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Standing Waves in Phase-Transitional

Elasticity with Strain-Gradient Effects I:
General Theory
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Abstract. Extending investigations of Antman &Malek-Madani, Schecter & Shearer,
Slemrod, Barker & Lewicka & Zumbrun, and others, we investigate phase-transitional
elasticity models with strain-gradient effect. We prove the existence of non-constant
planar periodic standing waves in these models by variational methods, for defor-
mations of arbitrary dimension and general, physical, viscosity and strain-gradient
terms. Previous investigations considered one-dimensional phenomenological models
with artificial viscosity/strain gradient effect, for which the existence reduces to a
standard (scalar) nonlinear oscillator. For our variational analysis, we require that
the mean vector of the unknowns over one period be in the elliptic region with respect
to the corresponding pure inviscid elastic model. Previous such results were confined
to one-dimensional deformations in models with artificial viscosity–strain-gradient
coefficients.
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1. Introduction

The mathematical study of elasticity has been an important topic (see [1–5,11,
13–15,17,22,31–35,38,39], etc., and references therein) due to wide applications.
The study of traveling waves of phase-transitional elasticity has been carried out
for phenomenological models in [32–35,38] for one-dimensional shear flow, with
classical double well potential and artificial viscosity–capillarity terms (see how-
ever the important work [17] for multi-D multiphase elasticity). The treatment
of the general, physical, case was cited in [11, Appendix A], as an important
direction for further study.

J. Yao: Department of Mathematics, Indiana University, Bloomington, IN 47405,
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In this paper, continuing the work of Antman and Malek-Madani [4], Slem-
rod [33–35], Schecter and Shearer [32], and Barker, Lewicka and Zumbrun [11],
we study the existence of planar elastic periodic traveling waves, compressible
or incompressible, for deformations of arbitrary dimensions, starting from the
most general form of the physical equations. It turns out for general elastic-
ity model with strain-gradient effects that, similarly as observed for the phe-
nomenological models studied previously, the periodic traveling waves can only
be standing waves and the corresponding ordinary differential equation (ODE)
system exhibits Hamiltonian structure.

As we know, for a planar Hamiltonian system, we can use phase-plane anal-
ysis to study its closed orbits. This corresponds to the case of one-dimensional
deformations, for which the unknowns are scalar in the ODE system (4.5). For
higher dimensional Hamiltonian systems, this method does not apply directly.
In order to prove the existence of non-constant periodic waves when the un-
knowns are vectors, we consider the problem under the framework of calculus
of variation. However, there are several difficulties to overcome. First, we need
to formulate the problem in proper Banach spaces. It turns out that the proper
space for our purpose is the periodic Sobolev space with mean zero property.
Working in this framework amounts to prescribing the mean of the unknown
over one periodic (no real restriction, since each periodic wave has a mean as
long as it exists). Second, we need to make sure that the waves we find are
not constant waves. We overcome this issue by considering the equations satis-
fied by the difference between the original unknown and its mean. This makes
the 0 element in our working space always a critical point, which helps to elim-
inate the possibility that the solutions we find are trivial. Third, in the global
model of elasticity, we need to consider the assumption τ3 > 0 (see Section 2
or 3). This kind of condition usually leads to a variational inequality and is
related to an obstacle problem. Meanwhile, this inequality condition makes
our admissible set (to make the wave physically meaningful) not weakly closed.
However, the asymptotic behavior of the elastic potential will help overcome the
related problem. We note that in the pure elastic case without strain-gradient
effects and viscosity, this restriction on τ3 imposes significant challenges in the
mathematical analysis (see the discussions in [2, 5]).

Besides the Hamiltonian structure of the standing wave equations, here we
prove that for the general physical model, there exist non-constant periodic
waves no matter whether the unknowns are scalar or not (see Theorem 6.13)
under assumptions on the mean vector over one periodic of the wave. In the
followup paper [36], for some specific phase-transitional models, we apply the re-
sults in present paper and give explicit conditions under which the non-constant
oscillatory waves exist. In particular, for the one dimensional models, we use
phase-plane analysis to get detailed information on the wave phenomena (ex-
istence of periodic, homoclinic, heteroclinic waves), and compare these results



Existence and Stability of Periodic Planar Standing Waves I 3

with results obtained from our general theory. They match very well.
Comparing our results with others (see the references of this paper), the

problems here are interesting enough even only from the modeling point of
view, without even finding any waves. In [4], the authors treated the shear flow
without the strain-gradient effect and with an isotropic assumption preventing
phase transition model (see discussion in [11]). Here we include models with
strain-gradient effects and the materials can be anisotropic, which gives rich
wave phenomena (see [36]). Antmann, Slemrod and others (see [3, 4, 33–35]
and references therein) have previously studied phenomenological 1D phase-
transitional models with double-well potentials. Here we justify those types
of qualitative models by direct derivation from the physical shear flow model
(see [36]).

It would be very interesting to explore by numerics cases that do not fit the
hypotheses here (which are sufficient but by not necessary in the non-scalar case)
but nonetheless support periodic waves and also to explore either numerically
or analytically the spectral stability of these waves. We hope to address these
issues in a followup work [12]. Numerical study of existence and stability of
shock waves (which, since not necessarily zero-speed, are more plentiful) would
be another interesting direction for future study.

2. Elasticity models with strain-gradient effects

In this section, we will proceed following the presentations of [2,5,11,28]. Let Ω
be the reference configuration which models an elastic body with constant tem-
perature and density. A typical point in Ω will be denoted by X. We use
ξ : Ω × R+ → R

3 to denote the deformation (i.e., the deformed position of
the material point X). Consequently, the deformation gradient is given by
F := ∇Xξ, which we regard as an element in R

3×3.
Adopting the notations above, the equations of isothermal elasticity with

strain-gradient effect are given through the following balance of linear momen-
tum

ξtt −∇X ·
(

DW (∇ξ) + Z(∇ξ,∇ξt)− E(∇2ξ)
)

= 0. (2.1)

We make the following physical constraint on the deformation gradient (see
[5, 11] and [2, 28] for the physical background), prohibiting local self-impinge-
ment of the material:

detF > 0. (2.2)

In (2.1), the operator ∇X · stands for the divergence of an approximate field.
As in [15, 28], for a matrix-valued vector field, we use the convention that the
divergence is taken row-wise. In what follows, we shall also use the matrix norm
|F | = (tr(F TF ))

1

2 , which is induced by the inner product: F1 : F2 := tr(F T
1 F2).
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In view of the second law of thermodynamics (see [5, 27]), the Piola-Kirch-
hoff stress tensor DW : R3×3 → R

3×3 is expressed as the derivative of an elastic
energy densityW : R3×3 → R+. Throughout the paper, we assume as in [2,5,28]
the elastic energy density function W is frame-indifference. Let SO(3) be the
group of proper rotations in R

3. Then the frame-indifference assumption can
be formulated as

W (RF ) = W (F ), ∀F ∈ R
3×3, ∀R ∈ SO(3). (2.3)

Also, the material consistency (to avoid interpenetration of matter, (2.2),
[2, 5]) requires the following important assumption:

W (F ) → +∞ as detF → 0. (2.4)

We emphasize that viscous stress tensor Z : R3×3 × R
3×3 → R

3×3 depends
on both the deformation gradient F and the velocity gradient Q = Ft = ∇ξt =
∇v, where v = ξt. From physical point of view, the stress tensor Z should
also be compatible with principles of continuum mechanics (balance of angular
momentum, frame invariance, and the Claussius-Duhem inequality etc). For the
related mathematical descriptions and corresponding stress forms see [2, 5, 11]
and references therein.

The strain-gradient effect E is given by

E(∇2ξ) = ∇X ·DΨ(∇2ξ) =

[

3
∑

i=1

∂

∂Xi

( ∂

∂(∂ijζk)
Ψ(∇2ξ)

)

]

j,k=1,...,3

for some convex density Ψ : R3×3×3 → R, compatible with frame indifference.
The corresponding inviscid part of system (2.1)

ξtt −∇X ·
(

DW (∇ξ)
)

= 0 (2.5)

can be written as

(F, τ)t +
3

∑

i=1

∂Xi

(

G̃i(F, τ)
)

= 0. (2.6)

Above, (F, τ) : Ω → R
12 represents conserved quantities, while G̃i : R

12 → R
12

given by

−G̃i(F, τ) = τ 1ei ⊕ τ 2ei ⊕ τ 3ei ⊕

[

∂

∂Fki

W (F )

]3

k=1

, i = 1, . . . , 3

are the fluxes, and ei denotes the i-th coordinate vector in R
3.

The convex density Ψ contributes to equation (2.1) the term

∇X ·
(

E(∇2ξ)
)

= ∇X · {∇X ·DΨ(∇2ξ)}. (2.7)
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In view of the orders of differentiation and convexity of Ψ, we may assume that

Ψ ≥ 0; Ψ(0) = 0; DΨ(0) = 0; δId ≤ D2Ψ(·) ≤ MId

where δ,M are two positive real numbers and Id is an element in the space
L(R3×3×3; R3×3×3). The mapping relations (ignoring physical constraints) are

Ψ : R3×3×3 → R+

DΨ : R3×3×3 → R
3×3×3

D2Ψ : R3×3×3 → L(R3×3×3; R3×3×3)

When the operator ∇X · reduces to the operator ∂x where x is a one di-
mension variable, (2.7) takes the form ∂x{∂xDΨ(∂2

xξ)}. If we identify ξx as τ ,
then ∂2

xξ = τx and (2.7) becomes ∂x{∂xDΨ(τx)} = ∂x{D
2Ψ(τx)τxx}. Note that

D2Ψ : R3 → L(R3; R3) when ∇X · reduces to ∂x. So we assume that D2Ψ(·) as
matrix function satisfy the assumption δId ≤ D2Ψ(·) ≤ MId as operators.

3. Equations and specific models

In this paper, we focus on the interesting subclass of planar solutions, which are
solutions in the full 3D space that depend only on a single coordinate direction;
that is, we investigate deformations ξ given by

ξ(X) = X + U(z), X = (x, y, z), U = (U1, U2, U3) ∈ R
3.

Corresponding to the above deformation or displacement ξ, the deformation
gradient with respect to X is

F =





1 0 U1,z

0 1 U2,z

0 0 1 + U3,z



 =





1 0 τ1
0 1 τ2
0 0 τ3



 . (3.1)

We shall denote V = (τ, u) = (τ1, τ2, τ3, u1, u2, u3), where τ1 = U1,z, τ2 = U2,z,

τ3 = 1 + U3,z and u1 = U1,t, u2 = U2,t, u3 = U3,t with the physical constraint
τ3 > 0, corresponding to detF > 0 in the region of physical feasibility of V .

Writing W (τ) = W









1 0 τ1
0 1 τ2
0 0 τ3







, we see that for all F as in (2.1) there

holds
∇X · (DW (F )) = (DτW (τ))z.

That is, the planar equations inherit a vector-valued variational structure echo-
ing the matrix valued variational structure (note that the left hand side is the
divergence of DW (F )).

We study models (traveling wave ODEs, Hamiltonian ODEs, existence of
standing waves) for general elastic potential energy and give a rather general
abstract existence result in the following sections.
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The system. As a convention, we shall use x∈R
1 as the space variable instead

of z. So we have the following system

{

τt − ux = 0

ut + σ(τ)x = (b(τ)ux)x − (d(τx)τxx)x.
(3.2)

with σ := −DτW (τ), d(·) := D2Ψ(·), and b(τ) positive definite matrix function.
We are interested in the existence of periodic traveling waves of the above

system, which involves a third order term because of the strain-gradient effect.

4. Traveling wave ODE system

We seek traveling wave solution of the system (3.2), (τ(x, t), u(x, t)) :=
(τ(x − st), u(x − st)), where s ∈ R is the wave speed. Let us denote in the
following ′ as differentiation with respect to x − st. For convenience, we still
use x to represent x− st (Indeed, we will show a bit later that in fact s = 0 is
necessary for the existence of periodic or homoclinic waves; see equation (5.6)).
With further investigation in mind, we write the related equations for the gen-
eral class of elastic models with strain-gradient effects. Now from system (3.2),
we have the ODE system

{

−sτ ′ − u′ = 0

−su′ + σ(τ)′ = (b(τ)u′)′ − (d(τ ′)τ ′′)′.
(4.1)

Plugging the first equation into the second in the above system, we obtain
the following second-order ODE in τ :

s2τ ′ + σ(τ)′ = −(b(τ)sτ ′)′ − (d(τ ′)τ ′′)′. (4.2)

In view of d(·) = D2Ψ(·), we readily see:

s2τ ′ + σ(τ)′ = −(b(τ)sτ ′)′ − (D2Ψ(τ ′)τ ′′)′. (4.3)

Choosing a specific space point, say x0, we integrate once to get:

s2τ + σ(τ) + q = −sb(τ)τ ′ −DΨ(τ ′)′ (4.4)

Here q is an integral constant vector. Relating this with the elastic potential
function W , we have

−DW (τ) + s2τ + q = −sb(τ)τ ′ −DΨ(τ ′)′ (4.5)

Note carefully that the integral constant vector is given by

q = {DW (τ)− s2τ − sb(τ)τ ′ −DΨ(τ ′)′}
∣

∣

∣

x=x0

. (4.6)
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5. Hamiltonian structure

Defining G(P ) := 〈P,DΨ(P )〉−Ψ(P ), we see that dG
dP

= 〈P,D2Ψ〉. Here P ∈ R
n

and Ψ : Rn → R (for our purpose n = 1, 2, 3), G : Rn → R a different scalar
potential type function. Now we are ready to state a structural property about
the traveling wave ODE system (4.5).

Proposition 5.1. When s = 0, the system (4.5) is a Hamiltonian system with

factor
(

D2Ψ(τ ′)
)−1

, preserving the Hamiltonian

H(τ, τ ′) = −W (τ) + qτ +G(τ ′) ≡ constant.

Proof. When s = 0, the traveling wave ODE (4.5) becomes:

−dW (τ) + q = −DΨ(τ ′)′ (5.1)

and the constant q = {DW (τ) − DΨ(τ ′)′}
∣

∣

∣

x=x0

. In view of the positive-

definiteness of D2Ψ(·), we may write the ODE as a first order system by re-
garding τ, τ ′ as independent variables:

τ ′ = [D2Ψ(τ ′)]−1D2Ψ(τ ′)τ ′

τ ′′ = −[D2Ψ(τ ′)]−1(−DW (τ) + q)
(5.2)

Now, consider the energy surface given by:

H(τ, τ ′) := −W (τ) + qτ +G(τ ′). (5.3)

We see that
∂

∂τ ′
H(τ, τ ′) =

dG(τ ′)

dτ ′
= D2Ψ(τ ′)τ ′

∂

∂τ
H(τ, τ ′) = −DW (τ) + q.

(5.4)

Comparing (5.2), (5.4), we see that the traveling wave ODE is a Hamiltonian
system with factor γ := [D2Ψ(τ ′)]−1. Thus, (4.5) preserves the Hamiltonian H.
We can see this also by explicit computation, writing ζ = x− st:

d

dζ
H(τ, τ ′) =

∂

∂τ
H(τ, τ ′)τ ′ +

∂

∂τ ′
H(τ, τ ′)τ ′′

=γ
∂

∂τ
H(τ, τ ′)

∂

∂τ ′
H(τ, τ ′) + γ

∂

∂τ ′
H(τ, τ ′)

{

−
∂

∂τ
H(τ, τ ′)

}

=0.

From the above structural information, we easily get a necessary condition
for the existence of periodic or homoclinic waves, extending results of [26] in a
one-dimensional model case.
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Theorem 5.2. For (4.5) with s ≷ 0, there holds dH
dζ

≶ 0, where

H(τ, τ ′) := −W (τ) +
s2

2
|τ |2 + qτ +G(τ ′), (5.5)

so that no homoclinic or periodic orbits can occur unless s = 0.

Proof. Considering the evolution of d
dζ
H(τ, τ ′) along the flow of traveling wave

ODE system (4.5), we have

d

dζ
H(τ, τ ′) =

∂

∂τ
H(τ, τ ′)τ ′ +

∂

∂τ ′
H(τ, τ ′)τ ′′

=〈−DτW (τ) + q + s2τ, τ ′〉+ 〈DG(τ ′), τ ′′〉

=〈−DτW (τ) + q + s2τ, τ ′〉+ 〈D2Ψ(τ ′)τ ′, τ ′′〉

=〈−DτW (τ) + q + s2τ, τ ′〉+ 〈D2Ψ(τ ′)τ ′′, τ ′〉

=〈−DτW (τ) + q + s2τ +DΨ(τ ′)′, τ ′〉

=〈−sb(τ)τ ′, τ ′〉.

The conclusion thus follows from the positive definiteness of b(τ).

The Hamiltonian system. In the following, we will consider the case

Ψ(P ) = |P |2

2
as a mathematically natural first step. From the above analy-

sis, we see that necessarily s = 0, i.e., all traveling periodic waves are standing.
The traveling wave ODE system reduces to the following form with an integral
constant q







−τ ′′ = −DτW (τ) + q

q = {DτW (τ)− τ ′′}
∣

∣

∣

x=x0

.
(5.6)

If we take the Hamiltonian point of view, the corresponding Hamiltonian
for the above system is

H(τ, τ ′) =
1

2
|τ ′(x)|2 + V (τ, τ ′),

where V (τ, τ ′) := q · τ(x)−W (τ(x)). The periodic solutions of the system are
confined to the surface H(τ, τ ′) ≡ constant.
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6. Calculus of Variations

In this section, we formulate the problem in the framework of Calculus of Vari-
ations and give the proof of the existence result.

6.1. Space structure. As a first step, we recall the notions of Sobolev spaces
involving periodicity and introduce the space structure we are going to use
(see [24]). For fixed real number T > 0, let C∞

T be the space of infinitely
differentiable T -periodic functions from R to R

n (for our purpose n = 1, 2, 3.).

Lemma 6.1. Let u, v ∈ L1(0, T ;Rn). If, for every f ∈ C∞
T ,

∫ T

0

(u(t), f ′(t))dt = −

∫ T

0

(v(t), f(t))dt,

then
∫ T

0

v(s)ds = 0

and there exists a constant vector c in R
N such that

u(t) =

∫ t

0

v(s)ds+ c a.e. on [0, T ].

Proof. For the mean zero property, we could consider the specific test function
f = ej. For the integral formulation, we can use the Fubini Theorem and
Fourier expansion of f to conclude ([24]).

The function v := u′ is called the weak derivative of u. Consequently, we
have

u(t) =

∫ t

0

u′(l)dl + c,

which implies the following:

u(0) = u(T ) = c; u(t) = u(s) +

∫ t

s

u′(l)dl.

Define the Hilbert space H1
T as usual (hence reflexive Banach space) with the

following inner product and corresponding norm: for u, v ∈ H1
T ,

〈u, v〉 :=

∫ T

0

(u, v) + (u′, v′)ds; ‖u‖2 :=

∫ T

0

|u|2 + |u′|2ds.

Next, we collect some facts for later use.

Proposition 6.2 (Compact Sobolev embedding property). The embedding

H1
T ⊂⊂ C[0, T ] is compact.
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Proposition 6.3. If u ∈ H1
T and

∫ T

0
u(t) dt = 0, then we have the Wirtinger

inequality
∫ T

0

|u(t)|2 dt ≤
T 2

4π2

∫ T

0

|u′(t)|2 dt

and a Sobolev inequality

|u|2∞ ≤
T

12

∫ T

0

|u′(t)|2 dt.

The compact Sobolev embedding property will give us the required weak
lower semi-continuity property for the nonlinear functionals. The Wirtinger
inequality supplies us equivalent norms in related Sobolev spaces with mean
zero property (see [24] for complete proofs).

6.2. Variational formulation of the problems. Now for a given T > 0, we
consider problem (5.6) in H1

T

{

−τ ′′ = −DτW (τ) + q = −Dτ (W (τ)− q · τ)

τ(0)− τ(T ) = 0; τ ′(0)− τ ′(T ) = 0.

Let us first consider the cases and formulations without the physical restric-
tion τ3 > 0. Assume that:

τ̄ :=
1

T

∫ T

0

τ(x)dx = m.

Here m ∈ R
n, n = 1, 2, 3 and we will use bar to represent mean over one period

similarly. Hence, we consider the following problem







τ ′′(x) = DW (τ)− q

τ(0) = τ(T ); τ ′(0) = τ ′(T );
1

T

∫ T

0

τ(x) dx = m.
(6.1)

If we seek periodic solutions, q can be determined by integrating the equa-
tions above over one period; that is,

q =
1

T

∫ T

0

DW (τ(x)) dx.

Define v(x) = τ(x) − m. We see easily that 1

T

∫ T

0
v(x) dx = 0, and v(x)

satisfies the system of equations:







v′′(x) = DW (v +m)− q

v(0) = v(T ); v′(0) = v′(T );
1

T

∫ T

0

v(x) dx = 0.
(6.2)
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For convenience, we rewrite the above system as







v′′(x) = DW (v +m)−DW (m) +DW (m)− q

v(0) = v(T ); v′(0) = v′(T );
1

T

∫ T

0

v(x) dx = 0.
(6.3)

Define W̃ (v) = W (v +m)−DW (m) · v and q̃ = q −DW (m). We get the
following problem











v′′(x) = DW̃ (v)− q̃

v(0) = v(T ); v′(0) = v′(T );
1

T

∫ T

0

v(x) dx = 0.
(6.4)

Here q̃ is determined by integration: 1

T

∫ T

0
DW̃ (v) dx = q̃.

Remark 6.4. We require v3 > −m3 on [0, T ] for models involving τ3 direction
in view of the physical assumption (2.2).

Define F (v) = W (v+m)−W (m)−DW (m) ·v and introduce the functional

I(v) =

∫ T

0

1

2
|v′|2 dx+

∫ T

0

F (v) dx (6.5)

on the space

H1

T,0 :=

{

v ∈ H1

T ; v̄ =
1

T

∫ T

0

v dx = 0

}

.

Proposition 6.5. 0 is always a critical point of the functional I defined above

on H1
T,0.

Proof. It is easy to verify that for φ ∈ H1
T,0, there holds

I ′(v)φ =

∫ T

0

v′ · φ′ +DW̃ (v) · φ dx.

Taking v = 0 and noticing that DW̃ (0) = 0, we get the desired result.

Remark 6.6. By our formulation, we make 0 always a critical point and it
corresponds to the constant solution. This geometric property supplies us a nice
way to exclude the possibility that the periodic solution we find is constant, i.e.,
to help prove that the periodic waves we find are oscillatory.

Proposition 6.7. Without physical restriction on τ3, the critical point of I
corresponds to the solution of (5.6).
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Proof. This can be regarded as a simple consequence of Corollary 1.1 in [24].
For completeness, we write the details here. First, assume that v solves











v′′(x) = DW̃ (v)− q̃

v(0) = v(T ); v′(0) = v′(T );
1

T

∫ T

0

v(x) dx = 0.
(6.6)

Multiplying the equation by φ ∈ H1
T,0 and integrating, we get

∫ T

0

v′φ′ +DW̃ (v) · φ dx = 0,

i.e., v is a critical point of I.
Next, we assume that v is a critical point and φ ∈ H1

T . Then φ− φ̄ ∈ H1
T,0.

Hence we have
∫ T

0
v′ · (φ− φ̄)′ +

∫ T

0
DW̃ (v) · (φ− φ̄) dx = 0, i.e.,

∫ T

0

v′ · φ′ +

∫ T

0

DW̃ (v) · φ−

∫ T

0

DW̃ (v) · φ̄ dx = 0.

Noting that φ̄ = 1

T

∫ T

0
φ dx, we find that the left-hand side expression above is:

∫ T

0

v′ · φ′ +

∫ T

0

DW̃ (v) · φ−

∫ T

0

DW̃ (v) ·

(

1

T

∫ T

0

φ dx

)

dx = 0

Noticing that 1

T

∫ T

0
DW̃ (v) dx = q̃, we get

∫ T

0
v′·φ′+

∫ T

0
(DW̃ (v)−q̃)·φ dx = 0,

which implies v′′ = DW̃ (v)− q̃.

Remark 6.8. If we consider models involving the restriction v3 > −m3, we
need to consider a variational problem with this constraint, which will make
the admissible set not weakly closed.

In order to deal with the integral constant q, we may restrict the admissible
sets (or choose proper function space) on which we consider the functional or
use Lagrange multiplier to recover it by adding restriction functional on the
original space on which the functional is defined.

In the following, we give some propositions on general nonlinear functionals.
These propositions and further materials can be found in [16, 25, 37] and the
references therein.

Proposition 6.9. Let X be a Banach space, I a real functional defined on X
and U be a sequentially weakly compact set in X . If I is weakly lower semi-

continuous, then I attains its minimum on U , i.e., there is x0 ∈ U , such that

I(x0) = infx∈U I(x).
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Proof. Let c := infx∈U I(x). By definition of inf, there exists {xn} ⊂ U such
that I(xn) → c. In view that U is sequentially weakly compact, {xn} admits
a weakly convergent subsequence, still denoted by {xn}. Denote x0 ∈ X the
corresponding weak limit. Since U is weakly closed, we know x0 ∈ U . Noticing
that weakly lower semi-continuity of I, we have c = limn I(xn) ≥ I(x0). By
the definition of c, we in turn know I(x0) = c > −∞, which completes the
proof.

It is well-known that a bounded weakly closed set in a reflexive Banach
space is weakly compact. In particular, a bounded closed convex set in reflex-
ive Banach space is weakly compact since weakly close and close in norm are
equivalent for convex sets. Hence we have the following corollaries:

Corollary 6.10. Let U be a bounded weakly closed set in a reflexive Banach

space X and I be a weakly lower semi-continuous real functional on X . Then

there exists x0 ∈ U such that I(x0) = infx∈U I.

Definition 6.11. A real functional I on a Banach space X is said to be
coercive if

lim
|x|X→+∞

I(x) = +∞.

Corollary 6.12. Any coercive weakly lower semi-continuous real functional I

defined on a reflexive Banach space X admits a global minimizer.

6.3. A general existence result. In this part, we first give a general result
for models with the physical assumption τ3 > 0, i.e, v3 > −m3. We will assume
the following conditions on the potential W

(A1) W ∈ C2 and W (τ) → +∞ as τ3 → 0+. For τ3 ≤ 0, define W (τ) = +∞;

(A2) There exist a positive constant C such that W (τ) ≥ C
τ2
3

for τ ∈ Rn

(n = 1, 2, 3);

(A3) There exists a constant vector m ∈ R
3
+ := {m ∈ R

3;m3 > 0} such
that σ{D2W (m)} ∩ R

1
− 6= ∅. Here σ{D2W (m)} is the spectrum set of

D2W (m).

Assumption (A2) implies in particular that the potential is bounded from
below. Assumption (A3) amounts to saying that there is a point where the po-
tential is non-convex. From the physical point of view, this is quite reasonable.

Remark 6.13. A simple kind of potential function is that for an isentropic
polytropic gas, for which dW (τ) = cτ

−γ
3 , γ > 1. This yields W (τ) = c2τ

1−γ
3 ,

with 0 < 1− γ < 1 for γ in the typical range 1 < γ < 2 suggested by statistical
mechanics [6], hence blowup as τ3 → 0 at rate slower than cτ−2

3 . Indeed,
a point charge model with inverse square law yields in the continuum limit

W (τ) ∼ τ
− 2

3

3 for dimension 3, consistent with a monatomic gas law γ = 5

3
.
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Thus, in the simple gas-dynamical setting, (A2) requires a near-range repulsion
stronger than inverse square. Alternatively, one may assume not point charges
but particles of finite radius, as is often done in the literature, in which case
W (τ) = ∞ for τ3 ≤ α, α > 0, also satisfying (A2). However, in this case, a
much simpler argument would suffice to yield τ3 ≥ α a.e.

Theorem 6.14. Assume (A1), (A2) and (A3). If
(

2π
T

)2
< λ(m), then we have

a physical nonconstant periodic wave solution for the problem (3.2) for which

the mean over one period of τ is m. Here −λ(m) is the smallest eigenvalue of

D2W (m).

In the following lemmas of this section, we assume that (A1), (A2) and (A3)
hold. Define two subsets of H1

T,0 by

A1 := {v ∈ H1

T,0; v3 > −m3}, A2 := {v ∈ H1

T,0; v3 ≥ −m3}.

Remark 6.15. The admissible set A1 is not weakly closed in H1
T,0.

Lemma 6.16. Under assumptions (A1)–(A3), I is a coercive functional

on H1
T,0.

Proof. By the definition of I, we just need to consider the part
∫ T

0
F (v) dx. By

assumption (A2), we have
∫ T

0

F (v) dx =

∫ T

0

W (v +m)−W (m)−DW (m) · v dx

=

∫ T

0

W (v +m)−W (m) dx

≥−W (m)T

>−∞.

By the above lemma, we see that for sufficient large R the minimizers

of I on Ai are restricted to the sets Āi := Ai ∩ BH1

T,0
[0, R] for i = 1, 2

where BH1

T,0
[0, R] is the closed ball with center 0 and radius R in H1

T,0. Define

Si := {v ∈ Ai; I(v) = inf ṽ∈Ai
I(ṽ)}. Obviously, we have Si := {v ∈ Āi; I(v) =

inf ṽ∈Ai
I(ṽ)}.

Lemma 6.17. Ā2 is a weakly compact set in H1
T,0.

Proof. Ā2 is bounded by its definition. Since H1
T is reflexive, we know Ā2

is weakly sequentially compact. Also, Ā2 is convex. Indeed, we can use the
definition of convexity of a set to check this easily. An appeal to Sobolev
embedding theorem yields that Ā2 is closed in norm topology of HT

1 . For a
convex set, closeness in norm topology and weak topology coincides, hence we
have that Ā2 is weakly closed. Putting this information together, we have shown
that Ā2 is weakly compact.
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Lemma 6.18. I is a weakly lower semi-continuous functional on H1
T,0.

Proof. Let vn → v weakly in H1
T,0. By Sobolev imbedding, we have vn → v

uniformly in [0, T ]. Hence we have
∫ T

0
F (vn) dx →

∫ T

0
F (v) dx. Because of

the mean zero property,
∫ T

0
|v′|2 dx is of norm form, hence it is a weakly lower

semi-continuous functional.

Lemma 6.19. There hold S2 6= ∅ and v3 ≥ −m3 + ǫ for v ∈ S2 under the

assumption of Theorem 6.14. Here ǫ is a positive constant.

Proof. By Proposition 6.8, S2 6= ∅. Note that 0 ∈ A2, I(0) = 0 and hence
I(v) ≤ 0. Hence we will have v3 ≥ −m3 + ǫ. Indeed, suppose there were
x0 ∈ [0, T ] such that v3(x0) = −m3. Then by Sobolev embedding there would
be a positive constant K such that |v3(x)+m3|= |(v3(x)+m3)−(v3(x0)+m3)|

≤ K|x − x0|
1

2 for x ∈ [0, T ]. By assumption (A2), we would have I(v) =
∫ T

0
(1
2
)|v′|2 dx+

∫ T

0
W (v+m)−W (m) dx≥

∫ T

0
CK|x−x0|

−1dx−
∫ T

0
W (m)dx=+∞,

a contradiction.

Lemma 6.20. There holds 0 6∈ S1 = S2 under the assumption of Theorem 6.14.

Proof. Consider the second variation. An easy computation shows that for v, φ
in H1

T,0

I ′′(v) : (φ⊗ φ) =

∫ T

0

|φ′|2 dx+

∫ T

0

D2W (v +m) : (φ⊗ φ) dx.

To show 0 6∈ S2, consider

I ′′(0) : (φ⊗ φ) =

∫ T

0

|φ′|2 dx+

∫ T

0

D2W (m) : (φ⊗ φ) dx.

Let φ̃(x) = η sin
(

2πx
T

)

for 0 < η < m3 and v0 ∈ R
3 be a unit eigenvector

corresponding to −λ(m). We see that φ(x) := φ̃(x)v0 ∈ A2. Since 0 is a critical

point of I on H1
T,0 and

I ′′(0) : (φv0 ⊗ φv0) =

∫ T

0

η2
(

2π

T

)2(

cos

(

2πx

T

))2

dx− λ(m)

∫ T

0

η2
(

sin

(

2πx

T

))2

dx

=
η2T

2

{

(

2π

T

)2

− λ(m)

}

< 0.

Hence we see that 0 6∈ S2 and S1 = S2 is obvious.
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Proof of Theorem 6.14. Combining Lemmas 6.16–6.20, we finish the proof of
Theorem 6.14.

Remark 6.21. The condition
(

2π
T

)2
< λ(m) in Theorem 6.14 on the period T,

is readily seen by Fourier analysis to be the sharp criterion for stability of
the constant solution τ ≡ m, u ≡ 0. Equivalently, it is the Hopf bifurcation
condition as period is increased, marking the minimum period of bifurcating
periodic waves. Thus, it is natural, and no real restriction. On the other
hand, there may well exist minimizers at whose mean m W is convex; this
condition is sufficient but certainly not necessary. Likewise, there exist saddle-
point solutions not detected by the direct approach.

6.4. Relation to standard results, and directions for further study. In
the scalar case τ ∈ R

1, the condition that D2W (m) have a negative eigenvalue is
equivalent to convexity of the Hamiltonian H at the equilibrium (m, 0), under
which assumption there are many results on existence of periodic solutions
of all amplitudes; see, for example, [30] and later elaborations. Likewise in
the vectorial case τ ∈ R

d, d > 1, if D2W (m) < 0, then we may appeal to
standard theory to obtain existence of periodic solutions by a variety of means;
indeed, the convexity condition may be substantially relaxed for solutions in the
large, as described in [30], and replaced by global conditions ensuring, roughly,
star-shaped level sets of the Hamiltonian. On the other hand, review of the
potentials considered here reveals that, typically, it is a single eigenvalue of
D2W that becomes negative and not all eigenvalues, and so these methods
cannot be directly applied.

It is an interesting question to what extent such standard methods could
be adapted to the situation of a Hamiltonian potential (in our case −W ) with
a single convex mode. Existence of small amplitude periodic waves at least is
treatable by Hopf bifurcation analysis. The question is to what extent if any one
can make global conclusions beyond what we have done here, in particular, to
relax for large solutions the nonconvexity condition onW atm. Finally, it would
be interesting to find natural and readily verifiable conditions for existence of
saddle-point solutions in this context.
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