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Abstract. In this article I prove that the pointwise limit f : R→ R of a sequence of
right-continuous functions has some special property (G) and that bounded functions
of two variables g : R2 → R whose vertical sections gx, x ∈ R, are derivatives and
horizontal sections gy, y ∈ R, are pointwise limits of sequences of right-continuous
functions, are measurable and sup-measurable in the sense of Lebesgue.
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1. Introduction

Denote by c0 be the class of all continuous functions f : R → R, by r0 the
class of all right-continuous functions f : R → R , and by j0 the class of all
regulated functions f : R → R (a function f : R → R is regulated if for each
point x ∈ R the both unilateral limits f(x+) and f(x−) exist and are finite).
Moreover, let c1 (resp. r1 or j1) be the class of all pointwise limits of sequences
of functions from c0 (resp. from r0 or j0). Similarly, if we take pointwise limits
of sequences of functions from c1, r1 or j1 we define the classes c2, r2 and j2.
In [10], Reed obtained very interesting characterizations of c1, r1 and j1. He
proved that c1 ⊂ r1 ⊂ j1, c1 6= r1 6= j1 and c2 = r2 = j2. Note that Reed’s
considerations in [10] concern functions from [0, 1] to R, but his theorems are
true for functions from R to R.

In [6, 7] it is proved the Lebesgue measurability of bounded functions
g : R2 → R whose vertical sections gx(t) = g(x, t), x ∈ R, are derivatives and
horizontal sections gy(t) = g(t, y), y ∈ R, belong to c1.
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In [3,4] it is shown that the Continuum Hypothesis (CH) implies that there
is a Lebesgue nonmeasurable function h : R2 → [0, 1] with approximately con-
tinuous sections hx, x ∈ R, and such that for each y ∈ R the set R \ (hy)−1(0)
is countable. Since every function f : R→ R with the countable set R \ f−1(0)
belong to j1 and every approximately bounded function is a derivative [2],
we obtain that CH implies that there is a Lebesgue nonmeasurable function
h : R2 → [0, 1] with vertical sections hx, x ∈ R, being derivatives and horizontal
sections hy, y ∈ R, belonging to j1.

Hence the following natural question arises.

Problem. Let a bounded function h : R2 → R be such that the vertical sec-
tions hx, x ∈ R, are derivatives and the vertical sections hy, y ∈ R, belong to r1.
Is the function h Lebesgue measurable?

In this article I prove that the answer is affirmative.

2. Main results

In [7] I introduce the following property (G) for the investigation of the Lebesgue
measurability of functions of two variables. This definition bases on the notion
of the density topology Td [2].

For a point x ∈ R and for a Lebesgue measurable set A ⊂ R we define the
lower density Dl(A, x) of A at x as

lim inf
h→0+

µ(A ∩ [x− h, x+ h])

2h
,

where µ denotes the Lebesgue measure on R. If Dl(A, x) = 1 then x is called a
density point of A. If B is arbitrary subset of R then x is said a density point
of B if there is a Lebesgue measurable subset A ⊂ B with Dl(A, x) = 1. A
nonempty set B ⊂ R belongs to the density topology Td if every point x ∈ B is
a density point of B. All sets belonging to Td are Lebesgue measurable [2].

Definition. A function f : R → R has the property (G) if for each nonempty
set A ∈ Td and each real η > 0 there is an open interval I with I ∩ A 6= ∅ such
that the diameter d(f(I ∩ A)) of the image of f(I ∩ A) is less than η.

Theorem 2.1. If a function f : R → R belongs to r1 then it has the prop-
erty (G).

Proof. Let A ∈ Td be a nonempty set and let η be a positive real. Since f ∈ r1,
there is a sequence of continuous on the right functions fn : R → R which
pointwise converges to f . For each point x ∈ R we find a positive integer n(x)
such that

|fk(x)− f(x)| < η

30
for k ≥ n(x).
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Denote by B the closure of the set A and for k ≥ 1 let Ak = {x ∈ B : n(x) = k}.
Since B is of the second category in itself and since B =

⋃
k≥1Ak, there is a

positive integer m such that Am is of the second category in B. So there is an
open interval I1 such that I1 ∩ B 6= ∅ and the intersection I1 ∩ Am is dense in
I1 ∩ B. Since B = cl(A), there is a point u ∈ A ∩ I1. Let i = max(m,n(u)).
From the continuity on the right of the function fi it follows that there is an open
interval I ⊂ I1 for which u is the left endpoint, and such that |fi(t)−fi(u)| < η

30

for t ∈ I. Since u is a density point of A, the intersection I ∩ A 6= ∅. For
w ∈ I ∩ Am we have

|f(w)− f(u)| ≤ |f(w)− fi(w)|+ |fi(w)− fi(u)|+ |fi(u)− f(u)|

<
η

30
+

η

30
+

η

30
=

η

10
.

(?)

We will prove that

f(t) ∈
[
f(u)− η

3
, f(u) +

η

3

]
for t ∈ I ∩ A.

Suppose, contrary to our claim, that |f(s)−f(u)| > η
3

for some point s ∈ A∩I.
Let j > i be a positive integer such that |fk(s)−f(s)| < η

30
for k ≥ j. From the

continuity on the right of the function fj it follows that there is an open interval
K ⊂ I with the left endpoint s such that |fj(t)− fj(s)| < η

30
for t ∈ K. Since s

is a density point of A, the set K ∩ A 6= ∅. But K ⊂ I, so the intersection
K ∩ Am is dense in K ∩ A. Consequently, there is a point w1 ∈ Am ∩ I. We
have

|f(w1)− f(s)| ≤ |f(w1)− fj(w1)|+ |fj(w1)− fj(s)|+ |fj(s)− f(s)|

<
η

30
+

η

30
+

η

30
=

η

10
.

Thus

|f(w1)− f(u)| = |(f(s)− f(u)) + (f(w1)− f(s))|
≥ |f(s)− f(u)| − |f(w1)− f(s)|

>
η

3
− η

10

>
η

10
,

contradicting (?). So the oscillation of f on I ∩ A is ≤ 2η
3
< η and f has the

property (G).

From the above Theorem 2.1 and from [7, Theorem 4] we obtain the follow-
ing theorem.
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Theorem 2.2. Let g : R2 → R be a bounded function such that the vertical
sections gx, x ∈ R, are derivatives and the horizontal sections gy, y ∈ R, belong
to r1. Then the function g is measurable in the sense of Lebesgue.

The continuity of functions f : R → R considered as some applications
from (R, Td) to (R, Te), where Te denotes the natural topology in R, is said
approximate continuity [2]. Since bounded approximately continuous functions
are derivatives [2], from the above Theorem 2.2 we obtain the following.

Theorem 2.3. Let g : R2 → R be a bounded function. If the vertical sections gx,
x ∈ R, are approximately continuous and the horizontal sections gy, y ∈ R,
belong to r1, then g is measurable in the sense of Lebesgue.

Observe that in Theorem 2.3 the condition of boundedness of the function g
can be omitted, since the class of approximately continuous functions and r1
are both invariant under outer homeomorphisms.

3. Final observations

3.1. Property (K). Earlier in [5] I introduce the property (K) which is more
special than the property (G). A function f : R → R has the property (K) if
for each nonempty closed set A ⊂ R such that for each open interval I with
I ∩A 6= ∅ the intersection I ∩A is of positive Lebesgue measure, the restricted
function f �A is continuous at a point x ∈ A. Evidently all functions from c1
have the property (K) and if a function f has the property (K) then it has also
the property (G).

However, there are functions f ∈ r1 without the property (K).

Example 3.1. Let A ⊂ (0, 1) be a nonempty nowhere dense closed set such
that for each open interval I with I ∩A 6= ∅ the intersection I ∩A is of positive
Lebesgue measure. If x ∈ A is isolated in A from the right then we put f(x) = 1.
For other points x ∈ R we put f(x) = 0. Then evidently f ∈ r1, but f does not
have the property (K).

3.2. Lebesgue sup-measurability. Recall that a function g : R2 → R is
said to be Lebesgue sup-measurable if for each Lebesgue measurable function
f : R→ R the Carathéodory superposition x 7→ g(x, f(x)) is Lebesgue measur-
able [7]. It is known that the Lebesgue measurability of a bounded function
g : R2 → R with the vertical sections gx, x ∈ R, being derivatives implies its
Lebesgue sup-measurability [8]. So from Theorem 2.2 we obtain the following.

Theorem 3.2. Let g : R2 → R be a bounded function such that the vertical
sections gx, x ∈ R, are derivatives and the horizontal sections gy, y ∈ R, belong
to r1. Then the function g is Lebesgue sup-measurable.
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In [7] it is shown an example of Lebesgue measurable bounded function
g : R2 → R with constant horizontal sections gy, y ∈ R, and almost everywhere
continuous (so having the property (K)) vertical sections gx, x ∈ R, which is
not Lebesgue sup-measurable.

On the other hand Borel functions are Lebesgue sup-measurable and boun-
ded functions g : R2 → R, whose the vertical sections gx, x ∈ R, belong to c1
and whose the horizontal sections gy, y ∈ R, are approximately continuous,
are Borel functions of Baire class 2 [9]. On applying the same argument as in
the proof of Theorem 1 from [9] we obtain that bounded functions g : R2 → R,
whose the vertical sections gx, x ∈ R, belong to c1 and whose the horizontal
sections gy, y ∈ R, are derivatives, are Borel functions of Baire class 2.

In this situation the following natural problems are open.

Problems. Let g : R2 → R be a bounded function whose the vertical sections
gx ∈ r1 for x ∈ R and the horizontal sections gy, y ∈ R, are derivative. Is g

(1) a Borel function?

(2) a Lebesgue sup-measurable function?

In the investigation of the sup-measurability very important role play the
numerous contributions of Isaak V. Shragin. In particular, Shragin obtained
many closely related results on sup-measurable functions which should be com-
pared with Theorem 3.2 (see for example [11]). Moreover, the book [1] contains
a whole chapter dedicated to this topic.
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