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Abstract. In this article I prove that the pointwise limit f: R — R of a sequence of
right-continuous functions has some special property (G) and that bounded functions
of two variables ¢g: R? — R whose vertical sections g,, * € R, are derivatives and
horizontal sections ¢¥, y € R, are pointwise limits of sequences of right-continuous
functions, are measurable and sup-measurable in the sense of Lebesgue.
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1. Introduction

Denote by ¢y be the class of all continuous functions f: R — R, by ry the
class of all right-continuous functions f: R — R ;| and by j, the class of all
regulated functions f: R — R (a function f: R — R is regulated if for each
point z € R the both unilateral limits f(z+) and f(x—) exist and are finite).
Moreover, let ¢; (resp. 11 or j;) be the class of all pointwise limits of sequences
of functions from ¢y (resp. from ry or jp). Similarly, if we take pointwise limits
of sequences of functions from c¢q, r; or j; we define the classes ¢y, 79 and 5.
In [10], Reed obtained very interesting characterizations of ¢;, r and j;. He
proved that ¢y C ;1 C j1, ¢1 # r1 # j1 and ¢ = r9 = js. Note that Reed’s
considerations in [10] concern functions from [0, 1] to R, but his theorems are
true for functions from R to R.

In [6,7] it is proved the Lebesgue measurability of bounded functions
g: R? — R whose vertical sections ¢,(t) = g(z,t), * € R, are derivatives and
horizontal sections ¢¥(t) = g(t,y), y € R, belong to ¢;.
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In [3,4] it is shown that the Continuum Hypothesis (CH) implies that there
is a Lebesgue nonmeasurable function h: R? — [0, 1] with approximately con-
tinuous sections h,, x € R, and such that for each y € R the set R\ (h¥)~1(0)
is countable. Since every function f: R — R with the countable set R\ f~(0)
belong to j; and every approximately bounded function is a derivative [2],
we obtain that CH implies that there is a Lebesgue nonmeasurable function
h: R? — [0,1] with vertical sections h,, z € R, being derivatives and horizontal
sections hY, y € R, belonging to j;.

Hence the following natural question arises.

Problem. Let a bounded function h: R? — R be such that the vertical sec-
tions h,, x € R, are derivatives and the vertical sections hY, y € R, belong to ry.
Is the function h Lebesgue measurable?

In this article I prove that the answer is affirmative.

2. Main results

In [7] T introduce the following property (G) for the investigation of the Lebesgue
measurability of functions of two variables. This definition bases on the notion
of the density topology Ty [2].

For a point x € R and for a Lebesgue measurable set A C R we define the
lower density D;(A,x) of A at x as

lim inf pANfr —hz+ h])a
h—0+ 2h

where p denotes the Lebesgue measure on R. If D;(A, x) = 1 then z is called a
density point of A. If B is arbitrary subset of R then z is said a density point
of B if there is a Lebesgue measurable subset A C B with D;(A,z) = 1. A
nonempty set B C R belongs to the density topology T if every point x € B is
a density point of B. All sets belonging to T} are Lebesgue measurable [2].

Definition. A function f: R — R has the property (G) if for each nonempty
set A € T, and each real > 0 there is an open interval I with I N A # () such
that the diameter d(f(/ N A)) of the image of f(I N A) is less than 7.

Theorem 2.1. If a function f: R — R belongs to r1 then it has the prop-
erty (G).

Proof. Let A € T; be a nonempty set and let 7 be a positive real. Since f € rq,
there is a sequence of continuous on the right functions f,: R — R which
pointwise converges to f. For each point z € R we find a positive integer n(x)
such that

Ui
|fe(x) — f(2)| < 30 for k > n(z).
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Denote by B the closure of the set A and for k > 11let Ay, = {x € B : n(z) = k}.
Since B is of the second category in itself and since B = |J,~, Ak, there is a
positive integer m such that A,, is of the second category in B. So there is an
open interval I; such that I; N B # () and the intersection I; N A,, is dense in
I N B. Since B = cl(A), there is a point v € AN [;. Let i = max(m,n(u)).
From the continuity on the right of the function f; it follows that there is an open
interval I C I; for which w is the left endpoint, and such that | f;(t) — fi(u)| < 35
for t € I. Since u is a density point of A, the intersection I N A # (). For
w e I N A, wehave

f(w) = Fu)| < |f(w) — filw)| + | fiw) — fiu)| + | filw) — f(u)] N
n n n n *
<30 73030 10

We will prove that
1(t) € [ flu) - g,f(u) + g] for t € 1N A

Suppose, contrary to our claim, that |f(s) — f(u)| > % for some point s € ANT.
Let j > i be a positive integer such that |fi(s) — f(s)| < g5 for & > j. From the
continuity on the right of the function f; it follows that there is an open interval
K C I with the left endpoint s such that |f;(t) — f;(s)| < 35 for t € K. Since s
is a density point of A, the set K N A # (). But K C I, so the intersection
KN A, is dense in K N A. Consequently, there is a point w; € A,, N I. We
have

[f(wr) = f(s)| < [flwr) = fi(wi)| + | fi(wr) = f3(s)] + [f5(s) — f(5)]
n n n n
<3073 30 10

Thus
|fwi) = f(w)] = [(f(s) = f(w) + (f(w1) = f(s))]
> |f(s) = fw)] = [f(w1) = f(s)]
non
3710
Ui
> E,

contradicting (x). So the oscillation of f on I N A is < %" < n and f has the
property (G). O

From the above Theorem 2.1 and from [7, Theorem 4] we obtain the follow-
ing theorem.
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Theorem 2.2. Let g: R? — R be a bounded function such that the vertical
sections g, x € R, are derivatives and the horizontal sections gV, y € R, belong
to ri. Then the function g is measurable in the sense of Lebesque.

The continuity of functions f: R — R considered as some applications
from (R,Ty) to (R,T,), where T, denotes the natural topology in R, is said
approximate continuity [2]. Since bounded approximately continuous functions
are derivatives [2], from the above Theorem 2.2 we obtain the following.

Theorem 2.3. Let g: R? — R be a bounded function. If the vertical sections g,
x € R, are approrimately continuous and the horizontal sections ¢V, y € R,
belong to r1, then g is measurable in the sense of Lebesgue.

Observe that in Theorem 2.3 the condition of boundedness of the function g
can be omitted, since the class of approximately continuous functions and ry
are both invariant under outer homeomorphisms.

3. Final observations

3.1. Property (K). Earlier in [5] I introduce the property (K) which is more
special than the property (G). A function f: R — R has the property (K) if
for each nonempty closed set A C R such that for each open interval I with
I N A # () the intersection I N A is of positive Lebesgue measure, the restricted
function f]A is continuous at a point x € A. Evidently all functions from ¢;
have the property (K) and if a function f has the property (K) then it has also
the property (G).
However, there are functions f € r; without the property (K).

Example 3.1. Let A C (0,1) be a nonempty nowhere dense closed set such
that for each open interval I with TN A # () the intersection I N A is of positive
Lebesgue measure. If z € A isisolated in A from the right then we put f(x) = 1.
For other points € R we put f(z) = 0. Then evidently f € r1, but f does not
have the property (K).

3.2. Lebesgue sup-measurability. Recall that a function g: R?> — R is
said to be Lebesgue sup-measurable if for each Lebesgue measurable function
f: R — R the Carathéodory superposition = — g(z, f(z)) is Lebesgue measur-
able [7]. It is known that the Lebesgue measurability of a bounded function
g: R? — R with the vertical sections g,, * € R, being derivatives implies its
Lebesgue sup-measurability [8]. So from Theorem 2.2 we obtain the following.

Theorem 3.2. Let g: R? — R be a bounded function such that the vertical
sections g, x € R, are derivatives and the horizontal sections g¥, y € R, belong
to ri. Then the function g is Lebesque sup-measurable.
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In [7] it is shown an example of Lebesgue measurable bounded function
g: R? — R with constant horizontal sections ¢¥, y € R, and almost everywhere
continuous (so having the property (K)) vertical sections g,, z € R, which is
not Lebesgue sup-measurable.

On the other hand Borel functions are Lebesgue sup-measurable and boun-
ded functions g: R?> — R, whose the vertical sections g,, + € R, belong to ¢;
and whose the horizontal sections ¢¥, y € R, are approximately continuous,
are Borel functions of Baire class 2 [9]. On applying the same argument as in
the proof of Theorem 1 from [9] we obtain that bounded functions g: R* — R,
whose the vertical sections g,, * € R, belong to ¢; and whose the horizontal
sections ¢¥, y € R, are derivatives, are Borel functions of Baire class 2.

In this situation the following natural problems are open.
Problems. Let g: R? — R be a bounded function whose the vertical sections
g € rp for x € R and the horizontal sections ¢¥, y € R, are derivative. Is ¢

(1) a Borel function?
(2) a Lebesgue sup-measurable function?

In the investigation of the sup-measurability very important role play the
numerous contributions of Isaak V. Shragin. In particular, Shragin obtained
many closely related results on sup-measurable functions which should be com-
pared with Theorem 3.2 (see for example [11]). Moreover, the book [1] contains
a whole chapter dedicated to this topic.
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