
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal of Analysis and its Applications
Volume 33 (2014), 87–100
DOI: 10.4171/ZAA/1500

Self-Similarity in the Collection of ω-Limit Sets

Emma D’Aniello and T. H. Steele

Abstract. Let ω be the map which takes (x, f) in I × C(I × I) to the ω-limit set
ω(x, f) with L the map taking f in C(I, I) to the family of ω-limit sets {ω(x, f) :
x ∈ I}. We study R(ω) = {ω(x, f) : (x, f) ∈ I × C(I, I)}, the range of ω, and
R(L) = {L(f) : f ∈ C(I, I)}, the range of L. In particular, R(ω) and its complement
are both dense, R(ω) is path-connected, and R(ω) is the disjoint union of a dense Gδ

set and a first category Fσ set. We see that R(L) is porous and path-connected, and
its closure contains K = {F ⊆ [0, 1] : F is closed}. Moreover, each of the sets R(ω)
and R(L) demonstrates a self-similar structure.
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1. Introduction

Fundamental to the notion of chaos is the idea that points arbitrarily close
together can generate trajectories or ω-limit sets that are far apart. In par-
ticular, if f is a continuous self-map of I = [0, 1], and x ∈ I, then γ(x, f) =
{x, f(x), f(f(x)), . . .} is the trajectory of x generated by f , with the collection
of subsequential limits of γ(x, f) being the ω-limit set ω(x, f). Equivalently,

ω(x, f) = ∩m≥0∪n≥mfn(x).

These ω-limit sets are the focus of our analysis, and we begin with a brief
overview of some of their properties. Immediate consequences of the definition
are that

(1) ω(x, f) is closed, and

(2) f(ω(x, f)) = ω(x, f), that is ω(x, f) is strongly invariant,
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for all (x, f) in I × C(I, I).
While all ω-limit sets are closed, only certain classes of closed sets are

actually generated as ω-limit sets. We make frequent use of the following char-
acterization of ω-limit sets found in [1].

Theorem 1.1. Let F ⊆ [0, 1] be closed. Then F is an ω-limit set for some f
in C(I, I) if and only if F is either nowhere dense, or a finite union of nonde-

generate closed intervals.

As the following shows, the preponderance of ω-limit sets are nowhere dense
and perfect.

Theorem 1.2. ([2, Theorem 5]) For a residual set of points (x, f) in I×C(I, I),
ω(x, f) is nowhere dense and perfect.

The main results of [1] are replicated in [11] with a much simpler analysis,
and [12] characterizes those ω-limit sets generated by functions with zero topo-
logical entropy. Several articles, including [13] and [14], continue the study of
typical behavior initiated with [2]. In [13] one finds that if M is the Cantor
space or an n-dimensional manifold, then there is a residual set of points (x, f)
in M ×C(M,M) all of which generate as their ω-limit set a particular, unique
type of adding machine.

Bruckner and Ceder provide in [10] a very interesting study of the map
ωf : I → K given by x 7→ ω(x, f), where f ∈ C(I, I) is fixed. The authors
establish a notion of chaos strictly intermediate to positive topological entropy
and the existence of an uncountable scrambled set. One also finds a compre-
hensive analysis of the behavior of a continuous function on its symple systems.
Bruckner and Ceder’s work foreshadows some of what is found in this article.

As mentioned earlier, ω(x, f) is necessarily closed whenever (x, f) is in
I × C(I, I). Much less obvious is that Λ(f) = ∪x∈Iω(x, f) is closed in [0, 1]
whenever f ∈ C(I, I), and that L(f) = {ω(x, f) : x ∈ I} is closed with respect
to the Hausdorff metric [4, 18].

In what follows, we consider two maps which deal directly with the ω-limit
sets generated by continuous self-maps of [0, 1]:

ω : I × C(I, I) → K given by (x, f) 7→ ω(x, f)

and
L : C(I, I) → K⋆ given by f 7→ L(f).

Here, K is the metric space composed of the class of nonempty closed sets in I
endowed with the Hausdorff metric H given by H(E,F )=inf{δ>0: E⊂Bδ(F ),
F ⊂ Bδ(E)}. This space is compact [9].

The metric space K⋆ consists of the nonempty closed subsets of K. Thus,
K ∈ K⋆ if K is a nonempty family of nonempty closed sets in I such that K
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is closed in K with respect to H. We endow K⋆ with the metric H⋆ so that K1

and K2 are close with respect to H⋆ if each member of K1 is close to some
member of K2 with respect to H, and vice-versa. This metric space also is
compact [8].

Here are some of our results. Let

R(ω) = {ω(x, f) : (x, f) ∈ I × C(I, I)}

be the range of ω. We show that

(1) both R(ω) and K \ R(ω) are dense in K,

(2) R(ω) is path-connected,

(3) R(ω) is the disjoint union of a dense Gδ subset of K and a first category
Fσ subset of K.

The set R(ω) also is self-similar. Let h[a,b],I : [a, b] → I be the linear homeo-
morphism such that h[a,b],I(a) = 0 and h[a,b],I(b) = 1. If S[a,b] = {F ∈ R(ω) :
F ⊆ [a, b]}, then R(ω) = h[a,b],I(S[a,b]).

Similarly, let
R(L) = {L(f) : f ∈ C(I, I)}

be the range of L in K⋆. We show that

(1) R(L) is a porous subset of K⋆,

(2) R(L) is path-connected,

(3) K ∈ R(L),

(4) R(L) ( R(L).

If F ∈ R(L), by F ⊆ (a, b) we mean that ω ⊆ (a, b) for every ω ∈ F . Now,
let (a, b) ⊆ [0, 1] and set T(a,b) = {F ∈ L(f) : F ⊆ (a, b)}, and T(0,1) = {F ∈
L(f) : F ⊆ (0, 1)}. Then, R(L) also demonstrates a self-similar structure, as
h[a,b],I(T(a,b)) = T(0,1).

We proceed through several sections. After establishing notation and defi-
nitions in Section 2, we study the map L : C(I, I) → K⋆ in Section 3. Section 4
focuses on the results concerning ω : I × C(I, I) → K.

2. Definitions and background material

Let X = (X, d) be a compact metric space and let C(X,X) be the class of
continuous self-maps of X.

Definition 2.1. A topological dynamical system (X, f) is a compact metric
space X and a map f ∈ C(X,X).

In the following X will always denote a compact metric space. For
f ∈ C(X,X) and any integer n, fn denotes the n-th iterate of f . Let P (f)
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be the set of periodic points of f . For each x ∈ X, we denote by ω(x, f) the
ω-limit set of f ; that is, the set of limit points of the sequence {fk(x)}k≥0. Let
Λ(f) = ∪x∈Xω(x, f) and L(f) = {ω(x, f) : x ∈ X}. We let I = [0, 1], the closed
unit interval of the real line. If f ∈ C(I, I), then Λ(f) is closed [18].

Porosity. Let P = (P, d) be a metric space, with Br(x) = {y ∈ P : d(x, y) < r}
for x ∈ P and r > 0. Take M ⊆ P , x ∈ P and R > 0. Let

r(x,R,M) = sup{r > 0 : there exists z in P such that Br(z) ⊂ BR(x) \M}.

The number

P (M,x) = 2 lim sup
R→0+

r(x,R,M)

R
,

is called the porosity of M at x [20].

Solenoidal sets. [5] An interval J is called periodic (of period k) or k-periodic
if J, . . . , fk−1(J) are pairwise disjoint and fk(J) = J . The set ∪k−1

i=0 f
i(J) is the

orbit of J and is denoted by orb J .
Let J0 ⊃ J1 ⊃ · · · be periodic intervals with periods m0,m1, . . . . Obvi-

ously mi+1 is a multiple of mi for all i. If mi → ∞ then the intervals {Ji}
∞
i=0

are said to be generating and any invariant closed set S ⊆ Q = ∩∞
i=0orb Ji is

called a solenoidal set; if Q is nowhere dense then we call Q a solenoid.

Basic sets. [5] Let J be an n-periodic interval, and let M = orb J be the orbit
of J . Consider a set

{x ∈ M : for any relative neighborhood U of x in M we have orbU = M};

it is easy to see that this is a closed invariant set. It is called a basic set
and denoted by B(M, f) provided it is infinite. The set B(M, f) is perfect
[5, Theorem 4.1].

Path-connected topological spaces. A topological space X is path-connected
(or pathwise connected) if for every two points x, y in X, there is a continuous
function f from [0, 1] to X such that f(0) = x and f(1) = y.

3. The map L : C(I, I) → K⋆

In this section we focus our attention on the map L : C(I, I) → K⋆ which takes
f in C(I, I) to its collection of ω-limit sets L(f) = {ω(x, f) : x ∈ I}. As our
first result shows, the elements of R(L) can be extremely complicated, as K is
contained in the closure of R(L).

Proposition 3.1. The set K = {F ⊆ [0, 1] : F is closed} is contained in the

closure of R(L).
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Proof. As K is a compact metric space, it is totally bounded. Hence, fixed ǫ > 0,
there exists an ǫ-net; that is, there exists a finite collection Tǫ = {T1, T2, . . . , Tm}
of elements of K compact such that K ⊆ ∪m

i=1Bǫ(Ti), Ti∩Tj = ∅ whenever i 6= j,
and |Ti| is finite for all i. Let f ∈ C(I, I) so that Ti ∈ L(f) for all 1 ≤ i ≤ m.
Then, H⋆(K,L(f)) < ǫ.

As mentioned in the introduction, Λ(f) and L(f) are closed for any f in
C(I, I), as is each of the ω-limit sets ω(x, f). The next two examples show,
however, that R(L) is not a closed subset of K⋆.

Example 3.2. Recall that K is contained in the closure of R(L), and {{x} :
x ∈ [0, 1]} ( K. If f ∈ C(I, I) such that {{x} : x ∈ [0, 1]} ⊆ L(f), then
ω(x, f) = {x} for any x in [0, 1], and this precludes T ∈ L(f) for any T in
K \ {{x} : x ∈ [0, 1]}.

Example 3.3. Let f(x) = x on I, and for any ǫ > 0, choose 1
n

< ǫ. An
appropriate polygonal function (the Bruckner sawtooth function) that possesses
the orbit

0 →
1

n
→

2

n
→ · · · →

n− 1

n
→ 1 →

n− 1
2

n
→

n− 3
2

n
→ · · · →

1
2

n
→ 0

has a periodic orbit that spans I, and has the property that ‖f − fn‖ ≤ 1
n
.

Then fn uniformly converges to f , and since K⋆ is compact there exists
{fnk

}k∈N ⊆ {fn}n∈N so that limk→∞ L(fnk
) = K⋆ exists. Then {{x} : x∈ [0, 1]}

∪[0, 1] ⊆ K⋆. If there exists g ∈ C(I, I) so that {{x} : x ∈ [0, 1]} ⊆ L(g), then
ω(x, g) = {x} for any x in [0, 1], so that [0, 1] /∈ L(g).

Two of the principal results of this section are found with Theorems 3.4
and 3.5. The first result shows just how particular the elements L(f) are in K⋆,
as R(L) is porous in K⋆. Interestingly enough, while nowhere dense, R(L) has
no isolated point, and it is, in fact, path-connected.

Theorem 3.4. R(L) is porous in K⋆. In particular, P (R(L),L(f)) = 1 for

all f in C(I, I).

Proof. Fix f in C(I, I), n ∈ N, and 0 < ǫ < 1
2
. Since L(f) is compact in K⋆,

we can take K⋆ = {K1, K2, . . . , Km} in K⋆ so that

(1) K⋆ is an ǫ-net of L(f);

(2) |Ki| ≥ 2 for any i;

(3) diam(Ki) ≥
n−1
n
2ǫ for any i.

Now, if E⋆ ∈ K⋆ such that H⋆(E⋆, K⋆) < n−1
n
ǫ, then |K| ≥ 2 for any K ∈ E⋆.

In particular,

R(L) ∩ Bn−1

n
ǫ(K

⋆) = ∅, and P (R(L),L(f)) ≥ 2[
(n−1

n
)ǫ

2ǫ
] =

n− 1

n
.

Now, let n → +∞.
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Theorem 3.5. R(L) is path-connected in K⋆.

Proof. Let f 1

2

: I → I be the constant map given by f 1

2

(x) = 1
2
, for all x ∈ I.

Since, by [19, Theorem 1.4], L : C(I, I) → K⋆ is continuous at every constant
map, it is, in particular, continuous at f 1

2

. Therefore, for any ǫ > 0 there is

δ > 0 so that L(g) ⊆ Bǫ({
1
2
}), whenever ‖g − f 1

2

‖ < δ. Now, fix some g in

C(I, I) and take 0 < ǫ ≤ 1. Consider the homeomorphism hǫ : I → J =
[1
2
− ǫ

2
, 1
2
+ ǫ

2
] so that hǫ(0) =

1
2
− ǫ

2
, hǫ(1) =

1
2
+ ǫ

2
, and hǫ is linear on [0, 1]. Let

f ǫ
g = hǫ ◦ g ◦ h

−1
ǫ : J → J , and define f̃ ǫ

g : I → I so that

1. f̃ ǫ
g |J = f ǫ

g ,

2. f̃ ǫ
g |J =

{

f ǫ
g(

1
2
− ǫ

2
) if x ∈ [0, 1

2
− ǫ

2
]

f ǫ
g(

1
2
+ ǫ

2
) if x ∈ [1

2
+ ǫ

2
, 1].

It follows that L(f̃ ǫ
g) = L(fg

ǫ) since ‖f̃ ǫ
g − f 1

2

‖ ≤ ǫ
2
, so that f̃ ǫ

g([0, 1]) ⊆ J

and f ǫ
g(J) ⊆ J . Since L is continuous at f 1

2

, it follows that L(f̃ ǫ
g) → {{1

2
}}

as ǫ → 0, for any g ∈ C(I, I). Since g and f ǫ
g are topologically conjugate, it

follows that hǫ(L(g)) = L(fg
ǫ) = L(f̃ ǫ

g), and since as ǫ → 1 hǫ → id, where id

denotes the identity map on [0, 1], we conclude that L(f̃ ǫ
g) → L(g) as ǫ → 1. In

particular, L(g) and L(f 1

2

) = {{1
2
}} are in the same path-connected component

of R(L), for any g in C(I, I).

Remark 3.6. While R(L) is path-connected, the paths established in the the-
orem are not the only ones found between elements of R(L). If f 6= g in
C(I, I) are topologically conjugate, then L(f) and L(g) are path-wise con-
nected. Suppose f 6= g in C(I, I) with h : I → I a homeomorphism such that
g = h ◦ f ◦ h−1. Let hα, α ∈ [0, 1], be a continuous injective deformation such
that h0 = id, h1 = h. Then {L(hα ◦ f ◦ hα

−1) : 0 ≤ α ≤ 1} is a path in R(L)
with L(f) = L(h0 ◦ f ◦ h−1

0 ) and L(g) = L(h1 ◦ f ◦ h−1
1 ).

With the next theorem, we begin a series of results which establish self-
similarity in the range of L. Theorem 3.7 shows that for any interval [a, b]
in [0, 1], we can find a function g in C(I, I) so that C(I, I) is replicated in
miniature by Bǫ(g) on [a, b], where ǫ = b−a

2
.

Theorem 3.7. Let [a, b] ⊆ [0, 1] and set ǫ = b−a
2
. There exists g in C(I, I) so

that Bǫ(g)|[a, b] = hI,[a,b] ◦ C(I, I) ◦ h[a,b],I .

Proof. Let g ∈ C(I, I) so that g(x) = a+b
2

for any x in [a, b]. If f ∈ C(I, I) so
that ‖f − g‖ ≤ ǫ = b−a

2
, then

a+ b

2
−

b− a

2
= a ≤ f(x) ≤ b =

a+ b

2
+

b− a

2
,
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for any x in [a, b], so that f([a, b])⊆ [a, b]. Therefore, Bǫ(g)|[a, b]⊆C([a, b], [a, b]).
Clearly,

C([a, b], [a, b]) ⊆ Bǫ(g)|[a, b] ⊆ Bǫ(g)|[a, b].

Since hI,[a,b] and h[a,b],I are continuous, hI,[a,b] ◦ f ◦ h[a,b],I : [a, b] → [a, b] is con-
tinuous for every f in C(I, I), so that hI,[a,b] ◦ C(I, I) ◦ h[a,b],I ⊆ C([a, b], [a, b]).

If l ∈ C([a, b], [a, b]) then f = h[a,b],I ◦ l ◦ hI,[a,b] ∈ C(I, I) so that
l = hI,[a,b] ◦ f ◦ h[a,b],I . Thus, hI,[a,b] ◦ C(I, I) ◦ h[a,b],I = C([a, b], [a, b]). Fi-
nally, of course, if f 6= l in C(I, I), then hI,[a,b] ◦ f ◦ h[a,b],I 6= hI,[a,b] ◦ l ◦ h[a,b],I in
C([a, b], [a, b]) so that the transformation from C(I, I) to C([a, b], [a, b]) is also
one to one.

Corollary 3.8. Let [a, b] ⊆ [0, 1] and ǫ = b−a
2
. There exists g in C(I, I) so that

the range of L restricted to Bǫ(g)|[a, b] satisfies

R(L : Bǫ(g)|[a, b] → K⋆) = hI,[a,b](R(L)).

In Theorem 3.7 we begin with an interval [a, b] in I, and find an appropriate
function g in C(I, I). Our next two results show that we can just as well begin
with a function f in C(I, I) and an ǫ > 0, and find an appropriate g in Bǫ(f)
with a corresponding interval [a, b].

Theorem 3.9. For every f in C(I, I) and any 0 < ǫ ≤ 1 there exist g in

Bǫ(f), 0 < δ < ǫ and [a, b] ⊆ I so that b − a = 2δ, Bδ(g) ⊂ Bǫ(f), and

Bδ(g)|[a, b] = hI,[a,b] ◦ C(I, I) ◦ h[a,b],I .

Proof. Let f ∈ C(I, I) with ǫ > 0. Since f is uniformly continuous, there
exist 0 < δ

′

< ǫ
2
so that |x − y| < δ

′

implies |f(x) − f(y)| < ǫ
2
, and z in

[0, 1] so that f(z) = z. Now, suppose that z ∈ (0, 1), and choose δ so that
δ < min{δ

′

, z, 1 − z}. Let g ∈ C(I, I) so that g ∈ B ǫ

2
(f) and g(y) = z for any

y ∈ [z − δ, z + δ] = [a, b], and consider Bδ(g).

Now, suppose that z ∈ {0, 1}. We assume that z = 0; the case that z = 1

is similar. Set δ = δ
′

2
, and take g in C(I, I) so that g ∈ B ǫ

2
(f) and g(y) = δ for

any y in [0, δ
′

] = [a, b]. Consider Bδ(g).

In either case, we show that Bδ(g) is the set which satisfies our theorem’s
conclusion. This is done as in our previous theorem’s proof.

Corollary 3.10. For every f in C(I, I) and any ǫ > 0 there exist g in Bǫ(f),
0 < δ < ǫ and [a, b] ⊆ I so that b− a = 2δ and

Bδ(g) ⊂ Bǫ(f),

and

R(L : Bδ(g)|[a, b] → K⋆) = hI,[a,b] ◦ R(L).
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We conclude our study of R(L) with the next theorem. Stronger than
Corollaries 3.8 and 3.10, Theorem 3.11 shows that all of the elements of R(L)
which lie in any interval (a, b) found in I are a scaled copy of those found in
(0, 1).

Theorem 3.11. Let (a, b) ⊆ [0, 1], and set T(0,1) = {L(f) : L(f) ⊆ (0, 1),
f ∈ C(I, I)}, T(a,b) = {L(f) : L(f) ⊆ (a, b), f ∈ C(I, I)}. Then

T(0,1) = h[a,b],I(T(a,b)),

so that T(0,1) and T(a,b) are homeomorphic.

Proof. For each f in C(I, I), L(f) is closed in (K,H) by [4]. Let f ∈ C(I, I).
By L(f) ⊆ (a, b) we intend ω(x, f) ⊆ (a, b) for all x in I.

We first show that hI,[a,b](T(0,1)) ⊆ T(a,b). Let g ∈ C(I, I), so that
L(g) ∈ T(0,1), and set fg = hI,[a,b] ◦ g ◦ h[a,b],I . Since g ∈ C(I, I), it fol-

lows that fg ∈ C([a, b], [a, b]) and L(fg) = hI,[a,b](L(g)) ⊆ (a, b). We extend

fg : [a, b] → [a, b] to f : I → I so that

f(x) =







fg(a) if x ∈ [0, a]
fg(x) if x ∈ [a, b]
fg(b) if x ∈ [b, 1].

Since L(f) = L(fg), we have hI,[a,b](L(g)) = L(f) contained in T(a,b), so that
hI,[a,b](T(0,1)) ⊆ T(a,b).

It remains to show that h[a,b],I(T(0,1)) ⊇ T(a,b). Let F ∈ T(a,b), so that
F = L(f) for some f in C(I, I), and L(f) ⊆ (a, b). It suffices to show that
F = L(g), where g ∈ C([a, b], [a, b]). Now, since L(f) ⊆ (a, b), there exists ǫ > 0
so that Bǫ(Λ(f)) ⊂ (a, b) and since f(Λ(f)) = Λ(f), f(Bǫ(Λ(f))) ⊂ (a, b), too.
Now, let x ∈ I. There exists N = N(x) ∈ N so that fn(x) ∈ Bǫ(Λ(f))
whenever n > N(x). If we let y = fN+1(x), then ω(y, g) = ω(x, f), where g
is any extension of f |Bǫ(Λ(f)) to all of [a, b]. In particular, L(f) ⊆ L(g). It
remains to show that we can take g so that L(f) = L(g).

Set [α, β]=conv(Λ(f)), the closed convex hull of Λ(f), and let y1∈(α−ǫ, α)
so that γ(y1, f) ⊆ Bǫ(Λ(f)). By [3, Corollary IV.10] this would actually imply
that γ(y1, f) ⊆ Bǫ(Λ(f)) ∩ (y1, β + ǫ). If no such y1 exists, set y1 = α. Let
M = max γ(y1, f). If M > β, take y2 ∈ γ(y1, f) so that β < y2 < M .
If M ≤ β, take y2 ∈ (β, β + ǫ) so that γ(y2, f) ⊆ Bǫ(Λ(f)) ∩ (y1, β + ǫ).
Again, by [3, Corollary IV.10], this would imply that γ(y2, f) ⊆ (y1, y2). If
no such y2 exists, set y2 = β. We note that, by our choice of y1 and y2,
{ω(x, f) : x ∈ Bǫ(Λ(f)) ∩ [y1, y2]} = L(f).

We now define g : [a, b] → [a, b]

g(x) =







f(y1) if x ∈ [a, y1]
f(x) if x ∈ [y1, α] ∪ [β, y2]
f(y2) if x ∈ [y2, b]
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and if x ∈ [α, β], then

g(x) =







y1 whenever f(x) ≤ y1
f(x) whenever y1 ≤ f(x) ≤ y2
y2 whenever f(x) ≥ y2.

It remains to verify that L(g) ⊆ L(f).
If x ∈ [a, y1], then ω(x, g) = ω(y1, f) ∈ L(f), and if x ∈ [y2, b], then

ω(x, g) = ω(y2, f) ∈ L(f). Now, let x ∈ (y1, y2), and consider γ(x, g). If
γ(x, g) ⊆ (y1, y2), then γ(x, g) = γ(x, f), so that ω(x, g) = ω(x, f) ∈ L(f). If
γ(x, g)∩ {y1, y2} 6= ∅, we can take n ∈ N minimal so that gn(x) = yi ∈ {y1, y2}.
Then ω(x, g) = ω(yi, f) ∈ L(f).

As the next proposition shows, we cannot extend the conclusion of Theo-
rem 3.11 to those elements of R(L) found in the closed interval [a, b].

Proposition 3.12. Let [a, b]⊆ [0, 1] so that 0<a<b< 1. There exists F ∈R(L)
such that ω ⊆ [a, b] for any ω ∈ F , but F /∈ {L(f) : f ∈ C([a, b], [a, b])}.

Proof. Let f ∈ C(I, I) so that f has a unique infinite and maximal ω-limit
set ω0, which is generated by a solenoidal system. It follows that ω0 =Q∪̇C,
where Q is a Cantor set and C is a dense and countable set of points isolated
in ω0. Now, suppose that a = minω0 ∈ C, b = maxω0 ∈ C, and ω ⊆ [a, b]
for all ω in L(f). (The reader is referred to [10] for the construction of such
a function f .) If x ∈ I for which ω(x, f) = ω0, then γ(x, f) ∩ [0, a[ 6= ∅ and
γ(x, f)∩]b, 1] 6= ∅, since each of the intervals [a,minQ] and [maxQ, b] is wan-
dering. Moreover, a and b are isolated in Λ(f). We conclude that if F = L(f),
then F /∈ {L(g) : g ∈ C([a, b], [a, b])}. In particular, if ω0 ∈ L(g) for some
g ∈ C([a, b], [a, b]), then as we saw earlier, the maximal ω-limit set which con-
tains ω0 cannot be solenoidal. But if ω0 is contained in the basic set B(M, g),
then a and b are no longer isolated points of Λ(g), since B(M, g) is perfect.

4. The map ω : I × C(I, I)

This section concerns the map ω : I × C(I, I) → K which takes (x, f) in
I × C(I, I) to the ω-limit set ω(x, f). Fundamental to much of the analysis
is the characterization of ω-limit sets for continuous self-maps of the interval
developed in [1]. The first result is an elementary lemma which takes advantage
of the density of the finite sets in K.

Lemma 4.1. K is contained in the closure of R(ω).

Proof. Let ǫ > 0. Any element F ∈ K can be ǫ-approximated by a finite
set S in K so that H(F, S) < ǫ. Moreover, there exists f in C(I, I) so that
ω(x, f) = S.
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We record several immediate corollaries of Lemma 4.1.

Corollary 4.2. R(ω) and K \R(ω) are dense in K, so that R(ω) ( R(ω) and
int(R(ω)) = ∅.

Proof. From [1] it follows that

K \ {ω(x, f) : x ∈ I, f ∈ C(I, I)}

is dense in (K,H). Precisely, every K ∈ K is approximable by finite sets. Fix
K ∈ K and ǫ > 0. There exists F finite such that H(K,F ) < ǫ

2
. Replace one

point of F with a suitably small interval around it and obtain a new compact
set F ′ such that F ′ /∈ R(ω) and H(F, F ′) < ǫ

2
. Hence, H(K,F ′) < ǫ.

Theorem 3.5 establishes that R(L) is path-connected in K⋆, as any element
of L(f) in R(L) is path-connected to {{1

2
}}, also in R(L). If F ∈ R(ω),

then F ∈ L(f) for some f in C(I, I), so that F is, in fact, path connected to
{1
2
} ∈ R(ω).

Corollary 4.3. R(ω) is path-connected in K.

A main result of this section is the following theorem.

Theorem 4.4. R(ω) is the disjoint union of a dense Gδ subset of K and a first

category Fσ subset of K.

Theorem 4.4 is an immediate consequence of Propositions 4.5 and 4.6. Ob-
viously, this result relies on the work found in [1]. The lack of a “clean” charac-
terization of the elements of R(L) seems a serious obstacle to the development
of an analogous result for the range of L : C(I, I) → K⋆.

Proposition 4.5. {F ∈ K : F is nowhere dense} is a dense Gδ subset of K.

Proof. Let Ij be an enumeration of the open intervals in (0, 1) with rational
end-points, and set Kj = {F ∈ K : Ij ⊂ F}. One verifies easily that Kj is
closed in K.

Suppose now that F ∈ K is not nowhere dense, so that for some a � b in
[0, 1] we have [a, b] ⊆ F . There exists some Ij ⊂ [a, b], so that Ij ⊂ F and
F ∈ Kj. In particular, {F ∈ K : F is nowhere dense} = K \ ∪∞

j=1Ij is a Gδ

subset of K. That {F ∈ K : F is nowhere dense} is dense in K follows from the
observation that the finite sets are dense in K.

Proposition 4.6. The set

{F ∈ K : F is a finite union of nondegenerate closed intervals}

is a first category Fσ subset of K.
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Proof. We show that

Fn,m={F ∈K : F = ∪̇
k

i=1Ii s.t. k≤n and Ii=[ai, bi] with bi−ai≥
1

m
for all i}

is closed in K. Let {Fi}i∈N ⊆ Fn,m so that Fi → F in K. We show that
F ∈ Fn,m. Suppose, to the contrary, that there exist disjoint open intervals
{(ai, bi)}

l
i=1 with l  n, such that F ⊂ ∪l

i=1(ai, bi) and F ∩ (ai, bi) 6= ∅ for all i.
Since Fi → F in K, there is N in N so that, whenever j > N , Fj ⊂ ∪l

i=1(ai, bi)
and Fj ∩ (ai, bi) 6= ∅, 1 ≤ i ≤ l. But this contradicts Fj having at most n com-
ponents. Now, suppose that there exists an open interval (a, b) so that (a, b)∩F
is closed, non-empty, and b − a < 1

m
. Since Fi → F , for sufficiently large j,

Fj∩(a, b) also is both closed and non-empty. But this contradicts Fj having com-
ponents of length at least 1

m
. Our conclusion follows from the observation that

∪∞
n=1 ∪∞

m=1 Fn,m = {F ∈ K : F is a finite union of nondegenerate closed
intervals}.

Theorem 4.7. R(ω) is a dense Gδσ subset of K.

Proof. The theorem follows from Propositions 4.5 and 4.6, and Theorem 1.1,
the characterization of ω-limit sets found in [1].

The following two corollaries are consequences of Theorem 3.7 and Theo-
rem 3.9, respectively.

Corollary 4.8. Let [a, b] ⊆ [0, 1] and set ǫ = b−a
2
. There exists g in C(I, I) so

that

R(ω : [a, b]×Bǫ(g) → K)) = hI,[a,b](R(ω)).

Corollary 4.9. For every f in C(I, I) and any ǫ > 0 there exist g in Bǫ(f),
0 < δ < ǫ and [a, b] ⊆ I so that Bδ(g) ⊂ Bǫ(f), b − a = 2δ, and

R(ω : [a, b]×Bδ(g) → K) = hI,[a,b](R(ω)).

Another main result of the section is Theorem 4.10. While similar to The-
orem 3.11, it is a bit stronger as we may consider all of the ω-limit sets found
in [a, b], and not just those found in (a, b).

Theorem 4.10. Let [a, b] ⊆ [0, 1], and set

S[a,b] = {ω(x, f) : ω(x, f) ⊆ [a, b], x ∈ I, f ∈ C(I, I)} .

Then R(ω) = h[a,b],I(S[a,b]).

Proof. We first show that R(ω)) ⊆ h[a,b],I(S[a,b]). This is equivalent to showing

that hI,[a,b](R(ω))⊆S[a,b]. Let ω̃∈R(ω); say ω̃=ω(x̃, f̃), where (x̃,f̃)∈I×C(I, I).

Then hI,[a,b](ω̃)=ω=ω(hI,[a,b](x̃), hI,[a,b] ◦ f̃ ◦h[a,b],I), where hI,[a,b](ω̃)=ω⊆ [a, b],

hI,[a,b](x̃) ∈ [a, b] ⊆ I, and hI,[a,b] ◦ f̃ ◦ h[a,b],I ∈ C([a, b], [a, b]). We now extend

hI,[a,b] ◦ f̃ ◦ h[a,b],I to f ∈ C(I, I) via Tietze extension theorem, so that
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(1) hI,[a,b](ω̃) = ω = ω(hI,[a,b](x̃), f) ⊆ [a, b],

(2) f ∈ C(I, I).

It follows that hI,[a,b](ω̃) ∈ S[a,b], so that

hI,[a,b](R(ω)) ⊆ S[a,b].

We now show that h[a,b],I(S[a,b]) ⊆ R(ω).
Let ω ∈ S[a,b]. Then, by [1], ω is either a finite union of nondegenerate

closed intervals or a closed and nowhere dense set in [a, b]. Let h[a,b],I(ω) = ω̃.
Clearly, ω̃ is either a finite union of nondegenerate closed intervals or a closed
and nowhere dense set in [0, 1]. Thus, again, by [1], there exists (x̃,f̃)∈I×C(I, I)
so that ω̃ = ω(x̃, f̃), so that ω̃ ∈ R(ω). Thus, h[a,b],I(S[a,b]) ⊆ R(ω). Our
conclusion follows.

The main result of [4] shows that, for a fixed f in C(I, I), the set
{ω(x, f) : x ∈ I} is closed in K. The next result fixes, instead, x in [0, 1]
and considers the set {ω(x, f) : f ∈ C(I, I)}.

Proposition 4.11. Let x ∈ [0, 1] with Sx = {ω(x, f) : f ∈ C(I, I)}. Then Sx

contains a dense and open subset of R(ω).

Proof. Let F ∈ R(ω) so that x /∈ F , with f ∈ C(I, I) and y ∈ I such that
ω(y, f) = F , and ǫ > 0 such that x /∈ Bǫ(ω(y, f)). Take f1 so that

(1) f1|Bǫ(ω(y, f)) = f |Bǫ(ω(y, f)),

(2) f1(x) = z ∈ γ(y, f) ∩ Bǫ(ω(y, f)),

such that γ(z, f) ⊆ Bǫ(ω(y, f)), and extend f1 defined on Bǫ(ω(y, f) ∪ {x} to
all of I via the Tietz extension theorem.

By ω(x, f1) = ω(z, f1), γ(z, f1) = γ(z, f), it follows that ω(x, f1) = ω(z, f).
Since z ∈ γ(y, f), it follows that ω(z, f) = ω(y, f). Thus, ω(x, f1) = F ∈ Sx.
Let Dx = {F ∈ R(ω) : F is finite and x /∈ F}. Then Dx ⊆ Sx, and since Dx

is dense in R(ω), Sx is dense in R(ω), too. Moreover, if F ∈ Dx, then there
is ǫ > 0 so that x /∈ Bǫ(F ). Should F1 ∈ R(ω) such that H(F, F1) < ǫ, then
x /∈ F1, and F1 ∈ Sx.

For a fixed x, {ω(x, f) : f ∈ C(I, I)} is dense and open in K. The next
lemma decribes the origin of the “holes” found in R(ω)\{ω(x, f) : f ∈ C(I, I)}.

Lemma 4.12. Suppose F ∈ K is nowhere dense, infinite and contains an

isolated point. If x0 ∈ F , then F /∈ {ω(x0, f) : f ∈ C(I, I)}.

Proof. Suppose, to the contrary, that there exists f in C(I, I) such that
ω(x, f) = F , with y ∈ F and ǫ > 0 so that F ∩ Bǫ(y) = y. Since F is strongly
invariant with respect to f , it follows that γ(x, f) ⊆ F , and since y ∈ F , there
exists {nk}k∈N ⊆ N such that fnk(x) → y. Moreover, y is isolated in F , so



Self-Similarity in the Collection of ω-Limit Sets 99

we can just as well take {nk} ⊆ N such that fnk(x) = y. Now, if fn1(x) = y
and fn2(x) = y, with 0 < k = n2 − n1, then fk(y) = y. We conclude that
ω(x, f) = ω(y, f) is periodic, and this contradicts ω(x, f) = F .

Acknowledgement. This research has been partially supported by “Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
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