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Abstract. By using Girsanov transformation and martingale representation, trans-
portation cost inequalities with respect to both the uniform and the L2-distances on
the global free path space are established for the segment process associated to a class
of neutral functional stochastic differential equations. Neutral functional stochastic
partial differential equations are also investigated.
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1. Introduction

Let (E,B(E)) be a measurable space with ρ a symmetric non-negative measur-
able function on E × E. For any p ≥ 1 and probability measures µ and ν on
(E,B(E)), the Lp-transportation cost (or, the Lp-Wasserstein distance if ρ is a
distance) induced by ρ between these two measures is defined by

Wp,ρ(µ, ν) = inf
π∈C(µ,ν)

{∫
E×E

ρp(x, y)π(dx, dy)

} 1
p

,

where C(µ, ν) denotes the space of all couplings of µ and ν. In many practical
situations, one wants to find reasonable and simple upper bounds for Wp,ρ(µ, ν),
where a fully satisfactory one is given by the transportation cost inequality first
found by Talagrand [16] for the standard Gaussian measure µ on Rd:

W2,ρ(µ, fµ)2 ≤ 2µ(f log f), f ≥ 0, µ(f) = 1
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with ρ(x, y) := |x − y|. Since then, this type transportation cost inequality
has been intensively investigated and applied for various different distributions.
The importance of the study lies on intrinsic links of the transportation cost
inequality to several crucial subjects, such as functional inequalities, concen-
tration phenomena, optimal transport problem, and large deviations, see, e.g.,
[1, 2, 6, 8, 10,13,17,19,22] and references within.

In the past decade, a plenty of results have been published concerning
Talagrand-type transportation cost inequalities on the path spaces of stochastic
processes, see, e.g., [5,25,26] for diffusion processes on Rd, [14] for multidimen-
sional semi-martingales, [18] for diffusion processes with history-dependent drift,
[21, 22] for diffusion processes on Riemannian manifolds, [24] for SDEs driven
by pure jump processes, and [11] for SDEs driven by both Gaussian and jump
noises. Recently, transportation cost inequalities for the reflecting diffusion pro-
cesses on manifolds with boundary have been used in [23] to characterize the
curvature of the generator and the convexity of the boundary.

Moreover, many different arguments have been developed to establish the
transportation cost inequality. Among others, the Girsanov transformation ar-
gument introduced in [5] has been efficiently applied, see, e.g., [26] for infinite-
dimensional dynamical systems, [14] for time-inhomogeneous diffusions, [18] for
multi-valued SDEs and singular SDEs, and [15] for SDEs driven by a fractional
Brownian motion. Following this line, in this paper we aim to establish trans-
portation cost inequalities for the segment processes associated to a class of
neutral functional SDEs, which is unknown so far. The point of our study is
not the construction of the coupling as it is now more or less standard in the
literature, but lies on the technical details to derive from the coupling reason-
able estimates for which difficulties caused by the neutral part and functional
coefficients have to be carefully managed.

Recall that a differential equation is called neutral if, besides the derivatives
of the present state of the system, those of the past history are also involved
(see [12]). Let C := C([−τ, 0];Rd) for some constant τ > 0, which is a Banach
space with the uniform norm ‖ · ‖∞. Let C be equipped with the Borel σ-field
induced by ‖ · ‖∞. For any h ∈ C([−τ,∞);Rd) and t ≥ 0, let ht ∈ C such that
ht(θ) = h(t + θ), θ ∈ [−τ, 0]. We consider the following neutral functional SDE
on Rd: {

d{X(t)−G(Xt)} = b(Xt)dt+ σ(Xt)dW (t), t ∈ [0, T ],

X0 = ξ ∈ C, (1)

where G, b : C → Rd and σ : C → Rd ⊗ Rm are Lipschitz continuous on
bounded sets, and W (·) is an Rm-valued Brownian motion defined on a complete
probability space (Ω,F ,P) with the natural filtration {Ft}t≥0. Throughout this
paper, we assume that for any initial data X0, a C-valued random variable
independent of W (·), this equation has a unique global solution. This can be
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ensured by the strict contraction of G, i.e. |G(ξ)−G(η)| ≤ κ‖ξ− η‖∞ holds for
some constant κ ∈ [0, 1) and all ξ, η ∈ C, together with the usual monotonicity
and coercivity conditions of b and σ, see, e.g., [20, Theorem 2.3]. We note that
the segment process (Xt)t≥0 of the solution is a Markov process.

As in [23], we allow the initial data of the equation to be random, i.e. we
consider the transportation cost inequality for the law of the solution starting
from a probability measure µ on C. In Section 2 we study the transportation
cost inequality with respect to the uniform distance on path space, while in
Section 3 we consider the L2-distance. Finally, in Section 4, we extend our
results to a class of neutral functional SPDEs.

2. The uniform distance

Let T >0 be fixed. For any ξ∈C, let ΠT
ξ be the distribution of X[0,T ] :=(Xt)t∈[0,T ]

for the solution to (1) with X0 = ξ. Then, for any µ ∈ P(C), the set of all
probability measures on C, the distribution of X[0,T ] with initial distribution µ
is given by ΠT

µ =
∫
C ΠT

ξ µ(dξ).
For any probability density function F of ΠT

µ , i.e. F is a non-negative
measurable function on the free path space C([0, T ]; C) such that ΠT

µ (F ) :=∫
C FdΠT

µ = 1, let µTF be the marginal distribution of FΠT
µ at time 0. We have

µTF (dξ) = ΠT
ξ (F )µ(dξ) ∈ P(C).

Let ‖ · ‖ and ‖ · ‖HS denote the operator norm and the Hilbert-Schmidt norm
respectively.

To establish the transportation cost inequality for ΠT
µ with respect to the

uniform distance

ρT∞(ξ̄, η̄) := sup
t∈[0,T ]

‖ξ̄t − η̄t‖∞, ξ̄, η̄ ∈ C([0, T ]; C), (2)

we shall need the following conditions.

(A1) There exists a constant κ ∈ [0, 1) such that

|G(ξ)−G(η)| ≤ κ‖ξ − η‖∞, ξ, η ∈ C.

(A2) There exist constants λ1 ∈ R and λ2 ≥ 0 such that

2
〈
ξ(0)− η(0)−G(ξ) +G(η), b(ξ)− b(η)

〉
+‖σ(ξ)− σ(η)‖2

HS ≤ λ1‖ξ − η‖2
∞

‖σ(ξ)− σ(η)‖2
HS ≤ λ2‖ξ − η‖2

∞,

 ξ, η ∈ C.

(A3) There exists a constant λ3 > 0 such that ‖σ(ξ)‖ ≤ λ3 for all ξ ∈ C.
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Let λ+
1 = 0 ∨ λ1 and λ−1 = 0 ∨ (−λ1). We will need the following two

quantities:

α(T ) :=
2λ3(1+κ)2

(1−κ)2
min

{
(4
√
λ2+

√
16λ2+λ+

1 )2

(λ+
1 )2

,
4T exp

[
1+

2λ−1+4λ2
(1−κ)2

T
]

2Tλ+
1 +(1−κ)2

}
(3)

β(T ) := 1+
(1+κ)2

(1−κ)2
min

{
(2
√
λ2+

√
4λ2+λ+

1 )2

λ+
1

, 2 exp
[2λ−1 +16λ2

(1−κ)2
T
]}
. (4)

The main result of this section is the following.

Theorem 2.1. Assume (A1)–(A3) and let

ρ(ξ, η) := ‖ξ − η‖∞, ξ, η ∈ C.

Then for any T > 0, µ ∈ P(C) and non-negative measurable function F on
C([0, T ]; C) such that ΠT

µ (F ) = 1,

W2,ρT∞
(FΠT

µ ,Π
T
µ ) ≤

√
β(T )W2,ρ(µ, µ

T
F ) +

√
α(T )

√
ΠT
µ (F logF ). (5)

If moreover µ satisfies the transportation cost inequality

W2,ρ(µ, fµ)2 ≤ cµµ(f log f), f ≥ 0, µ(f) = 1 (6)

for some constant cµ > 0, then

W2,ρT∞
(FΠT

µ ,Π
T
µ )2 ≤

(√
α(T ) +

√
cµβ(T )

)2

ΠT
µ (F logF ). (7)

Proof. The proof is based on the following Lemma 2.2 and Lemma 2.3. By the
triangle inequality it follows that

W2,ρT∞
(FΠT

µ ,Π
T
µ ) ≤ W2,ρT∞

(FΠT
µ ,Π

T
µTF

) +W2,ρT∞
(ΠT

µ ,Π
T
µTF

).

Then (5) follows from Lemma 2.2 and Lemma 2.3, and (7) is a direct conse-
quence of (5) and (6).

Let µ = δξ for ξ ∈ C. Then (6) holds for cµ = 0, so that (7) becomes

W2,ρT∞
(FΠT

ξ ,Π
T
ξ )2 ≤ α(T )ΠT

ξ (F logF ).

This inequality also follows from the following lemma since in this case we have
µ = µTF = δξ.

Lemma 2.2. Assume (A1)–(A3). For any µ ∈ P(C) and T > 0,

W2,ρT∞
(FΠT

µ ,Π
T
µTF

)2 ≤ α(T )ΠT
µ (F logF ), F ≥ 0, ΠT

µ (F ) = 1.
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Proof. The main idea of the proof is taken from [23, Proof of Theorem 1.1],
which indeed goes back to [5]. According to (b) in the proof of [23, Theorem 1.1],
we may and do assume that µ = δξ, ξ ∈ C. In this case ΠT

µ = ΠT
µTF

= ΠT
ξ . For

a positive bounded measurable function F on C([0, T ]; C) such that ΠT
ξ (F ) = 1

and inf F > 0, define

m(t) := E(F (X[0,T ])|Ft) and L(t) :=

∫ t

0

dm(s)

m(s)
, t ∈ [0, T ],

where E is the expectation taken for the probability measure P. Then m(t)
and L(t) are square-integrable Ft-martingales under P due to inf F > 0 and the
boundedness of F . Note by the Itô formula that

m(t) = eL(t)− 1
2
〈L〉(t), (8)

where 〈L〉(t) denotes the quadratic variation process of L(t), and, by the mar-
tingale representation theorem, e.g., [9, Theorem 6.6], there exists a unique
Rm-valued Ft-predictable process h(t) such that

L(t) =

∫ t

0

〈h(s), dW (s)〉. (9)

Since F (X[0,T ]) is FT -measurable and 〈L〉(t) =
∫ t

0
|h(s)|2ds, it then follows

from (8) and (9) that

F (X[0,T ]) = m(T ) = exp

[ ∫ T

0

〈h(s), dW (s)〉 −
∫ T

0

|h(s)|2ds

]
.

Let
dQ = F (X[0,T ])dP.

Then Q is a probability measure on Ω due to ΠT
ξ (F ) = 1. To prove the desired

inequality, we need to characterize ΠT
ξ (F logF ) and W2,ρT∞

(FΠT
ξ ,Π

T
ξ ) respec-

tively.

(i) Recall that F (X[0,T ]) = m(T ), m(t) is a square-integrable Ft-martingale
under P, and observing that h(s) is Fs-measurable. We have

EQ|h(s)|2 = E(m(T )|h(s)|2) = E(|h(s)|2E(m(T )|Fs)) = E(|h(s)|2m(s)).

Moreover, by the Itô formula

d(m(s) logm(s)) = (1 + logm(s))dm(s) +
d〈m〉(t)
2m(t)

= (1 + logm(s))dm(s) +
m(s)

2
|h(s)|2dt,

(10)
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where we have used the fact that d〈m〉(s) = m2(s)d〈L〉(s) = m2(s)|h(s)|2ds.
Since m(t) is a square-integrable Ft-martingale under P, integrating from 0 to
T and taking expectations with respect to P on both sides of (10), we get

ΠT
ξ(F logF )=E(m(T )logm(T ))=

1

2

∫ T

0

E(m(t)|h(t)|2)dt=
1

2

∫ T

0

EQ|h(t)|2dt. (11)

(ii) Recalling that m(t) is a square-integrable Ft-martingale under P, we
deduce from the Girsanov theorem that

W̃ (t) := W (t)−
∫ t

0

h(s)ds (12)

is an m-dimensional Ft-Brownian motion on the probability space (Ω,F ,Q).
Reformulate (1) as{

d{X(t)−G(Xt)} = {b(Xt) + σ(Xt)h(t)}dt+ σ(Xt)dW̃ (t), t ∈ [0, T ],

X0 = ξ.

Noting that the law of X[0,T ] under P is ΠT
ξ and dQ = F (X[0,T ])dP, for any

bounded measurable function G on C([0, T ]; C), we have

EQ(G(X[0,T ])) = E(FG)(X[0,T ]) = ΠT
ξ (FG).

Hence the law of X[0,T ] under Q is FΠT
ξ . Next, consider the following equation{

d{Y (t)−G(Yt)} = b(Yt)dt+ σ(Yt)dW̃ (t), t ∈ [0, T ],

Y0 = ξ.

Since W̃ (t) is the Brownian motion under Q, we conclude that the law of Y[0,T ]

under Q is ΠT
ξ . This, together with X0 = Y0 and the law of X[0,T ] under Q

is FΠT
ξ , leads to

W2,ρT∞
(FΠT

ξ ,Π
T
ξ )2 ≤ EQρ

T
∞(X[0,T ], Y[0,T ])

2 = EQ

(
sup

0≤t≤T
|X(t)− Y (t)|2

)
. (13)

Now, combining (13) with (11), we need only to prove the inequality

EQ

(
sup

0≤t≤T
|X(t)− Y (t)|2

)
≤ α(T )

2

∫ T

0

EQ|h(t)|2dt. (14)

Let M(t) = (X(t)− Y (t)) + (G(Yt)−G(Xt)). By (A1) and the inequality

(a+ b)2 ≤ (1 + ε)

(
a2 +

b2

ε

)
, ε > 0, (15)
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we obtain that

|M(s)|2≤(1+κ)

(
|X(s)−Y (s)|2+ |G(Ys)−G(Xs)|2

κ

)
≤(1+κ)2‖Xs−Ys‖2

∞, (16)

and

|X(s)−Y (s)|2 = |M(s)+(G(Xs)−G(Ys))|2≤ κ‖Xs−Ys‖2
∞+

1

1−κ
|M(s)|2. (17)

It thus follows from X0 = Y0 that

(1−κ)2 sup
0≤s≤t

|X(s)−Y (s)|2 ≤ sup
0≤s≤t

|M(s)|2 ≤ (1+κ)2 sup
0≤s≤t

|X(s)−Y (s)|2. (18)

By (A2), (A3) and Itô’s formula, one has

d|M(t)|2 ≤ 2〈M(t), (σ(Xt)− σ(Yt))dW̃ (t)〉

+
(

2
√
λ3 |M(t)| · |h(t)| − λ1‖Xt − Yt‖2

∞

)
dt,

which, together with the inequality 2ab ≤ δa2 + b2

δ
, δ > 0, and (16), gives that

d|M(t)|2 ≤ 2〈M(t), (σ(Xt)− σ(Yt)dW̃ (t))〉

+
(λ3

δ
(1 + κ)2|h(t)|2 + (δ − λ1)‖Xt − Yt‖2

∞

)
dt, δ > 0.

(19)

Due to the Burkhold-Davis-Gundy inequality and (A2), this implies that

EQ

(
sup

0≤s≤t
|M(s)|2

)
≤ 4
√
λ2EQ

(∫ t

0

|M(s)|2‖Xs − Ys‖2
∞ds

) 1
2

+ (δ − λ1)+EQ

∫ t

0

‖Xs − Ys‖2
∞ds+

λ3

δ
(1 + κ)2

∫ t

0

EQ|h(s)|2ds

≤
(

(δ − λ1)+ +
4λ2

ε

)
EQ

∫ t

0

‖Xs − Ys‖2
∞ds+ εEQ

(
sup

0≤s≤t
|M(s)|2

)
+
λ3(1 + κ)2

δ

∫ t

0

EQ|h(s)|2ds, δ > 0, ε ∈ (0, 1).

By an approximation argument using stopping times, we may assume that

EQ

(
sup0≤s≤t |M(s)|2

)
<∞, so that this is equivalent to

EQ

(
sup

0≤s≤t
|M(s)|2

)
≤
((δ − λ1)+

1− ε
+

4λ2

ε(1− ε)

)
EQ

∫ t

0

‖Xs − Ys‖2
∞ds

+
λ3(1 + κ)2

δ(1− ε)

∫ t

0

EQ|h(s)|2ds, δ > 0, ε ∈ (0, 1).
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Thus, (18) yields that

EQ

(
sup

0≤s≤t
|X(s)−Y (s)|2

)
≤ ε(δ−λ1)++4λ2

ε(1−ε)(1−κ)2
EQ

∫ t

0

‖Xs−Ys‖2
∞ds+

λ3(1+κ)2

δ(1−κ)2(1−ε)

∫ t

0

EQ|h(s)|2ds,

(20)

Then, by the Gronwall inequality,

EQ

(
sup

0≤t≤T
|X(t)− Y (t)|2

)
≤
λ3(1 + κ)2 exp

[ ε(δ−λ1)++4λ2
ε(1−ε)(1−κ)2

T
]

δ(1− κ)2(1− ε)

∫ T

0

EQ|h(t)|2dt

holds for all δ > 0 and ε ∈ (0, 1). Taking ε = 1
2

and δ = λ+
1 + (1−κ)2

2T
, we obtain

EQ

(
sup

0≤t≤T
|X(t)− Y (t)|2

)
≤

4λ3(1 + κ)2T exp
[
1 +

2λ−1 +16λ2
(1−κ)2

T
]

(1− κ)2{2Tλ+
1 + (1− κ)2}

∫ T

0

EQ|h(t)|2dt.

(21)

On the other hand, if λ1 > 0, taking δ = λ1
2

in (19) we obtain

EQ

∫ t

0

‖Xs − Ys‖2
∞ds ≤ 4λ3(1 + κ)2

λ2
1

∫ t

0

EQ|h(s)|2ds.

Combining this with (20) where δ = λ1 we derive

EQ

(
sup

0≤t≤T
|X(t)− Y (t)|2

)
≤ λ3(1 + κ)2

λ1(1− κ)2

( 16λ2

ε(1− ε)λ1

+
1

1− ε

)∫ T

0

EQ|h(s)|2ds.

Taking the optimal choice

ε =
4
√
λ2

4
√
λ2 +

√
16λ2 + λ1

,

we conclude that

EQ

(
sup

0≤t≤T
|X(t)− Y (t)|2

)
≤ λ3(1 + κ)2(4

√
λ2 +

√
16λ2 + λ1)2

λ2
1(1− κ)2

∫ T

0

EQ|h(s)|2ds.

Combining this with (21) we prove (14), and hence, finish the proof.

Lemma 2.3. Let (A1) and (A2) hold. Then

W2,ρT∞
(ΠT

ν ,Π
T
µ )2 ≤ β(T )W2,ρ(ν, µ)2, µ, ν ∈ P(C).
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Proof. Let {X(t)}t≥0, {Y (t)}t≥0 be the solutions to (1) with X0 =ξ and Y0 =η,
where ξ and η are C-valued random variables with distributions µ and ν respec-
tively and are independent of W (·) such that

E(‖ξ − η‖2
∞) = W2,ρ(ν, µ)2.

Then it suffices to show that

E
(

sup
t∈[0,T ]

‖Xt − Yt‖2
∞

)
≤ β(T )E(‖ξ − η‖2

∞). (22)

Let h = 0. We have W̃ = W so that (19) still holds for W in place of W̃ .
Combining it with (16), we obtain that when λ1 > 0,

E
∫ t

0

‖Xs − Ys‖2
∞ds ≤ 1

λ1

E|M(0)|2 ≤ (1 + κ)2

λ1

E‖ξ − η‖2
∞. (23)

Similarly, since in the present case h = 0 and according to (16), |M(0)|2 ≤
(1 + κ)2‖ξ − η‖2

∞, we may take δ = 0 in the argument leading to (20) to derive
that

E
(

sup
0≤s≤t

|X(s)− Y (s)|2
)

≤ ελ−1 + 4λ2

ε(1− ε)(1− κ)2
E
∫ t

0

‖Xs − Ys‖2
∞ds+

(1 + κ)2

(1− ε)(1− κ)2
E‖ξ − η‖2

(24)

for ε ∈ (0, 1). When λ1 > 0, combining this with (23) we arrive at

E
(

sup
t∈[0,T ]

‖Xt − Yt‖2
∞

)
≤ E

(
sup
s∈[0,T ]

|X(s)− Y (s)|2
)

+ E‖ξ − η‖2
∞

≤
{

1 +
(1 + κ)2

(1− κ)2

( 1

1− ε
+

4λ2

ε(1− ε)λ1

)}
E‖ξ − η‖2

∞.

Taking

ε =
2
√
λ2

2
√
λ2 +

√
4λ2 + λ1

we deduce that

E
(

sup
t∈[0,T ]

‖Xt− Yt‖2
∞

)
≤
(

1 +
(1 + κ)2(2

√
λ2 +

√
4λ2 + λ1)2

λ1(1− κ)2

)
E‖ξ− η‖2

∞ (25)

for λ1 > 0. In general, by the Gronwall inequality, (24) yields that

E
(

sup
t∈[0,T ]

‖Xt−Yt‖2
∞

)
≤ E

(
sup
s∈[0,T ]

|X(s)−Y (s)|2
)

+ E‖ξ − η‖2
∞

≤
(

1+
(1+κ)2

(1−ε)(1−κ)2
exp

[ ελ−1 + 4λ2

ε(1−ε)(1−κ)2
T
])

E‖ξ−η‖2
∞.



466 J. Bao et al.

Taking ε = 1
2

we obtain

E
(

sup
t∈[0,T ]

‖Xt − Yt‖2
∞

)
≤
(

1 +
2(1 + κ)2

(1− κ)2
exp

[2λ−1 + 16λ2

(1− κ)2
T
])

E‖ξ − η‖2
∞.

Combining this with (25) we prove (22), and hence, finish the proof.

Remark 2.4. Obviously, when λ1 > 0 both α(T ) and β(T ) are bounded in T ,
so that Theorem 2.1 works also for T = ∞, i.e. on the global free path space
C([0,∞); C). Precisely, let Πµ and Πξ denote the distribution of X[0,∞) with
initial distributions µ and δξ respectively, let µF (dξ) = Πξ(F )µ(dξ), and let

ρ∞(ξ̄, η̄) = sup
t≥0

ρ∞(ξ̄t, η̄t), ξ̄, η̄ ∈ C([0,∞); C).

If λ1 > 0, then Theorem 2.1 implies

W2,ρ∞(FΠµ,Πµ) ≤
√

2λ3(1 + κ)(4
√
λ2 +

√
16λ2 + λ1)

(1− κ)λ1

√
Πµ(F logF )

+

(
1 +

(1 + k)(2
√
λ2 +

√
4λ2 + λ1)

(1− κ)
√
λ1

)
W2,ρ(µ, µF ).

In general, for any λ1 ∈ R, we can find λ > 0 and constants C1(λ), C2(λ) > 0
such that

W2,ρ∞,λ(FΠµ,Πµ) ≤ C1(λ)
√

Πµ(F logF ) + C2(λ)W2,ρ(µ, µF ), (26)

where

ρ∞,λ(ξ̄, η̄) := sup
t≥0

{
e−λtρ∞(ξ̄t, η̄t)

}
, ξ̄, η̄ ∈ C([0,∞); C).

Indeed, for any λ >
λ−1 +8λ2
(1−k)2

,

∞∑
n=1

e−2λn
{
α(n) + β(n)

}
<∞. (27)

Noting that ρ∞,λ(ξ̄, η̄)2 ≤
∑∞

n=1 e−2λ(n−1)ρn∞(ξ̄[0,n], η̄[0,n])
2, we have

W 2
2,ρ∞,λ

≤
∞∑
n=1

e−2λ(n−1)W 2
2,ρn∞

.

Combining this with Theorem 2.1 and (27), we may find finite constants
C1(λ) > 0 and C2(λ) > 0 such that (26) holds.
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3. The weighted L2-distance on C([0,∞); C)

Since for a fixed T > 0 the L2-distance on C([0, T ]; C) is dominated by the
uniform norm, the corresponding transportation cost inequality is weaker than
that derived in Section 2. So, in this section we only consider the global path
space C([0,∞); C). Let

ρ2(ξ, η)2 =
1

τ

∫ 0

−τ
|ξ(θ)− η(θ)|2dθ, ξ, η ∈ C, (28)

and for λ ≥ 0 let

ρ2,λ(ξ̄, η̄)2 =

∫ ∞
0

e−λtρ2(ξ̄t, η̄t)
2dt, ξ̄, η̄ ∈ C([0,∞); C). (29)

As mentioned in Remark 2.4, let Πµ and Πξ denote the distribution of X[0,∞)

with initial distributions µ and δξ respectively. Let µF (dξ) = Πξ(F )µ(dξ).

To derive the transportation cost inequality w.r.t. ρ2,λ, we need the following
assumptions to replace (A1) and (A2) in the last section.

(B1) There exists k ∈ [0, 1) such that

|G(ξ)−G(η)| ≤ kρ2(ξ, η), ξ, η ∈ C.

(B2) There exist constants k1 ∈ R, k2 ≥ 0 and a probability measure Λ on
[−τ, 0] such that

2
〈
(ξ(0)− η(0))−G(ξ) +G(η), b(ξ)− b(η)

〉
+ ‖σ(ξ)− σ(η)‖2

HS

≤ −k1|ξ(0)− η(0)|2 + k2

∫ 0

−τ
|ξ(θ)− η(θ)|2Λ(dθ).

A simple example such that (B1) and (B2) hold is that

G(ξ) =
k

τ

∫ 0

−τ
ξ(θ)dθ,

b(ξ) = c1ξ(0) +

∫ 0

−τ
ξ(θ)Λ1(dθ),

σ(ξ) = c3ξ(0) +

∫ 0

−τ
ξ(θ)Λ2(dθ)

for some constants k ∈ (0, 1), c1 ∈ R and some finite measures Λ1,Λ2 on [−τ, 0].



468 J. Bao et al.

Theorem 3.1. Assume (B1), (B2) and (A3). Let ρ̃2(ξ, η)2 = |ξ(0) − η(0)|2 +
ρ2(ξ, η)2, ξ, η ∈ C. Let µ ∈ P(C) and F be non-negative measurable function F
on C([0,∞); C) such that Πµ(F ) = 1.

(1) If k1 > k2 then

W2,ρ2,0(Πµ, FΠµ) ≤
√

2λ3{1 + (1 + k)2}
k1 − k2

√
Πµ(F logF )

+

√
τ +

k2τ + 1 + k

k1 − k2

W2,ρ̃2(µ, µF ).

(2) If k1 ≤ k2 then for any λ > k2−k1
(1−k)2

,

W2,ρ2,λ(Πµ, FΠµ) ≤
√

2λ3{1 + (1 + k)2}
k1 − k2 + λ(1− k)2

√
Πµ(F logF )

+

√
τ +

λk(1− k)τ + k2τ + 1 + k

λ(1− k)2 + k1 − k2

W2,ρ̃2(µ, µF ).

As explained in the proof of Theorem 2.1 that the result follows immediately
from Lemmas 3.3 and 3.4 below. To prove these lemmas, we first collect some
simple facts.

Lemma 3.2. Assume (B1). Let t > 0, λ ≥ 0, ξ̄, η̄ ∈ C([0, t]; C), and Λ be a
probability measure on [−τ, 0]. Let

M̄(s) = ξ̄(s)− η̄(s)−G(ξ̄s) +G(η̄s).

Then

(a)
∫ t

0
e−λsds

∫ 0

−τ |ξ̄(s+θ)−η̄(s+θ)|2Λ(dθ)≤τρ2(ξ̄0, η̄0)2+
∫ t

0
e−λs|ξ̄(s)−η̄(s)|2ds.

(b)
∫ t

0
e−λs|M̄(s)|2ds≤(1+k)2

∫ t
0

e−λs|ξ̄(s)−η̄(s)|2ds+ (1+k)kτρ2(ξ̄0, η̄0)2.

(c)
∫ t

0
e−λs|ξ̄(s)−η̄(s)|2ds≤ 1

(1−k)2

∫ t
0

e−λs|M̄(s)|2ds+ kτ
1−kρ2(ξ̄0, η̄0)2.

Proof. (a) By the Fubini theorem, we have∫ t

0

e−λsds

∫ 0

−τ
|ξ̄(s+θ)−η̄(s+θ)|2Λ(dθ) =

∫ 0

−τ
Λ(dθ)

∫ t+θ

θ

e−λ(s−θ)|ξ̄(s)−η̄(s)|2ds

≤
∫ t

0

e−λs|ξ̄(s)−η̄(s)|2ds+ τρ2(ξ̄0, η̄0)2.

(b) By (B1) and applying (15) to ε = k, we obtain

|M̄(s)|2 ≤ (1 + k)
{
|ξ̄(s)− η̄(s)|2 + kρ2(ξ̄s, η̄s)

2
}
. (30)
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Then∫ t

0

|M̄(s)|2e−λsds ≤ (1 + k)

∫ t

0

{
|ξ̄(s)− η̄(s)|2 + kρ2(ξ̄s, η̄s)

2
}

e−λsds.

On the other hand, taking Λ(dθ) = 1
τ
dθ on [−τ, 0], we have∫ t

0

ρ2(ξ̄s, η̄s)
2e−λsds ≤

∫ t

0

|ξ̄(s)− η̄(s)|2e−λsds+ τρ2(ξ̄0, η̄0)2. (31)

Therefore, the second assertion follows.
(c) By (B1) and (15) with ε = k

1−k , we have

|ξ̄(s)− η̄(s)|2 ≤ kρ2(ξ̄s, η̄s)
2 +

1

1− k
|M̄(s)|2.

Combining this with (31) we arrive at∫ t

0

|ξ̄(s)− η̄(s)|2e−λsds

≤ k

∫ t

0

|ξ̄(s)− η̄(s)|2e−λsds+ kτρ2(ξ̄0, η̄0)2 +
1

1− k

∫ t

0

|M̄(s)|2e−λsds.

This implies the third assertion.

Lemma 3.3. Assume (B1), (B2) and (A3).

(I) If k1 > k2 then for any measurable F ≥ 0 with Πµ(F ) = 1,

W2,ρ2,0(FΠµ,ΠµF )2 ≤ 2λ3{1 + (1 + k)2}2

(k1 − k2)2
Πµ(F logF ).

(II) If k1 ≤ k2 then for any λ > k2−k1
(1−k)2

and measurable F ≥ 0 with Πµ(F ) = 1,

W2,ρ2,λ(FΠµ,Π
T
µF

)2 ≤ 2λ3{1 + (1 + k)2}2

{k1 − k2 + λ(1− k)2}2
Πµ(F logF ).

Proof. By an approximation argument, it suffices to prove the result for ΠT
µ

and ρT2,λ in place of Πµ and ρ2,λ respectively with arbitrary T > 0, where

ρT2,λ(ξ̄, η̄)2 :=

∫ T

0

e−λtρ2(ξ̄t, η̄t)
2dt, ξ̄, η̄ ∈ C([0, T ]; C).

As indicated in the proof of Lemma 2.2 that we may and do assume µ = δξ.
Let h, W̃ (t),Q, X(t), Y (t) and M(t) be constructed in the proof of Lemma 2.2.
It suffices to prove that

EQ

∫ T

0

e−λtρ2(Xt, Yt)
2dt ≤ C(λ)EQ

∫ T

0

|h(t)|2dt (32)
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for

C(λ) =


λ3{1 + (1 + k)2}2

(k1 − k2)2
, if k1 > k2, λ = 0,

λ3{1 + (1 + k)2}2

{k1 − k2 + λ(1− k)2}2
, if k1 ≤ k2, λ >

k2−k1
(1−k)2

.

By (B2), (A3) and Itô’s formula, we obtain

d|M(t)|2−2〈M(t), {σ(Xt)−σ(Yt)}dW̃ (t)〉

≤
{
k2

∫ 0

−τ
|X(t+θ)−Y (t+θ)|2Λ(dθ)+2

√
λ3|M(t)|·|h(t)|−k1|X(t)−Y (t)|2

}
dt

≤
{
k2

∫ 0

−τ
|X(t+θ)−Y (t+θ)|2Λ(dθ)+

λ3

δ
|h(t)|2+δ|M(t)|2−k1|X(t)−Y (t)|2

}
dt

for δ > 0. Thus, for any λ ≥ 0,

d{e−λt|M(t)|2} − 2e−λt〈M(t), {σ(Xt)− σ(Yt)}dW̃ (t)〉

≤ e−λt
{
k2

∫ 0

−τ
|X(t+ θ)− Y (t+ θ)|2Λ(dθ)

+
λ3

δ
|h(t)|2 + (δ − λ)|M(t)|2 − k1|X(t)− Y (t)|2

}
dt, δ > 0.

(33)

(a) Let k1 > k2 and λ = 0. Combining (33) with Lemma 3.2 and noting
that X0 = Y0, we obtain

0 ≤ EQ

∫ T

0

e−λt
{
k2

∫ 0

−τ
|X(t+ θ)− Y (t+ θ)|2Λ(dθ)

+
λ3|h(t)|2

δ
+ δ|M(t)|2 − k1|X(t)− Y (t)|2

}
dt

≤
{
k2 − k1 + δ(1 + k)2}

∫ T

0

e−λtEQ|X(t)− Y (t)|2dt+
λ3

δ

∫ T

0

EQ|h(t)|2dt.

Taking

δ =
k1 − k2

1 + (1 + k)2
,

we arrive at∫ T

0

e−λtEQ|X(t)− Y (t)|2dt ≤ λ3{1 + (1 + k)2}2

(k1 − k2)2

∫ T

0

EQ|h(t)|2dt.

Since by Lemma 3.2 and X0 =Y0 we have
∫ T

0
ρ2(Xs, Ys)

2ds≤
∫ T

0
|X(t)−Y (t)|2dt.

This implies (32) for λ = 0 and the desired constant C(0).



Transportation Cost Inequalities 471

(b) Let k1 ≤ k2 and λ > k2−k1
(1−k)2

. Similarly to (a), by taking

δ =
k1 − k2 + λ(1− k)2

1 + (1− k)2

in (33), we obtain

EQ

∫ T

0

e−λtρ2(Xt, Yt)
2dt ≤ EQ

∫ T

0

e−λt|X(t)− Y (t)|2dt ≤ C(λ)

∫ T

0

EQ|h(t)|2dt.

Therefore, (32) holds.

Lemma 3.4. Assume (B1) and (B2). Let

ρ̃2(ξ, η)2 = |ξ(0)− η(0)|2 + ρ2(ξ, η)2.

Then for any λ ∈ [0,∞) ∩ ( k2−k1
(1−k)2

,∞),

W2,ρ2,λ(Πµ,Πν)
2 ≤

(
τ +

λk(1− k)τ + k2τ + 1 + k

λ(1− k)2 + k1 − k2

)
W2,ρ̃2(µ, ν)2, µ, ν ∈ P(C).

Proof. Let ξ, η be C-valued random variables with distributions µ and ν respec-
tively, which are independent of W ([0,∞)) such that

Eρ̃2(ξ, η)2 = W2,ρ̃2(µ, ν)2. (34)

By (B2) and Itô’s formula,

d{e−λt|M(t)|2} − 2e−λt〈M(t), {σ(Xt)− σ(Yt)}dW (t)〉

≤ e−λt
{
k2

∫ 0

−τ
|X(t+ θ)− Y (t+ θ)|2Λ(dθ)− k1|X(t)− Y (t)|2 − λ|M(t)|2

}
dt.

Then, it follows from Lemma 3.2 that

E
{
|M(0)|2 +

∫ T

0

e−λt{k2 − k1 − λ(1− k)2}|X(t)− Y (t)|2dt

+ {λk(1− k)τ + k2τ}ρ2(ξ, η)2

}
≥ 0.

Since due to (30)

|M(0)|2 ≤ (1 + k)|ξ(0)− η(0)|2 + k(1 + k)ρ2(ξ, η)2 ≤ (1 + k)ρ̃2(ξ, η)2,
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this implies that

E
∫ T

0

e−λt|X(t)− Y (t)|2dt ≤ λk(1− k)τ + k2τ + 1 + k

λ(1− k)2 + k1 − k2

Eρ̃2(ξ, η)2, T > 0.

Combining this with Lemma 3.2(a) for Λ(dθ) = 1
τ
dθ on [−τ, 0], we conclude

that

W2,ρ2,λ(Πµ,Πν)
2 ≤ E

∫ ∞
0

e−λtρ2(Xt, Yt)
2dt

≤
(
τ +

λk(1− k)τ + k2τ + 1 + k

λ(1− k)2 + k1 − k2

)
Eρ̃2(ξ, η)2.

Therefore, the proof is finished according to (34).

4. An extension of Theorem 3.1 to neutral functional
SPDEs

In this section we shall discuss the transportation cost inequalities for the laws of
segment processes of a class of neutral functional SPDEs in infinite-dimensional
setting. Let (H, 〈·, ·〉, |·|) be a real separable Hilbert space, let C = C([−τ, 0];H)
be equipped with the uniform norm ρ(ξ, η) := ‖ξ− η‖∞, and let ρT∞, ρ2 and ρ2,λ

be defined by (2), (28) and (29) respectively. Let L(H) (resp. LHS(H)) be the
set of all bounded (resp. Hilbert-Schmidt) operators on H equipped with the
operator norm ‖ · ‖ (resp. Hilbert-Schmidt norm ‖ · ‖HS).

Let (A,D(A)) be a self-adjoint operator on H with spectrum σ(A) ⊂
(−∞,−λ0] for some constant λ0 > 0, and let G, b : C → H and σ : C → L(H)
be Lipschitz continuous. Consider the neutral functional SPDE{

d{Z(t)−G(Zt)} = {AZ(t) + b(Zt)}dt+ σ(Zt)dW (t), t ∈ [0, T ],

Z0 = ξ ∈ C, (35)

where (W (t))t≥0 is the cylindrical Wiener process on H with respect to a com-
plete probability space (Ω,F ,P) with natural filtration {Ft}t≥0. Throughout
the section, we assume that equation (35) has a unique mild solution, which,
by definition, is a continuous adapted H-valued process {Z(t)}t≥−τ such that
Z0 = ξ and

Z(t) = etA{ξ(0)−G(ξ)}+G(Zt) +

∫ t

0

Ae(t−s)AG(Zs)ds

+

∫ t

0

e(t−s)Ab(Zs)ds+

∫ t

0

e(t−s)Aσ(Zs)dW (s), t ≥ 0

holds. For concrete conditions implying the existence and uniqueness of mild
solution, we refer to, e.g., [4, Theorem 3.2] and [3, Theorem 6].

Let Πµ be the distribution of {Zt}t≥0 with initial distribution µ. To establish
the transportation cost inequality, we further need the following conditions.
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(C1) There exist constants λ̄1 ∈ R and λ̄2 ≥ 0 such that

2
〈
ξ(0)−η(0)+G(η)−G(ξ), Aξ(0)−Aη(0)+b(ξ)−b(η)

〉
+‖σ(ξ)−σ(η)‖2

HS≤ λ̄1‖ξ−η‖∞,

‖σ(ξ)−σ(η)‖2
HS≤ λ̄2‖ξ−η‖∞,

for ξ, η ∈ C with ξ(0), η(0) ∈ D(A).

(C2) There exist constants κ̄1 ∈ R, κ̄2 ≥ 0 and a probability measure Λ̄ on
[−τ, 0] such that

2
〈
ξ(0)−η(0)+G(η)−G(ξ), Aξ(0)−Aη(0)+b(ξ)−b(η)

〉
+‖σ(ξ)−σ(η)‖2

HS

≤ −κ̄1|ξ(0)−η(0)|2+κ̄2

∫ 0

−τ
|ξ(θ)−η(θ)|2Λ̄(dθ)

for ξ, η ∈ C with ξ(0), η(0) ∈ D(A).

Obviously, (C1) (resp. (C2)) holds provided b, σ and AG (i.e. G takes value
in D(A)) are Lipschitz continuous w.r.t. ρ (resp. ρ2).

Let ξ ∈ C and T > 0 be fixed, and as before let ΠT
ξ denote the law of

Z[0,T ] := (Zt)t∈[0,T ]. For any F ≥ 0 such that ΠT
ξ (F ) = 1, let Q,m(t) be

defined in the proof of Lemma 2.2 with X[0,T ] replaced by Z[0,T ]. For the

H-valued Ft-Brownian motion W̃ defined by (12) and on the probability space
(Ω,F ,Q), (35) can be rewritten as{

d{Z(t) +G(Zt)} = {AZ(t) + b(Zt) + σ(Zt)h(t)}dt+ σ(Zt)dW̃ (t),

Z0 = ξ.
(36)

Consider the following equation{
d{Y (t) +G(Yt)} = {AY (t) + b(Yt)}dt+ σ(Yt)dW̃ (t),

Y0 = ξ.
(37)

Then M̃(t) := Z(t)− Y (t) +G(Yt)−G(Zt) solves the following equation{
dM̃(t)={A(Z(t)−Y (t))+b(Zt)−b(Yt)+σ(Zt)h(t)}dt+(σ(Zt)−σ(Yt))dW̃ (t),

Y0 =Z0.

Then repeating the proofs of Theorem 2.1 and Theorem 3.1 respectively, we
obtain the following results.

Theorem 4.1. Assume (A1),(A3) and (C1). Let µ ∈ P(C) and F be non-
negative measurable function F on C([0,∞); C) such that Πµ(F ) = 1. Then

W2,ρT∞
(FΠT

µ ,Π
T
µ ) ≤

√
β(T )W2,ρ(µ, µ

T
F ) +

√
α(T )

√
ΠT
µ (F logF ),

where α(T ) and β(T ) are defined by (3) and (4) with λ1 and λ2 replaced by λ̄1

and λ̄2 respectively.
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Theorem 4.2. Assume (B1), (C2) and (A3). Let µ ∈ P(C) and F be non-
negative measurable function F on C([0,∞); C) such that Πµ(F ) = 1.

(1) If κ̄1 > κ̄2, then

W2,ρ2,0(Πµ, FΠµ) ≤
√

2λ3{1 + (1 + κ)2}
κ̄1 − κ̄2

√
Πµ(F logF )

+

√
τ +

κ̄2τ + 1 + κ

κ̄1 − κ̄2

W2,ρ2(µ, µF ).

(2) If κ̄1 ≤ κ̄2, then for any λ > κ̄2−κ̄1
(1−κ)2

,

W2,ρ2,λ(Πµ, FΠµ) ≤
√

2λ3{1 + (1 + κ)2}
κ̄1 − κ̄2 + λ(1− κ)2

√
Πµ(F logF )

+

√
τ +

λκ(1− κ)τ + κ̄2τ + 1 + κ

λ(1− κ)2 + κ̄1 − κ̄2

W2,ρ2(µ, µF ).
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