Self-Similarity in the Collection of ω -Limit Sets

Emma D'Aniello and T. H. Steele

Abstract. Let ω be the map which takes (x, f) in $I \times C(I \times I)$ to the ω -limit set $\omega(x, f)$ with \mathcal{L} the map taking f in C(I, I) to the family of ω -limit sets $\{\omega(x, f) : x \in I\}$. We study $\mathcal{R}(\omega) = \{\omega(x, f) : (x, f) \in I \times C(I, I)\}$, the range of ω , and $\mathcal{R}(\mathcal{L}) = \{\mathcal{L}(f) : f \in C(I, I)\}$, the range of \mathcal{L} . In particular, $\mathcal{R}(\omega)$ and its complement are both dense, $\mathcal{R}(\omega)$ is path-connected, and $\mathcal{R}(\omega)$ is the disjoint union of a dense G_{δ} set and a first category F_{σ} set. We see that $\mathcal{R}(\mathcal{L})$ is porous and path-connected, and its closure contains $\mathcal{K} = \{F \subseteq [0, 1] : F \text{ is closed}\}$. Moreover, each of the sets $\mathcal{R}(\omega)$ and $\mathcal{R}(\mathcal{L})$ demonstrates a self-similar structure.

Keywords. Continuous self-map, ω -limit set, porous set.

Mathematics Subject Classification (2010). Primary 26A18, 37B99, secondary 54H20

1. Introduction

Fundamental to the notion of chaos is the idea that points arbitrarily close together can generate trajectories or ω -limit sets that are far apart. In particular, if f is a continuous self-map of I = [0, 1], and $x \in I$, then $\gamma(x, f) = \{x, f(x), f(f(x)), \ldots\}$ is the trajectory of x generated by f, with the collection of subsequential limits of $\gamma(x, f)$ being the ω -limit set $\omega(x, f)$. Equivalently,

$$\omega(x,f) = \bigcap_{m \ge 0} \bigcup_{n \ge m} f^n(x).$$

These ω -limit sets are the focus of our analysis, and we begin with a brief overview of some of their properties. Immediate consequences of the definition are that

(1) $\omega(x, f)$ is closed, and

(2) $f(\omega(x, f)) = \omega(x, f)$, that is $\omega(x, f)$ is strongly invariant,

E. D'Aniello: Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, 81100 Caserta, ITALIA; emma.daniello@unina2.it

T. H. Steele: Department of Mathematics, Weber State University, Ogden, UT 84408-1702, USA; thsteele@weber.edu

for all (x, f) in $I \times C(I, I)$.

While all ω -limit sets are closed, only certain classes of closed sets are actually generated as ω -limit sets. We make frequent use of the following characterization of ω -limit sets found in [1].

Theorem 1.1. Let $F \subseteq [0,1]$ be closed. Then F is an ω -limit set for some f in C(I,I) if and only if F is either nowhere dense, or a finite union of nondegenerate closed intervals.

As the following shows, the preponderance of ω -limit sets are nowhere dense and perfect.

Theorem 1.2. ([2, Theorem 5]) For a residual set of points (x, f) in $I \times C(I, I)$, $\omega(x, f)$ is nowhere dense and perfect.

The main results of [1] are replicated in [11] with a much simpler analysis, and [12] characterizes those ω -limit sets generated by functions with zero topological entropy. Several articles, including [13] and [14], continue the study of typical behavior initiated with [2]. In [13] one finds that if M is the Cantor space or an *n*-dimensional manifold, then there is a residual set of points (x, f)in $M \times C(M, M)$ all of which generate as their ω -limit set a particular, unique type of adding machine.

Bruckner and Ceder provide in [10] a very interesting study of the map $\omega_f : I \to \mathcal{K}$ given by $x \mapsto \omega(x, f)$, where $f \in C(I, I)$ is fixed. The authors establish a notion of chaos strictly intermediate to positive topological entropy and the existence of an uncountable scrambled set. One also finds a comprehensive analysis of the behavior of a continuous function on its symple systems. Bruckner and Ceder's work foreshadows some of what is found in this article.

As mentioned earlier, $\omega(x, f)$ is necessarily closed whenever (x, f) is in $I \times C(I, I)$. Much less obvious is that $\Lambda(f) = \bigcup_{x \in I} \omega(x, f)$ is closed in [0, 1] whenever $f \in C(I, I)$, and that $\mathcal{L}(f) = \{\omega(x, f) : x \in I\}$ is closed with respect to the Hausdorff metric [4, 18].

In what follows, we consider two maps which deal directly with the ω -limit sets generated by continuous self-maps of [0, 1]:

 $\omega: I \times C(I, I) \to \mathcal{K}$ given by $(x, f) \mapsto \omega(x, f)$

and

$$\mathcal{L}: C(I, I) \to \mathcal{K}^{\star}$$
 given by $f \mapsto \mathcal{L}(f)$.

Here, \mathcal{K} is the metric space composed of the class of nonempty closed sets in Iendowed with the Hausdorff metric \mathcal{H} given by $\mathcal{H}(E, F) = \inf\{\delta > 0 \colon E \subset B_{\delta}(F), F \subset B_{\delta}(E)\}$. This space is compact [9].

The metric space \mathcal{K}^* consists of the nonempty closed subsets of \mathcal{K} . Thus, $K \in \mathcal{K}^*$ if K is a nonempty family of nonempty closed sets in I such that K

89

is closed in \mathcal{K} with respect to \mathcal{H} . We endow \mathcal{K}^* with the metric \mathcal{H}^* so that K_1 and K_2 are close with respect to \mathcal{H}^* if each member of K_1 is close to some member of K_2 with respect to \mathcal{H} , and vice-versa. This metric space also is compact [8].

Here are some of our results. Let

$$\mathcal{R}(\omega) = \{\omega(x, f) : (x, f) \in I \times C(I, I)\}$$

be the range of ω . We show that

- (1) both $\mathcal{R}(\omega)$ and $\mathcal{K} \setminus \mathcal{R}(\omega)$ are dense in \mathcal{K} ,
- (2) $\mathcal{R}(\omega)$ is path-connected,
- (3) $\mathcal{R}(\omega)$ is the disjoint union of a dense G_{δ} subset of \mathcal{K} and a first category F_{σ} subset of \mathcal{K} .

The set $\mathcal{R}(\omega)$ also is self-similar. Let $h_{[a,b],I} : [a,b] \to I$ be the linear homeomorphism such that $h_{[a,b],I}(a) = 0$ and $h_{[a,b],I}(b) = 1$. If $\mathcal{S}_{[a,b]} = \{F \in \mathcal{R}(\omega) : F \subseteq [a,b]\}$, then $\mathcal{R}(\omega) = h_{[a,b],I}(\mathcal{S}_{[a,b]})$.

Similarly, let

$$\mathcal{R}(\mathcal{L}) = \{\mathcal{L}(f) : f \in C(I, I)\}$$

be the range of \mathcal{L} in \mathcal{K}^{\star} . We show that

- (1) $\mathcal{R}(\mathcal{L})$ is a porous subset of \mathcal{K}^{\star} ,
- (2) $\mathcal{R}(\mathcal{L})$ is path-connected,
- (3) $\mathcal{K} \in \mathcal{R}(\mathcal{L}),$
- (4) $\mathcal{R}(\mathcal{L}) \subsetneq \overline{\mathcal{R}(\mathcal{L})}$.

If $F \in \mathcal{R}(\mathcal{L})$, by $F \subseteq (a, b)$ we mean that $\omega \subseteq (a, b)$ for every $\omega \in F$. Now, let $(a, b) \subseteq [0, 1]$ and set $\mathcal{T}_{(a,b)} = \{F \in \mathcal{L}(f) : F \subseteq (a, b)\}$, and $\mathcal{T}_{(0,1)} = \{F \in \mathcal{L}(f) : F \subseteq (0, 1)\}$. Then, $\mathcal{R}(\mathcal{L})$ also demonstrates a self-similar structure, as $h_{[a,b],I}(\mathcal{T}_{(a,b)}) = \mathcal{T}_{(0,1)}$.

We proceed through several sections. After establishing notation and definitions in Section 2, we study the map $\mathcal{L} : C(I, I) \to \mathcal{K}^*$ in Section 3. Section 4 focuses on the results concerning $\omega : I \times C(I, I) \to \mathcal{K}$.

2. Definitions and background material

Let X = (X, d) be a compact metric space and let $\mathcal{C}(X, X)$ be the class of continuous self-maps of X.

Definition 2.1. A topological dynamical system (X, f) is a compact metric space X and a map $f \in \mathcal{C}(X, X)$.

In the following X will always denote a compact metric space. For $f \in \mathcal{C}(X, X)$ and any integer n, f^n denotes the n-th iterate of f. Let P(f)

be the set of periodic points of f. For each $x \in X$, we denote by $\omega(x, f)$ the ω -limit set of f; that is, the set of limit points of the sequence $\{f^k(x)\}_{k\geq 0}$. Let $\Lambda(f) = \bigcup_{x\in X}\omega(x, f)$ and $\mathcal{L}(f) = \{\omega(x, f) : x \in X\}$. We let I = [0, 1], the closed unit interval of the real line. If $f \in \mathcal{C}(I, I)$, then $\Lambda(f)$ is closed [18].

Porosity. Let P = (P, d) be a metric space, with $B_r(x) = \{y \in P : d(x, y) < r\}$ for $x \in P$ and r > 0. Take $M \subseteq P$, $x \in P$ and R > 0. Let

 $r(x, R, M) = \sup\{r > 0 : \text{ there exists } z \text{ in } P \text{ such that } B_r(z) \subset B_R(x) \setminus M\}.$

The number

$$P(M, x) = 2 \limsup_{R \to 0^+} \frac{r(x, R, M)}{R}$$

is called the *porosity* of M at x [20].

Solenoidal sets. [5] An interval J is called periodic (of period k) or k-periodic if $J, \ldots, f^{k-1}(J)$ are pairwise disjoint and $f^k(J) = J$. The set $\bigcup_{i=0}^{k-1} f^i(J)$ is the orbit of J and is denoted by orb J.

Let $J_0 \supset J_1 \supset \cdots$ be periodic intervals with periods m_0, m_1, \ldots . Obviously m_{i+1} is a multiple of m_i for all i. If $m_i \to \infty$ then the intervals $\{J_i\}_{i=0}^{\infty}$ are said to be generating and any invariant closed set $S \subseteq Q = \bigcap_{i=0}^{\infty} \operatorname{orb} J_i$ is called a solenoidal set; if Q is nowhere dense then we call Q a solenoid.

Basic sets. [5] Let J be an n-periodic interval, and let $M = \operatorname{orb} J$ be the orbit of J. Consider a set

 $\{x \in M : \text{ for any relative neighborhood } U \text{ of } x \text{ in } M \text{ we have } \overline{\text{orb } U} = M\};$

it is easy to see that this is a closed invariant set. It is called a basic set and denoted by B(M, f) provided it is infinite. The set B(M, f) is perfect [5, Theorem 4.1].

Path-connected topological spaces. A topological space X is *path-connected* (or *pathwise connected*) if for every two points x, y in X, there is a continuous function f from [0, 1] to X such that f(0) = x and f(1) = y.

3. The map $\mathcal{L} : C(I, I) \to \mathcal{K}^*$

In this section we focus our attention on the map $\mathcal{L} : C(I, I) \to \mathcal{K}^*$ which takes f in C(I, I) to its collection of ω -limit sets $\mathcal{L}(f) = \{\omega(x, f) : x \in I\}$. As our first result shows, the elements of $\mathcal{R}(\mathcal{L})$ can be extremely complicated, as \mathcal{K} is contained in the closure of $\mathcal{R}(\mathcal{L})$.

Proposition 3.1. The set $\mathcal{K} = \{F \subseteq [0,1] : F \text{ is closed}\}$ is contained in the closure of $\mathcal{R}(\mathcal{L})$.

Proof. As \mathcal{K} is a compact metric space, it is totally bounded. Hence, fixed $\epsilon > 0$, there exists an ϵ -net; that is, there exists a finite collection $\mathcal{T}_{\epsilon} = \{T_1, T_2, \ldots, T_m\}$ of elements of \mathcal{K} compact such that $\mathcal{K} \subseteq \bigcup_{i=1}^m B_{\epsilon}(T_i), T_i \cap T_j = \emptyset$ whenever $i \neq j$, and $|T_i|$ is finite for all i. Let $f \in C(I, I)$ so that $T_i \in \mathcal{L}(f)$ for all $1 \leq i \leq m$. Then, $\mathcal{H}^*(\mathcal{K}, \mathcal{L}(f)) < \epsilon$.

As mentioned in the introduction, $\Lambda(f)$ and $\mathcal{L}(f)$ are closed for any f in C(I, I), as is each of the ω -limit sets $\omega(x, f)$. The next two examples show, however, that $\mathcal{R}(\mathcal{L})$ is not a closed subset of \mathcal{K}^* .

Example 3.2. Recall that \mathcal{K} is contained in the closure of $\mathcal{R}(\mathcal{L})$, and $\{\{x\} : x \in [0,1]\} \subseteq \mathcal{K}$. If $f \in C(I,I)$ such that $\{\{x\} : x \in [0,1]\} \subseteq \mathcal{L}(f)$, then $\omega(x,f) = \{x\}$ for any x in [0,1], and this precludes $T \in \mathcal{L}(f)$ for any T in $\mathcal{K} \setminus \{\{x\} : x \in [0,1]\}$.

Example 3.3. Let f(x) = x on I, and for any $\epsilon > 0$, choose $\frac{1}{n} < \epsilon$. An appropriate polygonal function (*the Bruckner sawtooth function*) that possesses the orbit

$$0 \to \frac{1}{n} \to \frac{2}{n} \to \dots \to \frac{n-1}{n} \to 1 \to \frac{n-\frac{1}{2}}{n} \to \frac{n-\frac{3}{2}}{n} \to \dots \to \frac{\frac{1}{2}}{n} \to 0$$

has a periodic orbit that spans I, and has the property that $||f - f_n|| \leq \frac{1}{n}$. Then f_n uniformly converges to f, and since \mathcal{K}^* is compact there exists $\{f_{n_k}\}_{k\in\mathbb{N}} \subseteq \{f_n\}_{n\in\mathbb{N}}$ so that $\lim_{k\to\infty} \mathcal{L}(f_{n_k}) = K^*$ exists. Then $\{\{x\}: x \in [0,1]\}$ $\cup [0,1] \subseteq K^*$. If there exists $g \in C(I,I)$ so that $\{\{x\}: x \in [0,1]\} \subseteq \mathcal{L}(g)$, then $\omega(x,g) = \{x\}$ for any x in [0,1], so that $[0,1] \notin \mathcal{L}(g)$.

Two of the principal results of this section are found with Theorems 3.4 and 3.5. The first result shows just how particular the elements $\mathcal{L}(f)$ are in \mathcal{K}^* , as $\mathcal{R}(\mathcal{L})$ is porous in \mathcal{K}^* . Interestingly enough, while nowhere dense, $\mathcal{R}(\mathcal{L})$ has no isolated point, and it is, in fact, path-connected.

Theorem 3.4. $\mathcal{R}(\mathcal{L})$ is porous in \mathcal{K}^* . In particular, $P(\mathcal{R}(\mathcal{L}), \mathcal{L}(f)) = 1$ for all f in C(I, I).

Proof. Fix f in C(I, I), $n \in \mathbb{N}$, and $0 < \epsilon < \frac{1}{2}$. Since $\mathcal{L}(f)$ is compact in \mathcal{K}^* , we can take $K^* = \{K_1, K_2, \ldots, K_m\}$ in \mathcal{K}^* so that

- (1) K^* is an ϵ -net of $\mathcal{L}(f)$;
- (2) $|K_i| \ge 2$ for any i;
- (3) diam $(K_i) \ge \frac{n-1}{n} 2\epsilon$ for any *i*.

Now, if $E^* \in \mathcal{K}^*$ such that $\mathcal{H}^*(E^*, K^*) < \frac{n-1}{n}\epsilon$, then $|K| \ge 2$ for any $K \in E^*$. In particular,

$$\mathcal{R}(\mathcal{L}) \cap B_{\frac{n-1}{n}\epsilon}(K^{\star}) = \emptyset, \quad \text{and} \quad P(\mathcal{R}(\mathcal{L}), \mathcal{L}(f)) \ge 2\left[\frac{\binom{n-1}{n}\epsilon}{2\epsilon}\right] = \frac{n-1}{n}.$$

Now, let $n \to +\infty$.

Theorem 3.5. $\mathcal{R}(\mathcal{L})$ is path-connected in \mathcal{K}^* .

Proof. Let $f_{\frac{1}{2}}: I \to I$ be the constant map given by $f_{\frac{1}{2}}(x) = \frac{1}{2}$, for all $x \in I$. Since, by [19, Theorem 1.4], $\mathcal{L}: C(I, I) \to \mathcal{K}^*$ is continuous at every constant map, it is, in particular, continuous at $f_{\frac{1}{2}}$. Therefore, for any $\epsilon > 0$ there is $\delta > 0$ so that $\mathcal{L}(g) \subseteq B_{\epsilon}(\{\frac{1}{2}\})$, whenever $||g - f_{\frac{1}{2}}|| < \delta$. Now, fix some g in C(I, I) and take $0 < \epsilon \leq 1$. Consider the homeomorphism $h_{\epsilon}: I \to J = [\frac{1}{2} - \frac{\epsilon}{2}, \frac{1}{2} + \frac{\epsilon}{2}]$ so that $h_{\epsilon}(0) = \frac{1}{2} - \frac{\epsilon}{2}, h_{\epsilon}(1) = \frac{1}{2} + \frac{\epsilon}{2}$, and h_{ϵ} is linear on [0, 1]. Let $f_{g}^{\epsilon} = h_{\epsilon} \circ g \circ h_{\epsilon}^{-1}: J \to J$, and define $\tilde{f}_{g}^{\epsilon}: I \to I$ so that

$$\begin{aligned} 1. \quad & \tilde{f}_g^{\epsilon} | J = f_g^{\epsilon}, \\ 2. \quad & \tilde{f}_g^{\epsilon} | J = \begin{cases} f_g^{\epsilon} (\frac{1}{2} - \frac{\epsilon}{2}) & \text{if } x \in [0, \frac{1}{2} - \frac{\epsilon}{2}] \\ f_g^{\epsilon} (\frac{1}{2} + \frac{\epsilon}{2}) & \text{if } x \in [\frac{1}{2} + \frac{\epsilon}{2}, 1]. \end{cases} \end{aligned}$$

It follows that $\mathcal{L}(\tilde{f}_g^{\epsilon}) = \mathcal{L}(f_g^{\epsilon})$ since $\|\tilde{f}_g^{\epsilon} - f_{\frac{1}{2}}\| \leq \frac{\epsilon}{2}$, so that $\tilde{f}_g^{\epsilon}([0,1]) \subseteq J$ and $f_g^{\epsilon}(J) \subseteq J$. Since \mathcal{L} is continuous at $f_{\frac{1}{2}}$, it follows that $\mathcal{L}(\tilde{f}_g^{\epsilon}) \to \{\{\frac{1}{2}\}\}$ as $\epsilon \to 0$, for any $g \in C(I, I)$. Since g and f_g^{ϵ} are topologically conjugate, it follows that $h_{\epsilon}(\mathcal{L}(g)) = \mathcal{L}(f_g^{\epsilon}) = \mathcal{L}(\tilde{f}_g^{\epsilon})$, and since as $\epsilon \to 1$ $h_{\epsilon} \to i_d$, where i_d denotes the identity map on [0, 1], we conclude that $\mathcal{L}(\tilde{f}_g^{\epsilon}) \to \mathcal{L}(g)$ as $\epsilon \to 1$. In particular, $\mathcal{L}(g)$ and $\mathcal{L}(f_{\frac{1}{2}}) = \{\{\frac{1}{2}\}\}$ are in the same path-connected component of $\mathcal{R}(\mathcal{L})$, for any g in C(I, I).

Remark 3.6. While $\mathcal{R}(\mathcal{L})$ is path-connected, the paths established in the theorem are not the only ones found between elements of $\mathcal{R}(\mathcal{L})$. If $f \neq g$ in C(I, I) are topologically conjugate, then $\mathcal{L}(f)$ and $\mathcal{L}(g)$ are path-wise connected. Suppose $f \neq g$ in C(I, I) with $h: I \to I$ a homeomorphism such that $g = h \circ f \circ h^{-1}$. Let $h_{\alpha}, \alpha \in [0, 1]$, be a continuous injective deformation such that $h_0 = i_d, h_1 = h$. Then $\{\mathcal{L}(h_\alpha \circ f \circ h_\alpha^{-1}) : 0 \leq \alpha \leq 1\}$ is a path in $\mathcal{R}(\mathcal{L})$ with $\mathcal{L}(f) = \mathcal{L}(h_0 \circ f \circ h_0^{-1})$ and $\mathcal{L}(g) = \mathcal{L}(h_1 \circ f \circ h_1^{-1})$.

With the next theorem, we begin a series of results which establish selfsimilarity in the range of \mathcal{L} . Theorem 3.7 shows that for any interval [a, b]in [0, 1], we can find a function g in C(I, I) so that C(I, I) is replicated in miniature by $\overline{B_{\epsilon}(g)}$ on [a, b], where $\epsilon = \frac{b-a}{2}$.

Theorem 3.7. Let $[a,b] \subseteq [0,1]$ and set $\epsilon = \frac{b-a}{2}$. There exists g in C(I,I) so that $\overline{B_{\epsilon}(g)}|[a,b] = h_{I,[a,b]} \circ C(I,I) \circ h_{[a,b],I}$.

Proof. Let $g \in C(I, I)$ so that $g(x) = \frac{a+b}{2}$ for any x in [a, b]. If $f \in C(I, I)$ so that $||f - g|| \le \epsilon = \frac{b-a}{2}$, then

$$\frac{a+b}{2} - \frac{b-a}{2} = a \le f(x) \le b = \frac{a+b}{2} + \frac{b-a}{2},$$

for any x in [a, b], so that $f([a, b]) \subseteq [a, b]$. Therefore, $B_{\epsilon}(g)|[a, b] \subseteq C([a, b], [a, b])$. Clearly,

$$C([a,b],[a,b]) \subseteq B_{\epsilon}(g)|[a,b] \subseteq \overline{B_{\epsilon}(g)}|[a,b].$$

Since $h_{I,[a,b]}$ and $h_{[a,b],I}$ are continuous, $h_{I,[a,b]} \circ f \circ h_{[a,b],I} : [a,b] \to [a,b]$ is continuous for every f in C(I,I), so that $h_{I,[a,b]} \circ C(I,I) \circ h_{[a,b],I} \subseteq C([a,b],[a,b])$.

If $l \in C([a, b], [a, b])$ then $f = h_{[a,b],I} \circ l \circ h_{I,[a,b]} \in C(I, I)$ so that $l = h_{I,[a,b]} \circ f \circ h_{[a,b],I}$. Thus, $h_{I,[a,b]} \circ C(I,I) \circ h_{[a,b],I} = C([a,b], [a,b])$. Finally, of course, if $f \neq l$ in C(I, I), then $h_{I,[a,b]} \circ f \circ h_{[a,b],I} \neq h_{I,[a,b]} \circ l \circ h_{[a,b],I}$ in C([a,b], [a,b]) so that the transformation from C(I, I) to C([a,b], [a,b]) is also one to one.

Corollary 3.8. Let $[a,b] \subseteq [0,1]$ and $\epsilon = \frac{b-a}{2}$. There exists g in C(I,I) so that the range of \mathcal{L} restricted to $\overline{B_{\epsilon}(g)}|[a,b]$ satisfies

$$\mathcal{R}(\mathcal{L}: B_{\epsilon}(g)|[a,b] \to \mathcal{K}^{\star}) = h_{I,[a,b]}(\mathcal{R}(\mathcal{L})).$$

In Theorem 3.7 we begin with an interval [a, b] in I, and find an appropriate function g in C(I, I). Our next two results show that we can just as well begin with a function f in C(I, I) and an $\epsilon > 0$, and find an appropriate g in $B_{\epsilon}(f)$ with a corresponding interval [a, b].

Theorem 3.9. For every f in C(I, I) and any $0 < \epsilon \leq 1$ there exist g in $\underline{B_{\epsilon}(f)}, 0 < \delta < \epsilon$ and $[a, b] \subseteq I$ so that $b - a = 2\delta, \overline{B_{\delta}(g)} \subset B_{\epsilon}(f)$, and $\underline{B_{\delta}(g)}|[a, b] = h_{I,[a,b]} \circ C(I, I) \circ h_{[a,b],I}$.

Proof. Let $f \in C(I, I)$ with $\epsilon > 0$. Since f is uniformly continuous, there exist $0 < \delta' < \frac{\epsilon}{2}$ so that $|x - y| < \delta'$ implies $|f(x) - f(y)| < \frac{\epsilon}{2}$, and z in [0, 1] so that f(z) = z. Now, suppose that $z \in (0, 1)$, and choose δ so that $\delta < \min\{\delta', z, 1 - z\}$. Let $g \in C(I, I)$ so that $g \in B_{\frac{\epsilon}{2}}(f)$ and g(y) = z for any $y \in [z - \delta, z + \delta] = [a, b]$, and consider $\overline{B_{\delta}(g)}$.

Now, suppose that $z \in \{0, 1\}$. We assume that z = 0; the case that z = 1 is similar. Set $\delta = \frac{\delta'}{2}$, and take g in C(I, I) so that $g \in B_{\frac{\epsilon}{2}}(f)$ and $g(y) = \delta$ for any y in $[0, \delta'] = [a, b]$. Consider $\overline{B_{\delta}(g)}$.

In either case, we show that $B_{\delta}(g)$ is the set which satisfies our theorem's conclusion. This is done as in our previous theorem's proof.

Corollary 3.10. For every f in C(I, I) and any $\epsilon > 0$ there exist g in $B_{\epsilon}(f)$, $0 < \delta < \epsilon$ and $[a, b] \subseteq I$ so that $b - a = 2\delta$ and

$$\overline{B_{\delta}(g)} \subset B_{\epsilon}(f),$$

and

$$\mathcal{R}(\mathcal{L}: B_{\delta}(g)|[a,b] \to \mathcal{K}^{\star}) = h_{I,[a,b]} \circ \mathcal{R}(\mathcal{L}).$$

We conclude our study of $\mathcal{R}(\mathcal{L})$ with the next theorem. Stronger than Corollaries 3.8 and 3.10, Theorem 3.11 shows that all of the elements of $\mathcal{R}(\mathcal{L})$ which lie in any interval (a, b) found in I are a scaled copy of those found in (0, 1).

Theorem 3.11. Let $(a,b) \subseteq [0,1]$, and set $\mathcal{T}_{(0,1)} = \{\mathcal{L}(f) : \mathcal{L}(f) \subseteq (0,1), f \in C(I,I)\}, \mathcal{T}_{(a,b)} = \{\mathcal{L}(f) : \mathcal{L}(f) \subseteq (a,b), f \in C(I,I)\}$. Then

$$\mathcal{T}_{(0,1)} = h_{[a,b],I}(\mathcal{T}_{(a,b)}),$$

so that $\mathcal{T}_{(0,1)}$ and $\mathcal{T}_{(a,b)}$ are homeomorphic.

Proof. For each f in C(I, I), $\mathcal{L}(f)$ is closed in $(\mathcal{K}, \mathcal{H})$ by [4]. Let $f \in C(I, I)$. By $\mathcal{L}(f) \subseteq (a, b)$ we intend $\omega(x, f) \subseteq (a, b)$ for all x in I.

We first show that $h_{I,[a,b]}(\mathcal{T}_{(0,1)}) \subseteq \mathcal{T}_{(a,b)}$. Let $g \in C(I,I)$, so that $\mathcal{L}(g) \in \mathcal{T}_{(0,1)}$, and set $f_g = h_{I,[a,b]} \circ g \circ h_{[a,b],I}$. Since $g \in C(I,I)$, it follows that $f_g \in C([a,b],[a,b])$ and $\mathcal{L}(f_g) = h_{I,[a,b]}(\mathcal{L}(g)) \subseteq (a,b)$. We extend $f_g : [a,b] \to [a,b]$ to $f: I \to I$ so that

$$f(x) = \begin{cases} f_g(a) & \text{if } x \in [0, a] \\ f_g(x) & \text{if } x \in [a, b] \\ f_g(b) & \text{if } x \in [b, 1]. \end{cases}$$

Since $\mathcal{L}(f) = \mathcal{L}(f_g)$, we have $h_{I,[a,b]}(\mathcal{L}(g)) = \mathcal{L}(f)$ contained in $\mathcal{T}_{(a,b)}$, so that $h_{I,[a,b]}(\mathcal{T}_{(0,1)}) \subseteq \mathcal{T}_{(a,b)}$.

It remains to show that $h_{[a,b],I}(\mathcal{T}_{(0,1)}) \supseteq \mathcal{T}_{(a,b)}$. Let $F \in \mathcal{T}_{(a,b)}$, so that $F = \mathcal{L}(f)$ for some f in C(I, I), and $\mathcal{L}(f) \subseteq (a, b)$. It suffices to show that $F = \mathcal{L}(g)$, where $g \in C([a,b], [a,b])$. Now, since $\mathcal{L}(f) \subseteq (a,b)$, there exists $\epsilon > 0$ so that $\overline{B_{\epsilon}(\Lambda(f))} \subset (a,b)$ and since $f(\Lambda(f)) = \Lambda(f), f(\overline{B_{\epsilon}(\Lambda(f))}) \subset (a,b)$, too. Now, let $x \in I$. There exists $N = N(x) \in \mathbb{N}$ so that $f^n(x) \in \overline{B_{\epsilon}(\Lambda(f))}$ whenever n > N(x). If we let $y = f^{N+1}(x)$, then $\omega(y,g) = \omega(x,f)$, where g is any extension of $f|\overline{B_{\epsilon}(\Lambda(f))}$ to all of [a,b]. In particular, $\mathcal{L}(f) \subseteq \mathcal{L}(g)$. It remains to show that we can take g so that $\mathcal{L}(f) = \mathcal{L}(g)$.

Set $[\alpha, \beta] = \overline{\operatorname{conv}}(\Lambda(f))$, the closed convex hull of $\Lambda(f)$, and let $y_1 \in (\alpha - \epsilon, \alpha)$ so that $\gamma(y_1, f) \subseteq B_{\epsilon}(\Lambda(f))$. By [3, Corollary IV.10] this would actually imply that $\gamma(y_1, f) \subseteq B_{\epsilon}(\Lambda(f)) \cap (y_1, \beta + \epsilon)$. If no such y_1 exists, set $y_1 = \alpha$. Let $M = \max \gamma(y_1, f)$. If $M > \beta$, take $y_2 \in \gamma(y_1, f)$ so that $\beta < y_2 < M$. If $M \leq \beta$, take $y_2 \in (\beta, \beta + \epsilon)$ so that $\gamma(y_2, f) \subseteq B_{\epsilon}(\Lambda(f)) \cap (y_1, \beta + \epsilon)$. Again, by [3, Corollary IV.10], this would imply that $\gamma(y_2, f) \subseteq (y_1, y_2)$. If no such y_2 exists, set $y_2 = \beta$. We note that, by our choice of y_1 and y_2 , $\{\omega(x, f) : x \in \overline{B_{\epsilon}(\Lambda(f))} \cap [y_1, y_2]\} = \mathcal{L}(f)$.

We now define $g : [a, b] \to [a, b]$

$$g(x) = \begin{cases} f(y_1) & \text{if } x \in [a, y_1] \\ f(x) & \text{if } x \in [y_1, \alpha] \cup [\beta, y_2] \\ f(y_2) & \text{if } x \in [y_2, b] \end{cases}$$

and if $x \in [\alpha, \beta]$, then

$$g(x) = \begin{cases} y_1 & \text{whenever } f(x) \le y_1 \\ f(x) & \text{whenever } y_1 \le f(x) \le y_2 \\ y_2 & \text{whenever } f(x) \ge y_2. \end{cases}$$

It remains to verify that $\mathcal{L}(g) \subseteq \mathcal{L}(f)$.

If $x \in [a, y_1]$, then $\omega(x, g) = \omega(y_1, f) \in \mathcal{L}(f)$, and if $x \in [y_2, b]$, then $\omega(x, g) = \omega(y_2, f) \in \mathcal{L}(f)$. Now, let $x \in (y_1, y_2)$, and consider $\gamma(x, g)$. If $\gamma(x, g) \subseteq (y_1, y_2)$, then $\gamma(x, g) = \gamma(x, f)$, so that $\omega(x, g) = \omega(x, f) \in \mathcal{L}(f)$. If $\gamma(x, g) \cap \{y_1, y_2\} \neq \emptyset$, we can take $n \in \mathbb{N}$ minimal so that $g^n(x) = y_i \in \{y_1, y_2\}$. Then $\omega(x, g) = \omega(y_i, f) \in \mathcal{L}(f)$.

As the next proposition shows, we cannot extend the conclusion of Theorem 3.11 to those elements of $\mathcal{R}(\mathcal{L})$ found in the closed interval [a, b].

Proposition 3.12. Let $[a, b] \subseteq [0, 1]$ so that 0 < a < b < 1. There exists $F \in \mathcal{R}(\mathcal{L})$ such that $\omega \subseteq [a, b]$ for any $\omega \in F$, but $F \notin \{\mathcal{L}(f) : f \in C([a, b], [a, b])\}$.

Proof. Let $f \in C(I, I)$ so that f has a unique infinite and maximal ω -limit set ω_0 , which is generated by a solenoidal system. It follows that $\omega_0 = Q \dot{\cup} C$, where Q is a Cantor set and C is a dense and countable set of points isolated in ω_0 . Now, suppose that $a = \min \omega_0 \in C$, $b = \max \omega_0 \in C$, and $\omega \subseteq [a, b]$ for all ω in $\mathcal{L}(f)$. (The reader is referred to [10] for the construction of such a function f.) If $x \in I$ for which $\omega(x, f) = \omega_0$, then $\gamma(x, f) \cap [0, a] \neq \emptyset$ and $\gamma(x, f) \cap [b, 1] \neq \emptyset$, since each of the intervals $[a, \min Q]$ and $[\max Q, b]$ is wandering. Moreover, a and b are isolated in $\Lambda(f)$. We conclude that if $F = \mathcal{L}(f)$, then $F \notin \{\mathcal{L}(g) : g \in C([a, b], [a, b])\}$. In particular, if $\omega_0 \in \mathcal{L}(g)$ for some $g \in C([a, b], [a, b])$, then as we saw earlier, the maximal ω -limit set which contains ω_0 cannot be solenoidal. But if ω_0 is contained in the basic set B(M, g), then a and b are no longer isolated points of $\Lambda(g)$, since B(M, g) is perfect. \Box

4. The map $\omega : I \times C(I, I)$

This section concerns the map $\omega : I \times C(I, I) \to \mathcal{K}$ which takes (x, f) in $I \times C(I, I)$ to the ω -limit set $\omega(x, f)$. Fundamental to much of the analysis is the characterization of ω -limit sets for continuous self-maps of the interval developed in [1]. The first result is an elementary lemma which takes advantage of the density of the finite sets in \mathcal{K} .

Lemma 4.1. \mathcal{K} is contained in the closure of $\mathcal{R}(\omega)$.

Proof. Let $\epsilon > 0$. Any element $F \in \mathcal{K}$ can be ϵ -approximated by a finite set S in \mathcal{K} so that $\mathcal{H}(F,S) < \epsilon$. Moreover, there exists f in C(I,I) so that $\omega(x,f) = S$.

We record several immediate corollaries of Lemma 4.1.

Corollary 4.2. $\mathcal{R}(\omega)$ and $\mathcal{K} \setminus \mathcal{R}(\omega)$ are dense in \mathcal{K} , so that $\mathcal{R}(\omega) \subsetneq \overline{\mathcal{R}(\omega)}$ and $\operatorname{int}(\mathcal{R}(\omega)) = \emptyset$.

Proof. From [1] it follows that

$$\mathcal{K} \setminus \{ \omega(x, f) : x \in I, f \in C(I, I) \}$$

is dense in $(\mathcal{K}, \mathcal{H})$. Precisely, every $K \in \mathcal{K}$ is approximable by finite sets. Fix $K \in \mathcal{K}$ and $\epsilon > 0$. There exists F finite such that $\mathcal{H}(K, F) < \frac{\epsilon}{2}$. Replace one point of F with a suitably small interval around it and obtain a new compact set F' such that $F' \notin \mathcal{R}(\omega)$ and $\mathcal{H}(F, F') < \frac{\epsilon}{2}$. Hence, $\mathcal{H}(K, F') < \epsilon$. \Box

Theorem 3.5 establishes that $\mathcal{R}(\mathcal{L})$ is path-connected in \mathcal{K}^* , as any element of $\mathcal{L}(f)$ in $\mathcal{R}(\mathcal{L})$ is path-connected to $\{\{\frac{1}{2}\}\}$, also in $\mathcal{R}(\mathcal{L})$. If $F \in \mathcal{R}(\omega)$, then $F \in \mathcal{L}(f)$ for some f in C(I, I), so that F is, in fact, path connected to $\{\frac{1}{2}\} \in \mathcal{R}(\omega)$.

Corollary 4.3. $\mathcal{R}(\omega)$ is path-connected in \mathcal{K} .

A main result of this section is the following theorem.

Theorem 4.4. $\mathcal{R}(\omega)$ is the disjoint union of a dense G_{δ} subset of \mathcal{K} and a first category F_{σ} subset of \mathcal{K} .

Theorem 4.4 is an immediate consequence of Propositions 4.5 and 4.6. Obviously, this result relies on the work found in [1]. The lack of a "clean" characterization of the elements of $\mathcal{R}(\mathcal{L})$ seems a serious obstacle to the development of an analogous result for the range of $\mathcal{L}: C(I, I) \to \mathcal{K}^*$.

Proposition 4.5. { $F \in \mathcal{K} : F$ is nowhere dense} is a dense G_{δ} subset of \mathcal{K} .

Proof. Let I_j be an enumeration of the open intervals in (0, 1) with rational end-points, and set $\mathcal{K}_j = \{F \in \mathcal{K} : I_j \subset F\}$. One verifies easily that \mathcal{K}_j is closed in \mathcal{K} .

Suppose now that $F \in \mathcal{K}$ is not nowhere dense, so that for some $a \leq b$ in [0,1] we have $[a,b] \subseteq F$. There exists some $I_j \subset [a,b]$, so that $I_j \subset F$ and $F \in \mathcal{K}_j$. In particular, $\{F \in \mathcal{K} : F \text{ is nowhere dense}\} = \mathcal{K} \setminus \bigcup_{j=1}^{\infty} I_j$ is a G_{δ} subset of \mathcal{K} . That $\{F \in \mathcal{K} : F \text{ is nowhere dense}\}$ is dense in \mathcal{K} follows from the observation that the finite sets are dense in \mathcal{K} . \Box

Proposition 4.6. The set

 $\{F \in \mathcal{K} : F \text{ is a finite union of nondegenerate closed intervals}\}$

is a first category F_{σ} subset of \mathcal{K} .

Proof. We show that

$$F_{n,m} = \{F \in \mathcal{K} \colon F = \dot{\cup}_{i=1}^{k} I_i \text{ s.t. } k \le n \text{ and } I_i = [a_i, b_i] \text{ with } b_i - a_i \ge \frac{1}{m} \text{ for all } i\}$$

is closed in \mathcal{K} . Let $\{F_i\}_{i\in\mathbb{N}} \subseteq F_{n,m}$ so that $F_i \to F$ in \mathcal{K} . We show that $F \in F_{n,m}$. Suppose, to the contrary, that there exist disjoint open intervals $\{(a_i, b_i)\}_{i=1}^l$ with $l \geq n$, such that $F \subset \bigcup_{i=1}^l (a_i, b_i)$ and $F \cap (a_i, b_i) \neq \emptyset$ for all i. Since $F_i \to F$ in \mathcal{K} , there is N in \mathbb{N} so that, whenever j > N, $F_j \subset \bigcup_{i=1}^l (a_i, b_i)$ and $F_j \cap (a_i, b_i) \neq \emptyset$, $1 \leq i \leq l$. But this contradicts F_j having at most n components. Now, suppose that there exists an open interval (a, b) so that $(a, b) \cap F$ is closed, non-empty, and $b - a < \frac{1}{m}$. Since $F_i \to F$, for sufficiently large j, $F_j \cap (a, b)$ also is both closed and non-empty. But this contradicts F_j having components of length at least $\frac{1}{m}$. Our conclusion follows from the observation that $\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} F_{n,m} = \{F \in \mathcal{K} : F \text{ is a finite union of nondegenerate closed intervals}\}$.

Theorem 4.7. $\mathcal{R}(\omega)$ is a dense $G_{\delta\sigma}$ subset of \mathcal{K} .

Proof. The theorem follows from Propositions 4.5 and 4.6, and Theorem 1.1, the characterization of ω -limit sets found in [1].

The following two corollaries are consequences of Theorem 3.7 and Theorem 3.9, respectively.

Corollary 4.8. Let $[a,b] \subseteq [0,1]$ and set $\epsilon = \frac{b-a}{2}$. There exists g in C(I,I) so that

$$\mathcal{R}(\omega: [a,b] \times B_{\epsilon}(g) \to \mathcal{K})) = h_{I,[a,b]}(\mathcal{R}(\omega)).$$

Corollary 4.9. For every f in C(I, I) and any $\epsilon > 0$ there exist g in $B_{\epsilon}(f)$, $0 < \delta < \epsilon$ and $[a, b] \subseteq I$ so that $\overline{B_{\delta}(g)} \subset B_{\epsilon}(f)$, $b - a = 2\delta$, and $\mathcal{R}(\omega : [a, b] \times \overline{B_{\delta}(g)} \to \mathcal{K}) = h_{I,[a,b]}(\mathcal{R}(\omega)).$

Another main result of the section is Theorem 4.10. While similar to Theorem 3.11, it is a bit stronger as we may consider all of the ω -limit sets found in [a, b], and not just those found in (a, b).

Theorem 4.10. Let $[a, b] \subseteq [0, 1]$, and set

$$S_{[a,b]} = \{\omega(x,f) : \omega(x,f) \subseteq [a,b], x \in I, f \in C(I,I)\}$$

Then $\mathcal{R}(\omega) = h_{[a,b],I}(S_{[a,b]}).$

Proof. We first show that $\mathcal{R}(\omega) \subseteq h_{[a,b],I}(S_{[a,b]})$. This is equivalent to showing that $h_{I,[a,b]}(\mathcal{R}(\omega)) \subseteq S_{[a,b]}$. Let $\tilde{\omega} \in \mathcal{R}(\omega)$; say $\tilde{\omega} = \omega(\tilde{x}, \tilde{f})$, where $(\tilde{x}, \tilde{f}) \in I \times C(I, I)$. Then $h_{I,[a,b]}(\tilde{\omega}) = \omega = \omega(h_{I,[a,b]}(\tilde{x}), h_{I,[a,b]} \circ \tilde{f} \circ h_{[a,b],I})$, where $h_{I,[a,b]}(\tilde{\omega}) = \omega \subseteq [a,b]$, $h_{I,[a,b]}(\tilde{x}) \in [a,b] \subseteq I$, and $h_{I,[a,b]} \circ \tilde{f} \circ h_{[a,b],I} \in C([a,b], [a,b])$. We now extend $h_{I,[a,b]} \circ \tilde{f} \circ h_{[a,b],I}$ to $f \in C(I, I)$ via Tietze extension theorem, so that

(1)
$$h_{I,[a,b]}(\tilde{\omega}) = \omega = \omega(h_{I,[a,b]}(\tilde{x}), f) \subseteq [a,b],$$

(2) $f \in C(I,I).$

It follows that $h_{I,[a,b]}(\tilde{\omega}) \in S_{[a,b]}$, so that

$$h_{I,[a,b]}(\mathcal{R}(\omega)) \subseteq S_{[a,b]}$$

We now show that $h_{[a,b],I}(S_{[a,b]}) \subseteq \mathcal{R}(\omega)$.

Let $\omega \in S_{[a,b]}$. Then, by [1], ω is either a finite union of nondegenerate closed intervals or a closed and nowhere dense set in [a, b]. Let $h_{[a,b],I}(\omega) = \tilde{\omega}$. Clearly, $\tilde{\omega}$ is either a finite union of nondegenerate closed intervals or a closed and nowhere dense set in [0, 1]. Thus, again, by [1], there exists $(\tilde{x}, \tilde{f}) \in I \times C(I, I)$ so that $\tilde{\omega} = \omega(\tilde{x}, \tilde{f})$, so that $\tilde{\omega} \in \mathcal{R}(\omega)$. Thus, $h_{[a,b],I}(S_{[a,b]}) \subseteq \mathcal{R}(\omega)$. Our conclusion follows.

The main result of [4] shows that, for a fixed f in C(I, I), the set $\{\omega(x, f) : x \in I\}$ is closed in \mathcal{K} . The next result fixes, instead, x in [0, 1] and considers the set $\{\omega(x, f) : f \in C(I, I)\}$.

Proposition 4.11. Let $x \in [0, 1]$ with $S_x = \{\omega(x, f) : f \in C(I, I)\}$. Then S_x contains a dense and open subset of $\mathcal{R}(\omega)$.

Proof. Let $F \in \mathcal{R}(\omega)$ so that $x \notin F$, with $f \in C(I, I)$ and $y \in I$ such that $\omega(y, f) = F$, and $\epsilon > 0$ such that $x \notin \overline{B_{\epsilon}(\omega(y, f))}$. Take f_1 so that

- (1) $f_1|B_{\epsilon}(\omega(y,f)) = f|B_{\epsilon}(\omega(y,f)),$
- (2) $f_1(x) = z \in \gamma(y, f) \cap B_{\epsilon}(\omega(y, f)),$

such that $\gamma(z, f) \subseteq B_{\epsilon}(\omega(y, f))$, and extend f_1 defined on $\overline{B_{\epsilon}(\omega(y, f))} \cup \{x\}$ to all of I via the Tietz extension theorem.

By $\omega(x, f_1) = \omega(z, f_1)$, $\gamma(z, f_1) = \gamma(z, f)$, it follows that $\omega(x, f_1) = \omega(z, f)$. Since $z \in \gamma(y, f)$, it follows that $\omega(z, f) = \omega(y, f)$. Thus, $\omega(x, f_1) = F \in \mathcal{S}_x$. Let $\mathcal{D}_x = \{F \in \mathcal{R}(\omega) : F \text{ is finite and } x \notin F\}$. Then $\mathcal{D}_x \subseteq \mathcal{S}_x$, and since \mathcal{D}_x is dense in $\mathcal{R}(\omega)$, \mathcal{S}_x is dense in $\mathcal{R}(\omega)$, too. Moreover, if $F \in \mathcal{D}_x$, then there is $\epsilon > 0$ so that $x \notin B_{\epsilon}(F)$. Should $F_1 \in \mathcal{R}(\omega)$ such that $\mathcal{H}(F, F_1) < \epsilon$, then $x \notin F_1$, and $F_1 \in \mathcal{S}_x$.

For a fixed x, $\{\omega(x, f) : f \in C(I, I)\}$ is dense and open in \mathcal{K} . The next lemma decribes the origin of the "holes" found in $\mathcal{R}(\omega) \setminus \{\omega(x, f) : f \in C(I, I)\}$.

Lemma 4.12. Suppose $F \in \mathcal{K}$ is nowhere dense, infinite and contains an isolated point. If $x_0 \in F$, then $F \notin \{\omega(x_0, f) : f \in C(I, I)\}$.

Proof. Suppose, to the contrary, that there exists f in C(I, I) such that $\omega(x, f) = F$, with $y \in F$ and $\epsilon > 0$ so that $F \cap B_{\epsilon}(y) = y$. Since F is strongly invariant with respect to f, it follows that $\gamma(x, f) \subseteq F$, and since $y \in F$, there exists $\{n_k\}_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that $f^{n_k}(x) \to y$. Moreover, y is isolated in F, so

we can just as well take $\{n_k\} \subseteq \mathbb{N}$ such that $f^{n_k}(x) = y$. Now, if $f^{n_1}(x) = y$ and $f^{n_2}(x) = y$, with $0 < k = n_2 - n_1$, then $f^k(y) = y$. We conclude that $\omega(x, f) = \omega(y, f)$ is periodic, and this contradicts $\omega(x, f) = F$.

Acknowledgement. This research has been partially supported by "Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni dell'Istituto Nazionale di Alta Matematica F.Severi".

References

- Agronsky, S. J., Bruckner, A. M., Ceder, J. C. and Pearson, T. L., The structure of ω-limit sets for continuous functions. *Real Anal. Exchange* 15 (1989/1990), 483 – 510.
- [2] Agronsky, S. J., Bruckner, A. M. and Laczkovich, M., Dynamics of typical continuous functions. J. Lond. Math. Soc. (2) 40 (1989), 227 – 243.
- [3] Block, L. S. and Coppel, W. A., One-Dimensional Dynamics. Lect. Notes Math. 1513. Berlin: Springer 1992.
- [4] Blokh, A., Bruckner, A. M., Humke, P. D. and Smital, J., The space of ω-limit sets of a continuous map of the interval. *Trans. Amer. Math. Soc.* 348 (1996), 1357 – 1372.
- [5] Blokh, A., The "spectral" decomposition for one-dimensional maps. In: Dynamics Reported (eds.: C. K. R. T. Jones et al.). Dynam. Report. Expositions Dynam. Systems (N.S.) 4. Berlin: Springer 1995, 1 – 59.
- [6] Bowen, R., Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401 – 414.
- [7] Brin, M. and Stuck, G., An Introduction to Dynamical Systems. Cambridge: Cambridge Univ. Press 2004.
- [8] Bruckner, A. M., Stability in the family of ω -limit sets of continuous self maps of the interval. *Real Anal. Exchange* 22 (1996/1997), 52 57.
- [9] Bruckner, A. M., Bruckner, J. B. and Thomson, B. S., *Real Analysis*. New Jersey: Prentice-Hall 1997.
- [10] Bruckner, A. M. and Ceder, J., Chaos in terms of the map $x \mapsto \omega(x, f)$. Pacific J. Math. 156 (1992), 63 96.
- [11] Bruckner, A. M. and Smital, J., The structure of ω-limit sets for continuous maps of the interval. Math. Bohem. 117 (1992), 42 – 47.
- [12] Bruckner, A. M. and Smital, J., A characterization of ω -limit sets of maps of the interval with zero topological entropy. *Ergodic Theory Dynam. Systems* 13 (1993)(3), 7 19.
- [13] D'Aniello, E., Darji, U. B. and Steele, T. H., Ubiquity of odometers in topological dynamical systems. *Topology Appl.* 156 (2008)(2), 240 – 245.

- 100 E. D'Aniello and T. H. Steele
 - [14] D'Aniello, E., Humke, P. D. and Steele, T. H., The space of adding machines generated by continuous self maps of manifolds. *Topology Appl.* 157 (2010), 954 – 960.
 - [15] D'Aniello, E. and Steele, T. H., Approximating ω-limit sets with periodic orbits. Aequationes Math. 75 (2008)(1-2), 93 – 102.
 - [16] Dinaburg, E. I., The relation between topological entropy and metric entropy (in Russian). Dokl. Akad. Nauk SSSR 190 (1970), 19 – 22; Engl. transl.: Soviet Math. Dokl. 11 (1969), 13 – 16.
 - [17] Lehning, H., Dynamics of typical continuous functions. Proc. Amer. Math. Soc. 123 (1995), 1703 – 1707.
 - [18] Sharkovskii, A. N., On a theorem of G. D. Birkhoff (in Ukranian). Dopodovidi Akad. Nauk Ukrain. RSR, Ser. A 1967 (1967), 429 – 432.
 - [19] Smital, J. and Steele, T. H., Stability of dynamical structures under perturbation of the generating function. J. Difference Equ. Appl. 15 (2009), 77 – 86.
 - [20] Zajícěk, L., Porosity and σ -porosity. Real Anal. Exchange 13 (1987/1988), 314 350.

Received January 14, 2013; revised September 23, 2013