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Abstract. We discuss the problem of the pointwise approximation of finitely additive
functions, which are defined on a Boolean algebra and take values in a Hausdorff topo-
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functions. Related properties of topological groups are also investigated.
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1. Introduction

Let A be a Boolean algebra. It is well known [2] that any bounded finitely
additive function µ : A → R can be pointwise approximated by strongly con-
tinuous finitely additive functions if, and only if, A is atomless. This conclusion
pertains to Banach space-valued exhaustive finitely additive functions, namely,
any exhaustive finitely additive function µ : A → X , where X is a Banach
space, is the pointwise limit of exhaustive strongly continuous finitely additive
functions if, and only if, A is atomless. This has been recently shown in [9],
employing the same arguments of [2].

The present note is aimed at dealing with the relevant approximation prob-
lem in the general setting of group-valued finitely additive functions.
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To be more specific, let A be a Boolean algebra and G a Hausdorff topolog-
ical commutative group. Assume that both of them are non-trivial. We denote
by a(A, G) the group of all G-valued finitely additive functions defined on A,
and by csa(A, G) its subgroup consisting in those functions µ ∈ a(A, G) such
that

(i) µ is exhaustive (or strongly bounded), i.e. limk µ(ak) = 0 for each disjoint
sequence (ak)k∈N in A;

(ii) µ is strongly continuous, i.e. for any 0-neighborhood U in G there exists
some finite partition {d1, . . . , dn} ⊆ A of the maximal element of A such
that µ(di ∧ a) ∈ U for all i and a ∈ A.

The approximation problem is actually equivalent to the question of whether
the subgroup csa(A, G) is dense in (a(A, G), τp), where τp is the topology of
pointwise convergence, namely, of whether

csa(A, G)
τp
= a(A, G) . (1)

The validity of (1) forces the algebra A to be atomless (Lemma 3.2). In
fact, this is the sole assumption that will be imposed on A throughout.

Our first result is a sufficient criterion for (1) to hold, in terms of G. This
is the content of Theorem 3.5, Sect. 3. Let us emphasize that, unlike [2, 9],
such a condition does not require that G be complete and the approximation
data be exhaustive. The proof is based on a characterization of the denseness
in a(A, G) of those sets which, loosely speaking, are closed under operations of
sum and suitable restrictions (Lemma 2.1).

The criterion Theorem 3.5 immediately implies that, for any Hausdorff topo-
logical vector space G, property (1) holds if, and only if, A is atomless. This is
shown in Corollary 3.7, which can be regarded as a strengthening of [9, Theo-
rem 1].

Next, we look for a necessary condition for (1) involving G only, since - as
observed above - A is just assumed to be atomless.

We focus on complete groups G. The motivation relies upon the fact that
to include conclusions of [2,9] as special cases requires (1) to hold independently
of atomless A. This is false when G is not complete, as Examples 4.4–4.5 easily
exhibit. We prove that, in the framework of complete groups, the validity of (1)
entails the connectedness of G, since its subset co(G), consisting of all elements
joined to 0 by some path, must be dense in G (Theorem 4.1).

As a conseguence of these results, and of the duality theorem by Pontryagin
and van Kampen, a fully characterization of (1) is provided for locally compact
groups. In this class, see Corollary 4.3, Section 4, condition (1) turns out to
be equivalent to the connectedness of G (and A atomless). Note that, instead,
such an equivalence fails for merely complete groups. In fact, (1) may fail even
if the assumption that G be connected is reinforced by that of being arcwise
connectedness - see Example 5.1, Section 5.
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Merely complete groups, however, share a property with locally compact
groups in connection with our approximation problem, in that if (1) holds for
some atomless Boolean algebra A, then it does hold, in fact, for any other such
algebra (Corollary 4.7).

This allows us to focus on the (atomless) algebra Ao generated by the in-
tervals [α, β[ of [0, 1[, and restrict our attention to Stieltjes finitely additive
functions. In such a class, Lemma 4.12 below tells us that each exhaustive
strongly continuous function determines a path γ satisfying the additional prop-
erty that the series

∑∞
n=1(γ(βn) − γ(αn)) converges, for all disjoint sequences

([αn, βn[)n∈N in [0, 1[. Thus we introduce the set c1(G) consisting of all elements
in G joined to 0 by some path γ fulfilling the previous additional property.
Clearly, c1(G) ⊆ co(G).

The answer to the approximation problem in the framework of merely com-
plete groups reads as follows. When G is complete, property (1) holds if, and
only if, the set c1(G) is dense in G -and A is atomless (Corollary 4.16, Sec-
tion 4). In other words, the lack of local compactness of the group G forces to
replace the denseness of co(G) in G by that of c1(G) for (1) to hold.

Let us conclude this section with some comments. In dealing with the gen-
eral case of finitely additive functions taking values in a Hausdorff topological
commutative group, the study of the relevant approximation problem is inti-
mately related to different connectedness properties of topological groups. We
discuss them in Section 5. In particular, at the end of Section 5, we exhibit a
broad class of complete topological groups G for which (1) fails for any atomless
Boolean algebra. These groups are arcwise connected (so co(G) is dense in G),
but c1(G) consists of the single point 0 (Example 5.13).

2. Preliminaries

Throughout, A is a Boolean algebra and G is a Hausdorff topological commu-
tative group written additively. We assume that both of them are non-trivial.

Then a(A, G) denotes the family of all finitely additive functions µ : A → G,
and sa(A, G) is its subset consisting of those functions µ which are exhaustive.
Both a(A, G) and sa(A, G) are subgroups of GA, which is always assumed to be
endowed with the product topology τp. Obviously, a(A, G) is closed in (GA, τp).

For µ ∈ a(A, G) and a ∈ A, we write µa for the finitely additive func-
tion defined by µa(b) := µ(a ∧ b), b ∈ A. Then N(µ) stands for the ideal
{a ∈ A : µa(b) = 0 for all b ∈ A} and µ̂ is the finitely additive function
defined on Â := A/N(µ) by µ̂(â) := µ(a), where â := a △ N(µ) is the ele-
ment of Â corresponding to a. Besides, we denote by τµ the weakest Fréchet-
Nikodým topology (for short, FN-topology) on A which makes µ continuous
(see, e.g., [4, 16]). Recall that τµ is a group topology on (A,△) and the sets
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{a ∈ A : µa(b) ∈ U for all b ∈ A}, where U is any 0-neighborhood in G, form a
0-neighborhood base for τµ.

For M ⊆ a(A, G) and a ∈ A, we set M(a) := {ν(a) : ν ∈ M}. Note that,
when M is a subgroup of a(A, G), then M(a) and M(a) are subgroups of G.

Finally, let us recall that an ultrafilter measure is a function δ : A → G
such that δ(a) = x for a ∈ U , and δ(a) = 0 otherwise, where U is any ultrafilter
of A and x ∈ G \ {0}. Plainly, an ultrafilter measure δ is a two-valued element
of sa(A, G) and for any a ∈ A the function δa agrees with δ when a ∈ U and is
identically 0 otherwise.

Given a non-empty M⊆ a(A, G), if µ∈M
τp

then µ(a)∈M(a) for all a∈A,
because of the continuity of the projection maps. Here we exhibit conditions
on M ensuring the converse.

Lemma 2.1. Let M be a subset of a(A, G) satisfying

M +M ⊆ M, νa ∈ M for all ν ∈ M, a ∈ A. (2)

Then

(α) for any µ ∈ a(A, G):

µ ∈ M
τp ⇐⇒ µ(a) ∈ M(a) for each a ∈ A;

(β) M is dense in a(A, G) if, and only if, M(a) = G for each a ∈ A \ {0 }.

Proof. (α) (⇒) This follows at once from the continuity of projection maps.
(⇐) Let U be a 0-neighborhood in G and {a1, . . . , an} a finite subset of A.

We claim that there exists a function ν ∈ M such that

µ(ai)− ν(ai) ∈ U for each i ∈ {1, . . . , n}. (3)

To see this, consider a finite disjoint set {d1, . . . , dm} in A such that
each ai is the union of some dj’s, and then a 0-neighborhood V such that
V (m) := V + · · ·+ V (m-times) ⊆ U . Then assumption provides that

∀j ∈ {1, . . . ,m} ∃ νj ∈ M such that µ(dj)− νj(dj) ∈ V. (4)

Now let ν :=
∑m

j=1(νj)dj . By (2) and (4), the function ν belongs to M and
fulfils (3).

(β) (⇐) This trivially follows from (⇐) in (α).
(⇒) Take any a ∈ A\{0 } and x ∈ G. Then, when x ̸= 0 pick an ultrafilter

measure ν on A such that ν(a) = x; set ν = 0 otherwise. Since M is dense in
a(A, G), then (⇒) in (α) assures that x = ν(a) ∈ M(a).

Example 2.2. For any FN-topology τ on A the set

M := {µ ∈ a(A, G) : µ is τ -continuous}

is a subgroup of a(A, G) satisfying (2).
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As an application of Lemma 2.1, the denseness of certain typical subsets of
a(A, G) can be established.

Lemma 2.3. The set ua(A, G) consisting of all finite sums of ultrafilter mea-
sures is dense in a(A, G). Thus

ua(A, G)
τp
= sa(A, G)

τp
= a(A, G).

Proof. Note that ua(A, G) =: M fulfils (2), and

ua(A, G) ⊆ sa(A, G) ⊆ a(A, G).

Besides, M(a) = G for all a ∈ A \ {0 }. In fact, for any a ∈ A \ {0 } and x ∈ G
it suffices to take an ultrafilter U containing a and a finitely additive function
taking value x on U . Therefore, Lemma 2.1(β) yields the denseness of ua(A, G)
in a(A, G).

Remark 2.4. It is worth emphasizing that

ua(A, G) = fsa(A, G) := {µ ∈ sa(A, G) : µ(A) is finite}.

To see this, let µ belong to fsa(A, G). Then µ(A) ∩ U = {0} for some
0-neighborhood U in G. So the 0̂-neighborhood

Û := {â ∈ Â : µ̂â(b̂) ∈ U for all b̂ ∈ Â}

of the FN-topology τµ̂ determined on Â := A/N(µ) by µ̂ consists of the single
point 0̂. According to the exhaustivity of µ (henceforth of µ̂), then any disjoint
sequence in Â must be eventually 0̂. This fact forces the algebra Â to be finite.
Consequently, µ̂ may be written as finite sum of ultrafilter measures on Â.
Hence, µ is a finite sum of ultrafilter measures on A, namely, µ ∈ ua(A, G).
The converse inclusion is obvious.

3. Sufficient conditions for property (1)

Let us recall that a function µ ∈ a(A, G) is said to be strongly continuous if for
any 0-neighborhood U in G there exists some finite partition {d1, . . . , dn} ⊆ A
of the maximal element of A such that µdi(A) ⊆ U for each i.

Throughout, csa(A, G) stands for the collection of all strongly continuous
elements of sa(A, G).

Remark 3.1. The set csa(A, G) is a subgroup of a(A, G) satisfying (2). This
follows from Example 2.2, when we observe that csa(A, G) may be characterized
in terms of FN-topologies as follows

csa(A, G) = {µ ∈ a(A, G) : µ is τo-continuous}
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where τo is the supremum of all strongly continuous and exhaustive FN-topo-
logies onA. Recall that an FN-topology τ onA is exhaustive if ak → 0 in (A, τ)
for all disjoint sequence (ak)k∈N, and strongly continuous (or chained) if for any
0 -neighborhood U in (A, τ) there exists some finite partition {d1, . . . , dn}⊆A of
the maximal element of A such that di ∈ U for all i (see, e.g., [16, pp. 709, 729]).

Firstly, we observe

Lemma 3.2. If the set csa(A, G) is dense in a(A, G) - i.e. (1) holds -, then A
must be atomless.

Proof. It follows by Lemma 2.1(β) and G non-trivial, since each function in
csa(A, G) must be zero on atoms of A.

Next, we recall the following well-known result (see, e.g., [3, Section 5.3]),
that is one of the tools for proving Theorem 3.5 below.

Lemma 3.3. Let A be atomless. For any a ∈ A \ {0 } and t ∈ R there exists a
function µ ∈ csa(A,R) such that µ(a) = t.

Remark 3.4. Combining the previous lemma and Lemma 2.1(β) directly yields
the following version of [3, Theorem 5.4.2]: the set csa(A,R) is dense in a(A,R)
if, and only if, A is atomless.

Our first theorem gives a sufficient condition for (1), in terms of G. Accord-
ing to Lemma 3.2, the sole assumption of non-atomicity will in fact be imposed
on A throughout. A precise statement of the theorem needs to recall that a
subgroup H ⊆ G is said to be a one-parameter subgroup of G if there exists a
continuous homomorphism ϕ : R → G such that ϕ(R) = H.

Theorem 3.5. Let A be an atomless Boolean algebra. If the smallest closed
subgroup of G which contains all one-parameter subgroups is G itself, then the
set csa(A, G) is dense in a(A, G) - i.e. (1) holds.

Proof. Let M := csa(A, G) and a ∈ A \ {0 }. On account of Lemma 2.1(β), it
suffices to prove that M(a) = G.

To see this, consider a continuous homomorphism ϕ : R → G. By Lem-
ma 3.3, for any t ∈ R there exists some function µ ∈ csa(A,R) such that
µ(a) = t. Now it is easy to verify that the function ϕ ◦ µ belongs to M , and
so ϕ(t) = ϕ ◦ µ(a) ∈ M(a). Thus ϕ(R) ⊆ M(a) ⊆ M(a). This means that
M(a) is a closed subgroup of G containing all one-parameter subgroups of G.
Henceforth M(a) = G.

Let us emphasize some of its consequences. Firstly, we consider the case
of locally compact groups. For such groups, [8, Theorem 25.20] shows that the
assumption on G in Theorem 3.5 is equivalent to that of its connectedness.
Hence
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Corollary 3.6. Let A be atomless. If G is locally compact and connected,
then (1) holds.

Next, we fully characterize property (1) in the framework of Hausdorff topo-
logical vector spaces, providing the following strenghtening of [9, Theorem 1].

Corollary 3.7. Let G be a Hausdorff topological real vector space. Then (1)
holds if, and only if, A is atomless.

Proof. It suffices to couple Lemma 3.2 and Theorem 3.5.

Remark 3.8. The latter characterization of (1) does hold under a weaker con-
dition on G; that is, G is a real vector space endowed with a Hausdorff group
topology such that the function R ∋ t 7→ tx is continuous for each x ∈ G. This
follows by the argument in the proof of Theorem 3.5.

We conclude this section exhibiting how Theorem 3.5 allows us to treat
also those topological groups employed in [5] to extend Lyapunoff’s convexity
theorem to group-valued measures. To this end, let us recall that (see, e.g., [7])
if p is a prime and H is a p-divisible commutative group without elements of
order p, then for any x ∈ H and n ∈ N there is a uniquely determined element
y ∈ H such that pny = x. We denote it as 1

pn
x. For each m ∈ Z the element m

pn
x

is actually well-defined and H naturally becomes a module over the valuation

ring Rp :=
{

m
pn

: m ∈ Z, n ∈ N
}
.

Corollary 3.9. Let A be atomless. Assume that G is complete and satisfy the
following properties:

(i) G is p-divisible without elements of order p (p prime);

(ii) for any x ∈ G and 0-neighborhood U in G there exists some δ > 0 such
that m

pn
x ∈ U for all n,m ∈ N such that m

pn
< δ.

Then (1) holds.

Proof. According to Remark 3.8, it suffices to prove the existence of a unique
scalar multiplication, from R × G to G, making G a real vector space and the
function R ∋ t 7→ tx ∈ G continuous for each x ∈ G.

For this, observe that G is an Rp-module by (i). Then, using (ii), we have
that for each x ∈ G the group homomorphism Rp ∋ t 7→ tx ∈ G is continuous
at zero. Thus it is uniformly continuous and admits a (uniquely determined)
continuous extension on R, being G complete. Hence, G becomes a real vector
space.
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4. The case where G is complete

In the previous section, Lemma 3.2 gives a necessary condition for the denseness
of csa(A, G) in (a(A, G), τp) - i.e. for (1) to hold - in terms of the Boolean algebra
A. Our next result presents a necessary condition for (1) in terms only of G, in
the case where G is complete.

Theorem 4.1. Let G be complete. If the set csa(A, G) is dense in a(A, G)
- i.e. (1) holds -, then the subgroup

co(G) := {y ∈ G : y can be joined to 0 by a path} (5)

is dense in G; henceforth G is connected.

Proof. Let µ ∈ csa(A, G). We may and will assume that the FN-topology τµ
determined by µ on A is Hausdorff. Indeed, if not, we can replace A by the
quotient A/N(µ) and µ by the finitely additive function µ̂ induced by µ on it.
Then, as proved in [16, Section 9], µ admits a unique continuous extension µ̃

on the completion Ã of (A, τµ) and µ̃(A) is arcwise connected. Thus

µ(A) ⊆ µ̃(A) ⊆ co(G). (6)

Application of Lemma 2.1(β) with M := csa(A, G) -see Remark 3.1- concludes
the proof.

Remark 4.2. Under the assumption of Theorem 4.1, the group G admits a
dense arcwise connected subset, but G may fail to be arcwise connected, as
shown in Example 5.1, Section 5.

Now, in the setting of locally compact groups, a complete answer to our
approximation problem can be formulate as follows.

Corollary 4.3. Let G be locally compact. Then (1) holds if, and only if, A is
atomless and G is connected.

Proof. Combine Theorem 4.1 with Lemma 3.2 and Corollary 3.6.

Let us emphasize that the previous corollary exhibits a precise behaviour
of locally compact groups in connection with our approximation problem: ei-
ther (1) holds for all atomless Boolean algebras (when G is connected) or for
none of them (when G is not connected).

We will show - in Corollary 4.7 below - that such a behaviour pertains to
merely complete groups G, althought it does not still rely upon the connected-
ness of G (see Corollary 4.16).

On the contrary, for incomplete groups the validity of (1) does depend on
the atomless Boolean algebra A taken into account, as the following examples
show.
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Example 4.4. For any σ-algebra A the set csa(A,Q) is not dense in a(A,Q),
i.e. (1) does not hold.

Indeed, according to [3, Theorem 11.4.10], the range of any function in
csa(A,Q) must be connected. Thus, csa(A,Q) consists only of the zero func-
tion, and (1) does fail.

Example 4.5. Let A be the algebra generated by the collection

F := {[(i− 1)2−n, i 2−n[ : i, n ∈ N, i ≤ 2n}.

Then csa(A,Q) is dense in a(A,Q), i.e. (1) does hold.
To see this, let M := csa(A,Q). By Lemma 2.1(β) it suffices to check that

M(a) = Q for each a ∈ A \ {0 }. If a ∈ A \ {0 } and q ∈ Q, define ν := q
λ(a)

λ,

where λ stands for the Lebesgue measure on A. Clearly, ν ∈ M and ν(a) = q.

Theorem 4.6. Let G be complete. If A and B are atomless Boolean algebras,
then

{µ(a) : µ ∈ csa(A, G)} = {ν(b) : ν ∈ csa(B, G)}
for each a ∈ A \ {0} and b ∈ B \ {0}.

Proof. Given µ ∈ csa(A, G), a ∈ A \ {0} and b ∈ B \ {0}, it is enough to prove
that

µ(a) ∈ {ν(b) : ν ∈ csa(B, G)}. (7)

We may and will assume that the FN-topology τµ determined by µ on A is
Hausdorff. Indeed, if not, we can replace A by the quotient A/N(µ) and µ by
the finitely additive function µ̂ induced by µ on it.

Let (Ã, τ̃) be the uniform completion of (A, τµ). Since µ is exhaustive,
[16, Theorem 6.1] provides that Ã is a complete Boolean algebra and τ̃ is an
order continuous FN-topology. Hence, by [16, Corollary 4.11], (Ã, τ̃) is al-
gebraically and topologically isomorphic to the product Πα∈Λ(Aα, τα), where
each Aα is a complete Boolean algebra and τα is a metrizable order continuous
FN-topology on Aα. So we may assume that

(Ã, τ̃) =
∏
α∈Λ

(Aα, τα). (8)

From (8), it easily follows that the set S := {s∈ [0, a] ⊆ Ã : τ̃|[0,s] is metrizable}
is dense in (Ã, τ̃). In fact, let (aα)α∈Λ ∈ Πα∈ΛAα. For any finite F subset of Λ,
define a

F
:= (bα)α∈Λ, where bα is aα if α ∈ F and 0 otherwise. Then (a

F
)
F
is a

net in S converging to (aα)α∈Λ.
Now let µ̃ be the continuous extension of µ on (Ã, τ̃) and U a 0 -neighbor-

hood in G. The denseness of S in (Ã, τ̃) assures the existence of an so ∈ S such
that

µ̃(so) ∈ µ(a) + U.
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Since
(
[0, so], τ̃|[0,so]

)
is metrizable, there is a 0 -neighborhood base (Wn)n∈N

in it. Set D0 := {so}. The strong continuity of τ̃ allows to select for each n a
finite partition Dn of so such that Dn ⊆ Wn and any d ∈ Dn−1 is a union of
members of Dn as well.

Let Ao be the Boolean algebra generated by ∪Dn. Plainly, Ao is a countable
atomless algebra whose maximal element is so. Moreover, the function µo :=
µ̃|Ao belongs to csa(Ao, G), because τ̃ is exhaustive and strongly continuous.
Now take a countable atomless Boolean algebra Bo, with Bo ⊆ B, having b as
maximal element. Then, consider a Boolean algebra isomorphism φ from Bo

onto Ao (it does exist because any two countable atomless Boolean algebras are
isomorphic -see, e.g., [10, Corollary 5.16]). Clearly, νo := µo ◦ φ ∈ csa(Bo, G).
Next, Lipecki’s extension theorem (see [4, 11]) guarantees that νo admits an
exhaustive strongly continuous extension ν̃o on {c ∈ B : c ≤ b}. Thus the
function ν defined by ν(d) := ν̃o(b∧d), d ∈ B, actually belongs to csa(B, G) and
ν(b) = µ̃(so) ∈ µ(a) + U . Henceforth µ(a) belongs to {ν(b) : ν ∈ csa(B, G)}.
This completes the proof of (7).

Corollary 4.7. Let G be complete. If (1) holds for some atomless algebra A,
then it does hold for any other such algebra.

Proof. This follows from Theorem 4.6 and Lemma 2.1(β).

Corollary 4.8. Let G be complete. Then (1) holds if, and only if, A is atomless
and the set {µ(a) : µ ∈ csa(A, G), a ∈ A} is dense in G.

Proof. Set M := csa(A, G). Then M(1) = {µ(a) : µ ∈ csa(A, G), a ∈ A},
where 1 denotes the maximal element of A. Thus the statement follows from
Theorem 4.6, Lemma 2.1(β) and Lemma 3.2.

Remark 4.9. The characterization of (1) shown in the latter corollary fails for
incomplete groups.

To see this, consider the algebra A generated by the collection F in Exam-
ple 4.5 and the Borel subsets of [1, 2]. Let G := Q, and M := csa(A,Q). Then
{µ(a) : µ ∈ csa(A,Q), a ∈ A} = Q, since M([0, 1]) = Q. The set M however is
not dense in a(A,Q), according to Lemma 2.1(β), because M([1, 2]) = {0}.

Remark 4.10. Let G be complete and A atomless. By Corollary 4.8, it clearly
follows that, if

{ν(a) : ν ∈ csa(A, G), a ∈ A} = G , (9)

then (1) holds.
Note that (1) is strictly weaker than (9). In fact, under (9), the group G

must be arcwise connected. This follows by combining (9) with (6). On the
contrary, as observed in Remark 4.2, when (1) holds, G may fail to be arcwise
connected.
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Now, let us stress that in the setting of merely complete groups G Corol-
lary 4.8 above characterizes the validity of (1) in terms of the denseness of a
precise subset of G. Now we go a bit beyond this, by exhibiting its topological
meaning. To this end, Corollary 4.7 is crucial, since it allows us to focus on a
particular atomless algebra, that is the atomless algebra Ao generated by the
intervals [α, β[ of [0, 1[. Another ingredient is the following sufficient condition
for strong continuity of exhaustive G-valued finitely additive functions, which
is stated in [9, Theorem 2] in the case that G is a normed vector space. The
proof of [9] can be easily transferred to the group-valued setting and we include
it here for the sake of completeness.

Lemma 4.11. Let µ ∈ sa(A, G). If for any 0-neighborhood U in G and a ∈
A there is a finite partition {d1, . . . , dn} of a ∈ A such that µ(di) ∈ U for
i = 1, . . . , n, then µ ∈ csa(A, G).

Proof. For any 0-neighborhood U in G, let A(U) be the set of all a ∈ A admit-
ting a finite partition D ⊆ A such that µd(A) ⊆ U for each d ∈ D. Assume
that µ is not strongly continuous. Then there is a 0-neighborhood U in G such
that A(U) ̸= A.

We claim that if a0 ∈ A \ A(U) and V is a 0-neighborhood such that
V + V ⊆ U , then there exist two disjoint elements a1,d1, both smaller than a0,
with a1 /∈ A(U) and µ(d1) /∈ V .

To see this, take b ∈ A such that b ≤ a0 and µ(b) /∈ U . According to the
made assumption, then there are finite partitions D1 and D2 of b and a0 \ b,
respectively, such that µ(d)∈V for all d∈D :=D1∪D2. Since supD=a0 /∈A(U),
then there exists an element a1 ∈ D such that a1 /∈ A(U). Clearly, either a1 ≤ b
or a1 ∧ b = 0. Moreover, setting d1 := b \ a1 in the first case and d1 := b in the
latter, one has that µ(d1) /∈ V .

Using the claim just proved, we can inductively find sequences (ak), (dk) in
A such that ak ∧ dk = 0, ak ∨ dk ≤ ak−1, ak /∈ A(U) and µ(dk) /∈ V for all k.
This clearly contradicts the exhaustivity of µ, because the dk’s are disjoint, and
ends the proof.

As a consequence, one gets the following

Lemma 4.12. Let µ ∈ a(Ao, G), where Ao is the algebra generated by the
intervals [α, β[, 0 ≤ α < β ≤ 1. Then µ ∈ csa(Ao, G) if, and only if, the
function γ(t) := µ([0, t[), t ∈ [0, 1], is continuous and satisfies the condition

+∞∑
n=1

(γ(βn)− γ(αn)) converges in the completion of G

for every disjoint sequence of subintervals [αn, βn[ of [0, 1]

 . (10)
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Proof. First, observe that the exhaustivity of µ is equivalent to condition (10)
for γ. Now let γ be continuous in [0, 1]. Since γ is actually uniformly continuous,
the strong continuity of µ easily follows from Lemma 4.11. Conversely, let µ be
strongly continuous. Then for every 0-neighborhood U in G there is a partition
0 = α0 < α1 < · · · < αn = 1 such that µ(I) ∈ U for every subinterval
I ∈ Ao of one of the intervals [αi−1, αi[. Define δ := min1≤i≤n(αi − αi−1); then
γ(s)−γ(t) ∈ U+U for s, t ∈ [0, 1] such that |s− t| < δ. That is, γ is continuous
in [0, 1].

We note in passing that, in the case G = R, a path γ satisfies (10) if, and
only if, γ is of bounded variation. When G is a normed group, any path γ of
bounded variation fulfils (10).

In view of Lemma 4.12, we introduce the following relevant subset of the
subgroup co(G) defined by (5) in Theorem 4.1.

Definition 4.13. The set c1(G) consists of all elements in G which can be
joined to 0 by a path fulfilling (10).

We are now able to prove

Theorem 4.14. Let G be complete. For any atomless algebra A the following
hold:

(i) c1(G) = {ν(a) : ν ∈ csa(A, G)} for each a ∈ A \ {0} ;
(ii) csa(A, G)

τp
= a(A, c1(G)).

Proof. (i) Lemma 4.12 tells us that c1(G) = {ν([0, 1[) : ν ∈ csa(Ao, G)}, where
Ao is the algebra generated by the family {[α, β[ : 0 ≤ α < β ≤ 1}. Hence
Theorem 4.6 concludes the proof.

(ii) It follows from (i), and Corollary 4.8 replacing G by c1(G).

As a consequence of Theorem 4.14 (i) one obtains

Corollary 4.15. Let G be complete. Then c1(G) = {0} if, and only if, for any
atomless algebra A csa(A, G) = {0}.

Corollary 4.16. Let G be complete. Then (1) holds true if, and only if, A is
atomless and c1(G) is dense in G.

Proof. (⇒) It follows by Lemma 3.2, Lemma 2.1(β) and Theorem 4.14(i).
(⇐) Apply Theorem 4.14(ii).

Remark 4.17. In Example 5.13 below, we will exhibit a broad class of complete
topological groups G for which (1) fails for any atomless Boolean algebra. These
groups are arcwise connected (so co(G) is dense in G), but c1(G) consists of the
single point 0.
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5. Appendix: Examples of topological groups

Here we present the examples of topological groups announced in Remark 4.2
and Remark 4.17, respectively.

Example 5.1. Fix a prime p, and consider the topological group Zp of p-adic
integers. Let G := R × Zp, and H := {(m,m) : m ∈ Z}. Then the quotient
group G/H is a compact, connected group containing co

(
G/H

)
as a dense

subgroup, but G/H is not arcwise connected.
The fact that G/H is a compact, connected group containing co

(
G/H

)
as

a dense subgroup follows by [8, Theorem 10.13], being G/H a special instance
of a p-adic solenoid.

In order to show that G/H fails to be arcwise connected, we use Lemma 5.2
below which furnishes a necessary condition for the arcwise connectedness of a
quotient group G/H provided H is a discrete subgroup of G, namely, (11) must
hold. Thus it suffices to note that the component C of 0 in R× Zp is R× {0},
because (R× Zp)/(R × {0}) -being isomorphic to Zp- is totally disconnected;
hence G ̸= C +H, i.e. (11) does not hold.

Lemma 5.2. Let H be a discrete subgroup of G. If the quotient group G/H is
arcwise connected, then

G = C +H = co(G) +H, (11)

where C is the component of 0 in G and co(G) its subgroup defined in (5).

Proof. It is convenient to structure the proof in three steps. Hereafter π :
G → G/H denotes the quotient map.

Step 1. There exists a 0-neighborhood U in G such that the restriction π|U of
the quotient map π to U is one-to-one and its inverse (π|U)

−1 is continuous.
Because H is discrete, there exists some 0-neighborhood V in G such that

V ∩H = {0}. Then pick an open 0-neighborhood U in G so that U − U ⊆ V .
Clearly π|U is one-to-one. Moreover, as π is an open map and U is open, one
concludes that π|U is open as well, i.e. (π|U)

−1 is continuous.

Step 2. Let f : [0, 1] → G/H be a continuous function, and x ∈ G such that
π(x) = f(0). Then there exists a (unique) continuous function F : [0, 1] → G
such that π ◦ F = f and F (0) = x.

Take a 0-neighborhood U in G as in Step 1. Then the uniform continuity
of f assures that there is some δ > 0 such that

f(t′)− f(t′′) ∈ π(U) for all t′, t′′ ∈ [0, 1] so that |t′ − t′′| ≤ δ. (12)

Consider now a partition {to, . . . , tn} of [0, 1] whose mesh is less then δ.
Then, by (12), for each i ∈ {1, . . . , n} the function Fi : [ti−1, ti] → G defined by
Fi(t) := (π|U)

−1(f(t)− f(ti−1)) is continuous and Fi(ti−1) = 0.
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Then the function F : [0, 1] → G defined recursively by

F (t) :=

{
x+ F1(t), t ∈ [0, t1]

F (ti) + Fi+1(t), t ∈ [ti, ti+1], i ∈ {1, . . . , n− 1},

is continuous and satisfies the required properties. The uniqueness statement
follows at once by applying the discreteness of H.

Step 3. G ⊆ co(G) +H.
Let y ∈ G. SinceG/H is arcwise connected, there is a path f : [0, 1] → G/H

with endpoints f(0) := π(0) and f(1) := π(y). Then, by Step 2, there is a
(unique) path F : [0, 1] → G satisfying π◦F = f and F (0) = 0. As F (1) = y+h
for some h ∈ H, clearly y + h belongs to co(G); so y ∈ co(G) + H. Therefore
G ⊆ co(G) +H.

Obviously, co(G) + H ⊆ C + H. By Step 3, one concludes that
G = co(G) +H = C +H.

The example announced in Remark 4.17 demands some preparation, and
it will conclude this section. We firstly recall the basic background from the
theory of free Abelian topological groups, that will be needed in what follows.
For an exhaustive treatment of these topics, see, e.g., [1, 12] and the references
therein.

For a Tychonoff space (X, τ), the free Abelian topological group of X is the
Hausdorff topological commutative group A(X) such that X is topologically
embedded in A(X) and, for any continuous mapping f of the space X to a
topological commutative group H, there exists a unique continuous homomor-
phism f̃ : A(X) → H such that f = f̃|X .

Every element g ∈ A(X) has the form g =
∑n

i=1 ϵixi, where each xi belongs
to X and ϵi = ±1. Such expression is called word written by using letters of
the alphabet X ∪ (−X); the empty word is the neutral element 0 of A(X).

A non-empty word is said to be reduced provided it does not contain two
letters x and −x simultaneously. Note that the reduced word representing an
element g ∈ A(X) \ {0} is unique up to permutations. Therefore the length of
g ∈ A(X)\{0} is well-defined by the number l(g) of letters in the reduced word
representing it; instead, the number of different letters will be denoted by λ(g).
Clearly λ(g) ≤ l(g). For g = 0, we write l(0) := 0. Actually, A(X) is the union
of an increasing chain of subsets Bn(X) := {g ∈ A(X) : l(g) ≤ n}, n ∈ N∪{0},
which are closed by [1, Theorem 7.1.13]. Moreover, by [14, Theorem 4], the
group A(X) is complete if, and only if, the Tychonoff space (X, τ) is Dieudonné
complete, namely, the universal uniformity on X is complete (see, e.g., [6]).

The set Ao(X) := {
∑n

i=1 xi −
∑n

i=1 yi : n ∈ N; xi, yi ∈ X} is an open
(and closed) subgroup of A(X). By [1, Lemma 7.10.2], Ao(X) coincides with
the connected component of the neutral element 0 in A(X) whenever (X, τ) is
connected; further, Ao(X) is connected if, and only if, X is connected.
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Here we firstly show that such an equivalence fails with connectedness re-
placed by arcwise connectedness.

Lemma 5.3. Let (X, τ) be a Tychonoff space. If X is arcwise connected, then
Ao(X) is arcwise connected - i.e. co(Ao(X)) = Ao(X).

Proof. Take any g :=
∑n

i=1 xi −
∑n

i=1 yi ∈ Ao(X). Being X arcwise connected,
for each i ∈ {1, . . . , n}, there is a path γi : [0, 1] → X from xi to yi. Then∑n

i=1 γi −
∑n

i=1 yi is a path lying entirely within Ao(X) from g to 0. Thus
Ao(X) ⊆ co(Ao(X)).

Example 5.4. Let X := X1 ∪X2, where

X1 := {0} × [−1, 1] and X2 :=

{(
t, sin

1

t

)
: 0 < t ≤ 1

}
.

Then Ao(X) is arcwise connected whereasX is (a connected and compact subset
of R2) not arcwise connected.

To see that Ao(X) is arcwise connected, set x1 := (0, sin 1) and
x2 := (1, sin 1); as Ao(X) is generated by x1 − x2 and those elements x − y
with x, y ∈ X1 or x, y ∈ X2, then all we need to know is that such elements can
be connected with 0 by a path lying within Ao(X).

This is obvious for those elements x−y with x, y ∈ X1 or x, y ∈ X2. Now let
φ1(t) := (0, sin 1

t
) and φ2(t) := (t, sin 1

t
), t ∈]0, 1] and define γ : [0, 1] → Ao(X)

by γ(t) := φ1(t) − φ2(t) for 0 < t ≤ 1 and γ(0) = 0. The function γ provides
a path from 0 to x1 − x2. In fact, for any vanishing sequence (tn)n∈N in ]0, 1]
the Euclidean distance between φ1(tn) and φ2(tn) converges to 0. Because X
is compact, both R2 and Ao(X) induce on X the same uniformity. Thus γ(tn)
converge to 0 in Ao(X), that is γ is continuous (at 0).

Our main goal is to prove

Theorem 5.5. For any Tychonoff space (X, τ)

c1(Ao(X)) = c1(A(X)) = {0}.

One of the two main ingredients in the proof of Theorem 5.5 is the following

Theorem 5.6. Let (X, τ) be a Tychonoff space. If γ : [0, 1] → A(X) is a non-
constant path in A(X), then γ is expressible in some [α, β] ⊆ [0, 1], with α < β,
as

γ(x) =
m∑
i=1

kiγi(x) for x ∈ [α, β],

where ki ∈ Z, γi : [α, β] → X is continuous, γi([α, β]) ⊆ Vi ∈ τ , with Vi∩Vj = ∅
for i ̸= j, and γ1(α) ̸= γ1(β).
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Proof. Let K := γ([0, 1]). Because γ is not constant, we may assume without
loss of generality that 0 /∈ K. Since K can be expressed as ∪mK ∩ Bm(X),
where all the sets K ∩ Bm(X) are closed, then Baire’s Theorem provides the
existence of at least one of them admitting an interior point in the relative
topology of K. Let n be the smallest index such that K ∩ (Bn(X) \ Bn−1(X))
contains some non-empty U ∈ τ .

Then there exists some [α, β] ⊆ [0, 1], with α < β, such that γ([α, β]) ⊆ U ,
γ|[α,β] is not constant and γ(α) ̸= γ(β). Take s ∈ [α, β] such that
λ(γ(s)) = max{λ(γ(t)) : t ∈ [α, β]} and consider the word γ(s) in its reduced
form γ(s) :=

∑n
i=1 ϵixi. By [12, Corollary 7.1] (or [1, Corollary 7.1.19]), γ(s)

has an open neighborhood V :=
∑n

i=1 ϵiVi in Bn(X) \ Bn−1(X), where Vi is
some open neighborhood of xi in X and Vi∩Vj = ∅ if xi ̸= xj. One may assume
that γ([α, β]) ⊆ V . Since any g ∈ V obeys the estimate λ(g) ≥ λ(γ(s)), one
has that λ(γ(t)) = λ(γ(s)) for all t ∈ [α, β]. Thus writing γ as

γ =
n∑

i=1

ϵiγi, where γi : [α, β] → Vi, (13)

shows that γi = γj whenever xi = xj.
Let us prove that each γi is continuous. It is enough to do it for γ1. Consider

any to ∈ [α, β] and an open neighborhood Wi of γi(to) in X such that Wi ⊆ Vi.
By the continuity of γ in to, there exists some δ > 0 such that γ(t) ∈ W :=∑n

i=1 ϵiWi for |t−to| < δ. From this it follows that γ1(t) ∈ W1, i.e. the continuity
of γ1 in to. Indeed, if γ(t) =

∑n
i=1 ϵiyi with yi ∈ Wi, by (13) one infers that

y1 = γj(t) for some j ∈ {1, . . . , n}. As γj(t) ∈ W1 ⊆ V1, it follows that xj = x1.
Therefore γj = γ1 and γ1(t) = y1 ∈ W1.

Since γ(α) ̸= γ(β), up to some permutation, one can assume that
γ1(α) ̸= γ1(β).

Corollary 5.7. Let (X, τ) be a Tychonoff space. Then X contains an arc if,
and only if, A(X) contains an arc.

Proof. It follows by the previous theorem and the fact that X topological em-
beds into A(X).

Corollary 5.8. If X is a connected metric space which does not contain any
arc, then Ao(X) is a complete and connected Hausdorff topological commutative
group which does not contain any arc.

Proof. Being a metric space, X is Dieudonné complete and therefore A(X)
is complete by [14, Theorem 4]. As Ao(X) is a closed subgroup of A(X),
then Ao(X) is complete. Moreover Ao(X) is connected, since X is connected
(see [1, Lemma 7.10.2]). Finally Ao(X) does not contain any arc, since there is
no arc in A(X) by Corollary 5.7.
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Remark 5.9. A special instance of a metric space which satisfies the assump-
tion of Corollary 5.8 is the Knaster-Kuratowski fan (also known as Cantor’s
Teepee; see, e.g., [13, Counterexample 129]).

The other main ingredient for proving Theorem 5.5 is Lemma 5.12 below.
For it, we need two preliminary results. The first is well-known (see, e.g.,
[12, 14,15]).

Lemma 5.10. Let (X, τ) be a Tychonoff space. If p : X → [0, 1] is a continuous
pseudometric on X, then the map || · ||p : A(X) → [0,+∞[ defined by

||g||p :=

inf
{ n∑

i=1

p(xi, yi) : g =
n∑

i=1

(xi−yi), xi, yi∈X
}

for g∈Ao(X)

l(g) for g∈A(X)\Ao(X)

is a continuous seminorm on A(X).

Further the topology of A(X) is determined by the family {||·||p : p ∈ D(X)},
where D(X) stands for the family of all continuous pseudometrics on X bounded
by 1.

Next we show

Lemma 5.11. Let (X, τ) be a Tychonoff space. For any sequence (Fn)n∈N of
finite subsets of X, there exists a continuous pseudometric p : X → [0, 1] such
that p(x, y) ≥ 1

n
for all distinct x, y ∈ Fn.

Proof. As (X, τ) is a Tychonoff space, for each n there exists a continuous
pseudometric pn : X → [0,+∞[ such that pn(x, y) ≥ 1 for all distinct x, y ∈ Fn.
Set po :=

∑
n∈N min

{
pn,

1
3n

}
, then po is continuous pseudometric onX such that

po(x, y) ≥ 1
3n

whenever x, y ∈ Fn with x ̸= y. Now take an increasing continuous
concave function f : [0, 1] → [0, 1] such that f(0) = 0 and f( 1

3n
) = 1

n
. Because

f is subadditive, the function p := f ◦ po is a continuous pseudometric having
the required property.

Lemma 5.12. Let (xn)n∈N be a sequence in a Tychonoff space (X, τ). If (gn)n∈N
is a sequence in A(X) such that gn :=

∑
x∈Ln

x, where Ln is a finite subset of
X ∪ (−X \ {−xm : m ∈ N}) and Ln ∋ xn, then the series

∑
n∈N gn does not

converge.

Proof. For any n take an integer j(n) > n such that
∑j(n)

k=n
1
k
≥ 1. Setting

Fn := ∪j(n)
k=n (Lk ∪ −Lk), Lemma 5.11 assures the existence of a continuous

pseudometric p : X → [0, 1] such that p(x, y) ≥ 1
n
for all distinct x, y ∈ Fn.
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Now we show that ||
∑j(n)

k=n gk||p ≥ 1 for each n. This is obvious when-

ever
∑j(n)

k=n gk ∈ A(X) \ Ao(X). Now let
∑j(n)

k=n gk ∈ Ao(X). Then
∑j(n)

k=n gk =∑N
k=n(ak − bk) with ak, bk ∈ X. Note that all ak, bk belong to Fn and moreover

one may assume that xk = ak for k = n, . . . , j(n). Hence

N∑
k=n

p(ak, bk) ≥
j(n)∑
k=n

p(xk, bk) ≥
j(n)∑
k=n

1

k
≥ 1

and consequently ||
∑j(n)

k=n gk||p ≥ 1.

Proof of Theorem 5.5. Suppose that c1(A(X)) ̸= {0}. Then there exists a path
γ : [0, 1] → A(X) which is non-costant and satisfies (10). According to Theo-
rem 5.6, there is some [α, β] ⊂ [0, 1], with α < β, such that γ|[α,β] =

∑m
i=1 kiγi,

where all γi are continuous functions whose ranges are mutually disjoint in X,
ki ∈ Z and γ1(α) ̸= γ1(β). One can select inductively two sequences (αn)n∈N,
(βn)n∈N in ]α, β[ so that αn < βn < αn+1 < βn+1 and γ1(β), γ1(αn), γ1(βn)
are distinct for all n. Now set xn := γ1(βn) and gn := γ(βn) − γ(αn). By
Lemma 5.12,

∑∞
n=1 γ(βn)− γ(αn) does not converge. But this contradicts (10).

So c1(A(X)) = {0}.

Coupling Lemma 5.3 and Theorem 5.5 allows us to exhibit in the next
example a broad class of complete topological groups G for which (1) fails for
any atomless Boolean algebra, on account of Corollary 4.16. These groups are
indeed arcwise connected (so co(G) is dense in G), but c1(G) consists of the
single point 0.

Example 5.13. Let (X, τ) be a Tychonoff space. WhenX is arcwise connected,
then G := Ao(X) is arcwise connected and c1(G) = {0}. If, in addition, X is
Dieudonné complete, then G is complete.
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