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On a Singular Class of Hamiltonian
Systems in Dimension Two

Abbes Benaissa and Brahim Khaldi

Abstract. Let Ω be a bounded domain in R2. In this paper, we consider the following
systems of semilinear elliptic equations

(S)


−∆u = g(v)

|x|a in Ω

−∆v = f(u)
|x|b in Ω

u = v = 0 on ∂Ω,

where a, b ∈ [0, 2) and the functions f and g are nonlinearities having an exponential
growth on Ω. This nonlinearity is motivated by suitable Trudinger-Moser inequality
with a singular weight. In fact, we prove the existence of a nontrivial solution to (S).
For the proof we use a variational argument (a linking theorem).
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1. Introduction

In this paper, we consider the following system of singular elliptic equations
−∆u =

g(v)

|x|a
in Ω

−∆v =
f(u)

|x|b
in Ω

u = v = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R2 containing the origin, a, b ∈ [0, 2),
and the functions g and f have the maximal growth which allow us to treat
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problem (1.1) variationally in the Sobolev space H1
0 (Ω). We are interested in

finding nontrivial solution of (1.1) in the space E := H1
0 (Ω) ×H1

0 (Ω) endowed
with the norm

‖(u, v)‖E := (‖u‖2 + ‖v‖2)
1
2 ,

where ‖u‖ = (
∫

Ω
|∇u|2 dx)

1
2 is the norm of the Sobolev space H1

0 (Ω).

Motivated by pioneer work of de Figueiredo et al. [6] we treat the so-called
subcritical case and also the critical case, which we define next. We say that a
function f(t) has subcritical growth at +∞ if for all β > 0

lim
t→+∞

f(t)

eβt2
= 0 (1.2)

and f(t) has critical growth at +∞ if there exists β0 > 0, such that

lim
t→+∞

f(t)

eβt2
=

{
0 for β > β0

+∞ for β < β0.
(1.3)

This notion of criticality is motivated by Trudinger-Moser inequality (see
[12, 18]) which says that if u ∈ H1

0 (Ω) then eβu
2 ∈ L1(Ω). Moreover, there

exists a constant C > 0 such that

sup
‖u‖≤1

∫
Ω

eβu
2

dx ≤ C|Ω|, if β ≤ 4π.

We would like to point out that in our present case, we have the presence of
a singular term |x|−a which prevents us to use the Trudinger-Moser inequality,
so we have to use a version of the Trudinger-Moser inequality with singular
weight due to Adimurthi-Sandeep [2](see Lemma 2.1 in the next section). Let
us introduce the precise assumptions under which our problem is studied:

(H1) f and g are continuous functions with f(t) = o(t) and g(t) = o(t) near
the origin.

(H2) There exist constants θ > 2 and t0 such that

0 < θF (t) ≤ tf(t) and 0 < θG(t) ≤ tg(t) ∀ |t| ≥ t0,

where F (t) =
∫ t

0
f(s) ds and G(t) =

t∫
0

g(s) ds.

It is natural to find solution of our problem by looking for critical points
of the corresponding functional of system (1.1) which we define next. The
functional associated to (1.1) is given by

I(u, v) =

∫
Ω

∇u∇v dx−
∫

Ω

F (u)

|x|b
dx−

∫
Ω

G(v)

|x|a
dx,
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in the space E := H1
0 (Ω) × H1

0 (Ω). Under our assumptions this functional is
well defined and C1(E,R). Also, for all (ϕ, ψ) ∈ E, we have

I ′(u, v)(ϕ, ψ) =

∫
Ω

∇u∇ψ dx+

∫
Ω

∇v∇ϕdx−
∫

Ω

f(u)ϕ

|x|b
dx−

∫
Ω

g(v)ψ

|x|a
dx.

Note that the system (1.1) with a = b = 0 and for nonlinearity having
polynomial growth have been studied by several authors: de Figuerido and
Felmer [5], Dai and Gu [3] and Hulshof et al. [11]. The case a 6= 0 and b 6= 0
was studied in [4, 8, 10]. On the other hand, the problems of the above type
involving critical or subcritical exponential growth and without weights have
been investigated in [7, 9, 14].

Our paper is closely related to the recent works of de Figueiredo et al. [7]
and Ruf [14]. Indeed, we extend the results in [7] from a = b = 0 to a, b ∈ [0, 2).
This limitation on a and b is due to Lemma 2.1.

Our main results are stated as follows.

Theorem 1.1. If g has subcritical growth, f has subcritical or critical growth
and (H1), (H2) are satisfied then problem (1.1) has a nontrivial weak solution
(u, v) ∈ E.

Theorem 1.2. If g and f have critical growth, a = b and furthermore suppose
that

(H3) There exist M > 0 and R > 0 such that for all |t| ≥ R

0 < F (t) ≤Mf(t) and 0 < G(t) ≤Mg(t).

(H4) There exists β0 > 0 such that

lim
t→+∞

tf(t)

eβ0t2
>

(2− a)2

β0d2−a and lim
t→+∞

tg(t)

eβ0t2
>

(2− a)2

β0d2−a ,

where d is the radius of the largest open ball centered at origin and con-
tained in Ω.

Then problem (1.1) has a nontrivial weak solution (u, v) ∈ E.

2. Preliminaries

In this paper, we shall use the following version of Trudinger-Moser inequality
with a singular weight due to Adimurthi-Sandeep [2].

Lemma 2.1. Let Ω be a bounded domain in R2 containing 0 and u ∈ H1
0 (Ω).

Then for every α > 0 and a ∈ [0, 2)∫
Ω

eαu
2

|x|a
dx <∞.
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Moreover,

sup
‖u‖≤1

∫
Ω

eαu
2

|x|a
dx <∞ (2.1)

if and only if α
4π

+ a
2
≤ 1.

To show that the Palais-Smale sequence is bounded in E, we will use the
following inequality whose proof was given in [7].

Lemma 2.2. The following inequality holds

st ≤


(
et

2 − 1
)

+ s
(
log+ s

) 1
2 , for t ≥ 0 and s ≥ e

1
4(

et
2 − 1

)
+

1

2
s2, for t ≥ 0 and s ≤ e

1
4 .

(2.2)

Lemma 2.3. Let u ∈ H1
0 (Ω) and a ∈ [0, 2). Then there exist C > 0 such that∫

Ω

|u|2

|x|a
dx ≤ C‖u‖2. (2.3)

Proof. Using Hölder’s inequality, we have∫
Ω

|u|2

|x|a
dx ≤

(∫
Ω

|x|
−ar
r−2 dx

) r−2
r
(∫

Ω

|u|r dx
) 2

r

,

we can choose r such that r > 4
2−a , therefore

∫
Ω
|u|2
|x|a dx ≤ C‖u‖2

r. Finally, by the

continuous embedding H1
0 (Ω) ↪→ Lr(Ω), we conclude that∫

Ω

|u|2

|x|a
dx ≤ C‖u‖2.

We also will use the following convergence result due to M. de Souza and
J. Marcos do Ò [17]

Lemma 2.4. Let Ω ⊂ R2 be a bounded domain and f : Ω × R → R be a
continuous function. Then for any sequence (un) in L1(Ω) such that

un → u in L1(Ω),
f(x, un)

|x|b
∈ L1(Ω) and

∫
Ω

|f(x, un)un|
|x|b

dx ≤ C

up to a subsequence we have

f(x, un)

|x|b
→ f(x, u)

|x|b
in L1(Ω).
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Lemma 2.5. Let (un, vn) be a Palais-Smale sequence for the fonctional I such
that (un, vn) ⇀ (u, v) weakly in E. Then (un, vn) has a subsequence, still denoted
by (un, vn) such that

F (un)

|x|b
→ F (u)

|x|b
in L1(Ω) and

G(vn)

|x|a
→ G(v)

|x|a
in L1(Ω).

Proof. From (H3), we can conclude that

|F (un)| ≤M1 +M |f(un)| and |G(vn)| ≤M2 +M |g(vn)| (2.4)

where M1 = sup[−R,R] |F (un)| and M2 = sup[−R,R] |G(vn)|.
On the other hand, from Lemma 2.4, we have

f(un)

|x|b
→ f(u)

|x|b
in L1(Ω) and

g(vn)

|x|a
→ g(v)

|x|a
in L1(Ω),

which implies that there exist h1, h2 ∈ L1(Ω) such that

|f(un)|
|x|b

≤ h1 and
|g(vn)|
|x|a

≤ h2 almost everywhere in Ω. (2.5)

Then, by (2.4), (2.5) and Lebesgue dominated convergence theorem, we get

F (un)

|x|b
→ F (u)

|x|b
in L1(Ω) and

G(vn)

|x|a
→ G(v)

|x|a
in L1(Ω).

Remark 2.6. C is a generic positive constant.

3. Linking structure and Palais-Smale sequences

3.1. The geometry of the linking theorem. In this subsection, we verify
that the functional I has a linking structure in (0, 0). We use the following
notations

E+ =
{

(u, u) | u ∈ H1
0 (Ω)

}
and E− =

{
(u,−u) | u ∈ H1

0 (Ω)
}
.

Lemma 3.1. There exist ρ > 0 and σ > 0 such that

I(z) ≥ σ ∀ z ∈ ∂Bρ ∩ E+.

Proof. From (H1), for given ε > 0 there exists t0 such that

f(t) ≤ 2εt and g(t) ≤ 2εt ∀ t ≤ t0. (3.1)
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On the other hand, it follows from (1.2) and (1.3) that, for a given q > 2, there
exists a constant C > 0 and β such that

F (t) ≤ Ctqeβt
2

and G(t) ≤ Ctqeβt
2 ∀ t ≥ t0. (3.2)

From (3.1) and (3.2), we get

F (t) ≤ εt2 + Ctqeβt
2

and G(t) ≤ εt2 + Ctqeβt
2 ∀ t ≥ 0. (3.3)

Notice that using (3.3), Hölder inequality and Lemma 2.3, we have

∫
Ω

F (u)

|x|b
dx ≤ Cε‖u‖2 + C

(∫
Ω

uqs
′
dx

) 1
s′
(∫

Ω

esβu
2

|x|bs
dx

) 1
s

≤ Cε‖u‖2 + C‖u‖qqs′

∫
Ω

es‖u‖
2β( u

‖u‖)
2

|x|bs
dx

 1
s

,

where 1
s′

+ 1
s

= 1 with s sufficiently close to 1 such that bs < 2 and qs′ > 1.

If ‖u‖ ≤ δ, with δ > 0 such that βsδ2

4π
+ bs

2
≤ 1. So, by Trudinger-Moser

inequality (2.1) and Sobolev imbedding theorem we obtain∫
Ω

F (u)

|x|b
dx ≤ Cε‖u‖2 + C‖u‖q.

In a similar way one also can see that if ‖u‖≤δ, with δ>0 such that βsδ2

4π
+ as

2
≤1,

it holds ∫
Ω

G(v)

|x|a
dx ≤ Cε‖v‖2 + C‖v‖q.

Thus, for z ∈ ∂Bρ ∩ E+, we have I(z) ≥ (1− 2Cε) ‖u‖2 − 2C‖u‖q. Then,
for ε small enough we can find ρ, σ > 0 such that I(z) ≥ σ > 0 for ‖u‖ = ρ
sufficiently small.

Let e1 ∈ H1
0 (Ω) be a fixed nonnegative function with ‖e1‖ = 1 and

Q =
{
r(e1, e1) + ω | ω ∈ E−, ‖ω‖ ≤ R0 and 0 ≤ r ≤ R1

}
.

Lemma 3.2. There exist R0, R1 > 0 such that I(z) ≤ 0 for all z ∈ ∂Q,
where ∂Q denotes the boundary of Q in R(e1, e1)⊕ E−.

Proof. For z ∈ ∂Q, we have three cases.
Case 1: z ∈ ∂Q ∩ E−, then we have z = (u,−u) and hence

I(z) = −
∫

Ω

|∇u|2 dx−
∫

Ω

F (u)

|x|b
dx−

∫
Ω

G(−u)

|x|a
dx ≤ −‖u‖2 ≤ 0.
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Case 2: z = R1(e1, e1) + (u,−u) ∈ ∂Q with ‖(u,−u)‖ ≤ R0. Then

I(z) = R2
1 −

∫
Ω

|∇u|2 dx−
∫

Ω

F (R1e1 + u)

|x|b
dx−

∫
Ω

G (R1e1 − u)

|x|a
dx. (3.4)

By the assumption (H2), there exist C > 0 such that

F (t) ≥ C
(
tθ − 1

)
and G(t) ≥ C

(
tθ − 1

)
.

Then we obtain from (3.4) that

I(z) ≤ R2
1 − C

∫
Ω

(
(R1e1 + u)θ

|x|b
+

(R1e1 − u)θ

|x|a

)
dx+ C.

≤ R2
1 − C

∫
{x∈Ω| |x|≥1}

(
(R1e1 + u)θ + (R1e1 − u)θ

|x|max{a,b}

)
dx

− C
∫
{x∈Ω| |x|≤1}

(
(R1e1 + u)θ + (R1e1 − u)θ

)
dx+ C.

Now, using the convexity of the function φ(t) = tθ, it follows that

I(z) ≤ R2
1 − 2CRθ

1

(∫
{x∈Ω| |x|≥1}

eθ1
|x|max{a,b} dx+

∫
{x∈Ω| |x|≤1}

eθ1 dx

)
+ C.

Then, for R1 sufficiently large, we get I(z) ≤ 0.

Case 3: z = r(e1, e1) + (u,−u) ∈ ∂Q with ‖(u,−u)‖ = R0 and 0 ≤ r ≤ R1.
Then

I(z) = r2 −
∫

Ω

|∇u|2 dx−
∫

Ω

F (re1 + u)

|x|b
dx−

∫
Ω

G (re1 − u)

|x|a
dx ≤ R2

1 −
1

2
R2

0.

Thus I(z) ≤ 0 if R0 ≥
√

2R1.

3.2. On Palais-Smale sequences. To prove that a Palais-Smale sequence
converges to a weak solution of problem (1.1) we need to establish the following
lemma

Lemma 3.3. Let (un, vn) ∈ E such that I(un, vn) → c and I ′(un, vn) → 0.
Then

‖un‖ ≤ C, ‖vn‖ ≤ C (3.5)∫
Ω

f(un)un
|x|b

dx ≤ C,

∫
Ω

g(vn)vn
|x|a

dx ≤ C (3.6)∫
Ω

F (un)

|x|b
dx ≤ C,

∫
Ω

G(vn)

|x|a
dx ≤ C. (3.7)



206 A. Benaissa and B. Khaldi

Proof. Let (un,vn)∈E be a sequence such that I(un,vn)→ c and I ′(un,vn)→ 0,
that is, for any (ϕ, ψ) ∈ E,∫

Ω

∇un∇vn dx−
∫

Ω

F (un)

|x|b
dx−

∫
Ω

G(vn)

|x|a
dx = c+ δn (3.8)

and∣∣∣∣∫
Ω

∇unψ dx+

∫
Ω

∇ϕ∇vn dx−
∫

Ω

f(un)ϕ

|x|b
dx−

∫
Ω

g(vn)ψ

|x|a
dx

∣∣∣∣≤εn‖(ϕ, ψ)‖. (3.9)

Choosing (ϕ, ψ) = (un, vn) in (3.9) and using (H2), we have∫
Ω

f(un)un
|x|b

dx+

∫
Ω

g(vn)vn
|x|a

dx

≤ 2

∣∣∣∣∫
Ω

∇un∇vn dx
∣∣∣∣+ εn‖(un, vn)‖

≤ 2c+ 2

∫
Ω

F (un)

|x|b
dx+ 2

∫
Ω

G(vn)

|x|a
dx+ 2δn + εn‖(un, vn)‖

≤ 2c+
2

θ

∫
Ω

f(un)un
|x|b

dx+
2

θ

∫
Ω

g(vn)vn
|x|a

dx+ 2δn + εn‖(un, vn)‖.

Thus ∫
Ω

f(un)un
|x|b

dx+

∫
Ω

g(vn)vn
|x|a

dx ≤ C (1 + 2δn + εn‖(un, vn)‖) . (3.10)

Now, taking (ϕ, ψ) = (vn, 0) and (ϕ, ψ) = (0, un) in (3.9) we have

‖vn‖2 − εn‖vn‖ ≤
∫

Ω

f(un)vn
|x|b

dx and ‖un‖2 − εn‖un‖ ≤
∫

Ω

g(vn)un
|x|a

dx.

Setting Vn = vn
‖vn‖ and Un = un

‖un‖ we obtain

‖vn‖ ≤
∫

Ω

f(un)

|x|b
Vn dx+ εn and ‖un‖ ≤

∫
Ω

g(vn)

|x|a
Un dx+ εn. (3.11)

We apply the inequality (2.2) with t = Vn and s = f(un) in the first estimate
in (3.11), we obtain∫

Ω

f(un)

|x|b
Vn dx ≤ C

∫
Ω

eV
2
n

|x|b
dx+

∫
{
x∈Ω| f(un)≥e

1
4

} f(un)

|x|b
[log (f(un))]

1
2 dx

+
1

2

∫
{
x∈Ω| f(un)≤e

1
4

} [f(un)]2

|x|b
dx.
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Using Trudinger-Moser inequality and the fact b < 2, we get∫
Ω

f(un)

|x|b
Vn dx ≤ C

(
1 + β

1
2

∫
Ω

f(un)un
|x|b

dx

)
.

This estimate together with the first inequality in (3.11) implies that

‖vn‖ ≤ C

(
1 +

∫
Ω

f(un)un
|x|b

dx+ εn

)
. (3.12)

Similarly, we get from the second estimate in (3.11)

‖un‖ ≤ C

(
1 +

∫
Ω

g(vn)vn
|x|a

dx+ εn

)
. (3.13)

Adding the estimates (3.12) and (3.13) and using (3.10), we obtain

‖(un, vn)‖ ≤ C (1 + δn + εn‖(un, vn)‖+ εn)

Then ‖(un, vn)‖ ≤ C. From this estimate, inequality (3.10) and (H2), we obtain
the estimates (3.6) and (3.7). Thus, the proof of Lemma 3.3 is complete.

4. Finite-dimensional approximation

Note that the functional I is strongly indefinite in an infinite dimensional
space, and hence the standard linking theorems cannot be applied. We there-
fore approximate problem (1.1) with a sequence of finite dimensional problems
(Galerkin approximation).

Denote by (φi)i∈N an orthonormal set of eigenfunctions corresponding to
the eigenvalues (λi), i ∈ N, of (−∆, H1

0 (Ω)) and set

E+
n = span {(φi, φi) | i = 1, . . . , n}

E−n = span {(φi,−φi) | i = 1, . . . , n}
En = E+

n ⊕ E−n .

Set now Qn = Q ∩ En where Q as in previous section and define the class of
mappings

Γn = {γ ∈ C (Qn,R (e1, e1)⊕ En) | γ (z) = z on ∂Qn}

and set
cn = inf

γ∈Γn
max
z∈Qn

I (γ (z)) (4.1)

Using an intersection theorem [13], we have

γ(Qn) ∩
(
∂Bρ ∩ E+

)
6= ∅ ∀ γ ∈ Γn,
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which in combination with Lemma 3.1 implies that cn ≥ σ > 0. On the other
hand, since the identity mapping Id : Qn → R(e1, e1)⊕ En belongs to Γn, it is
easy to prove that cn ≤ R2

1. Then we have

0 < σ ≤ cn ≤ R2
1.

Now, by Lemma 3.1 and 3.2, we see that the geometry of a linking theorem
holds for the functional In = I|En . Therefore, applying the linking theorem
for In (see [13, Theorem 5.3]), we get the following result:

For each n ∈ N the functional In has a critical point zn = (un, vn) ∈ En at
level cn such that

In(zn) = cn ∈
[
σ,R2

1

]
and I ′n(zn) = 0.

Furthermore, ‖zn‖ ≤ C where C does not depend of n.

5. Subcritical case

In this section we assume that g has subcritical growth.

5.1. Proof of Theorem 1.1. In previous section, we find a sequence
zn = (un, vn) ∈ En bounded in E and such that

In(zn) = cn ∈
[
σ,R2

1

]
, (5.1)

I ′n(zn) = 0, (5.2)

(un, vn) ⇀ (u, v) in E,

un → u and vn → v in Lq(Ω) ∀ q ≥ 1,

un (x)→ u (x) and vn (x)→ v a.e. in Ω

By Lemma 3.3, we have∫
Ω

f(un)un
|x|b

dx ≤ C,

∫
Ω

g(vn)vn
|x|a

dx ≤ C (5.3)∫
Ω

F (un)

|x|b
dx ≤ C,

∫
Ω

G(vn)

|x|a
dx ≤ C. (5.4)

Taking as test functions (0, ψ) and (ϕ, 0) in (5.2), where ϕ and ψ are arbitrary
functions in Fn := span {φi | i = 1, . . . , n} we get∫

Ω

∇un∇ψ dx =

∫
Ω

g(vn)ψ

|x|a
dx ∀ψ ∈ Fn (5.5)∫

Ω

∇vn∇ϕdx =

∫
Ω

f(un)ϕ

|x|b
dx ∀ϕ ∈ Fn. (5.6)
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Consequently, by Lemmas 3.3 and 2.4, f(un)
|x|b →

f(u)
|x|b and g(vn)

|x|a →
g(v)
|x|a in L1(Ω).

Passing to the limit in (5.5) and (5.6) and using the fact that ∪n∈NFn is dense

in H1
0 (Ω), we see that∫

Ω

∇u∇ψ dx =

∫
Ω

g(v)ψ

|x|a
dx ∀ψ ∈ H1

0 (Ω) (5.7)∫
Ω

∇v∇ϕdx =

∫
Ω

f(u)ϕ

|x|b
dx ∀ϕ ∈ H1

0 (Ω). (5.8)

Thus, we conclude that (u, v) is a weak solution of (1.1). Finally, we prove that
(u, v) ∈ E is nontrivial. Assume by contradiction that u = 0, which implies
that also v = 0.

Since g is subcritical, we obtain for all β > 0

|g(t)| ≤ Ceβt
2 ∀ t ∈ R. (5.9)

Now, we choose ψ = un in (5.5), using Hölder inequality and (5.9) we get∫
Ω

|∇un|2 dx =

∫
Ω

g(vn)un
|x|a

dx

≤ C‖un‖Lq′
(∫

Ω

eqβu
2

|x|aq
dx

) 1
q

= C‖un‖Lq′

∫
Ω

eq‖u‖
2β( u

‖u‖)
2

|x|aq
dx

 1
q

,

where q′ = q
q−1

with q > 1 sufficiently close to 1 such that βq‖u‖2
4π

+ qa
2
≤ 1.

Then
∫

Ω
|∇un|2 dx ≤ C‖un‖Lq′ and so we conclude that ‖un‖ → 0 because

‖un‖Lq′ → 0. This implies ∫
Ω

∇un∇vn dx→ 0. (5.10)

Then, from (5.5) and (5.6), we obtain∫
Ω

f(un)un
|x|b

dx→ 0 and

∫
Ω

g(vn)vn
|x|a

dx→ 0.

By assumption (H2) we now conclude that∫
Ω

F (un)

|x|b
dx→ 0 and

∫
Ω

G(vn)

|x|a
dx→ 0. (5.11)
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Finally, by (5.10) and (5.11) we obtain that

I(un, vn) =

∫
Ω

∇un∇vn dx−
∫

Ω

F (un)

|x|b
dx−

∫
Ω

G(vn)

|x|a
dx→ 0,

but this contradicts (5.1). Consequently, we have a nontrivial critical point of I.
This completes the proof of the Theorem 1.1.

6. Critical case

In this section we assume that f and g have critical growth with exposent
critical β0 and a = b.

6.1. On the minimax level. In order to get a more precise information about
the minimax level, it was crucial in our argument to consider the following
sequence:

For k ∈ N, ψ̃k(x) :=
1√
2π


(log k)

1
2 for 0 ≤ |x| ≤ 1

k
log 1

|x|

(log k)
1
2

for
1

k
≤ |x| ≤ 1

0 for |x| ≥ 1.

Now, we define the sets

Qn,k =
{
r(ek, ek) + ω | ω ∈ E−n , ‖ω‖ ≤ R0 and 0 ≤ r ≤ R1

}
,

where ek(x) = ψ̃k(
x
d
).

Lemma 6.1. There exists k ∈ N such that

sup
R+(ek,ek)⊕E−

I <
2π(2− a)

β0

.

Proof. Suppose by contradiction that for all k ∈ N, we have

sup
R+(ek,ek)⊕E−

I ≥ 2π(2− a)

β0

.

This means that there exists zn,k = τn,k(ek, ek) + (un,k,−un,k) ∈ Qn,k such that

I(zn,k) ≥ 2π(2−a)
β0

− εn, where εn → 0 as n→∞.

Let h(t) := I(tzn,k). We see that h(0) = 0 and limt→+∞ h(t) = −∞. Then,

there exists a maximum point t0zn,k with I(t0zn,k) ≥ 2π(2−a)
β0

− εn. We may
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assume that zn,k is this point, and then we get

τ 2
n,k −

∫
Ω

|∇un,k|2 dx−
∫

Ω

F (τn,kek + un,k)

|x|a
dx−

∫
Ω

G (τn,kek − un,k)
|x|a

dx

≥ 2π(2− a)

β0

− εn
(6.1)

and

τ 2
n,k −

∫
Ω

|∇un,k|2 dx

=

∫
Ω

f (τn,kek + un,k) (τn,kek + un,k)− g (τn,kek − un,k) (τn,kek − un,k)
|x|a

dx

(6.2)

Now, put τ 2
n,k = sn + 2π(2−a)

β0
. So, from (6.1) we get sn + 2π(2−a)

β0
≥ 2π(2−a)

β0
− εn.

By assumption (H4), there exists t > 0 and

η0 >
(2− a)2

β0d2−a (6.3)

such that
tf(t) ≥ (η0 − ε) eβ0t

2

and tg(t) ≥ (η0 − ε) eβ0t
2

, (6.4)

for all t ≥ t and ε is arbitrarily small.

Next, choosing k sufficiently large such that τn,k

√
log k
2π
≥ t, we get

max {τn,kek + un,k, τn,kek − un,k} ≥ t ∀x ∈ B d
k

(0) .

Now, using (6.2) and (6.4), we obtain

sn +
2π(2− a)

β0

≥ (η0 − ε)
∫
B d
k

(0)

eβ0τ
2
n,k

log k
2π

|x|a
dx

≥ (η0 − ε) 2πe
β0
(
sn+

2π(2−a)
β0

)
log k
2π

∫ d
k

0

ξ1−adξ

≥ (η0 − ε) 2πeβ0sn
(log k)

2π e(2−a) log k

(
d

k

)2−a

≥ (η0 − ε)
2πd2−aeβ0sn

log k
2π

2− a
.

This and (6.1) imply that limn→+∞ sn = 0. So, we see that η0 − ε ≤ 2(2−a)2

β0d2−a
,

which contradicts (6.3).
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6.2. Proof of Theorem 1.2. Lemma 6.1 implies that there is δ > 0 such that
for all n we have

cn,e := cn ≤
2π(2− a)

β0

− δ

where cn is defined by (4.1). Next, using (6.1) and Lemma 3.3, we have
zn = (un, vn) ∈ En bounded in E such that

In(zn) = cn,e ∈
[
σ,

2π(2− a)

β0

− δ
]
, (6.5)

I ′n(zn) = 0, (6.6)

(un, vn) ⇀ (u, v) in E,

un → u and vn → v in Lq(Ω) ∀ q ≥ 1,

un(x)→ u(x) and vn(x)→ v a.e. in Ω.

By Lemma 3.3, we have∫
Ω

f(un)un
|x|a

dx ≤ C,

∫
Ω

g(vn)vn
|x|a

dx ≤ C (6.7)∫
Ω

F (un)

|x|a
dx ≤ C,

∫
Ω

G(vn)

|x|a
dx ≤ C. (6.8)

Taking as test functions (0, ψ) and (ϕ, 0) in (5.2), where ϕ and ψ are arbi-
trary functions in Fn := span{φi | i = 1, . . . , n}, we get∫

Ω

∇un∇ψ dx =

∫
Ω

g(vn)ψ

|x|a
dx ∀ψ ∈ Fn (6.9)∫

Ω

∇vn∇ϕdx =

∫
Ω

f(un)ϕ

|x|a
dx ∀ϕ ∈ Fn. (6.10)

Consequently, by Lemmas 3.3 and 2.4, f(un)
|x|a →

f(u)
|x|a and g(vn)

|x|a →
g(v)
|x|a in L1(Ω).

Passing to the limit in (6.9) and (6.10) and using the fact that ∪n∈NFn is dense
in H1

0 (Ω), we see that∫
Ω

∇u∇ψ dx =

∫
Ω

g(v)ψ

|x|a
dx ∀ψ ∈ H1

0 (Ω) (6.11)∫
Ω

∇v∇ϕdx =

∫
Ω

f(u)ϕ

|x|a
dx ∀ϕ ∈ H1

0 (Ω). (6.12)

Thus, we conclude that (u, v) is a weak solution of (1.1).
Finally, it only remains to prove that (u, v) ∈ E is nontrivial. Assume by

contradiction that u = 0, which implies that also v = 0. Now, if ‖un‖ → 0,
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then we get directly (6.18) below, and then a contradiction. Thus, assume that
‖un‖ ≥ b > 0 for all n and consider

‖un‖2 =

∫
Ω

g(vn)un
|x|a

dx. (6.13)

Setting un =
(

2π(2−a)
β0

− δ
) 1

2 un
‖un‖ , and using inequality (2.2) with s = g(vn)√

β0
and

t =
√
β0un, we have(

2π(2−a)

β0

− δ
)1

2

‖un‖ =

∫
Ω

g(vn)un
|x|a

dx

≤
∫

Ω

eβ0u
2
n−1

|x|a
dx+

∫
{
x∈Ω:

g(vn(x))√
β0
≤e

1
4

} (g(vn))2

β0|x|a
dx

+

∫
{
x∈Ω:

g(vn(x))√
β0
≥e

1
4

} g(vn)√
β0|x|a

(
log

(
g(vn)√
β0

))1
2

dx.

(6.14)

Since ‖un‖2 = 2π(2−a)
β0
−δ, it is clear that the function m(un) := eβ0u

2
n−1 satisfies

the conditions of Lemma 2.4 , so the first term tends to zero. By Lebesgues
dominated convergence, we can see also that the second term tends to zero.

From Lemma 2.4 and the fact that g has critical growth with exposent
critical β0, we can estimate the third term by

∫
Ω

g(vn)√
β0|x|a

(
log

(
g(vn)√
β0

))2

dx ≤
∫

Ω

g(vn)√
β0|x|a

(
log

(
Cεe

(β0+ε)v2n

√
β0

))1
2

dx

≤
∫

Ω

g(vn)√
β0|x|a

(
log

(
Cε√
β0

)1
2

+ (β0 + ε)
1
2 vn

)
dx

≤ o(1) +

(
1 +

ε

β0

)1
2
∫

Ω

g(vn)vn
|x|a

,

and hence, by (6.14), we get(
2π(2− a)

β0

− δ
) 1

2

‖un‖ ≤ o(1) +

(
1 +

ε

β0

) 1
2
∫

Ω

g(vn)vn
|x|a

dx. (6.15)

Similarly, with ‖vn‖2 ≤
∫

Ω
f(un)vn
|x|a dx, we get

(
2π(2− a)

β0

− δ
) 1

2

‖vn‖ ≤ o(1) +

(
1 +

ε

β0

) 1
2
∫

Ω

f(un)un
|x|a

dx. (6.16)
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On the other hand, by Lemma 2.5 and (6.5), we can conclude that∫
Ω

F (un)

|x|a
dx→ 0,

∫
Ω

G(vn)

|x|a
dx→ 0 (6.17)

and ∣∣∣∣∫
Ω

∇un∇vn dx
∣∣∣∣ ≤ o(1) +

2π(2− a)

β0

− δ,

which, together with (6.6), imply that∫
Ω

f(un)un
|x|a

dx+

∫
Ω

g(vn)vn
|x|a

dx ≤ o(1) + 2

(
2π(2− a)

β0

− δ
)

So, from (6.15) and (6.16) we obtain

‖un‖+ ‖vn‖ ≤ o(1) + 2

(
1 +

ε

β0

)1
2
(

2π(2−a)

β0

− δ
) 1

2

≤ 2

(
2π(2−a)

β0

− δ
)1

2

,

for ε sufficiently small and n sufficiently large. It follows that there is a subse-

quence of (un) or (vn) (without loss of generality assume it is (vn)) such that

‖vn‖ ≤
(

2π(2−a)
β0

− δ
) 1

2
. Thus, using Lemma 2.1 and Hölder inequality with

q > 1 such that q

(
(β0+ε)

(
2π(2−a)
β0

−δ
)

4π
+ a

2

)
≤ 1 we get∣∣∣∣∫

Ω

g(vn)vn
|x|a

dx

∣∣∣∣ ≤ Cε‖vn‖Lq′ (Ω)

∫
Ω

eq(β0+ε)v2n

|x|qa
dx ≤ C‖vn‖Lq′ (Ω).

Since ‖vn‖Lq′ (Ω) → 0, we get
∫

Ω
g(vn)vn
|x|a dx→ 0. Hence,∫

Ω

∇un∇vn dx→ 0 (6.18)

which, together with (6.17), imply that cn,e → 0, yielding a contradiction.
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