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Abstract. We study the influence of errors on the convergence of infinite products
of nonexpansive mappings in metric spaces. Previously, certain convergence results
were proved under the assumption that all exact orbits converge uniformly on the
whole space. In the present paper, we improve upon these results by proving the
convergence of inexact orbits only assuming uniform convergence of exact orbits on
bounded subsets of the metric space. We also provide applications to the convex
feasibility problem in Hilbert space.
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1. Introduction and preliminaries

Convergence analysis of iterations of nonexpansive mappings [12] is a central
topic in Nonlinear Functional Analysis and its applications. Therefore it is nat-
ural to ask if convergence of the iterates of nonexpansive mappings is preserved
in the presence of computational errors. Affirmative answers to this question
are provided in [5]. Related results can be found, for instance, in [4, 6, 7, 16–18].
More precisely, in [5] it is shown that if all exact iterates of a given nonexpansive
mapping converge (to fixed points), then this convergence continues to hold for
inexact orbits with summable errors. The authors of [17] study the influence of
computational errors on the convergence of iterates of nonexpansive mappings
in both Banach and metric spaces. It is shown there that if all the orbits of a
nonexpansive self-mapping of a metric space X converge to some closed sub-
set F of X, then all inexact orbits with summable errors also converge to F . On
the other hand, the authors of [17] also construct examples which show that the
convergence of inexact orbits no longer holds when the errors are not summable.
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The convergence of infinite products of nonexpansive mappings is also of
major importance because of their many applications in, for example, the in-
vestigation of feasibility and optimization problems. See, for instance, [1–3,
8–11, 13–15, 18–25] and references therein. Several aspects of the convergence
of (random) infinite products on bounded, closed and convex subsets of a Ba-
nach space were thoroughly studied in [22]. In that paper we consider spaces of
sequences of nonexpansive mappings on a bounded, closed and convex subset K
of a Banach space, equipped with a suitable complete metric, and show that for
a generic sequence in these spaces, the corresponding infinite products converge
uniformly.

Recall that a property of elements of a complete metric space Z is said to be
generic (typical) in Z if the set of all elements of Z which possess this property
contains an everywhere dense Gδ subset of Z. In this case we also say that the
property holds for a generic (typical) element of Z or that a generic (typical)
element of Z has this property [22, 23].

In [22, Theorem 3.1] it is shown that for a generic element {Bt}
∞

t=1 in a cer-
tain space of sequences of nonexpansive operators, there exists a nonexpansive
retraction P∗ onto the common fixed point set F of the operators Bt, t = 1, 2, . . .,
such that

Bt · · · · ·B1x → P∗x

as t → ∞, uniformly for all x ∈ K. It is also shown ([22, Theorem 3.2]) that for
a generic sequence of operators {Bt}

∞

t=1 in the same space, all its random pro-
ducts Br(t)· · · · ·Br(1)x also converge to a nonexpansive retraction Pr : K → F ,
uniformly for all x ∈ K, where r : {1, 2, . . .} → {1, 2, . . .}.

In view of the above discussion, it is natural to ask if the convergence of
infinite products is preserved in the presence of computational errors. Affir-
mative answers to this question are provided in [7, 18]. These answers extend
several results which were obtained in [5] for powers of a single operator. More
precisely, the results of [5] were developed in [7] by replacing the iterates of a
single operator with infinite products taken from a possibly infinite pool. Sec-
tions 2 and 4 of [7] are devoted to weak ergodic theorems in metric and Banach
spaces, respectively, while Sections 3 and 5 of [7] deal with convergence to fixed
points. Note that in [7] all the convergence results were established under the
assumptions that the exact infinite products converge and that the computa-
tional errors are summable. In [18] uniform convergence of the exact infinite
products was, once again, required, but the computational errors were only as-
sumed to converge to zero. Under these assumptions, it still turned out to be
possible to establish uniform convergence of the corresponding inexact infinite
products. We now quote three results which were proved in [18]. In order to
formulate them, we first recall the following notations and assumptions.
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Let (X, ρ) be a complete metric space. For each x ∈ X and each nonempty
set A ⊂ X, we denote

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.

Let Ti : X → X, i = 0, 1, . . . satisfy

ρ(Tix, Tiy) ≤ ρ(x, y), x, y ∈ X, i = 0, 1, . . . .

For each x ∈ X and each r > 0, set

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

Theorem 1.1. Let F be a nonempty and closed subset of X such that

Ti(F ) ⊂ F for all integers i ≥ 0. (1.1)

Let R be a nonempty set of mappings r : {0, 1, . . .} → {0, 1, . . .} with the

following property:

(P1) If r ∈ R and q is a natural number, then rq ∈ R, where

rq(i) := r(i+ q) for all integers i ≥ 0.

Assume that the following property holds:

(P2) For each ǫ > 0, there exists a natural number n(ǫ) such that for each

r ∈ R and each x ∈ X,

ρ(Tr(n(ǫ)) · · ·Tr(1)Tr(0)x, F ) < ǫ.

Then for each ǫ > 0, there exist δ > 0 and a natural number n̄ such that for

each r ∈ R and each sequence {xi}
∞

i=0 ⊂ X which satisfies

ρ(xi+1, Tr(i)xi) ≤ δ for all integers i ≥ 0,

the following inequality holds:

ρ(xi, F ) < ǫ for all integers i ≥ n̄.

Theorem 1.2. Let F be a nonempty and closed subset of X, assume that (1.1)
holds and let R be a nonempty set of mappings r : {0, 1, . . .} → {0, 1, . . .} which

has property (P1). Assume that property (P2) holds too.

Let {δi}
∞

i=0 be a sequence of positive numbers such that

lim
i→∞

δi = 0.

Let ǫ > 0 be given. Then there exists a natural number n0 such that for each

r ∈ R and each sequence {xi}
∞

i=0 ⊂ X which satisfies

ρ(xi+1, Tr(i)xi) ≤ δi, i = 0, 1, . . . , (1.2)

we have ρ(xn, F ) < ǫ for all integers n ≥ n0.
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The following corollary is the special case of Theorem 1.2 where the attract-
ing set F is a singleton.

Corollary 1.3. Assume that the assumptions of Theorem 1.2 hold and that F

is a singleton {x̄}. Let {δi}
∞

i=0 be a sequence of positive numbers such that

limi→∞ δi = 0. Then for each ǫ > 0, there exists a natural number nǫ such that

for each r ∈ R and each sequence {xi}
∞

i=0 ⊂ X which satisfies (1.2), we have

ρ(xn, x̄) < ǫ for all integers n ≥ nǫ.

The most restrictive assumption in these results is the uniform convergence
of exact orbits on the whole space X, which usually holds when the space X

is bounded and which does not hold in many important cases such as, for
example, the convex feasibility problem in Hilbert spaces. In the present paper,
we improve upon these results by establishing the convergence of inexact orbits
only assuming uniform convergence of exact orbits on bounded subsets of the
metric space.

Our paper is organized as follows. Our two main results are stated in
the next section (see Theorems 2.1 and 2.2 below). Theorem 2.1 is proved in
Section 3, while Theorem 2.2 is proved in Section 4. In Section 5 we state
two extensions of our main results, Theorems 5.1 and 5.2, which are proved in
Section 6 and 7, respectively. Finally, in Section 8 we apply our results to the
convex feasibility problem in Hilbert spaces.

2. Main results

Let (Z, ρ) be a complete metric space.
For each x ∈ Z and each nonempty set A ⊂ Z, put

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.

Let Ti : Z → Z, i = 0, 1, . . . satisfy

ρ(Tix, Tiy) ≤ ρ(x, y), x, y ∈ Z, i = 0, 1, . . . . (2.1)

Fix θ ∈ Z. For each x ∈ Z and each r > 0, set

B(x, r) = {y ∈ Z : ρ(x, y) ≤ r}.

Theorem 2.1. Let F be a nonempty, bounded and closed subset of Z such that

Ti(F ) ⊂ F for all integers i ≥ 0. (2.2)

Let R be a nonempty set of mappings r : {0, 1, . . .} → {0, 1, . . .} with prop-

erty (P1) and assume that the following property holds:
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(P3) For each ǫ,M > 0, there exists a natural number n(ǫ,M) such that for

each r ∈ R and each x ∈ B(θ,M),

ρ(Tr(n(ǫ,M)) · · ·Tr(1)Tr(0)x, F ) < ǫ.

Then for each ǫ,M > 0, there exist a real number δ > 0 and a natural number n̄

such that for each r ∈ R and each sequence {xi}
∞

i=0 ⊂ Z which satisfies

x0 ∈ B(θ,M) (2.3)

and

ρ(xi+1, Tr(i)xi) ≤ δ for all integers i ≥ 0, (2.4)

the following inequality holds:

ρ(xi, F ) < ǫ for all integers i ≥ n̄.

Theorem 2.2. Let F be a nonempty, bounded and closed subset of Z such that

(2.2) holds. Let R be a nonempty set of mappings r : {0, 1, . . .} → {0, 1, . . .}
with properties (P1) and (P3).

Let M > 0 be given. Then there is δ̄ > 0 such that for each ǫ > 0 and each

sequence

{δi}
∞

i=0 ⊂ (0, δ̄] such that lim
i→∞

δi = 0,

there exists a natural number n0 such that for each r ∈ R and each sequence

{xi}
∞

i=0 ⊂ Z satisfying

x0 ∈ B(θ,M)

and

ρ(xi+1, Tr(i)xi) ≤ δi, i = 0, 1, . . . ,

we have ρ(xn, F ) < ǫ for all integers n ≥ n0.

3. Proof of Theorem 2.1

Let M, ǫ > 0 be given. We show that there exist a real number δ > 0 and a
natural number n̄ such that for each r ∈ R and each sequence {xi}

∞

i=0 ⊂ Z

satisfying (2.3) and (2.4), the following inequality holds:

ρ(xi, F ) < ǫ for all integers i ≥ n̄.

Without loss of generality we may assume that

ǫ <
1

8
, M > 4, F ⊂ B(θ,M − 4). (3.1)
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Set
X = {y ∈ Z : ρ(y, F ) ≤ 2M − 1}. (3.2)

Clearly, X is a closed subset of (Z, ρ), (X, ρ) is a complete metric space and for
all integers i ≥ 0,

Ti(X) ⊂ X. (3.3)

It is easy now to see that all the assumptions of Theorem 1.1 hold for the space
(X, ρ) and the restrictions of Ti to X, i = 0, 1, . . .. Therefore by Theorem 1,1
there exist δ > 0 and a natural number n̄ such that the following property
holds:

(P4) For each sequence {xi}
∞

i=0 ⊂ X satisfying ρ(xi+1, Tr(i)(xi)) ≤ δ for all
integers i ≥ 0, the inequality ρ(xi, F ) < ǫ holds for all integers i ≥ n̄.

We may assume without loss of generality that

δ < (2n̄)−1. (3.4)

We show that the following property holds:

(P5) If r : {0, 1, . . .} → {0, 1, . . .}, a sequence {xi}
n̄
i=0 ⊂ Z satisfies

ρ(x0, F ) < 2M − 2, (3.5)

and for all integers i = 0, . . . , n̄− 1,

ρ(xi+1, Tr(i)xi) ≤ δ, (3.6)

then {xi}
n̄
i=0 ⊂ X.

Assume that r : {0, 1, . . .} → {0, 1, . . .} and {xi}
n̄
i=0 ⊂ Z satisfies (3.5) and

(3.6).
By (2.1), (2.2) and (3.6) for each integer i ∈ [0, n̄− 1],

ρ(xi+1, F ) ≤ ρ(xi+1, Tr(i)xi) + ρ(Tr(i)xi, F ) ≤ δ + ρ(xi, F ).

When combined with (3.5), (3.4) and (3.2), this implies that for all i = 0, . . . , n̄,

ρ(xi, F ) ≤ ρ(x0, F ) + iδ < 2M − 2 + δn̄ < 2M − 1,

and {xi}
n̄
i=0 ⊂ X. Thus (P5) holds.

Assume that r ∈ R and the sequence {xi}
∞

i=0 ⊂ Z satisfies (2.3) and (2.4).
By (2.3) and (3.1) inequality (3.5) holds.

Assume that p ≥ 0 is an integer and that

ρ(xp, F ) < 2M − 2.

By (P5), (P1), the above inequality, (2.4), (P4) and (3.3),

{xi}
p+n̄
i=p ⊂ X, ρ(xp+n̄, F ) < ǫ < 2M − 2.

Together with (3.5), this implies that {xi}
∞

i=0 ⊂ X. When combined with (2.4)
and (P4), this implies that ρ(xi, F ) < ǫ for all integers i ≥ n̄. Theorem 2.1 is
proved.
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4. Proof of Theorem 2.2

We may assume without any loss of generality that

M > 4 and F ⊂ B(θ,M − 4). (4.1)

By Theorem 2.1, there exist a number δ̄ > 0 and a natural number n1 such that
the following property holds:

(P6) For each r ∈ R and each sequence {xi}
∞

i=0 ⊂ Z which satisfies

x0 ∈ B(θ, 2M + 4) and ρ(xi+1, Tr(i)xi) ≤ δ̄ for all integers i ≥ 0,

we have ρ(xi, F ) < 1 for all integers i ≥ n1.

Let ǫ > 0 be given and assume that

{δi}
∞

i=0 ⊂ (0, δ̄] and lim
i→∞

δi = 0. (4.2)

By Theorem 2.1, there are a natural number n2 and a number δ ∈ (0, δ̄) such
that the following property holds:

(P7) For each r ∈ R and each sequence {xi}
∞

i=0 ⊂ Z satisfying

x0 ∈ B(θ, 2M + 4) and ρ(xi+1, Tr(i)xi) ≤ δ, i = 0, 1, . . . ,

we have ρ(xi, F ) < ǫ for all integers i ≥ n2.

Choose natural numbers

n3 ≥ n1 + n2 and n0 ≥ n1 + n2 + n3 (4.3)

such that
δi < δ for all integers i ≥ n3. (4.4)

Assume that
r ∈ R, {xi}

∞

i=0 ⊂ Z, x0 ∈ B(θ,M) (4.5)

and
ρ(xi+1, Tr(i)xi) ≤ δi, i = 0, 1, . . . . (4.6)

By (P6), (4.5), (4.6), (4.2) and (4.3),

ρ(xi, F ) < 1 for all integers i ≥ n1 and ρ(xn3
, F ) < 1.

When combined with (4.1), this inequality implies that

xn3
∈ B(θ,M − 3). (4.7)

For each integer i ≥ 0, set

yi = xi+n3
, r̃i = r(i+ n3). (4.8)
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By (P1), r̃ ∈ R. By (4.8), (4.6) and (4.4), for each integer i ≥ 0, we have

ρ(yi+1, Tr̃(i)yi) = ρ(xi+n3+1, Tr(i+n3)xi+n3
) ≤ δi+n3

< δ.

When combined with (4.7), (4.8), (P7) and (4.9), this implies (when applied to
r̃ and {yi}

∞

i=0) that for all integers i ≥ n2,

ǫ > ρ(yi, F ) = ρ(xi+n3
, F ) and ρ(xi, F ) < ǫ

for all integers i ≥ n0. Theorem 2.2 is proved.

5. Extensions of the main results

We use the notations, definitions and assumptions from Section 2.

Theorem 5.1. Let F be a nonempty and closed subset of Z such that

Ti(F ) ⊂ F for all integers i ≥ 0. (5.1)

Let R be a nonempty set of mappings r : {0, 1, . . .} → {0, 1, . . .} which has

properties (P1) and (P3).
Assume that s ≥ 0 is an integer, q is a natural number such that

Ts(Z) is bounded

and that the following property holds:

(P8) for any r ∈ R, there is an integer j ∈ [0, q] such that r(j) = s.

Let {Ti(θ) : i = 0, 1, . . .} be bounded and let M0 > 0 be such that

Ts(Z) ⊂ B(θ,M0), (5.2)

{Ti(θ) : i = 0, 1, . . .} ⊂ B(θ,M0), (5.3)

F̃ = F ∩ B(θ,M0 + 2 + q(1 +M0)). (5.4)

Then for each ǫ > 0, there exist a number δ ∈ (0, 1) and a natural number n̄ > q

such that for each r ∈ R and each sequence {xi}
∞

i=0 ⊂ Z which satisfies

ρ(xi+1, Tr(i)xi) ≤ δ for all integers i ≥ 0,

the following inequality holds:

ρ(xi, F̃ ) < ǫ for all integers i ≥ n̄.
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Theorem 5.2. Let F be a nonempty and closed subset of Z such that (5.1)
holds. Let R be a nonempty set of mappings r : {0, 1, . . .} → {0, 1, . . .} which

has properties (P1) and (P3). Assume that s ≥ 0 is an integer and q is a natural

number such that Ts(Z) is bounded and (P8) holds. Let M0 > 0 be such that

(5.2) and (5.3) hold, and let F̃ be defined by (5.4).
Let ǫ > 0 be given and assume that

{δi}
∞

i=0 ⊂ (0,∞) and lim
i→∞

δi = 0. (5.5)

Then there exist a natural number n0 such that for each r ∈ R and each sequence

{xi}
∞

i=0 ⊂ Z satisfying ρ(x+1, Tr(i)xi) ≤ δi for all integers i ≥ 0, the following

inequality holds: ρ(xi, F̃ ) < ǫ for all integers i ≥ n0.

6. Proof of Theorem 5.1

Assume that r ∈ R and that {xi}
∞

i=0 ⊂ Z satisfies

ρ(xi+1, Tr(i)xi) ≤ 1 for all integers i ≥ 0. (6.1)

Let j > q be an integer. By the properties of q and s, and property (P8), there
is an integer p ≥ 0 such that

p < j, j − p− 1 ≤ q, and r(p) = s. (6.2)

By (6.1), (6.2) and (5.2),

ρ(xp+1, θ) ≤ ρ(xp+1, Tr(p)xp) + ρ(Tr(p)(xp), θ) ≤ 1 +M0. (6.3)

We show by induction that for all integers i ≥ 0,

ρ(xp+i+1, θ) ≤ (M0 + 1)(i+ 1). (6.4)

Clearly, (6.4) holds for i = 0. Assume that i ≥ 0 is an integer and that (6.4)
holds.

Then by (6.1), (2.1), (5.3) and (6.4),

ρ(xp+i+2, θ)

≤ ρ(xp+i+2, Tr(p+i+1), xp+i+1) + ρ(Tr(p+i+1)xp+i+1, Tr(p+i+1)θ) + ρ(Tr(p+i+1)θ, θ)

≤ 1 + ρ(xp+i+1, θ) +M0

≤ (M0 + 1)(i+ 2).

Thus (6.4) holds for all integers i ≥ 0 and, in particular, by (6.2),

ρ(xj, θ) ≤ M0 + 1 + (j − p− 1)(M0 + 1) ≤ (M0 + 1)(q + 1).

Thus we have shown that the following property holds:
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(P9) For each r ∈ R and each {xi}
∞

i=0 ⊂ Z satisfying (6.1),

ρ(xj, θ) ≤ (M0 + 1)(q + 1) for all integers j > q. (6.5)

Let ǫ ∈ (0, 1) be given. By (P3), there exists a natural number n0 such that the
following property holds:

(P10) For each r ∈ R and each x ∈ B(θ, (q + 1)(M0 + 1)),

ρ(Tr(n0) · · ·Tr(1)Tr(0)x, F ) < ǫ.

Put
n̄ = n0 + q + 1. (6.6)

Assume that r ∈ R, {xi}
∞

i=0 ⊂ Z and

xi+1 = Tr(i)xi for all integers i ≥ 0. (6.7)

By (6.7) and (P9),

xj ∈ B(θ, (q + 1)(M0 + 1)) for all integers j > q. (6.8)

For all integers i ≥ 0, set

r̃(i) = r(i+ q + 1), x̃i = xi+q+1. (6.9)

By (6.9), (P1) and (6.7), r̃ ∈ R and for all integers i ≥ 0,

x̃i+1 = xi+q+2 = Tr(i+q+1)xi+q+1 = Tr̃(i)x̃i. (6.10)

By (6.8) and (6.9), for all integers i ≥ 0,

x̃i ∈ B(θ, (q + 1)(M0 + 1)). (6.11)

By (6.7), (6.9), (6.6), the inclusion r̃ ∈ R, (6.11) and (P10),

ρ(Tr(n̄) · · ·Tr(1)Tr(0)x0, F ) = ρ(Tr(n̄) · · ·Tr(q+1)xq+1, F )

= ρ(Tr̃(n0) · · ·Tr̃(0)x̃0, F )

< ǫ.

(6.12)

Thus we have shown that the following property holds:
For each r ∈ R and each x ∈ Z,

ρ(Tr(n̄) · · · , Tr(1)Tr(0)x, F ) < ǫ.

Since ǫ is an arbitrary element of (0, 1), we conclude that (P2) holds withX = Z

(see Theorem 1.1). Thus the assertion of Theorem 1.1 holds with X = Z.
Let ǫ ∈ (0, 1) be given. By Theorem 1.1, there exist a natural number nǫ

and a number δ ∈ (0, ǫ) such that the following property holds:
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(P11) for each r ∈ R and each {xi}
∞

i=0 ⊂ Z satisfying

ρ(xi+1, Tr(i)xi) ≤ δ for all integers i ≥ 0, (6.13)

we have
ρ(xi, F ) < ǫ for all integers i ≥ nǫ. (6.14)

We may assume without loss of generality that nǫ > q.
Assume that r ∈ R and {xi}

∞

i=0 ⊂ Z satisfies (6.13). By (P11), (6.14) holds.
By (6.13), the inequality δ < 1 and (P9),

ρ(xi, θ) ≤ (M0 + 1)(q + 1) for all integers i > q. (6.15)

It follows from (5.4), (6.14), (6.15) and the inequality nǫ > q, ǫ ∈ (0, 1), that
for all integers i ≥ nǫ,

ρ(xi, F̃ ) < ǫ.

Theorem 5.1 is proved.

7. Proof of Theorem 5.2

By Theorem 5.1, there are δ ∈ (0, 1) and a natural number n1 > q such that
the following property holds:

(P12) for each r ∈ R and each sequence {xi}
∞

i=0 ⊂ Z satisfying

ρ(xi+1, Tr(i)(xi)) ≤ δ for all integers i ≥ 0,

the inequality ρ(xi, F̃ ) < ǫ holds for all integers i ≥ n1.

By (5.5), there is a natural number n2 such that

δi < δ for all integers i ≥ n2. (7.1)

Put
n0 = n1 + n2. (7.2)

Assume that r ∈ R, {xi}
∞

i=0 ⊂ Z and

ρ(xi+1, Tr(i)xi) ≤ δi for all integers i ≥ 0. (7.3)

For all integers i ≥ 0, set

x̃i = xi+n2
and r̃(i) = r(i+ n2). (7.4)

By (7.4) and (P1), r̃ ∈ R. By (7.4), (7.3) and (7.1), we have for all integers
i ≥ 0

ρ(x̃i+1, Tr̃(i)x̃i) = ρ(xi+1+n2
, Tr(i+n2)xi+n2

) ≤ δi+n2
≤ δ.

When combined with (P12) and (7.4), this implies that for all integers i ≥ n1,

ρ(xi+n2
, F̃ ) = ρ(x̃i, F̃ ) < ǫ. (7.5)

By (7.5) and (7.2), for all integers i ≥ n1 + n2 = n0, we have ρ(xi, F̃ ) < ǫ. This
completes the proof of Theorem 5.2.
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8. Applications to the convex feasibility problem

Let (X, 〈·, ·〉) be a Hilbert space with an inner product 〈·, ·〉 which induces a
complete norm || · ||.

For each x ∈ X and each nonempty set A ⊂ X, put

ρ(x,A) = inf{||x− y|| : y ∈ A}.

It is well known that the following proposition holds.

Proposition 8.1. Let D be a nonempty and closed convex subset of X. Then

for each x ∈ X, there is a unique point PD(x) ∈ D satisfying

||x− PD(x)|| = inf{||x− y|| : y ∈ D}.

Moreover,

||PD(x)− PD(y)|| ≤ ||x− y|| for all x, y ∈ X

and for each x ∈ X and each z ∈ D,

||z − PD(x)||
2 + ||x− PD(x)||

2 ≤ ||z − x||2.

Let m be a natural number and suppose that C1, . . . , Cm are nonempty,
closed and convex subsets of X. Set

C =
m
⋂

i=1

Ci. (8.1)

We assume that C 6= ∅. We are also going to use the following assumption.

(A) For each ǫ > 0 and each M > 0, there exists a number δ = δ(ǫ,M) > 0
such that for each x ∈ B(0,M) satisfying ρ(x, Ci) ≤ δ, i = 1, . . . ,m, the
inequality ρ(x, C) ≤ ǫ holds.

It is well known that the following proposition holds.

Proposition 8.2. If the space X is finite-dimensional, then assumption (A)
holds.

For each integer p ≥ 0 and each i ∈ {0, . . . ,m− 1}, set

Tpm+i = PCi+1
. (8.2)

Let l ≥ m be a natural number. Denote by R the set of all mappings r :
{0, 1, . . .} → {1, . . . ,m} such that for each integer p≥0 and each s∈{1, . . . .m},
there is

i ∈ {p, . . . , p+ l − 1} such that Tr(i) = PCs
. (8.3)

It is easy to see that property (P1) holds. Let M0 > 0 be such that

B(0,M0) ∩ C 6= ∅. (8.4)
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Theorem 8.3. Let ǫ > 0, M > 0 and δ ∈ (0, 1) be such that

if x∈B(0, 2M0 +M) and ρ(x, Ci)≤δ, i=1, . . . ,m, then ρ(x, C)≤
ǫ

4
, (8.5)

and suppose that the natural number k0 satisfies

k0 >
(

δ−1l(M0 +M)
)2
. (8.6)

Assume that r ∈ R and that {xi}
∞

i=0 ⊂ X satisfies

||x0|| ≤ M, xi+1 = Tr(i)(xi), i = 0, 1, . . . . (8.7)

Then the sequence {xi}
∞

i=0 converges in the norm topology of X, limi→∞ xi ∈ C

and

||xj − lim
i→∞

xi|| ≤ ǫ for all integers j ≥ k0l.

Proof of Theorem 8.3. Fix

θ ∈ B(0,M0) ∩ C (8.8)

(see (8.4)). By (8.7), (8.8), (8.2) and Proposition 8.1, for all integer i ≥ 0,

||xi+1 − θ|| = ||Tr(i)xi − Tr(i)θ|| ≤ ||xi − θ|| ≤ ||x0 − θ|| ≤ M0 +M. (8.9)

By (8.9) (8.8), (8.7), (8.2) and Proposition 8.1,

(M0 +M)2 ≥ ||x0 − θ||2

≥ ||x0 − θ||2 − ||xk0l − θ||2

=

k0l−1
∑

i=0

[||xi − θ||2 − ||xi+1 − θ||2]

≥
k0l−1
∑

i=0

||xi − xi+1||
2

=

k0−1
∑

j=0

(j+1)l−1
∑

i=jl

||xi − xi+1||
2.

This implies that there is an integer j ∈ {0, . . . , k0 − 1} such that

(j+1)l−1
∑

i=jl

||xi − xi+1||
2 ≤ (M0 +M)2k−1

0 .

This inequality implies in its turn that for all i = jl, . . . , (j + 1)l − 1,

||xi − xi+1||
2 ≤ (M0 +M)2k−1

0
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and for each i = jl, . . . , (j + 1)l − 1,

||xi − xi+1|| ≤ (M0 +M)k
−

1

2

0 .

Therefore we have for each i = jl + 1, . . . , (j + 1)l,

||xi − xjl|| ≤ (M0 +M)lk
−

1

2

0 .

When combined with (8.7), (8.2), (8.3) and (8.6), this inequality implies that
for each s ∈ {1, . . . ,m},

ρ(xjl, Cs) ≤ l(M0 +M)k
−

1

2

0 < δ. (8.10)

By (8.9) and (8.8),

||xjl|| ≤ ||xjl − θ||+ ||θ|| ≤ 2M0 +M. (8.11)

By (8.10), (8.11) and (8.5), ρ(xjl, C) ≤ ǫ
4
and there is

y ∈ C such that ||xjl − y|| <
ǫ

2
. (8.12)

By (8.12), (8.7), (8.2), Proposition 8.1 and the inequality j > k0,

||xi − y|| <
ǫ

2
for all integers i ≥ k0l ≥ jl. (8.13)

Since ǫ is any positive number, we conclude that {xi}
∞

i=0 is a Cauchy sequence,
there exists limi→∞ xi in the norm topology and

lim
i→∞

||xi − y|| ≤
ǫ

2
. (8.14)

Since ǫ is any positive number, we have by (8.12), limi→∞ xi ∈ C. By (8.14) and
(8.13), ||xi− limj→∞ xj|| < ǫ for all integers i ≥ k0l. Theorem 8.3 is proved.

Theorems 8.3 and 2.1 now imply our next result.

Theorem 8.4. Assume that the set C is bounded. Then for each M, ǫ > 0, there
exist a number δ > 0 and a natural number n̄ such that for each r ∈ R and each

sequence {xi}
∞

i=0 ⊂ X which satisfies ||x0|| ≤ M and ||xi+1 − Tr(i)(xi)|| ≤ δ for

all integers i ≥ 0, the following inequality holds:

ρ(xi, C) < ǫ for all integers i ≥ n̄.

Next, we note the following consequence of Theorems 8.3 and 2.2.
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Theorem 8.5. Assume that the set C is bounded and let M > 0 be given.

Then there exists a number δ̄ > 0 such that for each ǫ > 0 and each sequence

{δi}
∞

i=0 ⊂ (0, δ̄] satisfying limi→∞ δi = 0, there is a natural number n0 such that

for each r ∈ R and each sequence {xi}
∞

i=0 ⊂ X which satisfies ||x0|| ≤ M and

||xi+1 − Tr(i)(xi)| ≤ δi for all integers i ≥ 0, the following inequality holds:

ρ(xi, C) < ǫ for all integers i ≥ n̄0.

Combining Theorems 8.3 and 5.1, we arrive at our next result.

Theorem 8.6. Assume that there is a natural number s ∈ {1, . . . ,m} such that

the set Cs is bounded. Then for each ǫ > 0, there exist a number δ ∈ (0, 1) and
a natural number n̄ such that for each r ∈ R and each sequence {xi}

∞

i=0 ⊂ X

which satisfies

||xi+1 − Tr(i)(xi)|| ≤ δ

for all integers i ≥ 0, the following inequality holds:

ρ(xi, C) < ǫ for all integers i ≥ n̄.

Finally, Theorems 8.3 and 5.2 yield our last result.

Theorem 8.7. Assume that there is a natural number s ∈ {1, . . . ,m} such that

the set Cs is bounded. Let ǫ > 0 be given and let a sequence {δi}
∞

i=0 ⊂ (0,∞)
satisfy limi→∞ δi = 0. Then there is a natural number n0 such that for each

r ∈ R and each sequence {xi}
∞

i=0 ⊂ X which satisfies ||xi+1−Tr(i)(xi)|| ≤ δi for

all integers i ≥ 0, the following inequality holds:

ρ(xi, C) < ǫ for all integers i ≥ n0.
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