1, . . . , N . It means that, in general, eigenvalues of matrices A ∈ Mβ

α(Ω)
cannot be strictly separated from zero on Ω (in the sense of almost everywhere)
by a positive constant. Because of this, these matrices are sometime referred
to as matrices with degenerate spectrum. In the sequel, properties (2)–(8) play
a central role in definition of the class of admissible controls for the control
object (1).
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To each matrix A ∈Mβ
α(Ω) we will associate two weighted Sobolev spaces:

WA(Ω; ΓD) = W (Ω; ΓD;Adx) and HA(Ω; ΓD) = H(Ω; ΓD;Adx),

where WA(Ω; ΓD) is the set of functions y ∈ W 1,1(Ω; ΓD) for which the norm

‖y‖A =
(∫

Ω

(
y2 + (∇y, A(x)∇y)RN

)
dx
) 1

2
(9)

is finite, and HA(Ω; ΓD) is the closure of C∞0 (Ω; ΓD) in WA(Ω; ΓD). Note that
due to the inequality (8) and estimates∫

Ω

|y| dx ≤
(∫

Ω

|y|2 dx
) 1

2 |Ω|
1
2 ≤ C‖y‖A, (10)∫

Ω

‖∇y‖RN dx ≤
(∫

Ω

‖∇y‖2
RN ζ∗ dx

) 1
2
(∫

Ω

ζ−1
∗ dx

) 1
2

≤ C
(∫

Ω

(∇y, A(x)∇y)RN dx
) 1

2

≤ C‖y‖A, (11)

the space WA(Ω; ΓD) is complete with respect to the norm ‖·‖A. It is clear that
HA(Ω; ΓD) ⊂ WA(Ω; ΓD), and WA(Ω; ΓD), HA(Ω; ΓD) are Hilbert spaces. If the
eigenvalues

{
λA1 , . . . , λ

A
N

}
of A : Ω → SN are bounded between two positive

constants, then it is easy to verify that WA(Ω; ΓD) = HA(Ω; ΓD). However, for
a “typical” weight-matrix A ∈ Mβ

α(Ω) the space of smooth functions C∞0 (Ω)
is not dense in WA(Ω; ΓD). Hence the identity WA(Ω; ΓD) = HA(Ω; ΓD) is not
always valid (for the corresponding examples in the case when A(x) = ρ(x)I,
we refer to [10,26]).

Weak compactness criterion in L1(Ω;SN). Throughout the paper we will
often use the concept of weak and strong convergence in L1(Ω;SN). Let {An}n∈N
be a bounded sequence of matrices in L1(Ω;SN). We recall that {An}n∈N is
called equi-integrable on Ω, if for any δ > 0 there is a τ = τ(δ) such that∫
S
‖An‖SN dx < δ for every measurable subset S ⊂ Ω of Lebesgue measure

|S| < τ . Then the following assertions are equivalent for L1(Ω;SN)-bounded
sequences (Dunford-Pettis, [13]):

(i) a sequence {Ak}k∈N is weakly convergent in L1(Ω;SN);

(ii) the sequence {Ak}k∈N is equi-integrable.

Theorem 2.2 ([13]). If a sequence {Ak}k∈N ⊂ L1(Ω;SN) is equi-integrable and
Ak → A almost everywhere in Ω then Ak → A in L1(Ω;SN).
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Functions with bounded variation. Let f : Ω → R be a function of L1(Ω).
Define∫

Ω

|Df |=sup

{∫
Ω

fdivϕdx : ϕ=(ϕ1, . . . , ϕN)∈C1
0(Ω;RN), |ϕ(x)|≤1 for x∈Ω

}
,

where divϕ =
∑N

i=1
∂ϕi
∂xi

.

According to the Radon-Nikodym theorem, if
∫

Ω
|Df | < +∞ then the distri-

bution Df is a measure and there exist a vector-valued function ∇f ∈ [L1(Ω)]N

and a measure Dsf , singular with respect to the N -dimensional Lebesgue mea-
sure LNbΩ restricted to Ω, such that

Df = ∇fLNbΩ +Dsf.

Definition 2.3. A function f ∈ L1(Ω) is said to have a bounded variation in Ω
if
∫

Ω
|Df | < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with

bounded variation.

Under the norm ‖f‖BV (Ω) = ‖f‖L1(Ω) +
∫

Ω
|Df |, BV (Ω) is a Banach space.

The following compactness result for BV -functions is well-known:

Proposition 2.4. [1, p. 17] Uniformly bounded sets in BV -norm are relatively
compact in L1(Ω).

For our further analysis, we accept the following concept.

Definition 2.5. [1, p. 17] A sequence {fk}∞k=1 ⊂ BV (Ω) weakly converges to
some f ∈ BV (Ω), and we write fk ⇀ f iff the two following conditions hold:
fk → f strongly in L1(Ω), and Dfk ⇀ Df weakly-∗ in the space of Radon
measures M(Ω;RN), i.e.

lim
k→∞

∫
Ω

(ϕ,Dfk)RN =

∫
Ω

(ϕ,Df)RN ∀ϕ ∈ C0(RN)N , (12)

In the proposition below we give a compactness result related to this con-
vergence, together with lower semicontinuity (see [1, 14]):

Proposition 2.6. [1, p. 18] Let {fk}∞k=1 be a sequence in BV (Ω) strongly con-
verging to some f in L1(Ω) and satisfying supk∈N

∫
Ω
|Dfk| < +∞. Then

(i) f ∈ BV (Ω) and
∫

Ω
|Df | ≤ lim infk→∞

∫
Ω
|Dfk|;

(ii) fk ⇀ f in BV (Ω).
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3. SN-valued Radon measures and weak convergence in
variable L2-spaces

By a nonnegative Radon measure on Ω we mean a nonnegative Borel measure
which is finite on every compact subset of Ω. The space of all nonnegative Radon
measures on Ω will be denoted by M+(Ω). According to the Riesz theory, each
Radon measure µ ∈M+(Ω) can be interpreted as an element of the dual of the
space C0(Ω) of all continuous functions with compact support. Let M(Ω;SN)
denote the space of all SN -valued Borel measures. Then

µ = [µij] ∈M(Ω;SN) ⇔ µij ∈ C ′0(Ω), i, j = 1, . . . , N.

Let µ and the sequence {µk}k∈N be matrix-valued Radon measures. We say
that {µk}k∈N weakly-∗ converges to µ in M(Ω;SN) if

lim
k→∞

∫
Ω

ϕ · dµk =

∫
Ω

ϕ · dµ ∀ϕ ∈ C0(Ω;SN).

A typical example of such measures is

dµk = Ak(x) dx, dµ = A(x) dx, (13)

where Ak, A ∈Mβ
α(Ω) ∩ L1(Ω;SN) and Ak ⇀ A in L1(Ω;SN), (14)

or Ak, A ∈Mβ
α(Ω) ∩ L∞(Ω;SN) and Ak

∗
⇀ A in L∞(Ω;SN). (15)

As we will see later (see Lemma 4.4), the sets Mβ
α(Ω)∩L1(Ω;SN) are sequentially

closed with respect to strong convergence in L1(Ω;SN).
In this section we suppose that the measures µ and {µk}k∈N are defined

by (13)–(15) and µk
∗
⇀ µ in M(Ω;SN). Further, we will use L2(Ω, A dx)N to

denote the Hilbert space of measurable vector-valued functions f ∈ RN on Ω
such that

‖f‖L2(Ω,A dx)N =
(∫

Ω

(f, A(x)f)RN dx
) 1

2
< +∞.

As follows from estimate (11) any vector-valued function of L2(Ω, A dx)N is
Lebesgue integrable on Ω.

We say that a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is bounded if

lim sup
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx < +∞.

Definition 3.1. A bounded sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is weakly con-

vergent to a function v ∈ L2(Ω, A dx) in the variable space L2(Ω, Ak dx)N if

lim
k→∞

∫
Ω

(ϕ,Ak(x)vk)RN dx =

∫
Ω

(ϕ,A(x)v)RN dx ∀ϕ ∈ C∞0 (Ω)N . (16)
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The main property concerning the weak convergence in Lp(Ω, dµε) can be
expressed as follows (see for comparison [27]):

Proposition 3.2. If a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is bounded and the

condition (14) holds true, then it contains a weakly convergent subsequence in
L2(Ω, Ak dx)N .

Proof. Having set Lk(ϕ) =
∫

Ω
(ϕ,Ak(x)vk)RN dx ∀ϕ ∈ C∞0 (Ω)N and making

use the Hölder inequality, we get

|Lk(ϕ)| ≤
(∫

Ω

|A
1
2
k vk|

2
RN dx

) 1
2
(∫

Ω

|A
1
2
kϕ|

2
RN dx

) 1
2

=

(∫
Ω

(vk, Akvk)RN dx

) 1
2
(∫

Ω

(ϕ,Akϕ)RN dx

) 1
2

≤ C

(∫
Ω

(ϕ,Akϕ)RN dx

) 1
2

≤ C

(∫
Ω

β(x)‖ϕ‖2
RN dx

) 1
2

≤ C‖ϕ‖C(Ω;RN )‖β‖
1
2

L1(Ω) ∀ k ∈ N.

(17)

Since the set C∞0 (Ω)N is separable with respect to the norm ‖ · ‖C(Ω;RN ) and
{Lk(ϕ)}k∈N is a uniformly bounded sequence of linear functionals, it follows
that there exists a subsequence of positive numbers {kj}∞j=1 for which the limit
(in the sense of point-by-point convergence)

lim
j→∞

Lkj(ϕ) = L(ϕ) (18)

is well defined for every ϕ ∈ C∞0 (Ω)N . As a result, using (14), we have

|L(ϕ)| ≤ C lim
j→∞

(∫
Ω

(
ϕ,Akjϕ

)
RN dx

) 1
2

= C

(∫
Ω

(ϕ,Aϕ)RN dx

) 1
2

.

Hence, L(ϕ) is a continuous functional on L2(Ω, A dx)N admitting the follow-
ing representation L(ϕ) =

∫
Ω

(ϕ,A(x)v)RN dx, where v is some element of
L2(Ω, A dx)N . Thus, taking into account Definition 3.1, v can be taken as
the weak limit of {

vkj ∈ L2(Ω, Akj dx)N
}
j∈N .

The next property of weak convergence in L2(Ω, Ak dx)N shows that the
variable L2-norm is lower semicontinuous with respect to weak convergence.



L1-Matrix-Control in the Coefficients 441

Proposition 3.3. If the sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N converges weakly

to v ∈ L2(Ω, A dx)N and the condition (14) holds true, then

lim inf
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx ≥
∫

Ω

(v, A(x)v)RN dx. (19)

Proof. Indeed, we have

1

2

∫
Ω

(vk, Akvk)RN dx =
1

2

∫
Ω

|A
1
2
k vk|

2
RN dx

≥
∫

Ω

(ϕ,Akvk)RN dx−
1

2

∫
Ω

(ϕ,Akϕ)RN dx ∀ϕ ∈ C∞0 (Ω)N ,

1

2
lim inf
k→∞

∫
Ω

(vk, Akvk)RN dx ≥
∫

Ω

(ϕ,Av)RN dx− 1

2

∫
Ω

(ϕ,Aϕ)RN dx.

Since the last inequality is valid for all ϕ ∈ C∞0 (Ω)N and C∞0 (Ω)N is a dense
subset of L2(Ω, A dx)N , it holds also true for ϕ ∈ L2(Ω, A dx)N . So, taking
ϕ = v, we arrive at (19).

Definition 3.4. A sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is said to be strongly

convergent to a function v ∈ L2(Ω, A dx)N if

lim
k→∞

∫
Ω

(bk, Ak(x)vk)RN dx =

∫
Ω

(b, A(x)v)RN dx (20)

whenever bk ⇀ b in L2(Ω, Ak dx)N as k →∞.

Remark 3.5. Note that in the case Ak ≡ A, Definitions 3.1–3.4 leads to the
usual notion of convergence in the weighted Hilbert space L2(Ω, A dx)N .

The following property of strong convergence in the variable L2(Ω, Ak dx)N -
spaces will be later on.

Proposition 3.6. Assume the condition (14) holds true. Then the weak con-
vergence of a sequence

{
vk ∈ L2(Ω, Ak dx)N

}
k∈N to v ∈ L2(Ω, A dx)N and

lim
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx =

∫
Ω

(v,A(x)v)RN dx (21)

are equivalent to strong convergence of {vk}k∈N in L2(Ω, Ak dx)N to
v ∈ L2(Ω, A dx)N .

Proof. It is easy to verify that strong convergence implies weak convergence
and (21). Indeed, we use bk = ϕ ∈ C∞0 (Ω)N in (20) and then substitute bk = vk.
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In view of Proposition 3.2, we may assume that there exist two values ν1

and ν2 such that (up to subsequences)

lim
k→∞

∫
Ω

(bk, Ak(x)vk)RN dx = ν1, lim
k→∞

∫
Ω

(bk, Ak(x)bk)RN dx = ν2.

Using lower semicontinuity (19) and (21), we obtain

lim
k→∞

∫
Ω

(vk + tbk, Ak(x)(vk + tbk))RN dx

= lim
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx+ 2tν1 + t2ν2

≥
∫

Ω

(v + tb, A(x)(v + tb))RN dx

=

∫
Ω

(v, A(x)v)RN dx+ 2t

∫
Ω

(b, A(x)v)RN dx+ t2
∫

Ω

(b, A(x)b)RN dx.

From this we conclude that

2tν1 + t2ν2 ≥ 2t

∫
Ω

(b, A(x)v)RN dx+ t2
∫

Ω

(b, A(x)b)RN dx ∀ t ∈ R1.

Hence, ν1 =
∫

Ω
(b, A(x)v)RN dx. Thereby the strong convergence of the se-

quence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is established.

4. Auxiliary results

To begin with, we provide the following property of the set Ψ∗ ⊂ L1(Ω) defined
in (2)–(4).

Lemma 4.1. Let {ζ∗,n}n∈N be any sequence in Ψ∗. Then there is an element
ζ∗ ∈ L1(Ω) such that, within a subsequence of {ζ∗,n}n∈N, we have

ζ∗,n → ζ∗ in L1(Ω), ζ∗ ∈ Ψ∗, (22)

ζ−1
∗,n → ζ−1

∗ in L1(Ω), (23)

and ζ−1
∗,n → ζ−1

∗ in variable space L2(Ω, ζ∗,n dx). (24)

Proof. Strong convergence in (22) is a direct consequence of the compactness
property of Ψ∗. Hence, ζ∗ ∈ Ψ∗ and we may assume that ζ−1

∗,n → ζ−1
∗ almost

everywhere in Ω. Since ζ∗,n → ζ∗ in L1(Ω) and ζ−1
∗ ≤ ζ−1

ad ∈ L1(Ω), it follows
that the sequence

{
ζ−1
∗,n
}
n∈N is equi-integrable. As a result, (23) immediately

follows from Lebesgue’s Theorem (see Theorem 2.2). As for (24), we make use
the following observation. For any ϕ ∈ C∞0 (Ω), we have

ζn dx
∗
⇀ ζ dx in M+(Ω),

∫
Ω

ζ−1
n ϕζn dx =

∫
Ω

ϕdx =

∫
Ω

ζ−1ϕζ dx.
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Hence, ζ−1
n ⇀ ζ−1 in L2(ΩT , ζn dx) (see [27]). Moreover, strong convergence

in (23) implies the relation

lim
n→∞

∫
Ω

ζ−2
n ζn dx = lim

n→∞

∫
Ω

ζ−1
n dx =

∫
Ω

ζ−2ζ dx.

Therefore, ζ−1
n → ζ−1 strongly in L2(Ω, ζn dx) by the properties of strong con-

vergence in variable spaces. The proof is complete.

Remark 4.2. Note that the main assertion of Lemma 4.1 can be failed, if in
definition of the set Ψ∗, instead of condition (2), we admit the following one

0 < ζ∗(x) ≤ α a.e. in Ω, ζ−1
∗ ∈ L1(Ω). (25)

Indeed, let Ω be the open ball in RN with the center at 0 and radius 1, let
1 < δ < N , and let ζ∗(x) := α‖x‖δRN . Then it is easy to see that ζ∗ ∈ L1(Ω)
and 0 < ζ∗(x) ≤ α for every x ∈ Ω \ 0. Since ζ−1

∗ = α−1‖x‖−δRN and δ ∈ (1, N),

we have ζ−1
∗ ∈ L1(Ω) and ζ−1

∗ 6∈ L∞(Ω). Moreover, ζ is smooth in Ω \ 0 and
ζ∗ = α on ∂Ω. This shows that the properties (3), (4), and (25) are satisfied.

Let us fix x0 ∈ Ω with ‖x0‖RN = 1
2
. We consider the following sequence

{ζ∗,n}n∈N in L1(Ω), where ζ∗,n = ζ∗ for n ≤ 2 and

ζ∗,n(x) =

{
α‖x‖δRN if ‖x− x0‖RN ≥ 1

n

α
nN

if ‖x− x0‖RN < 1
n
,

if n ≥ 3.

Then each function ζ∗,n satisfies the properties (3), (4), and (25). Indeed,
ζ∗,n ∈ L1(Ω) and 0 < ζ∗,n(x) ≤ α for every x ∈ Ω. Since

ζ−1
∗,n(x) =

{
1

α‖x‖δ
RN

if ‖x− x0‖RN ≥ 1
n

nN

α
if ‖x− x0‖RN < 1

n
,

for all n ≥ 3,

it follows that ζ−1
∗,n ∈ L1(Ω) and ζ−1

∗,n 6∈ L∞(Ω). Moreover, the functions ζ∗,n are
smooth near ∂Ω and ζ∗,n = α on ∂Ω. This shows that the properties (3), (4),
and (25) are satisfied.

It is clear that ζ∗,n → ζ∗ strongly in L1(Ω) and pointwise a.e. in Ω. The prob-
lem is that the sequence

{
ζ−1
∗,n
}
n∈N does not converge to ζ−1

∗ strongly in L1(Ω).

Indeed, it is the case when the sequence
{
ζ−1
∗,n
}
n∈N is not equi-integrable. As a

result, we have∫
Ω

∣∣ζ−1
∗,n − ζ−1

∗
∣∣ dx =

∫
B(x0,

1
n

)

∣∣∣∣nNα − 1

α‖x‖δRN

∣∣∣∣ dx→ α−1ωN as n→∞,

where B(x0,
1
n
) is an open ball with center at x0 and radius 1

n
, while ωN is the

Lebesgue measure of the unit ball in RN .
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For our further analysis, we make use of the following concept.

Definition 4.3. We say that a bounded sequence{
(An, un) ∈ L1(Ω;SN)×WAn(Ω; ΓD)

}
n∈N (26)

w-converges to (A, u) ∈ L1(Ω;SN)×W 1,1(Ω) as n→∞ (in symbols,
(An, yn)

w−→ (A, y)) if

An → A in L1(Ω;SN), (27)

un ⇀ u in L2(Ω), (28)

∇un ⇀ ∇u in the variable space L2(Ω, An dx)N . (29)

In particular, as follows from this definition, if (An, un)
w→ (A, u), then

lim
n→∞

∫
Ω

Anη dx =

∫
Ω

Aη dx ∀ η ∈ L∞(Ω;SN), (30)

lim
n→∞

∫
Ω

unλ dx =

∫
Ω

uλ dx ∀λ ∈ L2(Ω), (31)

lim
n→∞

∫
Ω

(ξ, An∇un)RN dx =

∫
Ω

(ξ, A∇u)RN dx ∀ ξ ∈ C∞0 (Ω)N . (32)

In order to motivate this definition, we give the following result.

Lemma 4.4. Let
{

(An, un) ∈ L1(Ω;SN)×WAn(Ω; ΓD)
}
n∈N be a sequence such

that

(i) the sequence {un ∈ WAn(Ω; ΓD)}n∈N is bounded, i.e.

sup
n∈N

∫
Ω

(
u2
n + (∇un, An∇un)

)
dx < +∞; (33)

(ii) {An}n∈N ⊂ Mβ
α(Ω) and there exists a matrix-valued function A(x) ∈ SN

such that

An → A and A−1
n → A−1 in L1(Ω;SN) as n→∞. (34)

Then, A ∈ Mβ
α(Ω) ∩ L1(Ω;SN) and withing a subsequence the original se-

quence is w-convergent. Moreover, each w-limit pair (A, u) belongs to the space
L1(Ω;SN)×WA(Ω; ΓD).

Proof. We note that (33), (34) and (10), (11) immediately imply the bounded-
ness of the original sequence in L1(Ω;SN)×W 1,1(Ω;S). Moreover, due to (34),
we have (see the suppositions (13)–(15) of Section 3):

dµn := An dx
∗
⇀ Adx =: dµ in M(Ω;SN).
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Thus, the compactness criterium for weak convergence in variable spaces
(see Proposition 3.2) and (33) imply the existence of a pair (u, v) ∈ L2(Ω) ×
L2(Ω, A dx)N such that, within a subsequence of {un}n∈N,

un ⇀ u in L2(Ω), (35)

∇un ⇀ v in variable space L2(Ω, An dx)N . (36)

Our aim is to show that A ∈Mβ
α(Ω), v = ∇u, and u ∈ WA(Ω; ΓD). It is clear

that A(x) ∈ SN and this matrix satisfies (5). Since An ∈ Mβ
α(Ω) ∩ L1(Ω;SN)

for all n ∈ N, it follows that there is a sequence {ζ∗,n}n∈N in Ψ∗ such that

ζ∗,n(x)I ≤ An(x)I ≤ β(x)I a.e. in Ω, ∀ k ∈ {1, . . . , N} . (37)

Then, by L1-compactness of the set Ψ∗, there exists an element ζ∗ ∈ Ψ∗ such
that ζ∗,n → ζ∗ in L1(Ω) as n → ∞. Moreover, Lemma 4.1 implies strong
convergence

ζ−1
∗,n → ζ−1

∗ in L1(Ω), (38)

and (2)–(4). Hence, passing to the limit in (37) as n → ∞, we come to (6).
Thus, A ∈Mβ

α(Ω) and the limit matrix A(x) ∈ SN satisfies (7), (8).
For our further analysis, we fix any test function ϕ ∈ C∞0 (Ω)N , and make

use of the following equality∫
Ω

(
A−1
n ϕ,Anψ

)
RN dx =

∫
Ω

(ϕ, ψ)RN dx =

∫
Ω

(
A−1ϕ,Aψ

)
RN dx, (39)

which is obviously true for each ψ ∈ C∞0 (Ω)N and for all n ∈ N. Since

lim sup
n→∞

∫
Ω

(
A−1
n ϕ,AnA

−1
n ϕ

)
RN dx = lim sup

n→∞

∫
Ω

(
ϕ,A−1

n ϕ
)
RN dx

≤ lim sup
n→∞

∫
Ω

ζ−1
∗,n‖ϕ‖2

RN dx

by (38)
=

∫
Ω

ζ−1
∗ ‖ϕ‖2

RN dx

≤ ‖ϕ‖2
C(Ω)N‖ζ

−1
∗ ‖L1(Ω) < +∞,

it follows that the sequence
{
A−1
n ϕ ∈ L2(Ω, An dx)N

}
n∈N is bounded. Con-

sequently, combining this fact with (39), we conclude A−1
n ϕ ⇀ A−1ϕ in the

variable space L2(Ω, An dx)N (see Definition 3.1). At the same time, strong
convergence in (34) implies the relation limn→∞

∫
Ω

(A−1
n ϕ,AnA

−1
n ϕ)RN dx =

limn→∞
∫

Ω
(ϕ,A−1

n ϕ)RN dx =
∫

Ω
(ϕ,A−1ϕ)RN dx =

∫
Ω

(A−1ϕ,AA−1ϕ)RN dx.
Hence (see Proposition 3.6),

A−1
n ϕ→ A−1ϕ strongly in L2(Ω, An dx)N ∀ϕ ∈ C∞0 (Ω)N . (40)
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Further, we note that for every measurable subset K ⊂ Ω, the estimate∫
K

‖∇un‖RN dx ≤
(∫

K

‖∇un‖2
RN ζ∗,n dx

) 1
2
(∫

K

ζ−1
∗,n dx

) 1
2

≤
(∫

Ω

(∇un, An(x)∇un)RN dx

) 1
2
(∫

K

ζ−1
∗,n dx

) 1
2

≤ C

(∫
K

ζ−1
∗,n dx

) 1
2

implies equi-integrability of the family {‖∇un‖RN}n∈N. Hence, {‖∇un‖RN}n∈N
is weakly compact in L1(Ω), which means the weak compactness of the vector-
valued sequence {∇un}n∈N in L1(Ω;RN). As a result, by the properties of the
strong convergence in variable spaces, we obtain∫

Ω

(ξ,∇un)RN dx =

∫
Ω

(
A−1
n ξ, An∇un

)
RN dx

by (20), (36), and (40)−→
∫

Ω

(
A−1ξ, Av

)
RN dx =

∫
Ω

(ξ, v)RN dx ∀ ξ ∈ C∞0 (Ω)N .

Thus, in view of the weak compactness property of {∇un}n∈N in L1(Ω;RN), we
conclude

∇un ⇀ v in L1(Ω;RN) as n→∞. (41)

Since un ∈ W 1,1(Ω; ΓD) for all n ∈ N and the Sobolev space W 1,1(Ω; ΓD) is
complete, (35) and (41) imply ∇u = v, and consequently u ∈ W 1,1(Ω; ΓD). To
end the proof, it remains to observe that (35), (36) guarantee the finiteness
of the norm ‖u‖A (see (9)). Hence, u ∈ WA(Ω; ΓD) and this concludes the
proof.

5. Setting of the optimal control problem

Let M ∈ SN be a given constant matrix satisfying the condition

(Mξ, ξ)RN ≥ m‖ξ‖2
RN for some m > 0.

Let Q be a closed nonempty subdomain of Ω for which dist(∂Ω, ∂Q) ≥ δ > 0,
where δ is a prescribed value. Let B ∈ L∞(Q;SN) be a given matrix-valued
function such that

σ1‖ξ‖2
RN ≤ (B(x)ξ, ξ)RN ≤ σ2‖ξ‖2

RN a.e. in Q ∀ ξ ∈ RN

with some σ2 > σ1 > 0.
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Let f ∈ L2(Ω) and g ∈ L2(ΓN) be given functions. We consider the following
boundary value problem

−div
(
A(x)∇y

)
= f in Ω, (42)

y = 0 on ΓD,
∂y

∂νA
= g on ΓN . (43)

Here
∂y

∂νA
=

N∑
i,j=1

aij(x)
∂y

∂xj
cos(n, xi),

cos(n, xi) is i-th directional cosine of n, and n is the outward unit normal at ΓN
to Ω.

To introduce the class of admissible controls in coefficients, we adopt the
following concept:

Definition 5.1. We say that a matrix-valued function A = A(x) ∈ SN is an
admissible control for the boundary value problem (42), (43) (it is written as
A ∈ Aad) if

A ∈ BV (Ω \Q; SN),

∫
Ω\Q

A(x) dx = M, (44)

A ∈Mβ
α(Ω \Q), A(x) = B(x) a.e. in Q. (45)

Hereafter we assume that the set Aad is nonempty. Moreover, it is easy to
see that for a given B ∈ L∞(Q;SN), we can always guarantee the fulfilment of
condition Aad 6= ∅ by an appropriate choice of the matrix M ∈ SN and functions
ζad ∈ L1(Ω) and β ∈ L1(Ω).

Remark 5.2. As immediately follows from definition of the set Mβ
α(Ω\Q) and

the properties of the matrix B, (45) implies

A ∈Mβ̃
α(Ω) ∩ L1(Ω;SN) with β̃ = max {β, σ2} .

Remark 5.3. In view of (45)1 and (6) (see also Remark 2.1), we deal with a
boundary value problem for the degenerate elliptic equation. It means that for
some admissible controls A ∈ Aad the boundary value problem (42), (43) can
exhibit the Lavrentieff phenomenon and nonuniqueness of the weak solutions.

Definition 5.4. We say that a function y = y(A, f, g) is a weak solution to
the boundary value problem (42), (43) for a fixed control A ∈ Aad and given
functions f ∈ L2(Ω) and g ∈ L2(ΓN) if y ∈ WA(Ω; ΓD) and the integral identity∫

Ω

(
∇ϕ,A(x)∇y

)
RN dx =

∫
Ω

fϕ dx+

∫
ΓN

gϕ dHN−1 (46)

holds for any ϕ ∈ C∞0 (RN ; ΓD).
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Remark 5.5. It is worth to notice that the original boundary value problem
(42), (43) is ill-possed, in general. This means that there are no reasons to
expect that for every admissible given data f ∈L2(Ω), g∈L2(ΓN), and A∈Aad,
this problem admits at least one weak solution y ∈ WA(Ω; ΓD) in the sense
of Definition 5.4. So, it is not possible to write in this case y = y(A, f, g).
Moreover, it should be emphasized that, to the best knowledge of authors,
the existence of a weak solution to (42), (43) for fixed A ∈ Aad, f ∈ L2(Ω),
and g ∈ L2(ΓN) is an open question. On the other hand, even if a weak
solution to the above problem exists, the question about its uniqueness leads
us to the problem of density of the subspace of smooth functions C∞0 (Ω; ΓD) in
WA(Ω; ΓD). However, as was indicated in [28], there exists a diagonal matrix-
valued function A(x) = ρ(x)I with ρ ∈ Ψ∗ such that the subspace C∞0 (Ω; ΓD)
is not dense in WA(Ω; ΓD), and, hence, there is no uniqueness of weak solutions
(for more details and other types of solutions we refer to [3, 26, 28]). Thus, the
mapping A 7→ y(A, f, g) can be multivalued, in general.

To avoid this situation in our analysis, we introduce the set of admissible
solutions to the original optimal control problem as follows:

Ξw =
{

(A, y) | A ∈ Aad, y ∈ WA(Ω; ΓD), (A, y) are related by (46)
}
. (47)

In what follows, we make use the following result:

Proposition 5.6. Let A ∈ Aad be a given matrix-valued function. Then there
exist bounded linear operators

γ0
A : WA(Ω; ΓD)→ H

1
2 (∂Ω) and γ1

A : WA(Ω; ΓD)→ H−
1
2 (∂Ω) (48)

such that

(i) γ0
A(y) = y|∂Ω and γ1

A(y) = ∂y
∂νA

∣∣∣
∂Ω

provided y ∈ WA(Ω; ΓD) ∩ C(Ω);

(ii) for any function y ∈ WA(Ω; ΓD)

‖γ0
A(y)‖

H
1
2 (∂Ω)

≤ C‖y‖WA(Ω;ΓD), ‖γ1
A(y)‖

H− 1
2 (∂Ω)

≤ C1‖y‖WA(Ω;ΓD)

with the positive constants C and C1 independent of y.

Proof. To begin with, we note that the matrix A ∈ Aad belongs to Mβ
α(Ω \Q).

Hence, it can be associated with an element ζ∗ of Ψ such that A(x) ≥ ζ∗I
and ζad < ζ∗ ≤ α almost everywhere in Ω \ Q (see (2)–(4)). Moreover, in this
case ζ∗ : Ω \ Q → [0, α] is a smooth function along the surface ∂Ω satisfying
the condition ζ∗ = α on ∂Ω. Hence, there exist an open set O with Lipschitz
continuous boundary and a positive constant α̃ ≤ α such that

O ⊂ Ω \Q, ∂Ω ⊂ ∂O, and ζ∗ ≥ α̃ a.e. in O.
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As a result, for any element y ∈ WA(Ω; ΓD), we have y ∈ WA(O; ΓD), and,
therefore,

‖y‖2
WA(Ω;ΓD) ≥ ‖y‖2

WA(O;ΓD)

=

∫
O

(
y2 + (∇y, A(x)∇y)RN

)
dx

≥ min{1, α̃}
∫
O

(
y2 + ‖∇y‖2

RN
)
dx.

Thus, y ∈ W 1,2(O), and, therefore, the existence of the trace operators γ0
A

and γ1
A with (i), (ii) immediately follows from the Trace Sobolev Theorem (see

[20, Section 3.]).

As an evident consequence of this result, we can give the following obser-
vation.

Corollary 5.7. Let
{

(An, yn) ∈ L1(Ω;SN)×WAn(Ω; ΓD)
}
n∈N be a sequence

such that {An}n∈N ⊂ Mβ
α(Ω) and (An, yn)

w→ (A, y) in the sense of Definition
4.3, where (A, y) ∈ L1(Ω;SN) × WA(Ω; ΓD). Then, up to a subsequence, we
have

∂yn
∂νAn

⇀
∂y

∂νA
in H−

1
2 (ΓD).

The optimal control problem we consider here is to minimize the discrepan-
cies (tracking error) between given distributions yd ∈ L2(Ω), y∗ ∈ L2(ΓD) and
the solution of boundary valued problem (42), (43) by choosing an appropriate
coefficients matrix A ∈ Aad. More precisely, we are concerned with the following
optimal control problem

Minimize

{
I(A, y) =

∫
Ω

|y(x)−yd(x)|2 dx+

∫
Ω

(∇y(x), A(x)∇y(x))RN dx

+
N∑

i,j=1

∫
Ω\Q
|Daij(x)|+

∥∥∥ ∂y
∂νA
−y∗

∥∥∥2

H− 1
2 (ΓD)

}
subject to the constraints (42)–(45).

(49)

Remark 5.8. The second term in (49) plays a special role in this problem.
Its appearance in the cost function (49) is motivated by the fact that there
are no appropriate a priori estimates in the WA(Ω; ΓD)-norm for weak solutions
y = y(A, f, g) of the degenerate boundary value problem (42), (43) (in the sense
of Definition 5.4). Hence, the term

∫
Ω

(∇y(x), A(x)∇y(x))RN dx together with
the first one in (49) ensures the coercivity of the cost function on the space of
weak solutions WA(Ω; ΓD).
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Remark 5.9. Note that due to (10), (11), we have the following obvious inclu-
sion for the set of admissible solutions

Ξw ⊂ L1(Ω;SN)×W 1,1(Ω; ΓD).

However, the characteristic feature of this set is the fact that for different ad-
missible controls A ∈ Aad the corresponding admissible solutions y of optimal
control problem (49) belong to different weighted spaces. It is a non-typical
situation from the point of view of classical optimal control theory.

It is worth noticing that for any admissible given data f ∈ L2(Ω) and
g ∈ L2(ΓN), verification of Ξw 6= ∅ is a non-trivial matter, in general. In the
particular case, when the set of admissible controls Aad possesses the property:

A ∈ L∞(Ω;SN), A(x) ≥ νI a.e. in Ω ∀A ∈ Aad,

Ξw 6= ∅ is obvious since the corresponding boundary value problem (42), (43) has
a unique weak solution y = y(A). Therefore, we adopt the following hypothesis,
which is mainly motivated by Remark 5.5.

Hypothesis A. The set of admissible solutions Ξw is nonempty.

We say that a pair (A0, y0) ∈ L1(Ω;SN) ×WA(Ω; ΓD) is optimal for prob-
lem (49) on the class Ξw (or shortly, weakly optimal), if

(A0, y0) ∈ Ξw and I(A0, y0) = inf
(A,y)∈Ξw

I(A, y). (50)

6. Existence of weak optimal solutions

Since our prime interest is the solvability of optimal control problem (49), we
begin with the study of the topological properties of the set of admissible solu-
tions Ξw. To do so, we give a some auxiliary results.

Definition 6.1. We say that a sequence {(An, yn) ∈ Ξw}n∈N is bounded if

sup
n∈N

[
‖An‖BV (Ω\Q;SN ) + ‖yn‖An

]
< +∞.

Lemma 6.2. Let {(An, yn) ∈ Ξw}n∈N be a bounded sequence in the sense of
Definition 6.1. Then there exists a pair (A, y) ∈ L1(Ω;SN)×W 1,1(Ω; ΓD) such
that, up to a subsequence,

(An, yn)
w−→ (A, y) see Definition 4.3, A ∈ Aad, and y ∈ WA(Ω; ΓD). (51)
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Proof. By the compactness result for BV -functions (see Proposition 2.6), there
exists a subsequence of {An}n∈N, still denoted by the same indices, and a matrix
A ∈ BV (Ω \ Q;SN) such that An → A in L1(Ω \ Q;SN). Since An(x) = B(x)
a.e. in Q and B ∈ L∞(Q;SN), it follows that the strong L1-convergence An → A
can be extended to the entire domain Ω. Thus,

A ∈ BV (Ω \Q;SN), A(x) = B(x) a.e. in Q, (52)∫
Ω\Q

A(x) dx = lim
n→∞

∫
Ω\Q

An(x) dx = M, (53)

and the condition (27) of Definition 4.3 holds true. In order to check the re-
maining conditions (28), (29) of this definition and to show that A ∈ Aad, we
make use of the following observation.

We have (An, yn) ∈ Ξw for all n ∈ N. Hence, there is a sequence {ζ∗,n}n∈N
in Ψ∗ such that (see Lemma 4.1 for the details) ζ∗,n → ζ∗ and ζ−1

∗,n → ζ−1
∗

in L1(Ω) as n → ∞. Moreover, by properties of Ψ∗, the L1-limit element ζ∗
satisfies (2)–(4). Then, in view of L1-convergence An → A, we may assume that
A−1
n → A−1 almost everywhere in Ω. Since An(x) ≥ ζ∗,nI a. e. in Ω, it follows

that ∫
K

(
ξ, A−1

n ξ
)
RN dx ≤

∫
K

ζ−1
∗,n dx‖ξ‖2

RN ∀n ∈ N

for any subset K ⊂ Ω. Hence, due to the strong L1-convergence ζ−1
∗,n → ζ−1

∗ ,
the sequence {A−1

n }n∈N is equi-integrable. Then, by Lebesgue’s Theorem (see
Theorem 2.2) we obtain A−1

n → A−1 in L1(Ω;SN) as n→∞. As a result,

A ∈Mβ
α(Ω \Q) ∩ L1(Ω;SN)

by Lemma 4.4. Combining this fact with properties (52), (53), we conclude
A ∈ Aad.

To end of this proof, it remains to observe that the remaining conditions
(28), (29) of Definition 4.3 and y ∈ WA(Ω; ΓD) for the w-limiting component
(A, y) of the sequence {(An, yn)}n∈N, are ensured by Lemma 4.4. This concludes
the proof.

Our next step deals with the study of topological properties of the set of
admissible solutions Ξw to the problem (49). The following theorem is crucial
for our next analysis.

Theorem 6.3. Assume that the Hypothesis A is valid. Then for any admissible
given data f ∈ L2(Ω) and g ∈ L2(ΓN), the set of admissible solutions Ξw is
sequentially closed with respect to w-convergence.
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Proof. Let {(An, yn) ∈ Ξw}n∈N be a bounded w-convergent sequence of admis-

sible solutions to the optimal control problem (49). Let (Â, ŷ) be its w-limit.

Our aim is to prove that (Â, ŷ) ∈ Ξw. By Lemma 6.2, we have: Â ∈ Aad and
ŷ ∈ WÂ(Ω; ΓD).

It remains to show that the pair (Â, ŷ) is related to (46) for all ϕ ∈
C∞0 (Ω; ΓD). To do so, we note that for every n ∈ N, the integral identity (46)
(with An and yn instead of A and y, respectively), has to be satisfied for the
test functions ϕ ∈ C∞0 (RN ; ΓD). Then ∇ϕ ∈ C∞0 (RN ; ΓD)N . However, this
class is essentially wider than the space C∞0 (Ω)N in the definition of the weak
convergence in the variable space L2(Ω, An dx)N (see (16)). Therefore, in or-
der to pass to the limit in that integral identity as n → ∞, we make use the
following argument (see Buttazzo & Kogut [6]).

For every fixed n ∈ N we denote by

(Ãn, ỹn) ∈ BVloc(RN \Q)×W 1,1
loc (RN ; ΓD)

an extension of the functions (An, yn) to the whole of space RN such that the

sequence {(Ãn, ỹn)}n∈N satisfies the properties:

Ã ∈Mβ
α(D \Q), Ã(x) = B(x) a.e. in Q, (54)

Ã(x) ≤ β̃(x)I a.e. in D \Q, (55)

ζ̃∗ I ≤ Ã(x) a.e. in D \Q, (56)

ζ̃−1
∗ ∈ L1(D \Q), ζ̃ad < ζ̃∗ ≤ α a.e. in D \Q, (57)

sup
n∈N

[
‖Ãn‖BV (D\Q; SN )) + ‖ỹn‖L2(D) + ‖∇ỹn)|L2(D,Ãn dx)N

]
< +∞ (58)

for any bounded open domain D in RN such that Ω ⊂ D.

Here β̃ ∈ L1
loc(RN), ζ̃ad ∈ L1

loc(RN), and ζ̃∗ ∈ L1
loc(RN) are non-negative

functions such that β̃
∣∣∣
Ω

= β, ζ̃ad

∣∣∣
Ω

= ζad, and ζ̃∗

∣∣∣
Ω
∈ Ψ∗, respectively.

Then by analogy with Lemmas 4.4 and 6.2, it can be proved that for every
bounded domain D ⊂ RN there exists a matrix Ã ∈ BV (D \ Q;SN) and a
function ỹ ∈ WÃ(D; ΓD) such that

Ãn → Ã in L1(D)), ỹn ⇀ ỹ in L2(D), (59)

∇ỹn ⇀ ∇ỹ in the variable space L2(D, Ãn dx)N . (60)

It is important to note that in this case we have

ỹ = ŷ and Ã = Â a.e. in Ω. (61)
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Taking this fact into account, we can rewrite (46) in the equivalent form∫
RN

(
∇ϕ, Ãn(x)∇ỹn

)
RNχΩ dx =

∫
RN
fϕχΩ dx+

∫
ΓN

gϕ dHN−1 (62)

for all ϕ ∈ C∞0 (RN ; ΓD). In what follows, we note that due to (59), we have

Ãn → Ã strongly in L1
loc(RN ;SN). Hence,∫

RN

(
χΩ ξ, Ãn χΩ ξ

)
RN

dx =

∫
RN

(
ξ, Ãn ξ

)
RN
χΩ dx

−→
∫
RN

(
ξ, Ã ξ

)
RN
χΩ dx =

∫
RN

(
χΩ ξ, Ã χΩ ξ

)
RN

dx

(63)

for any vector ξ ∈ RN . As follows from convergence property (21), (63) implies

strong convergence χΩ ξ → χΩ ξ in the variable space L2(RN , Ãn dx)N . Taking
(59), (60) into account, we can pass to the limit in (62) as n→∞ and obtain∫

RN

(
∇ϕ, Ã(x)∇ỹ

)
RNχΩ dx =

∫
RN
fϕχΩ dx+

∫
ΓN

gϕ dHN−1

which, due to (61), is equivalent to∫
Ω

(
∇ϕ, Â(x)∇ŷ

)
RN dx =

∫
Ω

fϕ dx+

∫
ΓN

gϕ dHN−1 ∀ϕ ∈ C∞0 (RN ; ΓD).

Hence, ŷ ∈ WÂ(Ω; ΓD) is a weak solution to (42), (43) under A = Â in the
sense of Definition 5.4. Thus, the w-limit pair (Â, ŷ) belongs to set Ξw, and this
concludes the proof.

We are now in a position to state the existence of weak optimal solution to
the problem (49).

Theorem 6.4. Let f ∈ L2(Ω), g ∈ L2(ΓN), yd ∈ L2(Ω), and y∗ ∈ L2(ΓD)
be given functions. Assume that the Hypothesis A is valid. Then the optimal
control problem (49) admits at least one solution

(A0, y0) ∈ L1(Ω;SN)×WA0(Ω; ΓD).

Proof. Since the cost functional I = I(A, y) is bounded below and Ξw 6= ∅,
it provides the existence of a minimizing sequence {(An, yn) ∈ Ξw}n∈N to the
problem (50). Then,

inf
(A,y)∈Ξw

I(A, y)= lim
n→∞

I(An, yn)

= lim
n→∞

[ ∫
Ω

|yn(x)−yd(x)|2 dx+

∫
Ω

(∇yn(x), A(x)∇yn(x))RN dx

+
N∑

i,j=1

∫
Ω\Q
|Danij(x)| dx+

∥∥∥ ∂yn
∂νAn

−y∗
∥∥∥2

H− 1
2 (ΓD)

]
<+∞

(64)
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implies the existence of a constant C > 0 such that

sup
n∈N
‖∇yn‖L2(Ω,An dx)N ≤ C, ‖ ∂yn

∂νAn
‖
H− 1

2 (ΓD)
≤ C, (65)

sup
n∈N
‖yn‖L2(Ω) ≤ C, sup

n∈N
‖An‖BV (Ω\Q; SN ) ≤ C. (66)

Hence, the minimizing sequence {(An, yn) ∈ Ξw}n∈N is bounded in the sense of
Definition 6.1. Hence, by Lemma 6.2 there exist functions A0 ∈ L1(Ω;SN) and
y0 ∈ WA0(Ω; ΓD) such that, up to a subsequence, (An, yn)

w−→ (A0, y0). Since
the set Ξw is sequentially closed with respect to the w-convergence (see Theo-
rem 6.3), it follows that the w-limit pair (A0, y0) is an admissible pair of (49)
(i.e. (A0, y0) ∈ Ξw). Moreover, by (65)2 and Corollary 5.7 of Proposition 5.6,
we have

∂yn
∂νAn

⇀
∂y0

∂νA0

in H−
1
2 (ΓD). (67)

To conclude the proof it is enough to observe that by (67) and (An, un)
w→

(A0, y0), the cost functional I is sequentially lower w-semicontinuous. Hence,

I(A0, y0) ≤ lim inf
n→∞

I(An, yn) = inf
(A,y)∈Ξw

I(A, y),

i.e. (A0, y0) is an optimal solution. The proof is complete.
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