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Abstract. In this article, the authors study weighted anisotropic Besov and Triebel-
Lizorkin spaces associated with expansive dilations and A∞-weights. The authors
show that elements of these spaces are locally integrable when the smoothness pa-
rameter α is positive. The authors also characterize these spaces for small values
of α in terms of a mean square function recently introduced in the context of Sobolev
spaces in [Math. Ann. 354 (2012), 589–626] and isotropic Triebel-Lizorkin spaces in
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1. Introduction

Recently, Alabern, Mateu and Verdera [1] characterized the fractional Sobolev
space Ẇα,p(Rn) for α ∈ (0, 2) and p ∈ (1,∞) via a new square function

Sα(f)(x) :=

{∫ ∞
0

|fB(x,t) − f(x)|2 dt

t1+2α

} 1
2

, x ∈ Rn,

where fB(x,t) denotes the mean value of f on the ball B(x, t) with the center x

and radius t. They showed that f ∈ Ẇα,p(Rn) if and only if f ∈ L1
loc (Rn) and
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‖Sα(f)‖Lp(Rn) < ∞. The key point for this result, as first observed by Whee-
den [29] in the study of Lipschitz-type (Besov) spaces, and later independently
by Alabern, Mateu and Verdera in [1], is that the square function Sα provides
smoothness up to order 2 in the following sense: for all f ∈ C2(Rn), t ∈ (0, 1)
and x ∈ Rn, fB(x,t) − f(x) = O(t2), which follows from the second order Taylor
expansion of f . Indeed, Wheeden in [29] obtained a general result which con-
tains the above characterization for Ẇα,p(Rn) with α ∈ (0, 2) and p ∈ (1,∞)
as special cases. Via a similar observation, the corresponding characterization
of higher order Sobolev spaces Ẇα,p(Rn) with α ∈ [2,∞) and p ∈ (1,∞) was
also obtained in [1]. Later, Yang, Yuan and Zhou [32] characterized the Triebel-
Lizorkin space Ḟα

p,q(Rn), p, q ∈ (1,∞], via the square function

Sα,q(f)(x) :=

{∑
k∈Z

2kαq
∣∣fB(x,2−k) − f(x)

∣∣q} 1
q

, x ∈ Rn,

when the smoothness parameter α ∈ (0, 2). Similar results for Ḟα
p,q(Rn) with

α ∈ (2,∞) \ 2N and p, q ∈ (1,∞], and for Besov spaces Ḃα
p,q(Rn) with

α ∈ (0,∞) \ 2N, p ∈ (1,∞] and q ∈ (0,∞] were also obtained in [32] via

some appropriately modified square functions.

The main purpose of this paper is to extend the above characterizations of
Besov and Triebel-Lizorkin spaces from the isotropic setting into the weighted
anisotropic setting. These spaces are associated with general expansive dilations
on Rn and Muckenhoupt A∞-weights. The theory of function spaces in the
weighted anisotropic setting, including Hardy spaces, Besov spaces and Triebel-
Lizorkin spaces, has been proved to be a very general theory which includes
the classical isotropic spaces, the parabolic spaces, and the weighted spaces as
special cases. For more details about this theory, we refer the reader to [2–14,
23–26] and their references. On the other hand, there has been a significant
interest in providing alternative characterizations of function spaces (see, for
example, [18, 20–22, 25, 27, 28, 30–33]). In particular, in this paper we extend
results from [32] to the weighted anisotropic setting.

In order to formulate our results we begin with some necessary definitions.

Definition 1.1. A real n× n matrix A is called an expansive dilation, shortly
a dilation, if minλ∈σ(A) |λ| > 1, where σ(A) denotes the set of all eigenvalues
of A. A quasi-norm associated with expansive matrix A is a Borel measurable
mapping ρA : Rn → [0,∞), for simplicity, denoted as ρ, such that

(i) ρ(x) > 0 for all x ∈ R \ {0};
(ii) ρ(Ax) = bρ(x) for all x ∈ Rn, where b := | detA|;

(iii) ρ(x + y) ≤ H [ρ(x) + ρ(y)] for all x, y ∈ Rn, where H ∈ [1,∞) is a
constant.
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It was pointed out in [2, Lemma 2.2] that, for any dilation A, there exist
some constant r ∈ (1,∞) and an ellipsoid ∆, i.e. ∆ := {x ∈ Rn : |Px| < 1} for
some nonnegative matrix P , such that

∆ ⊂ r∆ ⊂ A∆. (1.1)

By a scaling we can additionally assume that the ellipsoid ∆ in [2, Lemma 2.2]
satisfies |∆| = 1. Let Bk := Ak∆ for all k ∈ Z. By (1.1), we know that, for all
k ∈ Z, Bk ⊂ Bk+1 and |Bk| = bk.

From [2, Lemma 2.4], we also deduce that any two homogeneous quasi-
norms associated with a dilation A are equivalent. For our purposes it is enough
to restrict to a quasi-norm ρ := ρA, as in [2, Definition 2.5], given by

ρ(x) :=

{
bk, x ∈ Bk+1 \Bk

0, x = 0.

For any x ∈ Rn and k ∈ Z, we let Bρ(x, b
k) := {y ∈ Rn : ρ(y − x) < bk+1}.

These balls are convex sets and satisfy that |Bρ(x, b
k)| = bk and Bρ(x, b

k) ⊂
Bρ(x, b

j) with j ≥ k.
We now recall the class of Muckenhoupt weights associated with A intro-

duced in [6].

Definition 1.2. Let p ∈ [1,∞), A be a dilation and w a non-negative mea-
surable function on Rn. A function w is said to belong to the class Ap(A) :=
Ap(Rn;A) of Muckenhoupt weights, if there exists a positive constant C such
that, when p ∈ (1,∞),

sup
x∈Rn

sup
k∈Z

{
b−k
∫
Bρ(x,bk)

w(y) dy

}{
b−k
∫
Bρ(x,bk)

[w(y)]−
1
p−1 dy

}p−1

≤ C

and, when p = 1,

sup
x∈Rn

sup
k∈Z

{
b−k
∫
Bρ(x,bk)

w(y) dy

}{
ess sup
y∈Bρ(x,bk)

[w(y)]−1

}
≤ C.

Define A∞(A) :=
⋃

1≤p<∞Ap(A).

For any w ∈ A∞(A), define

qw := inf{q ∈ [1,∞) : w ∈ Aq(A)}. (1.2)

Obviously, qw ∈ [1,∞). If qw ∈ (1,∞), by the open-ended property of Muck-
enhoupt weights (see [7, p. 3072]), we know that w /∈ Aqw(A). Moreover, even
when A = 2In×n, where In×n denotes the unit matrix of order n×n, there exists
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a w ∈ (
⋂
q>1Aq(A)) \ A1(A) such that qw = 1; see Johnson and Neugebauer

[19, p. 254, Remark].
Recall that (Rn, ρ, dx) is a space of homogeneous type; see [6, Proposi-

tion 2.3]. For some basic properties of the above weights, we refer the reader,
for example, to [16, Chapter IV] and [6].

For all p ∈ (0,∞) and w ∈ A∞(A), the weighted Lebesgue space Lpw(Rn) is
defined to be the space of all w(x) dx-measurable functions on Rn such that

‖f‖Lpw(Rn) :=

{∫
Rn
|f(x)|pw(x) dx

} 1
p

<∞.

Denote by S(Rn) the set of all Schwartz functions on Rn and S ′(Rn) its
topological dual space. Let Z+ := {0} ∪ N. Denote by S∞(Rn) the subspace
of S(Rn) given by

S∞(Rn) :=

{
φ ∈ S(Rn) :

∫
Rn
φ(x)xγ dx = 0 for all γ ∈ (Z+)n

}
,

and S ′∞(Rn) its topological dual space. It is not hard to show that any ϕ∈S(Rn)
satisfying supp ϕ̂ away from origin belongs to S∞(Rn).

Denote by L1
loc (Rn) (or resp. L1

loc ,w(Rn)) the space of all locally integrable
(or resp. w(x)dx-integrable) functions. In what follows, for any g ∈ L1

loc (Rn)
(or resp. g ∈ L1

loc ,w(Rn)), k ∈ Z and x ∈ Rn, let

–

∫
Bρ(x,bk)

g(y) dy :=
1

|Bρ(x, bk)|

∫
Bρ(x,bk)

g(y) dy

(or resp.

–

∫
Bρ(x,bk)

g(y)w(y) dy :=
1

w(Bρ(x, bk))

∫
Bρ(x,bk)

g(y)w(y)dy,

where w(Bρ(x, b
k)) :=

∫
Bρ(x,bk)

w(y) dy). We say f ∈L1
loc(Rn)∩S ′∞(Rn) means that

f ∈L1
loc(Rn) and the natural pairing 〈f, ϕ〉 given by the integral

∫
Rnf(x)ϕ(x) dx

makes sense for all ϕ ∈ S∞(Rn) and induces an element of S ′∞(Rn).
We denote by Ḟα

p,q(A;w) the weighted anisotropic Triebel-Lizorkin space;
see Section 2 for its definition. Moreover, we introduce the following function
spaces of Triebel-Lizorkin type via a variant of the square function Sα,q.

Definition 1.3. Let α ∈ R, q ∈ (0,∞] and w ∈ A∞(A).

(i) Let p ∈ (0,∞). The space SḞα
p,q(A;w) is defined as the collection of all

functions f ∈ L1
loc (Rn) ∩ S ′(Rn) such that

‖f‖SḞαp,q(A;w) := ‖Sα,q(f)‖Lpw(Rn) <∞ ,
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where, for all x ∈ Rn,

Sα,q(f)(x) :=

{∑
k∈Z

bkαq

∣∣∣∣∣ –

∫
Bρ(x,b−k)

[f(y)− f(x)] dy

∣∣∣∣∣
q} 1

q

with the usual modification made when q =∞.

(ii) The space SḞα
∞,q(A;w) is defined as the collection of all functions

f ∈ L1
loc (Rn) ∩ S ′(Rn) such that

‖f‖SḞα∞,q(A;w)

:= sup
z∈Rn

sup
`∈Z

{
–

∫
Bρ(z,b−`)

∑
k≥`

bkαq

∣∣∣∣∣ –

∫
Bρ(x,b−k)

[f(y)− f(x)] dy

∣∣∣∣∣
q

w(x) dx

} 1
q

<∞

with the usual modification made when q =∞.

Let λ− and λ+ be two positive numbers such that

1 < λ− < min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} < λ+.

In the case when A is diagonalizable over C, we can even take

λ− := min{|λ| : λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}.

Otherwise, we need to choose them sufficiently close to these equalities according
to what we need in our arguments. Let ζ± := logb λ±.

We first show that, in the sense of distributions, the elements in the weighted
anisotropic Triebel-Lizorkin spaces Ḟα

p,q(A;w) are locally integrable.

Theorem 1.4. Let α ∈ (0,∞), w ∈ A∞(A), p ∈ (qw,∞] with qw as in (1.2),
and q ∈ (0,∞]. Then Ḟα

p,q(A;w) ⊂ L1
loc (Rn) in the sense of S ′∞(Rn).

Using Theorem 1.4, we obtain the following characterization of Ḟα
p,q(A;w).

Theorem 1.5. Let α ∈ (0, 2ζ−), w ∈ A∞(Rn), p ∈ (qw,∞] with qw as in (1.2),
and q ∈ (1,∞]. Then Ḟα

p,q(A;w) = SḞα
p,q(A;w) with equivalent norms.

The corresponding conclusions for Besov spaces are also true. Indeed, let
α ∈ R and p, q ∈ (0,∞]. The space SḂα

p,q(A;w) of Besov type is defined as the
collection of all functions f ∈ L1

loc (Rn) ∩ S ′(Rn) such that

‖f‖SḂαp,q(A;w) :=

∑
k∈Z

bkαq

∥∥∥∥∥ –

∫
Bρ(·,b−k)

[f(y)− f(·)] dy

∥∥∥∥∥
q

Lpw(Rn)


1
q

<∞.

Then we have analogous results to Theorems 1.4 and 1.5 for Besov spaces.
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Theorem 1.6. Let α ∈ (0,∞), w ∈ A∞(A), p ∈ (qw,∞] with qw as in (1.2),
and q ∈ (0,∞]. Then Ḃα

p,q(A;w) ⊂ L1
loc (Rn) in the sense of S ′∞(Rn).

Theorem 1.7. Let α ∈ (0, 2ζ−), p ∈ (qw,∞] with qw as in (1.2), and q ∈ (0,∞].
Then Ḃα

p,q(A;w) = SḂα
p,q(A;w) with equivalent norms.

Remark 1.8. (i) Theorems 1.5 and 1.7 generalize the Sα,q-function charac-
terization of isotropic Triebel-Lizorkin and Besov spaces in [32, Theorems 1.2
and 4.1] and, in particular, the Sobolev space Wα,p(Rn) in [1, Theorem 3], both
in the case α ∈ (0, 2), to the anisotropic weighted cases. Indeed, as in [1, 32],
let Ḟα

p,q(Rn) and Ḃα
p,q(Rn) denote, respectively, the classical Triebel-Lizorkin

space and the classical Besov space (see [25]). Observe that the parameter α
in Ḟα

p,q(Rn) and Ḃα
p,q(Rn) plays a different role from the parameter α used in

Ḟα
p,q(A;w) and Ḃα

p,q(A;w) of the present paper, which is caused by the differ-
ence existing in the definitions of these function spaces in [1,32] and the present
article. To be precise, if A = 2In×n, then ζ− = 1

n
and b = 2n and hence,

when A = 2In×n and w(x) := 1 for all x ∈ Rn, then Ḟα
p,q(A;w) = Ḟ nα

p,q (Rn)

and Ḃα
p,q(A;w) = Ḃnα

p,q(Rn). Thus, in this case, α ∈ (0, 2ζ−) if and only if
nα ∈ (0, 2) and, therefore, Theorems 1.5 and 1.7 of the present paper coincide
with [32, Theorems 1.2 and 4.1] in the case α ∈ (0, 2).

(ii) In [32, Theorems 1.2 and 4.1], the corresponding characterizations of
isotropic Triebel-Lizorkin and Besov spaces when α ∈ (2N, 2N + 2), N ∈ N,
were also obtained. However, it is still unknown whether the corresponding
results of Theorems 1.5 and 1.7 are also true or not when α ≥ 2ζ−, due to the
anisotropic structure of our spaces.

Remark 1.9. We point out that the inhomogeneous counterparts of Theo-
rems 1.5 and 1.7 are also true. Indeed, by referring to the definitions of weighted
inhomogeneous anisotropic Besov and Triebel-Lizorkin spaces (see [3, Defini-
tion 3.3] and [6, Definition 3.3]), we can also give the definitions of weighted
inhomogeneous spaces SBα

p,q(A;w) and SFα
p,q(A;w). Then, using some argu-

ments similar to those for the homogeneous case, we can obtain the desired
inhomogeneous results. We omit the details.

In comparison with [32] this paper considers a very general setting of Muck-
enhoupt weights and anisotropic dilations. This necessitates a more complicated
approach which uses some additional techniques adopted for the anisotropic
setting in [2, 4–6]. A key role in our arguments is played by a special variant
of the Calderón reproducing formula associated with anisotropic dilations; see
Lemma 3.8 below.

The paper is organized as follows. In Section 2, we recall some basic notions
and notation. The proofs of Theorems 1.4, 1.5 and 1.7 are given in Section 3.
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2. Preliminaries

We begin with some basic notions and notation.
Denote by S(Rn) the space of all Schwartz functions, whose topology is

determined by a family of seminorms, {‖·‖Sk,m(Rn)}k,m∈Z+ , where, for all k ∈ Z+,
m ∈ (0,∞) and ϕ ∈ S(Rn),

‖ϕ‖Sk,m(Rn) := sup
α∈Zn+,|α|≤k

sup
x∈Rn

(1 + |x|)m|∂αϕ(x)|.

The above norm can be also equivalently modified with (1 + |x|)m replaced by
[1 + ρ(x)]m. Here, for any α := (α1, . . . , αn) ∈ Zn+, |α| := α1 + · · · + αn and
∂α :=

(
∂
∂x1

)α1 · · ·
(

∂
∂xn

)αn
. It is known that S(Rn) forms a locally convex topo-

logical vector space. Denote by S ′(Rn) the topological dual space of S(Rn)
endowed with the weak ∗-topology. Denote by P(Rn) the collection of all poly-
nomials on Rn. In what follows, for every ϕ ∈ S(Rn), k ∈ Z and x ∈ Rn, let
ϕk(x) := bkϕ(Akx).

Now we recall the notion of weighted anisotropic Triebel-Lizorkin and Besov
spaces; see [3,4,6]. In what follows, for any ϕ ∈ L1(Rn), ϕ̂ denotes the Fourier
transform of ϕ, namely, for all ξ ∈ Rn,

ϕ̂(ξ) :=

∫
Rn
e−2πiξ·xϕ(x) dx.

Definition 2.1. Let w ∈ A∞(A), α ∈ R, p, q ∈ (0,∞] and ϕ ∈ S(Rn) satisfy

supp ϕ̂ ⊂
[
−1

2
,
1

2

]n
\ {0} and sup

j∈Z
|ϕ̂((A∗)jξ)| > 0 ∀ ξ ∈ Rn \ {0}, (2.1)

where A∗ denotes the adjoint (transpose) of A.
The weighted anisotropic homogeneous Triebel-Lizorkin space Ḟα

p,q(A;w) is
defined as the collection of all f ∈ S ′(Rn) such that

‖f‖Ḟαp,q(A;w) :=

∥∥∥∥∥∥
(∑
k∈Z

bkαq|ϕk ∗ f |q
) 1

q

∥∥∥∥∥∥
Lpw(Rn)

<∞, p ∈ (0,∞),

‖f‖Ḟα∞,q(A;w) := sup
x∈Rn

sup
`∈Z

{
–

∫
Bρ(x,b−`)

∑
k≥`

bkαq|ϕk ∗ f(y)|qw(y) dy

} 1
q

<∞,

with the usual modification made when q =∞.
The weighted anisotropic homogeneous Besov space Ḃα

p,q(A;w) is defined as
the collection of all f ∈ S ′(Rn) such that ‖f‖Ḃαp,q(A;w) <∞, where

‖f‖Ḃαp,q(A;w) :=

{∑
k∈Z

bkαq‖ϕk ∗ f‖qLpw(Rn)

} 1
q

with the usual modifications made when p =∞ or q =∞.
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Remark 2.2. The space Ḟα
p,q(A;w) was originally defined via dilated cubes in

[4, Definition 3.2]. However, the estimate (3.14) in [4] indicates that the space
Ḟα
p,q(A;w) can also be equivalently defined via dilated balls, as in the above

definition.

Remark 2.3. (i) Notice that, if ‖f‖Ḟαp,q(A;w) = 0, then f is a polynomial. So

the quotient space Ḟα
p,q(A;w)/P(Rn) is a quasi-Banach space. By abuse of

the notation, the space Ḟα
p,q(A;w)/P(Rn) is also denoted by Ḟα

p,q(A;w) and its

element [f ] := f + P(Rn) for simplicity by f . Similar observation applies to

homogeneous Besov spaces.

(ii) From [25, Section 5.1] or [6, p. 1479], we deduce that S ′(Rn)/P(Rn) can
be identified with the space of all continuous functionals on the closed subspace
S∞(Rn) of S(Rn).

Throughout the whole paper, we denote by C a positive constant which is
independent of the main parameters, but it may vary from line to line. The
symbol A . B means that A ≤ CB. If A . B and B . A, we then write
A ∼ B. If E is a subset of Rn, we denote by χE its characteristic function. For
any a ∈ R, bac denotes the largest integer not more than a.

3. Proofs of main results

In this section, we give the proofs of Theorems 1.4 and 1.5. The proofs of
Theorems 1.6 and 1.7 are also sketched. To prove Theorem 1.4, we need the
following three lemmas. The first lemma comes from [6, Lemmas 2.6 and 2.8].

Lemma 3.1. Let ϕ, ψ ∈ S(Rn) satisfy (2.1) and

∑
j∈Z

ϕ̂((A∗)jξ)ψ̂((A∗)jξ) = 1 for all ξ ∈ Rn \ {0}. (3.1)

Then, for any f ∈ S ′(Rn)/P(Rn),

f(·) =
∑
j∈Z

ϕj ∗ ψj ∗ f(·) =
∑
j∈Z

b−j
∑
k∈Zn

ϕj ∗ f(A−jk)ψj(· − A−jk)

in S ′(Rn)/P(Rn).

The next result follows from [4, (3.23)] and the fact that w(x) dx is a
ρA-doubling measure; see [4, Definition 2.5].
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Lemma 3.2. Let α ∈ R, w ∈ A∞(A), p, q ∈ (0,∞] and ϕ ∈ S(Rn) satisfy (2.1).
Then there exist some positive constants C and N ∈ Z+ such that, for all
f ∈ Ḟα

p,q(A;w) and integers j ≤ 0,

sup
x∈Rn

|ϕj ∗ f(x)|
[1 + ρ(x)]N

≤ Cb−jα‖f‖Ḟαp,q(A;w).

To emphasize the dependence on ϕ of the norm in Ḟα
p,q(A;w), we let

‖f‖Ḟαp,q(A;w,ϕ) denote ‖f‖Ḟαp,q(A;w). The following lemma shows that the space

Ḟα
p,q(A;w) is independent of the choice of ϕ ∈ S(Rn) satisfying (2.1); see

[4, Corollary 3.6].

Lemma 3.3. Let α ∈ R, w ∈ A∞(A), p, q ∈ (0,∞] and ϕ(1), ϕ(2) ∈ S(Rn)
satisfy (2.1). Then, for any f ∈ Ḟα

p,q(A;w), ‖f‖Ḟαp,q(A;w,ϕ(1)) ∼ ‖f‖Ḟαp,q(A;w,ϕ(2))

with the implicit positive constants independent of f .

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let f ∈ Ḟα
p,q(A;w) with α ∈ (0,∞), w ∈ A∞(A), p ∈

(qw,∞] with qw as in (1.2) and q ∈ (0,∞]. We only need to prove that there
exists a function g such that f = g in S ′∞(Rn) and

∫
Bρ(0,b`)

|g(x)| dx < ∞ for

any ` ∈ Z+.
Let x ∈ Bρ(0, b

`), ϕ, ψ ∈ S(Rn) satisfy (2.1) and (3.1), and L ∈ Z+ be
sufficiently large. Let

I(x) :=
−1∑

j=−∞

b−j
∑
k∈Zn

ϕj ∗ f(A−jk)bj

ψ(Ajx− k)−
∑
|γ|≤L−1

∂γψ(−k)(Ajx)γ

γ!


and

II(x) :=
∞∑
j=0

ϕj ∗ ψj ∗ f(x).

Then, by Lemma 3.1 and Remark 2.3(ii), we know that, for all φ ∈ S∞(Rn),
〈f, φ〉 = 〈I, φ〉 + 〈II, φ〉. We claim that g, which is defined pointwise by
g(x) := I(x) + II(x), is the desired function.

By the Taylor remainder theorem, Lemma 3.2 and the fact that, for any
j ≤ 0 and x ∈ Bρ(0, b

`), |Ajx| . bjζ−|x| (see [6, (2.8)]), we conclude that there
exists some positive integer N such that

|I(x)|.‖f‖Ḟαp,q(A;w)
−1∑

j=−∞

bj(Lζ−−α)
∑
k∈Zn

sup
|γ|=L,θ∈(0,1)

|x|L[1 + ρ(A−jk)]N

[1 + ρ(θAjx− k)]N+2

.C`,L‖f‖Ḟαp,q(A;w)b
`Lζ−

−1∑
j=−∞

bj(Lζ−−α−N)

 ∑
ρ(k)≤2Hb`

(2Hb`)N +
∑

ρ(k)>2Hb`

1

[ρ(k)]2

,
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where H∈ [1,∞) is as in Definition 1.1(iii) and L is chosen such that Lζ−>N+α.
Let Qk := k + [0, 1)n. Notice that, for any k ∈ Zn with ρ(k) > 2Hb`, from the
estimate 1

ρ(k)
. |Qk| infy∈Qk

1
ρ(y)

and Rn = ∪k∈ZnQk, it follows that∑
ρ(k)>2Hb`

[ρ(k)]−2 .
∑

ρ(k)>2Hb`

∫
Qk

[ρ(y)]−2 dy .
∫
ρ(y)&b`

[ρ(y)]−2 dy . 1.

This, together with the previous arguments, implies that
∫
Bρ(0,b`)

|I(x)| dx <∞.

On the other hand, notice that, for any w ∈ A∞(A) and p ∈ (qw,∞], we

have w ∈ Ap(A) and w−
p′
p ∈ Ap′(A) with p′ satisfying 1

p
+ 1

p′
= 1. By Hölder’s

inequality, α ∈ (0,∞), q ∈ (0,∞] and Lemma 3.3 with ϕ, ψ ∈ S(Rn) satisfying

(2.1) and (3.1), we conclude that∫
Bρ(0,b`)

|II(x)| dx ≤
∞∑
j=0

∫
Bρ(0,b`)

|ϕj ∗ ψj ∗ f(x)| dx

. ‖f‖Ḟαp,q(A;w,ϕ∗ψ)
∞∑
j=0

b−jα
∫
Bρ(0,b`)

[w(x)]−
p′
p dx

. Cw,`‖f‖Ḟαp,q(A;w).

Combining the above estimates on I(x) and II(x), we see that g is locally
integrable, which completes the proof of Theorem 1.4.

Theorem 1.5 follows immediately as a consequence of the following Theo-
rems 3.4 and 3.7. Thus, to finish the proof of Theorem 1.5, it suffices to prove
the following Theorems 3.4 and 3.7.

Theorem 3.4. Let α ∈ (0, 2ζ−), w ∈ A∞(A), p ∈ (qw,∞] and q ∈ (1,∞]. If
f ∈ Ḟα

p,q(A;w), then there exists a polynomial Pf such that f+Pf ∈ SḞα
p,q(A;w).

Moreover, ‖f + Pf‖SḞαp,q(A;w) ≤ C‖f‖Ḟαp,q(A;w), where C is a positive constant

independent of f .

To prove Theorem 3.4, we need the following lemma; see [6, Lemma 3.6]
and [4, Proposition 3.15] for the details.

Lemma 3.5. For any ϕ(1) ∈ S(Rn) satisfying (2.1), there exists ψ(1) ∈ S(Rn)

satisfying (2.1) such that ϕ(1) and ψ(1) satisfy (3.1). Moreover, for any α∈R,
w ∈ A∞(A), p, q ∈ (0,∞] and f ∈ Ḟα

p,q(A;w), there exist polynomials {P (1)
j }j∈Z

and P
(1)
f with degrees not more than

⌊
α
ζ−

⌋
such that

f + P
(1)
f = lim

i→−∞

{
∞∑
j=i

ϕ
(1)
j ∗ ψ

(1)
j ∗ f + P

(1)
i

}
(3.2)
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in S ′(Rn). Let (ϕ(2), ψ(2)) be another pair of Schwartz functions also satisfying

(2.1) and (3.1). Then the corresponding polynomial P
(2)
f satisfies

deg(P
(1)
f − P

(2)
f ) ≤

⌊
α

ζ−

⌋
.

By [5, Corollary 3.7], we have the following embedding result.

Lemma 3.6. Let w ∈ A∞(A), α ∈ R, p ∈ (0,∞] and q1, q2 ∈ (0,∞] with
q1 ≤ q2. Then Ḟα

p,q1
(A;w) ↪→ Ḟα

p,q2
(A;w).

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. By Theorem 1.4, we know that Ḟα
p,q(A;w) ⊂ L1

loc (Rn)

in the sense of distributions. So, for any f ∈ Ḟα
p,q(A;w), we only need to prove

that there exists a polynomial Pf such that ‖f + Pf‖SḞαp,q(A;w) ≤ C‖f‖Ḟαp,q(A;w).
Let ϕ and ψ be, respectively, as in ϕ(1) and ψ(1) of Lemma 3.5. In this case,

we denote the corresponding P
(1)
f and {P (1)

i }i∈Z in (3.2), respectively, by Pf and
{Pi}i∈Z. Then (3.2) holds for f and the degrees of the polynomials {Pi}i∈Z in
(3.2) are not more than

⌊
α
ζ−

⌋
. Since α ∈ (0, 2ζ−), each Pi has degree at most 1,

and thus Pi(x) :=
∑n

j=1 ai,jxj + bi, x := (x1, . . . , xn), for some constants ai,j
and bi. Furthermore, notice that, for any k ∈ Z, Bρ(0, b

−k) = A−k∆ is symmet-
ric at origin due to (1.1) and

∫
Bρ(0,b−k)

zi dz = 0 for all i ∈ {1, . . . , n}. Then, for

any k ∈ Z and x ∈ Rn, we have

Pi(x)− –

∫
Bρ(x,b−k)

Pi(z) dz = Pi(x)− –

∫
Bρ(0,b−k)

Pi(x+ z) dz = 0. (3.3)

Moreover, if ϕ(i) and ψ(i), i ∈ {1, 2}, satisfy (2.1) and∑
k∈Z

ϕ̂(i)((A∗)−kξ)ψ̂(i)((A∗)−kξ) = 1 for all ξ ∈ Rn \ {0},

then, by Lemma 3.5, P
(1)
f −P

(2)
f is a polynomial of degree not more than

⌊
α
ζ−

⌋
≤1,

where P
(i)
f is as in (3.2) corresponding to ϕ(i) and ψ(i) for i ∈ {1, 2}. Then, by

(3.3), for all x ∈ Rn and k ∈ Z, we see that

P
(1)
f (x)− P (2)

f (x)− –

∫
Bρ(x,b−k)

[P
(1)
f (z)− P (2)

f (z)] dz = 0. (3.4)

Let f̃ := f + Pf . By (3.2), we have

f̃ − f̃B(·,b−k) =
∑
j∈Z

(ϕj − χk ∗ ϕj) ∗ ψj ∗ f (3.5)
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in S ′(Rn), where f̃B(·,b−k) := –
∫
B(·,b−k)f̃(y) dy, χ :=

χBρ(0,1)

|Bρ(0,1)| and χk := bkχ(Ak·).
From (3.4), it follows that f̃ − f̃B(·,b−k) is independent of the choices of ϕ and ψ

satisfying (2.1) and (3.1). Thus, to prove Theorem 3.4, it suffices to show that,

when p ∈ (qw,∞) and q ∈ (1,∞],
∫
Rn

[∑
k∈Z

bkαq

(∑
j∈Z

|[ϕj−χk∗ϕj]∗ψj∗f(x)|

)q]pq
w(x)dx


1
p

. ‖f‖Ḟαp,q(A;w) (3.6)

and, when p =∞ and q ∈ (1,∞], for all x ∈ Rn and ` ∈ Z,{
–

∫
Bρ(x,b−`)

∑
k≥`

bkαq

(∑
j∈Z

|(ϕj−χk∗ϕj)∗ ψj∗f(y)|

)q
w(y)dy

}1
q

. ‖f‖Ḟα∞,q(A;w).

(3.7)

Indeed, if (3.6) holds, then, for each k ∈ Z, we have∫
Rn

[∑
j∈Z

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f(x)|

]p
w(x) dx <∞,

which implies that (3.5) holds in Lpw(Rn) and hence almost everywhere. There-
fore, for every k ∈ Z,

|f̃ − f̃B(·,b−k)| ≤
∑
j∈Z

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f |

almost everywhere, and hence ‖f̃‖SḞαp,q(A;w) is dominated by the left hand side

of (3.6), which implies that ‖f̃‖SḞαp,q(A;w) . ‖f‖Ḟαp,q(A;w). Similarly, if (3.7) holds,

then (3.5) holds in L1
loc ,w(Rn) and hence almost everywhere and, therefore, an

argument similar to the above leads to ‖f̃‖SḞα∞,q(A;w) . ‖f‖Ḟα∞,q(A;w).
To prove (3.6), we consider

∑
j≤k and

∑
j>k separately. Notice that, for

any smooth function Φ on R,

Φ(1) = Φ(0) +

∫ 1

0

Φ′(s) ds = Φ(0) + Φ′(0) +

∫ 1

0

(1− s)Φ′′(s) ds. (3.8)

Let Φ(s) := ϕ(Ajx+sz) for s ∈ [0, 1] and x, z ∈ Rn. Then (3.8) can be written as

ϕ(Ajx+ z) = ϕ(Ajx) + (∇ϕ)(Ajx)zt +

∫ 1

0

(1− s)z(∇2ϕ)(Ajx+ sz)zt ds,

where zt denotes the transpose of z.
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Notice that, for any x ∈ Rn, z ∈ Bρ(0, b
j−k) with j ≤ k and s ∈ [0, 1],

1 + ρ(Ajx+ sz) ≥ 1 +
ρ(Ajx)

H
− ρ(sz) ≥ ρ(Ajx),

and hence 1 + ρ(Ajx − sz) & 1 + ρ(Ajx). Therefore, when j ≤ k, by the fact
that |x| ≤ C[ρ(x)]ζ− for all ρ(x) ≤ 1 (see [2, Section 2]), we see that, for all
x ∈ Rn,

|χk∗ϕj(x)−ϕj(x)| =

∣∣∣∣∣ –

∫
Bρ(0,1)

bj
[
ϕ(Ajx+Aj−kz)−ϕ(Ajx)

]
dz

∣∣∣∣∣
=

∣∣∣∣∣ –

∫
Bρ(0,bj−k)

bj
[
ϕ(Ajx+z)−ϕ(Ajx)

]
dz

∣∣∣∣∣
=

∣∣∣∣∣ –

∫
Bρ(0,bj−k)

bj
∫ 1

0

(1−s)z(∇2ϕ)(Ajx+sz) zt ds dz

∣∣∣∣∣
. b2(j−k)ζ−

bj

[1+ρ(Ajx)]L
,

(3.9)

where L ∈ (1,∞). Hence,

|(χk∗ϕj−ϕj)∗ψj∗f(x)| . b2(j−k)ζ−
∫
Rn

bj

[1+ρ(Ajy)]L
|ψj∗f(x−y)| dy

. b2(j−k)ζ−Mρ(ψj∗f)(x).

(3.10)

Here Mρ denotes the Hardy-Littlewood maximal operator defined, for all locally
integrable functions f on Rn, by

Mρf(x) := sup
r>0

y∈Bρ(x,r)

–

∫
Bρ(y,r)

|f(z)| dz, x ∈ Rn.

Then, by choosing any δ ∈ (0, 2ζ− − α), together with Hölder’s inequality, we
conclude that

I1 :=


∫
Rn

[∑
k∈Z

bkαq

(∑
j≤k

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f(x)|

)q] pq
w(x) dx


1
p

.


∫
Rn

{∑
k∈Z

bkαq
∑
j≤k

b(j−k)(2ζ−−δ)q[Mρ(ψj ∗ f)(x)]q

} p
q

w(x) dx


1
p

.


∫
Rn

[∑
j∈Z

bjαq [Mρ(ψj ∗ f)(x)]q
] p
q

w(x) dx


1
p

.

(3.11)
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This, together with the Fefferman-Stein vector-valued maximal inequality (see
[6, Theorem 2.5]), implies that

I1 .


∫
Rn

[∑
j∈Z

bjαq|ψj ∗ f(x)|q
] p
q

w(x) dx


1
p

. ‖f‖Ḟαp,q(A;w).

On the other hand, notice that, when j > k, for all x ∈ Rn, it holds that

|(χk ∗ ϕj − ϕj) ∗ ψj ∗ f(x)| ≤ |χk ∗ ϕj ∗ ψj ∗ f(x)|+ |ϕj ∗ ψj ∗ f(x)|
≤ χk ∗ [Mρ(ψj ∗ f)](x) +Mρ(ψj ∗ f)(x)

.Mρ ◦Mρ(ψj ∗ f)(x),

where Mρ◦Mρ denotes the composition of Mρ and Mρ. Then, by taking δ∈(0, α)
and Hölder’s inequality, we see that

I2 :=


∫
Rn

[∑
k∈Z

bkαq

(∑
j>k

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f(x)|

)q] pq
w(x) dx


1
p

.


∫
Rn

[∑
k∈Z

b(α−δ)qk
∑
j>k

bjδq[Mρ ◦Mρ(ψj ∗ f)(x)]q

] p
q

w(x) dx


1
p

.


∫
Rn

(∑
j∈Z

bjαq [Mρ ◦Mρ(|ψj ∗ f |)(x)]q
) p

q

w(x) dx


1
p

.

(3.12)

This, together with the Fefferman-Stein vector-valued maximal inequality, im-
plies that I2 . ‖f‖Ḟαp,q(A;w). This proves (3.6).

To prove (3.7), we split the sum over j ∈ Z into three parts: j < ` ≤ k,
` ≤ j ≤ k, and j > k ≥ `. If j ≤ ` ≤ k, then, from (3.9) and Hölder’s inequality,
we deduce that, for all y ∈ Rn,

|(χk ∗ ϕj − ϕj) ∗ ψj ∗ f(y)| . b2(j−k)ζ−
∫
Rn

bj

[1 + ρ(Ajz)]L
|ψj ∗ f(y − z)| dz

. b2(j−k)ζ−
∞∑
i=0

bi(1−L) –

∫
Bρ(y,bi−j)

|ψj ∗ f(z)| dz.

Moreover, for any y ∈ Rn, i ≥ 0 and r0 > max{qw, q} with q ∈ (1,∞] and qw as
in (1.2), by Hölder’s inequality with r0, the definition of Ar0(A) and Lemma 3.6
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with q1 = q and q2 = r0, we have

–

∫
Bρ(y,bi−j)

|ψj ∗ f(z)| dz .

{
–

∫
Bρ(y,bi−j)

|ψj ∗ f(z)|r0w(z) dz

} 1
r0

. b−jα‖f‖Ḟα∞,r0 (A;w)

. b−jα‖f‖Ḟα∞,q(A;w).

From this and L ∈ (1,∞), it follows that

|(χk ∗ ϕj − ϕj) ∗ ψj ∗ f(y)| . b2(j−k)ζ−b−jα‖f‖Ḟα∞,q(A;w).

This, together with α ∈ (0, 2ζ−), implies that{
–

∫
Bρ(x,b−`)

∑
k≥`

bkαq

[∑
j≤`

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f(y)|

]q
w(y) dy

} 1
q

.

{
–

∫
Bρ(x,b−`)

∑
k≥`

bkαq

[∑
j≤`

b2(j−k)ζ−b−jα

]q
w(y) dy

} 1
q

‖f‖Ḟα∞,q(A;w)

. ‖f‖Ḟα∞,q(A;w).

If `< j≤ k, then, for any x∈Rn and y∈Bρ(x, b
−`), using (3.10), we know that

|(χk ∗ ϕj − ϕj) ∗ ψj ∗ f(y)| . b2(j−k)ζ−

[∫
Rn

bj|ψj ∗ f(z)|χBρ(x,2Hb−`)(z)

[1 + bjρ(y − z)]L
dz

+

∫
Rn

bj|ψj ∗ f(z)|χRn\Bρ(x,2Hb−`)(z)

[1 + bjρ(y − z)]L
dz

]
.

Since L ∈ (1,∞), we have∫
Rn

bj|ψj ∗ f(z)|χBρ(x,2Hb−`)(z)

[1 + bjρ(y − z)]L
dz .Mρ

(
|ψj ∗ f |χBρ(x,2Hb−`)

)
(y). (3.13)

On the other hand, notice that, if y ∈ Bρ(x, b
−`) and z ∈ Rn \ Bρ(x, 2Hb

−`),
then z ∈ Rn \Bρ(y, b

−`). Therefore,∫
Rn

bj|ψj ∗ f(z)|χRn\Bρ(x,2Hb−`)(z)

[1 + bjρ(y − z)]L
dz .

∫
Rn\Bρ(y,b−`)

bj|ψj ∗ f(z)|
[bjρ(y − z)]L

dz

.
∑
i≥j−`

bi(1−L) –

∫
Bρ(y,bi−j+1)

|ψj ∗ f(z)| dz

. b(j−`)(1−L)b−jα‖f‖Ḟα∞,q(A;w).
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Thus, for all y ∈ Bρ(x, b
−`), we see that

|(χk ∗ ϕj − ϕj) ∗ ψj ∗ f(y)| . b2(j−k)ζ−Mρ(ψj ∗ fχBρ(x,2Hb−`))(y)

+ b2(j−k)ζ−b(j−`)(1−L)b−jα‖f‖Ḟα∞,q(A;w).
(3.14)

Using (3.13), (3.14), Hölder’s inequality and the Fefferman-Stein vector-valued
maximal inequality, by an estimate similar to (3.11), we conclude that{

–

∫
Bρ(x,b−`)

∑
k≥`

bkαq

[ ∑
`<j≤k

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f(y)|

]q
w(y) dy

} 1
q

.

{
–

∫
Bρ(x,b−`)

∑
k≥`

[ ∑
`<j≤k

b(j−k)(2ζ−−α)bjαMρ(ψj ∗ fχBρ(x,2Hb−`))(y)

]q
w(y) dy

} 1
q

+

{
–

∫
Bρ(x,b−`)

∑
k≥`

bkαq

[ ∑
`<j≤k

b2(j−k)ζ−b(j−`)(1−L)b−jα

]q
w(y) dy

} 1
q

‖f‖Ḟα∞,q(A;w)

.

{
–

∫
Bρ(x,b−`)

∑
`<j

[
bjαMρ(ψj ∗ fχBρ(x,2Hb−`))(y)

]q
w(y) dy

} 1
q

+ ‖f‖Ḟα∞,q(A;w)

. ‖f‖Ḟα∞,q(A;w).

Similarly, if j > k ≥ `, then we see that, for all y ∈ Bρ(x, b
−`),

|(χk ∗ ϕj − ϕj) ∗ ψj ∗ f(y)|
.Mρ

(
χBρ(x,2Hb−`)Mρ

(
ψj ∗ fχBρ(x,4H2b−`)

))
(y) + b−jαb(j−`)(1−L)‖f‖Ḟα∞,q(A;w).

This, together with an estimate similar to (3.12), implies that{
–

∫
Bρ(x,b−`)

∑
k≥`

bkαq

(∑
j>k

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f(y)|

)q

dy

} 1
q

. ‖f‖Ḟα∞,q(A;w).

Combining the estimates in the above three cases, we then obtain (3.7) and
hence complete the proof of Theorem 3.4.

The following theorem shows another part of Theorem 1.5.

Theorem 3.7. Let α ∈ (0, 2ζ−), w ∈ A∞(A), p ∈ (qw,∞] and q ∈ (1,∞]. If
f ∈ SḞα

p,q(A;w), then f ∈ Ḟα
p,q(A;w) and there exists a positive constant C,

independent of f , such that ‖f‖Ḟαp,q(A;w) ≤ C‖f‖SḞαp,q(A;w).

The proof of Theorem 3.7 relies on the following variant of the Calderón
reproducing formula.
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Lemma 3.8. Let χ :=
χBρ(0,1)

|Bρ(0,1)| , L ∈ Z+ ∪ {−1} and N ∈ N. Then there exist

j0 := j0(A;n) ∈ Z+ and φ, ψ ∈ S(Rn) satisfying that suppφ ⊂ Bρ(0, 1),∫
Rn
φ(x)xγ dx = 0

for all |γ| ≤ L, and supp ψ̂ ⊂ [−1
2
, 1
2
]n \ {0} such that, for all ξ ∈ Rn \ {0},∑

j∈Z

ψ̂j(ξ)φ̂j(ξ)[χ̂j(ξ)− χ̂j−j0(ξ)] = 1. (3.15)

Moreover, for every f ∈ L1
loc (Rn) ∩ S ′(Rn), there exist polynomials {Pj}j∈Z

and Pf such that

f + Pf = lim
i→−∞

{
∞∑
j=i

φj ∗ ψj ∗ (fBρ(·,bj) − fBρ(·,bj−j0 )) + Pi

}
(3.16)

in S ′(Rn).

Proof. It suffices to show (3.15). The proof of (3.16) follows from (3.15) and an
argument similar to that used in the proof of [6, Lemma 2.6].

We shall construct ψ ∈ S(Rn) such that supp ψ̂ ⊂ {ξ ∈Rn : C1 ≤ |ξ| ≤C2}
for two positive constants C1 < C2 to be chosen later. First we will show that
there exist j0 ∈ Z+ and a positive constant C0 such that

|χ̂(ξ)− χ̂−j0(ξ)| ≥ C0 > 0 for all C1 ≤ |ξ| ≤ C2. (3.17)

Notice that Bρ(0, 1) = ∆ = {x ∈ Rn : |Px| < 1} for some nonnegative
matrix P . Moreover, by [17, p. 429], we know that χ̂B(0,1)(ξ) = Jn

2
(2π|ξ|)|ξ|−n2

for all ξ ∈ Rn, where the Bessel function is given by

Jv(t) :=
( t
2
)v

Γ(v + 1
2
)Γ(1

2
)

∫ 1

−1
eits(1− s2)v−

1
2 ds, t ∈ R.

Since χ(x) = χB(0,1)(Px) for all x ∈ Rn, it follows that, for all ξ ∈ Rn,

χ̂(ξ) = | det(P−1)|χ̂B(0,1)((P
−1)∗ξ) =

| det(P−1)|Jn
2
(2π|(P−1)∗ξ|)

|(P−1)∗ξ|n2
,

where (P−1)∗ denotes the transpose of P−1. By χ̂−j0(ξ) = χ̂((A∗)j0ξ), we then
see that, for all ξ ∈ Rn,

χ̂−j0(ξ) =
| det(P−1)|Jn

2
(2π|(P−1)∗(A∗)j0ξ|)

|(P−1)∗(A∗)j0ξ|n2
.



142 B. Li et al.

Therefore, for all ξ ∈ Rn, we know that

|χ̂(ξ)− χ̂−j0(ξ)|

=
π
n
2

Γ(n
2

+ 1
2
)Γ(1

2
)

∣∣∣∣{∫ 1

−1

[
e2πi|(P

−1)∗ξ|s−e2πi|(P−1)∗(A∗)j0ξ|s
]
(1−s2)

n
2
− 1

2 ds

}∣∣∣∣
&

∣∣∣∣∫ 1

0

[
cos(2π|(P−1)∗ξ|s)−cos(2π|(P−1)∗(A∗)j0ξ|s)

]
(1−s2)

n
2
− 1

2 ds

∣∣∣∣ .
(3.18)

Since the spectrum σ(A∗) = σ(A), by [2, (2.1)], we conclude that there exists a
positive constant C3 := C3(A;n) such that, for any ξ ∈ Rn and j ∈ Z+,

1

C3

(λ−)j|ξ| ≤ |(A∗)jξ| ≤ C3(λ+)j|ξ|.

Thus, we can pick an integer j0 := j0(A;n) ∈ N large enough such that, for any
ξ ∈ Rn \ {0},

2|(P−1)∗ξ| < |(P−1)∗(A∗)j0ξ|. (3.19)

Choose a positive constant C2 sufficiently close to zero and a positive constant
C1 := C2

8‖A‖ such that, for any ξ ∈ Rn with C1 ≤ |ξ| ≤ C2,

|(P−1)∗(A∗)j0ξ| < 1

8
, (3.20)

where ‖A‖ := {
∑n

i,j=1 |ai,j|2}
1
2 for A := (ai,j)1≤i,j≤n. By (3.19) and (3.20), we

see that there exists a positive constant C4 such that

0 < C4 ≤ π[|(P−1)∗(A∗)j0ξ| ± |(P−1)∗ξ|] < π

4
for C1 ≤ |ξ| ≤ C2.

Consequently, using the fact that sin t ≥ t
2

for t ∈ [0, π
4
), we conclude that, for

s ∈ (0, 1),

cos(2πs|(P−1)∗ξ|)− cos(2πs|(P−1)∗(A∗)j0ξ|)
= 2 sin(πs(|(P−1)∗(A∗)j0ξ| − |(P−1)∗ξ|)) sin(πs(|(P−1)∗(A∗)j0ξ|+ |(P−1)∗ξ|))

≥ 2
πs(|(P−1)∗(A∗)j0ξ| − |(P−1)∗ξ|)

2

πs(|(P−1)∗(A∗)j0ξ|+ |(P−1)∗ξ|)
2

& s2.

Combining this inequality with (3.18), we obtain (3.17), namely, for all
C1 ≤ |ξ| ≤ C2,

|χ̂(ξ)− χ̂−j0(ξ)| &
∫ 1

0

s2(1− s2)
n
2
− 1

2 ds > 0.
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For any fixed L ∈ Z+ ∪ {−1}, select a positive smooth function φ on Rn

such that suppφ ⊂ Bρ(0, 1),
∫
Rn φ(x)xγ dx = 0 for all |γ| ≤ L, particularly

when L = −1, the above vanishing condition is void, and |φ̂(ξ)| ≥ C > 0 for
all C1 ≤ |ξ| ≤ C2, where C is a positive constant. For a construction of such φ,
see [15, Theorem 2.6]. Then φ ∗ (χ − χ−j0) ∈ C∞c (Rn) has vanishing moments
till order L and satisfies that∣∣∣φ̂(ξ)[χ̂(ξ)− χ̂−j0(ξ)]

∣∣∣ & 1 (3.21)

for all C1 ≤ |ξ| ≤ C2. Choose g ∈ S(Rn) such that ĝ is nonnegative, supp g ⊂
{ξ ∈ Rn : C1 ≤ |ξ| ≤ C2} and g(ξ) ≥ C > 0 if 2C1 ≤ |ξ| ≤ C2

2
, where C

is a positive constant. We claim that, for any ξ ∈ Rn \ {0}, there exists some
j ∈ Z such that |(A∗)jξ| ∈ [2C1,

C2

2
]. Since 2C1‖A‖ = C2

2
, the smallest j ∈ Z

such that |(A∗)jξ| ≥ 2C1 does this job. Let F :=
∑

j∈Z g((A∗)−j·). Then, F is

a bounded smooth function and F ((A∗)j·) ≡ F for all j ∈ Z and F (ξ) & 1 for
all ξ ∈ Rn \ {0}.

Define h := g
F

. Then, h ∈ S(Rn), supph ⊂ {ξ∈Rn : C1≤|ξ|≤C2} and, for

all ξ 6= 0,
∑

j∈Z h((A∗)−jξ) = 1. By (3.21), we can define a Schwartz function ψ

by setting ψ̂ := h{φ̂[χ̂ − χ̂−j0 ]}−1. Then supp ψ̂ ⊂ {ξ∈Rn : C1≤|ξ|≤C2} and,

for all ξ ∈ Rn \ {0},∑
j∈Z

ψ̂j(ξ)φ̂j(ξ)[χ̂j(ξ)− χ̂j−j0(ξ)] =
∑
j∈Z

ĥ((A∗)−jξ) = 1.

This finishes the proof of Lemma 3.8.

Proof of Theorem 3.7. Let α ∈ (0, 2ζ−), f ∈ SḞα
p,q(A;w) and j0 be as in Lem-

ma 3.8. By Lemma 3.8 and f ∈ L1
loc (Rn) ∩ S ′(Rn), we conclude that

f =
∑
j∈Z

φj ∗ ψj ∗ (χj − χj−j0) ∗ f =
∑
j∈Z

φj ∗ ψj ∗ (fBρ(·,b−j) − fBρ(·,bj0−j)),

which, modulo polynomials, holds in S ′(Rn). Here, φ and ψ are as in Lemma 3.8.
Let ϕ be as in (2.1). For any k ∈ Z, we have

ϕk ∗ f =
∑
j∈Z

ϕk ∗ φj ∗ ψj ∗ (fBρ(·,b−j) − fBρ(·,bj0−j)).

Notice that, for all k, j ∈ Z, and x ∈ Rn,

|ϕk ∗ φj ∗ ψj(x)| = |ϕk ∗ (φ ∗ ψ)j(x)| . b−(s+1)|j−k|ζ− bmin{j,k}

[1 + bmin{j,k}ρ(x)]L
, (3.22)

where s, L can be chosen sufficiently large; see [8, Lemma 5.4]. Thus,

|ϕk ∗ φj ∗ ψj ∗ g| = |ϕk ∗ (φ ∗ ψ)j ∗ g| . b−2|j−k|ζ−Mρ(g).
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Therefore, when p ∈ (qw,∞), from Definition 2.1, Hölder’s inequality and the
Fefferman-Stein vector-valued maximal inequality, we infer that

‖f‖Ḟαp,q(A;w) .

∥∥∥∥∥∥
{∑
k∈Z

bkαq

∣∣∣∣∣∑
j∈Z

b−2|k−j|ζ−Mρ

(
fBρ(·,b−j) − fBρ(·,bj0−j)

)∣∣∣∣∣
q} 1

q

∥∥∥∥∥∥
Lpw(Rn)

.

∥∥∥∥∥∥
{∑
j∈Z

bjαq
[
Mρ

(
fBρ(·,b−j) − fBρ(·,bj0−j)

)]q} 1
q

∥∥∥∥∥∥
Lpw(Rn)

.

∥∥∥∥∥∥
{∑
j∈Z

bjαq
∣∣[fBρ(·,b−j) − f ]− [fBρ(·,bj0−j) − f ]

∣∣q} 1
q

∥∥∥∥∥∥
Lpw(Rn)

.

∥∥∥∥∥∥
{∑
j∈Z

bjαq
∣∣fBρ(·,b−j) − f ∣∣q

} 1
q

∥∥∥∥∥∥
Lpw(Rn)

. ‖Sα,q(f)‖Lpw(Rn).

When p =∞, we need to show that{
–

∫
Bρ(x,b−`)

∑
k≥`

bkαq

(∑
j∈Z

|ϕk ∗ φj ∗ ψj ∗
[
fBρ(·,b−j) − fBρ(·,bj0−j)

]
(y)|

)q

w(y)dy

} 1
q

is controlled by ‖f‖SḞα∞,q(A;w) uniformly in x ∈ Rn and ` ∈ Z. The proof of this

is similar to that of (3.7), where we need to split
∑

j∈Z into three parts. Using
(3.22) one can show that ‖f‖Ḟα∞,q(A;w) . ‖f‖SḞα∞,q(A;w). We leave the details to

the reader. This finishes the proof of Theorem 3.7.

Finally, we sketch the details needed to deal with Besov spaces.

Proof of Theorem 1.7. The proof of this theorem is similar to that of Theo-
rem 1.5. Thus, we only prove an analogue of the estimate of I1 in the proof of
Theorem 3.4 for Besov spaces. The other estimates are left to the reader. For
any p > qw and q ∈ (0,∞), by (3.10), Minkowski’s inequality with p ∈ (qw,∞)
and the Lpw(Rn)-boundedness of Mρ, we have

I1 :=

∑
k∈Z

bkqα

[∫
Rn

(∑
j≤k

|(ϕj − χk ∗ ϕj) ∗ ψj ∗ f(x)|

)p

w(x) dx

] q
p


1
q

.

∑
k∈Z

[∫
Rn

(∑
j≤k

b(j−k)(2ζ−−α)+jαMρ(ψj ∗ f)(x)

)p

w(x) dx

] q
p


1
q

.

{∑
k∈Z

[∑
j≤k

b(j−k)(2ζ−−α)+jα‖ψj ∗ f‖Lpw(Rn)

]q} 1
q

.
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When q=∞, it is easy to obtain I1.‖f‖Ḃαp,q(A;w). When q∈(0, 1], we use the

q-triangle inequality to deduce the same conclusion. Finally, when q ∈ (1,∞),
we choose δ ∈ (0, 2ζ− − α). Then, by Hölder’s inequality, we see that

I1 .

{∑
k∈Z

[∑
j≤k

b(j−k)(2ζ−−α−δ)+jα‖ψj ∗ f‖Lpw(Rn)b
(j−k)δ

]q} 1
q

.

{∑
k∈Z

∑
j≤k

bq(j−k)(2ζ−−α−δ)+qjα‖ψj ∗ f‖qLpw(Rn)

} 1
q

. ‖f‖Ḃαp,q(A;w).

Combining the estimates above, we conclude that I1 . ‖f‖Ḃαp,q(A;w) for

q ∈ (0,∞] and p ∈ (qw,∞). The same estimate also holds for p = ∞ with
usual modifications, which completes the proof of Theorem 1.7.
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