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Solvability of Fractional Integral Equations

on an Unbounded Interval through the Theory

of Volterra-Stieltjes Integral Equations

Tomasz Zaja̧c

Abstract. In this paper we study the existence of solutions of a nonlinear quadratic
Volterra-Stieltjes integral equation in the space of real functions being continuous and
bounded on the interval of nonnegative numbers. Moreover, we also investigate the
solvability of the equation in question in the classes of functions being asymptotically
stable or having limits at infinity, for example. The main tool used in our consider-
ations is the technique of measures of noncompactness constructed in a special way.
It is shown that results obtained in the paper are applicable to the class of fractional
integral equations and Volterra-Chandrasekhar integral equations, among others.
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1. Introduction

The paper is devoted to the study of solutions of the nonlinear integral equation
of Volterra-Stieltjes type having the form

x(t) = (F1x)(t) + (F2x)(t)

∫ t

0

u(t, τ, (Tx)(τ))dτg(t, τ),

where t ≥ 0 and F1, F2 are superposition operators defined on the function
space BC(R+). The precise definitions will be given later.

Our aim is to show the solvability of the equation in question under some
reasonable and handy assumptions. Moreover, we will also investigate some im-
portant properties of solutions of this equation such as asymptotic stability and
the existence of a common limit at infinity for all solutions belonging to a ball in
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the space BC(R+). In our investigations we will use measures of noncompact-
ness, the theory of functions of bounded variation and the Riemann-Stieltjes
integral with a kernel depending on two variables. The main result of the pa-
per is contained in Theorem 3.7. That theorem covers, as particular cases, the
classical Volterra integral equation, the integral equation of fractional order and
the Volterra counterpart of the famous integral equation of Chandrasekhar type
on an unbounded interval (see Section 4). It is worth pointing out that integral
equations of fractional order play nowadays very important role and create a
wide branch of the theory of differential and integral equations and the so-called
fractional calculus. These equations are closely related to the Riemann-Liouville
integral of fractional order. That integral plays a very important role in uni-
fication and generalization of the concept of n-order differentiation and n-fold
integration (cf. [1,23–27,29,32]). It is worthwhile mentioning that the Riemann-
Liouville integral of fractional order provides also a very useful example of a
semi-group of linear bounded operators (see [21]).

Recently, integral equations of fractional order find a lot of applications in
physics, mechanics, engineering, electrochemistry and economics, among other
(see [18–20,23,26,27,30–32] for instance). Integral equations of Chandrasekhar
type mentioned above can be very often encountered in several applications as
well (cf. [8,11,14] and references therein). It is worth emphasizing that integral
equations of fractional order are studied in several papers (cf. [4, 6, 7, 9, 10, 12,
15–17,28]) but only a few papers investigate those equations on an unbounded
interval [7, 10, 28].

Finally, let us remark that this paper generalizes the results obtained in the
paper [10] (cf. also [7, 11, 28]).

2. Preliminaries

Assume that g(t, τ) = g is a real function defined on a subset A ⊂ R
2. The

symbol
∨q

τ=p g(t, τ) stands for the variation of the function τ → g(t, τ) on
the interval [p, q] which is contained in the domain of this function, where the
variable t is fixed.

In what follows we will used the Riemann-Stieltjes integral of the form

∫ b

a

x(τ)dτg(t, τ),

where the symbol dτ indicates the integral with respect to the variable τ , where t
is fixed. Let us mention that in some situation lower and upper limit of the
integration can also depend upon the variable t.

Now, we provide some classical results connected with measures of noncom-
pactness.
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Assume that (E, || · ||) is a real Banach space. Denote by B(x, r) the closed
ball centered at x and with radius r. Instead B(0, r) we will write Br. If X is a
subset of E then the symbols X and ConvX denote the closure and the convex
closed hull of the set X, respectively. Further, denote by ME the family of all
nonempty and bounded subsets of E. The symbol NE stands for the subfamily
of ME consisting of all relatively compact sets. We will accept the following
definition of a measure of noncompactness [5].

Definition 2.1. A mapping µ : ME → R+ = [0,+∞) will be called a measure
of noncompactness in the space E if it satisfies the following conditions:

1o The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE.

2o X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3o µ(X) = µ(X) = µ(ConvX).

4o µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

5o If (Xn) is a sequence of closed sets belonging to ME such that Xn+1 ⊂ Xn

for n = 1, 2, . . . and if limn→∞ µ(Xn) = 0, then the intersection X∞ =
⋂∞

n=1 Xn is nonempty.

The family kerµ described in 10 is called the kernel of the measure of non-
compactness µ. The key role in our further considerations will be played by the
following fixed point theorem of Darbo type [5].

Theorem 2.2. Let Ω be a nonempty, bounded, closed, and convex subset of
the space E and let Q : Ω → Ω be a continuous transformation. Assume that
there exists a constant k ∈ [0, 1) such that µ(QX) ≤ kµ(X) for any nonempty
subset X of Ω. Then Q has at least one fixed point in the set Ω. Moreover, the
set Fix Q of all fixed points of Q belonging to Ω is a member of the family kerµ.

Our considerations in this paper will be placed in the Banach space BC(R+)
consisting of all real functions defined, continuous and bounded on the inter-
val R+ with the standard supremum norm.

Now, we define some quantities, which will be employed in our further
considerations. To this end, take a nonempty and bounded subset X of the
space BC(R+). Fix ε > 0, T > 0, and take x ∈ X. Denote by ωT (x, ε) the
modulus of continuity of the function x on the interval [0, T ], defined by the
formula

ωT (x, ε) = sup{|x(s)− x(t)| : s, t ∈ [0, T ], |s− t| ≤ ε}.

Next, let us define

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},

ωT
0 (X) = lim

ε→0
ωT (X, ε) and ω0(X) = lim

T→∞
ωT
0 (X).
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Moreover, we define the following quantities:

βT (x) = sup {|x(s)− x(t)| : s ≥ T, t ≥ T} ,

β(X) = lim
T→∞

{

sup{βT (x) : x ∈ X}
}

,

β̃(X) = lim
T→∞

{

sup
x∈X

{sup[|x(t)| : t ≥ T ]}
}

,

and

γ(X) = lim sup
t→∞

diamX(t)

where we denoted diamX(t) = sup{|x(t) − y(t)| : x, y ∈ X}. It can be shown
that the quantities

µ(X) = ω0(X) + β(X), (2.1)

µ̃(X) = ω0(X) + β̃(X) (2.2)

are measures of noncompactness in the space BC(R+). Moreover, the kernel
kerµ consists of all sets X ∈ MBC(R+) such that functions belonging to X are
locally equicontinuous on R+, have finite limits at infinity and tend to those
limits uniformly with respect to the set X, i.e. for each ε > 0 there exists
T > 0 such that |x(s) − x(t)| < ε for all s, t ≥ T and for all x ∈ X. The
description of the kernel ker µ̃ is similar. In the sequel we will also use the
so-called superposition (or Nemytskii)operator (see [3]).

To define the operator in question suppose f : R+ × R → R is a given
function. For any function x(t) = x : R+ → R, we can define the function Fx

by putting (Fx)(t) = f(t, x(t)), t ∈ R+. The operator F defined in such a way
is called the superposition operator generated by the function f .

Finally, we pay our attention to the concept of the asymptotic stability
(sometimes we say also: local uniform attractivity) of solutions of an operator
equation. To this end, assume that Ω is a nonempty subset of the space BC(R+)
and Q is an operator acting from Ω into BC(R+). Consider the operator equa-
tion of the form

x(t) = (Qx)(t), t ≥ 0. (2.3)

Definition 2.3. We say that a solution x of Equation (2.3) is asymptotically
stable if there exists a ball B(x0, r) (r > 0) in the space BC(R+) such that
x ∈ B(x0, r)∩Ω and for any ε > 0 there exists T > 0 such that |x(t)−y(t)| ≤ ε

for each solution y ∈ B(x0, r) ∩ Ω of Equation (2.3) and for any t ≥ T .
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3. Main result

In this section we will investigate the nonlinear quadratic Volterra-Stieltjes in-
tegral equation which has the form

x(t) = f1(t, x(t)) + f2(t, x(t))

∫ t

0

u(t, τ, (Tx)(τ))dτg(t, τ), t ≥ 0. (3.1)

We look for solutions of this equation in the space BC(R+). In our study we
will assume that the following assumptions are satisfied:

(i) The functions fi : R+ × R → R (i = 1, 2) are continuous and there exist
nondecreasing functions ki : R+ → R+ such that

|fi(t, x)− fi(t, y)| ≤ ki(r)|x− y| (i = 1, 2)

for any t ∈ R+ and for all x, y ∈ [−r, r], where r ≥ 0 is an arbitrary
fixed number. Moreover, the function t → fi(t, 0) belongs to BC(R+) for
i = 1, 2.

Observe that on the basis of the above assumption we may define the finite
constants F1, F2 by putting

Fi = sup{|fi(t, 0)| : t ∈ R+} (i = 1, 2).

(ii) The equality

lim
T→∞

{sup{|f1(t, x)− f1(s, x)| : t, s ≥ T, |x| ≤ r}} = 0

holds for each r > 0.

For further purposes denote by ∆ and ∆T the following triangles

∆T = {(t, τ) ∈ R
2 : 0 ≤ τ ≤ t ≤ T}, ∆ = {(t, τ) ∈ R

2 : 0 ≤ τ ≤ t},

where T > 0 is arbitrarily fixed number.

(iii) The function u(t, τ, x) = u : ∆ × R → R is continuous. Moreover, there
exists a continuous function n(t, τ) = n : ∆ → R+ and a nondecreasing
and continuous at zero function φ : R+ → R+ with φ(0) = 0 such that

|u(t, τ, x)− u(t, τ, y)| ≤ n(t, τ)φ(|x− y|)

for all (t, τ) ∈ ∆ and x, y ∈ R.

(iv) The function g(t, τ) = g : ∆ → R is continuous with respect to the
variable τ on the interval [0, t], where t ≥ 0 is fixed.

(v) For any t ∈ R+ the function τ → g(t, τ) is of bounded variation on the
interval [0, t].
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(vi) For each ε > 0 and T > 0 there exists δ > 0 such that for all t, s ∈ [0, T ]
and |s− t| ≤ δ the following inequality holds

min{t,s}
∨

τ=0

[g(s, τ)− g(t, τ)] ≤ ε.

Now, we present a few properties of the function g, which will be employed
in the sequel.

Lemma 3.1. We have the following statements:

(a) Assume that conditions (iv) and (v) are fulfilled. Then for each s∈ [0,+∞)
and ε > 0 there exists δ > 0 such that if t ∈ [0,+∞) and t ≤ s ≤ t + δ

the following inequality is satisfied

s
∨

τ=t

g(s, τ) ≤ ε.

(b) Let us fix arbitrarily T > 0 and assume that conditions (iv)–(vi) are ful-
filled. Then for each t ∈ [0, T ] and ε > 0 there exists δ > 0 such that if
s ∈ [0, T ] and t ≤ s ≤ t+ δ the following inequality is satisfied

s
∨

τ=t

g(s, τ) ≤ ε.

Proof. Part (a). Fix arbitrarily s ∈ [0,+∞) and ε > 0. Consider the function h

defined on the interval [0, s] by the formula

h(p) =

p
∨

τ=0

g(s, τ).

Clearly, the function h is continuous at the point s. Hence we deduce that there
exists δ > 0 such that if t ∈ [0,+∞), t ≤ s ≤ t+δ then we have |h(s)−h(t)| ≤ ε.
On the other hand

|h(s)− h(t)| =
∣

∣

∣

∣

∣

s
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(s, τ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t
∨

τ=0

g(s, τ) +
s
∨

τ=t

g(s, τ)−
t
∨

τ=0

g(s, τ)

∣

∣

∣

∣

∣

=
s
∨

τ=t

g(s, τ)

≤ ε.
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Part (b). Suppose the assertion is false. Then we could find t0 ∈ [0, T ],
{tn}∞n=1 ⊂ [0, T ], ε > 0 such that tn ↓ t0 and

∨tn
τ=t0

g(tn, τ) > ε. Let δ > 0 be
chosen for 1

4
ε according to assumption (vi). Without loss of generality we may

assume that t1 − t0 < δ. Let us construct a subsequence {tnk
}∞k=1, for which

tnk
∨

τ=tnk+1

g(t1, τ) ≥
1

2
ε, k ≥ 1. (3.2)

For k = 1 we put n1 = 1. We can choose index n2 in such a way that

t1
∨

τ=tn2

g(t1, τ) ≥
1

2
ε.

Now, let us assume that k ≥ 1 and we have already chosen, tn1
, tn2

, . . . , tnk
, tnk+1

.

By selecting δ we have
∨tnk+1

τ=0 [g(tnk+1
, τ)− g(t1, τ)] ≤ 1

4
ε. It is easy to see that

tnk+1
∨

τ=t0

g(t1, τ) ≥
tnk+1
∨

τ=t0

g(tnk+1
, τ)− 1

4
ε ≥ 3

4
ε.

Index nk+2 can be chosen so that
∨tnk+1

τ=tnk+2
g(t1, τ) ≥ 1

2
ε, which completes

the inductive proof of the existence of a subsequence {tnk
}∞k=1 fulfilling (3.2).

We obtain a contradiction, because the function τ → g(t1, τ) fulfilling (3.2) can
not have bounded variation on the interval [t0, t1].

Lemma 3.2. Let us fix arbitrarily T > 0 and assume that conditions (iv)–(vi)
are satisfied. Then

(a) The function

[0, T ] ∋ t →
t
∨

τ=0

g(t, τ) ∈ R

is continuous on [0, T ].

(b) For each ε > 0 there exists δ > 0 such that for all t, s ∈ [0, T ] if |t−s| < δ

then

s
∨

τ=t

g(s, τ) ≤ ε for t ≤ s and
t
∨

τ=s

g(t, τ) ≤ ε for s ≤ t.

Proof. Part (a). Let us fix s ∈ [0, T ]. We will prove the continuity of this
function at any such point. To do this, fix ε > 0. We estimate the expression

∣

∣

∣

∣

∣

s
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(t, τ)

∣

∣

∣

∣

∣

.
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First, let us assume that t ≤ s. Then we have
∣

∣

∣

∣

∣

s
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(t, τ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t
∨

τ=0

g(s, τ) +
s
∨

τ=t

g(s, τ)−
t
∨

τ=0

g(t, τ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

t
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(t, τ)

∣

∣

∣

∣

∣

+
s
∨

τ=t

g(s, τ)

≤
t
∨

τ=0

[g(s, τ)− g(t, τ)] +
s
∨

τ=t

g(s, τ).

Following a similar reasoning in case t>s, we get
∣

∣

∨s

τ=0 g(s, τ)−
∨t

τ=0 g(t, τ)
∣

∣≤
∨s

τ=0[g(s, τ)− g(t, τ)] +
∨t

τ=s g(t, τ). Using Lemma 3.1 we obtain the existence
of δ > 0 such that if |t− s| < δ then

∣

∣

∣

∣

∣

s
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(t, τ)

∣

∣

∣

∣

∣

< ε.

Part (b). It suffices to consider the case t ≤ s. Let us fix ε > 0. Then

s
∨

τ=t

g(s, τ) =

∣

∣

∣

∣

∣

s
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(s, τ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

s
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(t, τ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t
∨

τ=0

g(t, τ)−
t
∨

τ=0

g(s, τ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

s
∨

τ=0

g(s, τ)−
t
∨

τ=0

g(t, τ)

∣

∣

∣

∣

∣

+
t
∨

τ=0

[g(t, τ)− g(s, τ)].

The existence of δ is ensured by part (a).

Now, we define the function G(t, τ) = G : ∆ → R by putting

G(t, τ) =
τ
∨

p=0

g(t, p).

Notice that the function τ → G(t, τ) is well defined and nondecreasing on the
interval [0, t], for any fixed t ≥ 0. Below we show a connection between the
functions g and G.

Lemma 3.3. Under assumption (v) the inequality

t
∨

p=0

[G(s, p)−G(t, p)] ≤
t
∨

p=0

[g(s, p)− g(t, p)]

holds for all t, s ≥ 0, t < s.
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Proof. Let 0 = a0 < a1 < · · · < an = t be a partition of the interval [0, t]. Then
we have

n
∑

i=1

|[G(s, ai)−G(t, ai)]− [G(s, ai−1)−G(t, ai−1)]|

=
n
∑

i=1

∣

∣

∣

∣

∣

[

ai
∨

p=0

g(s, p)−
ai
∨

p=0

g(t, p)

]

−
[

ai−1
∨

p=0

g(s, p)−
ai−1
∨

p=0

g(t, p)

]∣

∣

∣

∣

∣

=
n
∑

i=1

∣

∣

∣

∣

∣

∣

ai
∨

p=ai−1

g(s, p)−
ai
∨

p=ai−1

g(t, p)

∣

∣

∣

∣

∣

∣

≤
n
∑

i=1

ai
∨

p=ai−1

[g(s, p)− g(t, p)]

=
t
∨

p=0

[g(s, p)− g(t, p)].

Thus the inequality follows.

In what follows, let us denote by n(t) and u(t) the functions defined on R+

in the following way:

n(t) =

∫ t

0

n(t, τ)dτG(t, τ), u(t) =

∫ t

0

|u(t, τ, 0)|dτG(t, τ).

We will need the following property of these functions.

Lemma 3.4. Assume that conditions (iii)–(vi) are satisfied. Then the functions
n and u are continuous on the interval R+.

Proof. Obviously both functions are well defined on R+. We see that it is
sufficient to prove our lemma for the function n. To this end, fix arbitrarily
T > 0, ε > 0 and t, s ∈ [0, T ] such that |t− s| ≤ ε. Without loss of generality
we can assume that t < s. Then we obtain

|n(s)−n(t)| ≤
∣

∣

∣

∣

∫ s

0

n(s, τ)dτG(s, τ)−
∫ t

0

n(s, τ)dτG(s, τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

n(s, τ)dτG(s, τ)−
∫ t

0

n(t, τ)dτG(s, τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

n(t, τ)dτG(s, τ)−
∫ t

0

n(t, τ)dτG(t, τ)

∣

∣

∣

∣

≤
∫ s

t

|n(s, τ)|dτ
(

τ
∨

p=t

G(s, p)

)

+

∫ t

0

|n(s, τ)−n(t, τ)|dτ
(

τ
∨

p=0

G(s, p)

)

+

∫ t

0

|n(t, τ)|dτ
(

τ
∨

p=0

[G(s, p)−G(t, p)]

)

.
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Thus, using Lemma 3.3 we have

|n(s)− n(t)| ≤ nT

s
∨

p=t

G(s, p) + ωT
1 (n, ε)

t
∨

p=0

G(s, p) + nT

t
∨

p=0

[G(s, p)−G(t, p)]

≤ nT

s
∨

p=t

g(s, p) + ωT
1 (n, ε)

s
∨

p=0

g(s, p) + nT

t
∨

p=0

[g(s, p)− g(t, p)],

where

nT = sup{n(t, τ) : (t, τ) ∈ ∆T},
ωT
1 (n, ε) = sup{|n(s, τ)− n(t, τ)| : (s, τ), (t, τ) ∈ ∆T , |t− s| ≤ ε}.

In view of Lemma 3.2 and uniform continuity of the function n on the set ∆T

we obtain our assertion.

Now, we can formulate our next assumptions:

(vii) The functions n and u vanish at infinity, i.e.

lim
t→∞

n(t) = lim
t→∞

u(t) = 0.

Observe that in view of Lemma 3.4 the constants N and U defined as follows

N = sup{n(t) : t ≥ 0}, U = sup{u(t) : t ≥ 0}
are finite.

(viii) The operator T : BC(R+) → BC(R+) is continuous and there exists a
nondecreasing function Ψ : R+ → R+ such that ||Tx|| ≤ Ψ(||x||) for any
x ∈ BC(R+).

(ix) There exists a positive real number r0 which satisfies the inequalities

rk1(r) + F1 + rk2(r)φ(Ψ(r))N + rk2(r)U + F2φ(Ψ(r))N + F2U ≤ r

k1(r) + k2(r)(φ(Ψ(r))N + U) < 1.

Remark 3.5. Observe that if r0 is a positive solution of the first inequality from
assumption (ix) and if one of the terms F2φ(Ψ(r0))N , F2U , F1 does not vanish,
then the second inequality from assumption (ix) is automatically satisfied.

Now, let us consider the operators Fi(i = 1, 2), U , V defined on the space
BC(R+) by the formulas:

(Fix)(t) = fi(t, x(t)) (i = 1, 2)

(Ux)(t) =

∫ t

0

u(t, τ, (Tx)(τ))dτg(t, τ)

(V x)(t) = (F1x)(t) + (F2x)(t)(Ux)(t).

In the next lemma we prove some important properties of the operator V .
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Lemma 3.6. Let assumptions (i)–(ix) hold. Then the operator V acts from the
space BC(R+) into BC(R+). Moreover, the operator V transforms continuously
the ball Br0 into itself, where r0 is the number appearing in assumption (ix).

Proof. We first show that for any function x ∈ BC(R+) the function V x is
continuous on R+. To do this, fix T > 0, ε > 0. Next, assume that t, s ∈ [0, T ]
are such that |t− s| ≤ ε. Without restriction of generality we can assume that
t < s. Then we get

|(Ux)(s)−(Ux)(t)|

≤
∣

∣

∣

∣

∫ s

0

u(s, τ, (Tx)(τ))dτg(s, τ)−
∫ t

0

u(s, τ, (Tx)(τ))dτg(s, τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

u(s, τ, (Tx)(τ))dτg(s, τ)−
∫ t

0

u(t, τ, (Tx)(τ))dτg(s, τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

u(t, τ, (Tx)(τ))dτg(s, τ)−
∫ t

0

u(t, τ, (Tx)(τ))dτg(t, τ)

∣

∣

∣

∣

≤
∫ s

t

|u(s, τ, (Tx)(τ))|dτ
(

τ
∨

p=t

g(s, p)

)

+

∫ t

0

|u(s, τ, (Tx)(τ))−u(t, τ, (Tx)(τ))|dτ
(

τ
∨

p=0

g(s, p)

)

+

∫ t

0

|u(t, τ, (Tx)(τ))|dτ
(

τ
∨

p=0

[g(s, p)−g(t, p)]

)

≤
∫ s

t

[|u(s, τ, (Tx)(τ))−u(s, τ, 0)|+|u(s, τ, 0)|]dτ
(

τ
∨

p=t

g(s, p)

)

+

∫ t

0

ωT
1 (u, ε; Ψ(||x||))dτ

(

τ
∨

p=0

g(s, p)

)

+

∫ t

0

[|u(t, τ, (Tx)(τ))−u(t, τ, 0)|+|u(t, τ, 0)|]dτ
(

τ
∨

p=0

[g(s, p)−g(t, p)]

)

≤ (nTφ(Ψ(||x||))+uT )
s
∨

p=t

g(s, p)+ ωT
1 (u, ε; Ψ(||x||))

s
∨

p=0

g(s, p)

+(nTφ(Ψ(||x||))+uT )
t
∨

p=0

[g(s, p)−g(t, p)],

(3.3)
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where

ωT
1 (u, ε; a) = sup

{

|u(s, τ, y)− u(t, τ, y)| :
(s, τ), (t, τ) ∈ ∆T ,

|s− t| ≤ ε, |y| ≤ a

}

uT = sup{|u(t, τ, 0)| : (t, τ) ∈ ∆T}.

Using Lemma 3.2 and uniform continuity of the function u on the set
∆T × [−Ψ(||x||),Ψ(||x||)] we obtain continuity of the function Ux on the in-
terval [0, T ]. This yields the continuity of Ux on R+. Obviously the functions
F1x and F2x are contiuous on R+. Combining this facts we have that the
function V x is continuous on R+.

Now, we show that for any function x ∈ BC(R+), the function V x is
bounded on R+. For this purpose, fix t ∈ R+. Then we get

|(V x)(t)|
≤|f1(t, x(t))−f1(t, 0)|+|f1(t, 0)|+[|f2(t, x(t))−f2(t, 0)|

+|f2(t, 0)|]
∣

∣

∣

∣

∫ t

0

u(t,τ,(Tx)(τ))dτg(t, τ)

∣

∣

∣

∣

≤k1(||x||)|x(t)|+F1

+[k2(||x||)|x(t)|+F2 ]

∫ t

0

[|u(t,τ,(Tx)(τ))−u(t,τ,0)|+|u(t, τ,0)|]dτ
(

τ
∨

p=0

g(t, p)

)

.

Since

|u(t, τ, (Tx)(τ))− u(t, τ, 0)| ≤ n(t, τ)φ(|(Tx)(τ)|) ≤ n(t, τ)φ(||Tx||), (3.4)

we have the following estimation

|(V x)(t)|
≤k1(||x||)|x(t)|+F1

+[k2(||x||)||x||+F2]

[

φ(||Tx||)
∫ t

0

n(t, τ)dτG(t, τ)+

∫ t

0

|u(t, τ, 0)|dτG(t, τ)

]

≤k1(||x||)|x(t)|+F1+k2(||x||)||x||φ(||Tx||)n(t)
+k2(||x||)||x||u(t)+F2φ(||Tx||)n(t)+F2u(t).

(3.5)

From the above inequality we infer that the function V x is bounded on R+.
Apart from this we observe that estimation (3.5) yields

||V x|| ≤ k1(||x||)||x||+ F1 + k2(||x||)||x||φ(Ψ(||x||))N
+ k2(||x||)||x||U + F2φ(Ψ(||x||))N + F2U.

From this we see that V (Br0) ⊂ Br0 .
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In what follows we show that the operator V is continuous on the ball Br0 .
To do this, fix ε > 0 and x0 ∈ Br0 . We can find δ > 0 such that for an arbitrary
x ∈ Br0 , if ||x− x0|| ≤ δ we have ||Tx− Tx0|| ≤ ε. Hence, for arbitrarily fixed
t ∈ R+ we get

|(V x)(t)− (V x0)(t)|
≤|f1(t, x(t))−f1(t, x0(t))|

+

∣

∣

∣

∣

f2(t, x(t))

∫ t

0

u(t,τ,(Tx)(τ))dτg(t,τ)−f2(t, x0(t))

∫ t

0

u(t,τ,(Tx)(τ))dτg(t,τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

f2(t, x0(t))

∫ t

0

u(t,τ,(Tx)(τ))dτg(t,τ)−f2(t, x0(t))

∫ t

0

u(t,τ,(Tx0)(τ))dτg(t,τ)

∣

∣

∣

∣

≤k1(r0)|x(t)−x0(t)|+|f2(t, x(t))−f2(t, x0(t))|

×
∫ t

0

[|u(t,τ,(Tx)(τ))−u(t,τ,0)|+|u(t,τ,0)|]dτ
(

τ
∨

p=0

g(t, p)

)

+[|f2(t, x0(t))−f2(t, 0)|+|f2(t, 0)|]

×
∫ t

0

|u(t,τ,(Tx)(τ))−u(t,τ,(Tx0)(τ))|dτ
(

τ
∨

p=0

g(t, p)

)

.

Using (3.4) we have |u(t, τ, (Tx)(τ)) − u(t, τ, 0)| ≤ n(t, τ)φ(Ψ(||x||)) ≤
n(t, τ)φ(Ψ(r0)). Since

|u(t, τ, (Tx)(τ))− u(t, τ, (Tx0)(τ))| ≤ n(t, τ)φ(|(Tx)(τ)− (Tx0)(τ)|)
≤ n(t, τ)φ(||Tx− Tx0||)

we obtain

|(V x)(t)− (V x0)(t)|
≤ k1(r0)|x(t)− x0(t)|+ k2(r0)|x(t)− x0(t)|

×
[

φ(Ψ(r0))

∫ t

0

n(t, τ)dτG(t, τ) +

∫ t

0

|u(t, τ, 0)|dτG(t, τ)

]

+ (k2(r0)r0 + F2)φ(||Tx− Tx0||)
∫ t

0

n(t, τ)dτG(t, τ).

(3.6)

Thus

|(V x)(t)− (V x0)(t)| ≤ k1(r0)||x− x0||+ k2(r0)||x− x0||[φ(Ψ(r0))N + U ]

+ (k2(r0)r0 + F2)φ(||Tx− Tx0||)N.

From the above estimation we derive the desired continuity of operator V .

We can now formulate our main result.
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Theorem 3.7. Suppose that assumptions (i)–(ix) are fulfilled. Then

(a) Equation (3.1) has at least one solution in the space BC(R+) (more pre-
cisely in the ball Br0, where r0 is the number appearing in assumption
(ix)). Moreover, all solutions of Equation (3.1) from that ball are locally
equicontinuous, asypmptotically stable, have a common finite limit at in-
finity and they tend to this limit uniformly, i.e. if g is this common limit,
then for every ε > 0 there exists T > 0 such that |x(t)− g| < ε for every
t ≥ T and for every solution x from the ball Br0.

(b) If additionally F1 = 0, then the limit at infinity of each solution of Equa-
tion (3.1) belonging to the ball Br0 is equal to zero.

Proof. We will study behaviour of the operator V with respect to the measure
of noncompactness µ defined by formula (2.1). To this end, take a nonempty
subset X of the ball Br0 . Fix arbitrarily ε > 0, T > 0 and x ∈ X. Next, choose
arbitrary numbers t, s ∈ [0, T ] such that |t− s| ≤ ε. We can assume that t < s.
Then using (3.3), we obtain

|(V x)(s)− (V x)(t)|
≤ |(F1x)(s)− (F1x)(t)|+ |(F2x)(s)(Ux)(s)− (F2x)(t)(Ux)(s)|
+ |(F2x)(t)(Ux)(s)− (F2x)(t)(Ux)(t)|

≤ |f1(s, x(s))− f1(s, x(t))|+ |f1(s, x(t))− f1(t, x(t))|
+ |(Ux)(s)|[|f2(s, x(s))− f2(s, x(t))|+ |f2(s, x(t))− f2(t, x(t))|]
+ [|f2(t, x(t))− f2(t, 0)|+ |f2(t, 0)|]|(Ux)(s)− (Ux)(t)|

≤ k1(r0)|x(s)− x(t)|+ ωT
1 (f1, ε; r0) + [k2(r0)|x(s)− x(t)|+ ωT

1 (f2, ε; r0)]

×
∫ s

0

[|u(s, τ, (Tx)(τ))− u(s, τ, 0)|+ |u(s, τ, 0)|]dτ
(

τ
∨

p=0

g(s, p)

)

+ (r0k2(r0) + F2)W (ε),

where

ωT
1 (fi, ε; a) = sup{|fi(s, x)− fi(t, x)| : t, s ∈ [0, T ], |t− s| ≤ ε, |x| ≤ a}

for i = 1, 2,

W (ε) = (nTφ(Ψ(r0)) + uT )
s
∨

p=t

g(s, p) + ωT
1 (u, ε; Ψ(r0))

s
∨

p=0

g(s, p)

+ (nTφ(Ψ(r0)) + uT )
t
∨

p=0

[g(s, p)− g(t, p)].

On account of (3.4) we get
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|(V x)(s)− (V x)(t)|
≤ k1(r0)ω

T (x, ε) + ωT
1 (f1, ε; r0) + [k2(r0)ω

T (x, ε) + ωT
1 (f2, ε; r0)]

×
[

φ(Ψ(r0))

∫ s

0

n(s, τ)dτG(s, τ) +

∫ s

0

|u(s, τ, 0)|dτG(s, τ)

]

+ (r0k2(r0) + F2)W (ε)

≤ k1(r0)ω
T (x, ε) + ωT

1 (f1, ε; r0) + [k2(r0)ω
T (x, ε)

+ ωT
1 (f2, ε; r0)][φ(Ψ(r0))N + U ] + (r0k2(r0) + F2)W (ε).

Thus ωT (V X, ε) ≤ k1(r0)ω
T (X, ε)+ωT

1 (f1, ε; r0)+[k2(r0)ω
T (X, ε)+ωT

1 (f2, ε; r0)]
×[φ(Ψ(r0))N + U ] + (r0k2(r0) + F2)W (ε). According to Lemma 3.2, uniform
continuity of the function fi on the set [0, T ] × [−r0, r0](i = 1, 2) and uniform
continuity of the function u on the set ∆T × [−Φ(r0),Φ(r0)] we derive the
following inequality ωT

0 (V X) ≤ k1(r0)ω
T
0 (X) + k2(r0)(φ(Ψ(r0))N + U)ωT

0 (X)
and consequently

ω0(V X) ≤ [k1(r0) + k2(r0)(φ(Ψ(r0))N + U)]ω0(X). (3.7)

In the next step of our proof, similarly as before, let us take a nonempty
set X ⊂ Br0 and a number T > 0. Then, for arbitrarily fixed x ∈ X and for
arbitrary numbers t, s such that t ≥ T , s ≥ T , we obtain

|(V x)(s)−(V x)(t)|
≤|f1(s, x(s))−f1(s, x(t))|+|f1(s, x(t))−f1(t, x(t))|

+

∣

∣

∣

∣

f2(s, x(s))

∫ s

0

u(s,τ,(Tx)(τ))dτg(s,τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

f2(t, x(t))

∫ t

0

u(t,τ,(Tx)(τ))dτg(t,τ)

∣

∣

∣

∣

≤k1(r0)|x(s)−x(t)|+|f1(s, x(t))−f1(t, x(t))|+[|f2(s, x(s))−f2(s, 0)|

+|f2(s, 0)|]
∫ s

0

[|u(s,τ,(Tx)(τ))−u(s,τ,0)|+|u(s,τ,0)|]dτ
(

τ
∨

p=0

g(s, p)

)

+[|f2(t, x(t))−f2(t, 0)|+|f2(t, 0)|]

×
∫ t

0

[|u(t,τ,(Tx)(τ))−u(t,τ,0)|+|u(t,τ,0)|]dτ
(

τ
∨

p=0

g(t, τ)

)

≤k1(r0)|x(s)−x(t)|+|f1(s, x(t))−f1(t, x(t))|

+(r0k2(r0)+F2)

[

φ(Ψ(r0))

∫ s

0

n(s,τ)dτG(s,τ)+

∫ s

0

|u(s,τ,0)|dτG(s,τ)

]

+(r0k2(r0)+F2)

[

φ(Ψ(r0))

∫ t

0

n(t,τ)dτG(t,τ)+

∫ t

0

|u(t,τ,0)|dτG(t,τ)

]

≤k1(r0)|x(s)−x(t)|+|f1(s, x(t))−f1(t, x(t))|
+(r0k2(r0)+F2)[φ(Ψ(r0))(n(s)+n(t))+u(s)+u(t)].
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Hence we get

βT (V x) ≤ k1(r0)βT (x) + sup{|f1(s, x)− f1(t, x)| : t ≥ T, s ≥ T, |x| ≤ r0}
+ (r0k2(r0) + F2)[2φ(Ψ(r0)) sup{n(t) : t ≥ T}+ 2 sup{u(t) : t ≥ T}]

and finally
β(V X) ≤ k1(r0)β(X). (3.8)

Linking (3.7) and (3.8) we obtain µ(VX)≤ [k1(r0)+k2(r0)(φ(Ψ(r0))N+U)]µ(X).
According to Theorem 2.2 we infer that the operator V has at least one fixed
point in the ball Br0 . This means that Equation (3.1) has at least one solution
in Br0 .

Moreover, let us observe that on the base of Theorem 2.2 and in view of
description of the kernel kerµ (cf. Section 2) we obtain that all solutions of
Equation (3.1) belonging to Br0 are locally equicontinuous and have a finite
limit at infinity. At this point of our proof we do not know yet if these limits
are equal.

Now, we proceed to the study of asymptotic stability of solutions of Equa-
tion (3.1). To this end, fix a nonempty subset X of the ball Br0 . Next, take
x, y ∈ X and t ≥ 0. We estimate the value of |(V x)(t)− (V y)(t)|. We can use
(3.6) replacing the function x0 by the function y. Then we have

|(V x)(t)− (V y)(t)| ≤ k1(r0)|x(t)− y(t)|+ k2(r0)|x(t)− y(t)|

×
[

φ(Ψ(r0))

∫ t

0

n(t, τ)dτG(t, τ) +

∫ t

0

|u(t, τ, 0)|dτG(t, τ)

]

+ (k2(r0)r0 + F2)φ(||Tx− Ty||)
∫ t

0

n(t, τ)dτG(t, τ).

Thus

|(V x)(t)− (V y)(t)| ≤ k1(r0)|x(t)− y(t)|+ 2r0k2(r0)[φ(Ψ(r0))n(t) + u(t)]

+ (k2(r0)r0 + F2)φ(2Ψ(r0))n(t).

Hence we get diam(V X)(t) ≤ k1(r0)diamX(t)+2r0k2(r0)[φ(Ψ(r0))n(t)+u(t)]+
(k2(r0)r0 + F2)φ(2Ψ(r0))n(t) and consequently

γ(V X) ≤ k1(r0)γ(X).

Now, let us consider the set X0 = FixV ∩ Br0 . We already know that it is
nonempty. Since V (X0) = X0 and k1(r0) < 1 we obtain

γ(X0) ≤ k1(r0)γ(X0).

This gives γ(X0) = 0, which leads to the asymptotic stability of all solutions of
Equation (3.1) belonging to Br0 .
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This implies that all solutions of Equation (3.1) belonging to Br0 have a
common finite limit at infinity. Indeed, assume that gx = limt→∞ x(t) and
gy = limt→∞ y(t), where x and y are arbitrary solutions of Equation (3.1) in Br0 .
Then, for a given ε>0, there exists T >0 such that |x(t)−gx|< ε

3
, |y(t)−gy|< ε

3
,

and |x(t)− y(t)|< ε
3
for t≥T . Hence we get

|gx − gy| ≤ |gx − x(t)|+ |x(t)− y(t)|+ |gy − y(t)| < ε for t ≥ T,

and as a consequence, gx = gy.
Moreover, according to the description of the kernel kerµ, all solutions of

Equation (3.1) from the ball Br0 tend to the common limit uniformly in the
sense described in part (a) of the assertion. The proof of part (a) is complete.

We now prove assertion (b). Let ∅ 6= X ⊂ Br0 , T > 0, x ∈ X and
t ≥ T . Owing to (3.4) we have |(V x)(t)| ≤ k1(r0)|x(t)|+k2(r0)r0φ(Ψ(r0))n(t)+
k2(r0)r0u(t) + F2φ(Ψ(r0))n(t) + F2u(t). Thus

β̃(V X) ≤ k1(r0)β̃(X).

If µ̃ is a measure of noncompactnes given by (2.2), then µ̃(V X) ≤ [k1(r0) +
k2(r0)(φ(Ψ(r0))N + U)]µ̃(X). Applying Theorem 2.2 and keeping in mind the
description of ker µ̃ we complete the proof.

4. Applications and an example

Let us notice that a crucial role in proving Theorem 3.7 was played by assump-
tion (vi). Now, we formulate some conditions being handy in applications and
guaranteeing that this assumption is satisfied.

Consider the following conditions:

(A) The function g(t, τ) = g : ∆ → R is continuous on the triangle ∆.

(B) For arbitrarily fixed t, s≥0 such that t<s the function τ→g(s, τ)−g(t, τ)
is nondecreasing on the interval [0, t].

(C) For arbitrarily fixed t, s≥0 such that t<s the function τ→g(s, τ)−g(t, τ)
is nonincreasing on the interval [0, t].

The result announced previously is presented in the below given lemma.
The proof is standard so we omit it (cf. [8, 11]).

Lemma 4.1. Assume that the function g = g(t, τ) satisfies conditions (A), (B)
or (A), (C). Then g satisfies assumption (vi).

Now, we present an application of Theorem 3.7 in the situation of the
classical equations on an unbounded interval.

Let us consider the equation

x(t) = f1(t, x(t)) +
f̃2(t, x(t))

Γ(α)

∫ t

0

u(t, τ, (Tx)(τ))

(t− τ)1−α
dτ, t ≥ 0, (4.1)
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where Γ denotes the Euler gamma function and α > 0. It is the well known
integral equation of fractional order.

If we take (on the set ∆) the function g defined by

g(t, τ) =
1

α
[tα − (t− τ)α] ,

then it is easy to check that Equation (4.1) is a special case of Equation (3.1).
Clearly, assumption (ix) in this situation takes the form

(ix*) There exists a positive real number r0 which satisfies the inequalities

rk1(r)+F1+
1

Γ(α)
(rk̃2(r)φ(Ψ(r))N+rk̃2(r)U+F̃2φ(Ψ(r))N+F̃2U)≤r

k1(r)+
1

Γ(α)
k̃2(r)(φ(Ψ(r))N+U)<1

where F̃2 = sup{|f̃2(t, 0)| : t ∈ R+} and k̃2 is a function chosen for f̃2
based on assumption (i).

Using Lemma 4.1 and the standard methods of differential calculus we can
show that the function g satisfies assumptions (iv)–(vi). Obviously, when α = 1
Equation (4.1) reduces to the classical nonlinear quadratic Volterra integral
equation. Let us mention that a direct approach (without using the theory of
functions of bounded variation and the Riemann-Stieltjes integral) to the study
of integral equations of fractional order on an unbounded interval can be found
in [10].

Now, let us consider the equation

x(t) = f1(t, x(t)) + f2(t, x(t))

∫ t

0

t

t+ τ
u(t, τ, (Tx)(τ))dτ, t ≥ 0.

It is the Volterra counterpart of the quadratic integral equation of Chandrasekhar
type. This equation is also a special case of Equation (3.1), in which

g(t, τ) =

{

t ln(1 +
τ

t
), (t, τ) ∈ ∆ \ {(0, 0)}

0, t = τ = 0 .

Using, as before, Lemma 4.1 and the standard methods of differential cal-
culus we can show that this function satisfies assumptions (iv)–(vi).

Remark 4.2. If we put f2(t, x) ≡ 0 in Equation (3.1) we obtain the classical
functional equation of the first order on an unbounded interval.

Now, we provide an example illustrating Theorem 3.7.
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Example 4.3. Consider the following integral equation

x(t) = ax(t) + btanht

+
1

Γ(1
3
)

t

t+ 1
x2(t)

∫ t

0

max
{

ln
(

1 +
√

|x(u)|
)

: u ∈ [0, τ ]
}

(1 + t2 + τ 2) 3
√

(t− τ)2
dτ

(4.2)

where t ≥ 0, a ≥ 0, b ≥ 0.

Obviously this equation is a special case of Equation (4.1) if we put α= 1
3
and

f1(t, x) = ax+ btanht

f̃2(t, x) =
t

t+ 1
x2

u(t, τ, x) =
x

1 + t2 + τ 2

(Tx)(t) = max
{

ln
(

1 +
√

|x(u)|
)

: u ∈ [0, t]
}

.

It is easy to check that assumptions (i)–(viii) of Theorem 3.7 are satisfied and
k1(r) = a, F1 = b, k̃2(r) = 2r, F̃2 = 0, φ(r) = r, Ψ(r) =

√
r, N ≤ 2, U = 0.

Using standard estimation Γ(α) > 0.8856 for α > 0 and taking sufficiently
small r0, a and b (e.g. r0 = 1

4
, a = 1

6
, b = 1

20
(or b = 0)) we check that

assumption (ix*) is also satisfied. Therefore in case of Equation (4.2) we can
apply Theorem 3.7.

It is worthwhile mentioning that the integral equation (4.2) belongs to the
important class of integral equations called the equations with supremum (or
with maximum). Equations of this type has been recently investigated in the
papers [2, 6, 13, 22], for example.
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