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Abstract. The paper deals with the Dirichlet problem for the Poisson equation
Au = f in the domain D = K x R"™™, where K is a cone in R™. The author
describes the singularities of the Green function near the edge of the domain. Using
this result, he obtains the asymptotics of the solution of the boundary value problem
for a right-hand side f belonging to a weighted L, Sobolev space. Here, precise
formulas for all coefficients in the asymptotics are given.
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1. Introduction

The paper is concerned with the first boundary value problem for the Poisson
equation

Au=f inD (1)
u=0 ondD (2)

in the domain
D={z=(2",2"): 2" € K, 2" e R""™},

where K = {2/ € R™: Z e 2} is a cone in R™, 2 < m < n, and 2 denotes a

subdomain of the unit sl)hlere with smooth (of class C'*°) boundary 052.

The paper consists of two parts. In the first part (Section 2), we study
the asymptotics of the Green function G(z,y) for the problem (1), (2) near the
edge M ={z = (2/,2") e R": 2/ =0, 2" € R*"™} of D. In the case m = n,
the asymptotics of Green’s function is even known for general elliptic boundary
value problems. We refer here to the paper [9] by Maz’'ya and Plamenevskii
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and the monograph [14] of Nazarov and Plamenevskil. The description of the
singularities of Green’s function near edges is more complicated. However, for
many applications it is sufficient to employ point estimates of Green’s function.
Maz’ya and Plamenevskii [7] obtained such estimates for a class of general
elliptic problems in a dihedral angle D (see also the monograph of Maz’ya and
Rossmann [12]). This class includes the Dirichlet problem for strongly elliptic
operators. We give here the estimate for the Green function of the problem
(1), (2). For this end, we introduce the following notation. Let {A;}32, be a
nondecreasing sequence of eigenvalues of the Beltrami operator —¢§ on € (with
Dirichlet boundary condition) counted with their multiplicities, and let {¢;}32,
be an orthonormal (in Ls(£2)) sequence of eigenfunctions corresponding to the
eigenvalues A;. Furthermore, we define

2 —
=22 \/ A,

This means that /\;-IE are the solutions of the quadratic equation A(m—2+\)=A,.
Obviously, )\j >0and Ay <2—mfor j =1,2,.... For an arbitrary point z =

(x1,...,2,) € R" let 2’ = (xq,...,2,) and 2" = (Ty41, ..., 2,). Analogously,
we set o/ = (aq,...,qy) and o' = (amy1, ..., @) for an arbitrary multi-index
a = (oq,...,a,). Then the following estimate holds for all multi-indices «

and 7 (cf. [12, Theorems 2.5.2 and 2.5.4]):

|| )Afla’e
'] + |z —y]

( /| )AT—W’I—E
Y| + [z =yl '

Here, € is an arbitrarily small positive number. One of the goals of the present
paper is to give a precise description of the singularities of G(z,y) near the
edge M. Let

aa(f)vG < Conlz—y 2—n—|al-|v|
| Y)| < ol =yl
(3)

n it
F(\, —1+%) V[ B (w,)

Y /7x//_ mo_ _
iy y') o T F()\;r + %) (Jy'|? + |z — y”\2))‘;’1+%

and let ¢ be an arbitrary real number such that
o>\, o#\ forallj (4)

Furthermore, we set
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where [s] denotes the integral part of s. It is proved in Section 2 (see Theo-
rem 2.2) that G(x,y) admits the decomposition

p= 3 S TN D LA ) iy ) g
= 4kk'r(A++k+ 2) T
j <o

with a remainder R, (x,y) satisfying the estimate

|x/’0—|o¢’| |y/|)\f—\'y’\—a

10200 R, 9)| < o

"N < |z -yl
|z — y|o AT 2 b= for [/ < == ()

Obviously, this result improves the estimate (3). Note that the method for
constructing the asymptotics of Green’s function in the present paper is similar
to the approach for the heat equation in the paper [5] by Kozlov and Rossmann.
It is also possible to obtain the asymptotics of the Green function G(z,y) from
the asymptotics of the Green function for the heat equation (by integration with
respect to the time ¢). This approach is shortly discussed at the end of Section 2.
However, the construction of the asymptotics for the Green function of the
heat equation in a cone requires considerations similar to those of Section 2.
Therefore, the proof given in Subsection 2.3 is a more direct method for finding
the asymptotics of the Green function of the Poisson equation.

In the second part of the paper (Section 3), we apply ‘ghe result of Section 2
in order to describe the asymptotics of the solution u €W3(D) of the problem
(1), (2) with the right-hand side f € W5 (D) NV} ;*(D). Here V] 4(D) is the
weighted Sobolev space with the norm

||u||VlB(D _ / Z |2’ |p(6 I+|al) |aa |pdx>

|| <1

Asymptotic formulas for solutions near edges were given in a number of papers
(see e.g. Kondrat’ev [3], Maz’ya and Rossmann [11], Dauge [2], Costabel and
Dauge [1], Nazarov and Plamenevskii [14]) even for general elliptic boundary
value problems. In contrast to earlier results, Theorems 3.5 and 3.9 of the
present paper contain precise formulas for all coefficients in the asymptotics.
On the other hand, we are concerned here with a rather simple domain D. The
application to the boundary value problem in a bounded domain of R" with
smooth edges requires to construct some special solutions of the Laplace equa-
tion in this domain (see e.g. [10, Theorem 4.4], [14, Chapter 10, Theorem 3.2]).
This is not subject of the present paper. The main result of Section 3 is given
in Theorem 3.9. It is assumed that [, p, 5 satisfy the inequalities

o157, g AN forall . (6)
p
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Under this condition, the solution u admits the decomposition

DTS +2) (CAw) (ER) @) oy
= X EnTor e @), ()

)\+<U k=0

with a remainder v € V! ;(D). Here, £ is the extension operator (42) introduced
in Section 3.2, the functions h; in (7) are given by the formula

hMﬂzéw%ﬂ—wﬂw@ (®)

o—\T
and belong to the Besov space B, g (R"2). For the special case p = 2,
A <o <min(\j, A\ + 1), the formula (7) was essentially proved in [14, Chap-
ter 10, Theorem 3.2].

2. The Green function of the Dirichlet problem for the
Laplace equation

Let G(z,y) be the Green function of the problem (1), (2). This means that

A, G(x,y)=6(x —y) forzeD, yeD 9)
G(z,y) =0 for x € OD\M, y € D. (10)

If ¢ is an arbitrary function with bounded derivatives of order <[, [ > 1, in D,
(=1lina neighborho(g)d of the point y, then the function z = (1—((z)) G(z,y)
belongs to the space IW3(D). Furthermore, we conclude from [12, Theorem 2.6.7]
that (1—¢) G(-,y) € Vi 4(D) for Ay <1—5— o< AT, The goal of this section
is to describe the behavior of G(z,y) for small |2/| (for |2/| < @) We start
with some elementary properties of this function.

2.1. Some properties of the Green function. First note that G(x,y) is
positively homogeneous of degree 2 — n, i.e.

G(ax,ay) = a®> " G(x,y) forall 2,y € D, a > 0.
Obviously, it follows from (9), (10) that

NG 2" ="y, 0)=0(2" —y)d(2x" —y") for x,y € D
Gz, 2" —y",y,0) =0 for x € 9D\M, y € D.

This means that G(x,y) depends only on z’,y" and z” — y”. And what is
more, the Green function depends only on 2/, y" and |z” — 3|, since the Laplace
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operator is invariant with respect to rotation. This means that the Green
function has the representation

G(m/, l.//’yl’yl/) — g(w/’ y/) ’.7:// _ y//‘).

We give some estimates which can be easily deduced from (3). If § < 1 and
|z’| < dlx — y|, then

ale—yP <WP+R" =y <alr—yf (11)

with certain positive constants ¢, co depending on §. Consequently, it follows
from (3) that

‘8‘“(9”’61(90 y)‘ <. |/ M —lal=e |y AT == 12
T Ty e — e

for |2'| < 0]z — y|. An analogous estimate holds for |y/| < d|z — y|, while

0200G (2, y)| < cay |z — y[ 1= for min(|2!|, |y'|) > 0|z — .
In the following, we use the notation

: : ' y
r=, p=1yl, Ve =T W S T
Lemma 2.1. Let G;(r, p,|2" — y"|) be the Green function of the problem
(Amu + 9% + mT— ! O — %) U(r,2") = F(r,2") forr >0, 2"/ e R"™
U,z")=0 for 2" e R"™™.

Then

/ G(IL’/, Il/? y/v y//) ¢j<ww) dw, = pl—m Gj(?”, P |J}// - y//‘) ¢j(wy)' (13)
0
Proof. Let f € Wi,(D), \y <2—3—3 <A, and let

u(r) = /DG(JS,y) fy)dy

be the uniquely determined solution of the problem (1), (2). We define

Uj(r,z") :/Qu(x) bj(wy) dws.
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Then
(Axu + 02+ (m—1)r "0, — A 7”72> Uj(r,z")
= AU (r,2") — (0, + Ay) Uj(r,2")
_ /Q (D=2 (8 + Ag) ) &) decy
= [ 1@ ¢5(0) ds
=: Fj(r,2").

Hence, the function U; admits the representation

Uy(r,a") = / / G, (1, 12" — ")) Fy(p.y") dy" dp
0 n—m

2/0 /n_m/QGj(r,p, 2" = y") ;(wy) f(y) dwy dy” dp.

On the other hand, it follows from the definition of U; that

Uit = [ [ Gl o) F) dy s

- /000 / nem /Q /Q G(@,y) ¢j(wa) dwy p" " f(y) dewy dy” dp.

Comparing the last two equalities, we obtain (13).

[]

2.2. Asymptotics of the Green function. In the sequel, let o be an arbi-

trary real number satisfying the condition (4). Furthermore, let

2
aj:Aj—1+%:\/(1—%> +A; forj=1,2,...

and

—n—o)t +
¢i(y) = ¢, y") = ———0 > [y 1Y ¢y(wy)

A simple calculation shows that
Ayci(y) =0 foryeD.
We define G, (x,y) = 0 for ¢ < A, while

/!
Z Z C] v, 2" —y') A 2k ¢j(w,) for o> A

k
oo 4k‘a—l—k)

(14)

(15)

(16)
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I'(s+1
I'(s—k+1)

Here, we used the notation s = for s >k —1, i.e.

S(k):s(s_l)...(s—k‘—i-l) for k=1,2,..., S) = 1.

The remaining part of this section is concerned with the proof of the following
theorem which was presented in the introduction.

Theorem 2.2. Let o be an arbitrary real number satisfying (4). Then
G(z,y) = Go(z,y) + Ro(2,y), (17)

where Ry(x,y) satisfies the estimate (5) for all a and .

2.3. Proof of Theorem 2.2. Obviously, G,(x,y) = G,4.(z,y) for sufficiently

small positive . Consequently, we may assume without loss of generality that
_hyt

Al
. . +
5 is not integer for \; < o.

Let [ be an arbitrary integer, [ > 2, p an arbitrary real number, p € (1, 00),

and f=1—0 — “*. We prove by induction in m; = [0_2’\1+] that G(z,y) admits
the decomposition (17), where R, (z,y) satisfies (5) and

%0) Ry (-, 2", y) € V! 4(K) for every 2" € R"™™, y € D, 2’ #y".

First let m; < 0, i.e. \] <o < Al and G, = 0. It follows from [8 Corollary 4.1
and Theorem 4.2] (see also [6, Theorem 3.2]) that 9%,0)G(-,z",y) € V. 4(K)
for all 2”7 € R*™™, y € D, 2" # y". Moreover, G(z,y) satisfies (12). Thus, the
assertion of the theorem is true for m; < 0.

Suppose now that m; = N, i.e. \{ + 2N < o < A\ +2(N + 1), where N
is a nonnegative integer, and that the theorem is proved for o < A\ +2N. We
set o' =0 —2if N >0and o/ = \| —¢ if N = 0, where ¢ is a sufficiently small

positive number. Then

o — \F o—\F
[ 5 J} :[ 5 ]}—1:mj—1 for)\j<0'.
By the induction hypothesis, we have
G(I7y) = GU’(x’y) +RU’(xay)7 (18)

where G, = 0 for N = 0,

Ve 2" —y") aria
Z Z 4’“/{'0—{—k) 7 T (W) for N >1

)\+<0'/ k=0
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and 03,0) Ry (-, 7", y) € Vplﬁ,(K), B =1l-0 — o forally € K, 2", y" € R*™™,
x” # y". Furthermore, R, satisfies the estimate (5) with ¢’ instead of o. Since
Aye;(y, 2" —y") =0, it follows that Ay R, (z,y) = 0 for y” # 2”. Furthermore,

Ry/(az,ay) = a* " Ry(x,y) for all 2,y € D, a >0

and R, (x,y) depends only on 2,3/, |2” — y”|, since the same is true for G(z,y)
and G, (z,y). The equality Ay G(z,y) = —AwG(z,y) for 2" # y” implies

Aa:’Ra’(17, y) - _A:v’Ga’ (I7 y) - A:c”Gcr’(x7 y) - A$”RUI (ZL’, y) (19)

for x” # 3y”. Using the formula

A /7’)\] +2k(b ((,{Jx> = 4k(aj + k) 7)\;_—1_%_2(25]‘ (w:c)y (20)
we get
Agr) be; (v, 2" —y") At 42k—2
A, J ;t .
Gy Z Z4k 1 (o + k — 1) _1)7’ ¢j(w)

o k=1

e (v, 2" — ") AT 42k
= A Z Z 4kkl (05 + k) o) T g (wa).

Af <o’ k=0
This together with (19) yields
Ay Ror(7,y) = Ap ¥ (2,y) — Apn Ror (2, ) for 2 # 4/, (21)
where

Z/(x’y) _ Z (—Ay )mjcj(y/ 2" — ) r)\;!-+2mj ¢j(wx)

4mi my! (o + m.])(mj)

+ Y
)\j <o

(X' =0for N =0, i.e. for o’ < A\{). Let ¢ be a smooth function on R, = (0, 00),
Y(r) =1 for r < 3, ¢(r) = 0 for » > 3. Furthermore, let the function x be
defined as

K@’y = ().
Then by (21),
Ay (Ryr = XX') = A (1 = X)X = Apv Ry (22)
for " # 4. Here, by the induction hypotheses and by the definition of >/,

200 (Ryr — XX (-, 2" y) € V) 5 (K),
xa//ay (A:C/ (1 — X)E )(,[B ,y) € ‘/;57232([()
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for arbitrary 2" € R"2, y € D, 2" # 4", and for all multi-indices «, v. Further-
more,

%0y Ay Ry (-2, y) € V5 ().

Indeed, if N > 1, then 8%,0)A, ,,R (, y) € VIg(K) C VI2(K). If N =0,
then ¥’ = 0 and 03,0]A, nR (2" y) = —05.0] Aw Ror (-, 2", y) € VL 5 (K) N
VPZ”B,Q(K ) C V;f(K ). Thus, the x”— and y-derivatives of the right-hand sight
of (22) belong to VX?(K) for arbitrary 2”7 € R"2, y € D, 2" # 3”. Applying
[8, Theorem 4.2], we obtain

:‘;‘,i/@g(R (z,y)—x X (z y Z djor (2" y)r A ¢j(we) +var 4 (2,9), (23)

o <)\j' <o

where vor (-, 2", y) € Vi 5(K). The coefficients d; o, are given by the formula
(cf. [6, Theorem 3.4])

djor (2", y) = / Vi(z") ;‘,’,’a;Ax, (Rg/(:v,y) — Y (z, y)) dx’, (24)
K
where V;(2') = —%j % ¢;(w,). The integral in (24) is well-defined, since
%07 Aw (Ry — XX') (-, 2" y) € VIZ(K) N VIHE)

and V; € VZ,T_%(K) + ‘/;,7__25,([(), p = - L for o' < )\+ < 0. Furthermore, the
right-hand side of (24) is independent of the choice of the cut-off function Yy,
since AyV; =0in K and V; = ¥ = 0 on 0K\{0}. The remainder v, and
the coefficients d; o~ in (23) satisfy the estimate

||Uo/’,7( 7y ||Vl + Z |dj 7y)|

o <>\+<O'

< cl|0z 87A (Ror = XXz 7y)||Vl 2(K)NV! T (K)
We set d; = djoo. Then dj (2", y) = ag‘f,l,,ﬁ'ydj(x”, y). Thus,

Ro(w,y) —x¥(@y) = Y. dua",y) 1™ ¢j(ws) +v(z,y),
o <>\j<a
where 89?‘,','3?]11(-,x”,y) = Vo (- 2", y) € Vi 5(K). This and (18) imply
G(z,y) = Go(r,y) + Ro(z,y), (25)

where

Go(z,y) = Go(x,y) + X' (2,y) Z d;(z",y rﬂgb](wx)

o </\;r<a



226 J. Rossmann

and

Ra(xay) = ’U(.I',y) + (X - 1) E/(l',y)
We show that d;(z”,y) coincides with the function ¢;(y’,2” — y”) defined by
(14) if o' < X\J < 0. For this, we need the following lemma.

Lemma 2.3. Let d; = d;o0, where dj o~ is defined by (24). Then the following
assertions hold.

1) The function d; has the form

"o /q

") = 7y (T2 ) 600, (26

2) Aydj(z",y) =0 fora" #y".

3) Jen-m di(a”,y) da" = Vi(y') = —5- p d;(wy).

4) Jdj(a",y)| < ely M e o =y [TOTINE for | < o — ],
where ¢ is a constant independent of x”,y and € is an arbitrarily small positive
real number.

Proof. 1) By (24), we have

dj(z" y) = lim ) Vi(2") Ay (G — Gor — xX') da'. (27)
e<r<l

The homogeneity of the functions G, G,, x¥' and V; implies the equality

di(ax" ay) = aQ*"*Ajdj(:v”, v). (28)
Using (20), the equality A, (xX') = (Apx) X'+ 2(9,x) 0,2 + x ApY', and the
orthogonality of the eigenfunctions ¢; in Ly(€2), we get

/ Vi(2") Ay (G—0'—x%') da :/ Vi(2") A G(z,y) da'’
s<{'(<% 5<{'(<%

Applying Lemma 2.1, we get

11t
/ Vj(a:/)AI,/G(:z:,y)d:c’:—Axu/ ! / G(x,y) b (wy) dw, dr
K . 5 Oj Q
s<7'<g

-

1

m < 1T,
= =5 P (W) A / PN G (rp, |2 =y dr
0 €
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Consequently, the function d; has the form d;(2",y) = f;(p, |2" — y"|) ¢;(wy).
This together with (28) leads to the representation (26).

2) The second assertion follows immediately from (27) and from the equal-
ities (cf. (15))

AG(x,y) = AyGo(z,y) = AY (2,y) =0 for 2" # 4.

3) By (27) and (29), we have

/ dj(2",y)dz" = lim V}(:E')/ (6(z —y) — ApG(z,y)) dz” da’
n—m K n—m

e—0
s<?“<7

= Jo Lo 8= s =i

4) Suppose that |y'| < |2” — y”|. Then
7”2 " "2 2 2 " 2
§—|—|x —y"|* < 2]z —y|® < r® + 6" —y")".

We introduce the sets Ky = {2’ € K : 2r < |2 — y"|} and Ky = K\K;. Then
X =0 on K, and (21) yields

di(z",y) = /K Vi(2") A (Ryr — x¥') da —i—/ Vi(z") Ay Ry da’

Z/‘/j(fv’) (Aw(1 = X)%" = AprRyr) da’ +/VJ Ay (G — Gy de'.
K K

1 2

By the induction hypothesis, we have

o' A —e

ARy, g)] < e — L

|£L’” _ //|0 +)\++n—e

for 2’ € K1, p=|y/| < |2 —v"|. Furthermore, one can easily derive the estimate

o' —2 )\IL—E

NG ) v [ p———

|JZ" . y// |a’+)\1+ +n—2—e¢

from the definition of 3. The last two estimates yield
!/ (Bar(1 = XIS = Ay Ro) | < /P2 [ — |7 T +0m200),
Ki

If p < |2 —y"] < 2r, then 7? < 2|z — y|*> < 28r%. Thus, it follows from (3)
that |AyG(z,y)| < crm A M for o € K,. Moreover, the estimate



228 J. Rossmann

o' —2 >\

‘Ax/GU/(:v,y)| <e—r ot holds for p < |z" — y"| < 2r. Using these

|:c"—y”|a +>\++7L 2—¢
estimates, we obtain

| [ Vi) (G = G| < ey N Ja? =T e,
Ko

The lemma ist proved. O

We continue the proof of Theorem 2.2. By Lemma 2.3, the function d; has
the form (26) and satisfies the equation A,d;(z”,y) = 0. With the notation
s=|z" —y"| we get

—m—1
(82 8 + = 2 5wy TG 5s> PPN <E> ¢j(w,) =0
p s p

for s > 0. This leads to the differential equation
(L+ ) (8) + ((a+ 20+ 2)t + ) B () + 2(a + 1)bhy(t) = 0,

where a = n—m—1and b = A} —1+%. The substitution h;(t) = (14+¢*)""w(t)
yields
(14 12)w"(t) + ((a b2t %) w'(t) = 0.

The last equation has the solution w(t) = c¢+d ff(1+52)b*1 s~%ds with arbitrary
constants ¢ and d. Thus,
)

% f a2 b—1
(p2_|_|x,,j_yy,,|2)b C'j—l-Dj/l s (s 4+ 1) ds

"_.1n
|z \

dj(2",y) =

By item 4) of Lemma 2.3, the constant D; must be equal to zero, since

1" 1
=" —y"|

z vl "o__oon 22T 4+m—2
/ P (82 + 1))\;_—24‘% 8m+1fn ds Z c (<|I y |> / _ 1>
1 p

for p < |2” —y"|, where ¢ is a constant independent of |z” —y"| and p. Applying
item 3) of Lemma 2.3, we obtain

_ Al ¢j(wy)

20'j

- [ de

+ 1

_c/ PN 6i(wy) de
R (p?

02+ ’.73” y//‘z)Aj'fH%

Snfmfl

t_14n
p2+82)Aj 1+5

ds,

J ij oj(wy) wnm/o (
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(F (25m) ) is the measure of the (n—m—1)-dimensional

n—m

where wy,_,, = 27 2

2
unit sphere. The integral on the right-hand side of the last equality is equal to

L o mont F(%) ['(o;)
57 D Tlo o my
2 [(oj +"5™)

Thus, C; = —M, and we obtain the formula d; (2", y) = ¢; (v, 2" —y").

n—m
21 2 T(oj4+1)

This proves that the function G,(x,y) in (25) has the form (16), where the
coeflicients ¢; are defined by (14).

It remains to prove the estimate (5) for the remainder R,. First note that
the validity of (5) for 2|2/| < |z — y| implies the validity of this estimate for
2| < 2|z —y|. Indeed, if § |z —y| < |2/] < 3|z —y|, then it follows from (3),
(11) and from the representation of G, that
|l,/|o'f|a’\ |yl|)\ir7|'y’|fs
|z — y|o A 2t lal e

1020,G(x,y)| + 1070, Go(z,y)] < ¢
Let ¢ be the same cut-off function as above, and let

<<x,y>—w< ] ) (30)

|z — |

Then ((z,y) = 1 for |2/| < i|z —y| and ((z,y) = 0 for |2/| > 3|z —y|. We
estimate the V! ;(K)-norm of 85,/,'8;({ R,). Obviously, R, = Ry + Go» — G, =
R, — ¥, where

— A )Mici(y, 2" — o
Sey) = 3 G B AW e (o),

4m; mj! (O’j + mj)(mj)

A <o

Using (21) and the fact that A,/ (X — X') = 0, we obtain

Ay Ry(z,y) = Ay (Ro(z,y) — X' (2,y)) = —Ap Ror (2, y).
This implies A, (CR,) = f, where

f=—=CAw Ry + 2V (- Vu(Ry = 5) + (Au() (R — X).
Thus by [8, Theorem 4.2] (see also [6, Theorem 3.1]),

1050 R) 2" g 0 < N0 D)l B1)
with a constant ¢ independent of 7 and y. By the induction hypothesis,

|x/‘a’—|a’|+a |y/|)\f—|'y’|—a

<c '
(/|2 + o — y[2)2 (A +ntla T+ )

0207 (CAyn Ror)
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Here, we used the equality R, = R, . for sufficiently small £ and the inequal-
ity (11). Consequently,

/K PO 9000 (C Ay Ror) | !

C ‘y,‘p()‘—l‘r_h/'_s)

|l‘,|p(’3_l+2+0/+8) dI,
T (YR [ — 2B AT ) ’

where the integration is extended over the set |2|? < ¢(|y/|* + |2 — 3”|?). Since
p(B—1l+2+0" +¢)=pld' —0+2+¢c)—m > —m, it follows that

1057 05 (¢AwrRar) (2" )l y-2
|y'|A+*W"5 (32)

(Jy/[2 + [ — y[2) (AT =2l =)

In the same way, the norms of the 8;‘,',’83 -derivatives of V(- VR, Ryt Ay,
V(- VX and YAC in ‘/XBQ(K ) can be estimated by the right-hand side
of (32). Here one can use the fact that V¢ and A,/( are zero outside the
region 3 |z —y| < |2'| < 3|z — y|. Consequently by (31),

c |y/|’\1k_|7,|_5

10503 (CRo) 2" )l ) <

(/|2 + |z — y"|2) 30 tA +n=2+lal+1"|=o)”

If |o/| <1 —"2, then
P

IS 000 (CRo) () i) < € 11050 (CRA) o )yt i)

with a constant ¢ independent of z” and y (see e.g. [12, Lemma 1.2.3]). The
last two inequalities directly imply (5). Theorem 2.2 is proved. O

2.4. An alternative method for the proof of Theorem 2.2. It is also
possible to prove Theorem 2.2 using the asymptotics of the Green function
G(z,y,t) for the heat equation in the dihedron D. Here, we shortly discuss this
method which was proposed by one of the reviewers of the present paper.

The asymptotics of the Green function for a parabolic equation in a cone was
studied by V. A. Kozlov in [4, Theorem 4.1]. Using Kozlov’s result together with
[13, Theorem 4.1], one obtains the decomposition (see also [5, Theorem 2.1])

akC y t) |x/|)\ +2k¢( ) / / " "
Glx,y,t)= [ > Z R (o, + B S (Y t) | (2" =y ),
)\+<0'k 0
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where ®(z”,t) is the fundamental solution of the heat equation in R*™™, i.e.
‘ x//‘2

4t

(2", t) = (4rt)" 7 exp ( -

and

) for t >0, ®(2",t)=0 fort<0,
Gyl 1) = o (481 [y ().
J ’ F(1+U]) J Y

The remainder r, satisfies the estimate

o—|af
_p_mtlaltly] |$/|
D0y (2! y )] < et F T (—>
| | ly'| + V't

A —|y|-
v /| r—hl=e exp —kla —y|?
/| + Vi t '

for |2/| < 2|y/| and an analogous estimate for |y/| < 2|z'|. Integrating with
respect to ¢, we get

(33)

- |x/|>\.++2k¢J( ) /OO "o k /
- P(z"— ; 4
G(z,y)= Aé g TR0, + k) (x"=y" )0 Ci(y',t) dt+Rs(z,y), (34)

where -
R,(z,y) = —/ ro (2, Y, t) @(2" — ", t) dt.
0

Integrating by parts and using the equality 0,® (2" — ¢",t) = AP (2" — ", t)
for 2" # 4", we obtain

/ Oz — 4" t) 8fC’j(y’, t)dt

0

= (—Axu)k/ O (2" — y",t)@fC’j(y',t) dt
0

+ o0
_ 2V dilwy) ”)k/ exp (- ly/I” + 2" — y”P) dt
(14 0y) 0 4 (4t

n AT .
- F()\;— - 1 + 5) |y/| : gbj(wy) (_A ”)k(’y/’2 + |LU// - y//’2> _)\j—H_?.
2r"2 (1 + ;)

Thus, (34) implies

Ayr) CJ y, 2" —y") 1At 42k
=2 Z 4l (o +k;) © 2157 ¢ (wa) + Ro (2, 9)

)\+<o k=0

with the functions ¢; defined by (14). It remains to deduce the estimate (5) for
the function R, from (33).
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3. Asymptotics of solutions of the Poisson equation

Now, we consider the variational solution u 61/?/%(1)) of the problem (1), (2)
with the right-hand side f € W=1(D) N VP{EQ(D). Here and in the sequel, we
assume that 1 < p < oo, [ is an integer, [ > 2, and that the number

(721—5—E
p

satisfies the condition (4). Using the asymptotics of the Green function G(z,y),
we are able to describe the singularities of the solution

ulx) = /D Gla.y) f(y) dy

of the problem (1), (2). Let ¥ be a smooth function on R = (0,00), ¥(r) =1
forr < 3, 4(r) = 0for r > 2, and let the function ¢ be defined by (30). Further-
more, let G, be the same function (16) as in Section 2. Then by Theorem 2.2,
the function u admits the decomposition

u(x) = S(x) +vi(z) + va (),

where
_ /D C(a,y) Gola.y) f(y) dy,

Z/DC(x,y) Ry(x,y) f(y) dy,
ua(z) = /D (1-C(a.y)) Gla,y) fy) dy,

and R, satisfies the estimate (5) for |2/| < 3|z — y|. Obviously,

=2 Z 4k k;u G (wa) (35)

Af <o k=0 ()

where

z) = /D (@, y) (— ) &0/ 2" — ") F(y) dy.
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3.1. Estimation of the remainder v;+wv,. We will show that v1+wv, € V;i 5(D)
if f € V;@Q(D). Let L,3(D) denote the weighted L, space V;)3(D). For the
estimation of the L, 3_;(D)-norm of vy, we will employ the following lemma.

Lemma 3.1. Let w be defined as

w(z) = /D K(z.y) £(y) dy,

where [ € Ly atp—in(D), K(z,y) =0 for |z —y| < d|2'| (§ is a given positive
number) and

Ha |,/ 8
’ |z —y[

m

[fa>—; and&—’y<m—n—%, then

||w||Lp(D) S C ||f||Lp,a+,B—7+n(D)
with a constant ¢ independent of f.

Proof. One can easily show that

e
/ - |$’zi’y|7 dy < cl|z'|"P7 i f>-—m, B—v< —n (36)
lz—y|>6]z"]

(cf. [12, Lemma 2.6.1] in the case m = 2, n = 3). Under our conditions on «
and ~, there exist numbers §; and ~; such that

m m n
——<p<y—a-n and —a——<pB -7+ <0,

where p' = p%l. Let B3 = 8 — 1 and 75 = v — 71. Then, by Holder’s inequality
and (36),

p—1
(@) < ¢l / Jy' "™ dy / [y 7% | £ (y)IP dy
>~ . ’x_y’p/’yl D ’.Clﬁ—y’pw
lz—y|>3]e| |lz—yl>3]a’|
a _ n)—n |y/|p52
< c|a’|plotBr—tn) / I |f(y)]? dy.

le—y|>8]a’|

This together with (36) implies

2 |pletBPi—ri+n)—n
[w@pa<e [wepee [ E &o | dy
D D D

‘LC — y‘P’YQ

(641 |z—y|>3sly’|
< [ Wrer T )Py
D

The lemma is proved. O
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Using the last lemma, we can easily estimate the L, g_;-norm of v;.

Lemma 3.2. Let [, p, 8 satisfy the condition (6). Then the function vy satisfies
the estimate

[oillz, soim) < €l fllzy omiia0m) (37)

with a constant ¢ independent of f.

Proof. Let € be a sufficiently small positive number. Then G, = G,,. and
R, = R, ... Consequently, the estimate (5) yields

B |x/|,871+0'+8 |yl|)\f75 T
o )| <e [ o =3l | () dy,

where the integration is extended over the set {y € D : 3|x —y| > 4|2’|}. Since
B—l+o0+¢e> —% and \{ =2—-m—\ < l—ﬁ—%, we can apply Lemma 3.1
and obtain (37). O

We prove the same estimate for the function vs.

Lemma 3.3. Suppose that I, p, 5 satisfy the condition (6). Then

”UZHLpﬁ_l(D) <c ||f||Lp,5—z+2(D)
with a constant ¢ independent of f.

Proof. By (3), the Green function satisfies the estimate

/ AT
Glenl < cle -y (M) ol -yl <200

Y[+ |z =yl
Consequently,
|U2 ‘ < A + B
where
fw)|d e f d
A:/ 1f)ldy B:/ ' 1 f ()] dy
> |x _ yln 1 _ o n—2" > \;1: _ y‘n—2+xj—s ’
|z—y|<2min(]2/],y’]) 2]y’ |<|z—y|<2|2’|

By Holder’s inequality,

le—y|<2min(|z’|,y'])

sdfﬂ%”/' v~y | ()| dy.

|z—y|<2min(|z’],y’])
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Since % < |2'| < 3ly| for |z — y| < 2min(|2’|,y|), it follows that

d
/ ‘l_/lp(ﬁfl) ’A|p dr < c/ ‘y/‘p(ﬁfl+2)f2 ’f(y)|p (/ mn_2> dy
D D lz—y|<2|y’| |£L’ - yl
< [ 11 )P dy
D

We consider the term B. Obviously 2|2| <3|z —y| < 6|z’| for 2|y/| <|z—y| <2|2'].
Hence,

et +_
B<elef M“/“ /T | ()] dy.
D

2]y’ |<|z—y|<2|2’|

Using Holder’s inequality, we get

Bp<clx’2n)\+€/’y’p/\l+EJr(plms‘f < ‘ ‘ E) :
Yy |m—

where the integration is extended over the set of all y € D such that
2ly'| < |z —y| < 2|2’|. Here

dy dy'
S dy” S C|x/‘n—m+e'
| /|m—a , , |y/|m—a oo ,
2ly'|<[e—y|<2la’| 1Y ly'|<|2’| |y —a""|<2l|a’|

Therefore,

BP <c ’x/|p(27mf)\1++25)fn+mf€ |y/|p(/\f+mf2s)fm+s |f(y> ‘P dy
2\y’l<\113y\<2\z’\

and

/|x/‘p(ﬁl)‘B’p dr
D

§c/]y"p<Al++m_28)_m+a|f(y)|p (/ |x/’p(ﬁ—l+2—m—/\1++2a)—n+m—ada> dy,
D 2ly'|<|z—yl<2|2’|

where

+ _
/ |$/‘pﬁ I+2—m—X] +2e)—n+m € dx
ly'[<|lz—y|<2l2|

—142—m—\T _ _
S/ |x/|p(5 I+2—m—X] +2e)—n+m—e </ dx") dr'
|z’|>]y’| |z —y"|<2]a’|
_l42—m-xt _
_ C/ ‘l’llp(’g +2—m—X\]+2¢)—¢ dr'
|2’ |=]y']

- 1p(B—14+2—m—X\T +2¢)+m—e
=Cy ( 1+2¢)
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since p(B —1+2—m — \]) +m < 0. Consequently,

/ 2P| B(a)P do < / /P | £y P dy.
D D

This proves the lemma. O]

Next, we consider the function S defined by (35). We prove that
AS e VIF(D)if f e VIZ(D).

Lemma 3.4. Let [ € VZWEQ(D), where l, p, B satisfy the condition (6). Then the
function (35) satisfies the estimate

HAS”V;%?(D) <c Hf”vpl;f(D)
with a constant ¢ independent of f.

Proof. Using the formula (20), we obtain

(—Awﬂ)mj+10j(y/, J]// - y//>

AT +2m,
) T / (b(w:r)
4mim;! (o, + mj)(mj) J

AIGG('Tay) = = Z

+
)‘j <o

We consider the term

T(x) = /D () AuGo(y) F3) dy = 3 Ty(a),

)\j'<a
where
. . (_Ax//)mj—"lc'(y/’ :B” _ y//)
Ta) = = 05w [ Clay) F(y) dy.
? ’ D 4mi myl (o5 + M) m,)
Obviously,
|02¢ (2, )| < el (38)

for |a| <1 —2. Since (11) is satisfied for 4|2’| < 3|x — y|, we furthermore get

0% (=AY it es(y " — )| < ey |V o — |~ ek mita)

(39)

< [Ty P = 7B )

for 4|2'| < 3|z — y|. Thus,

AT
pB—l+2+al |8"‘T-(m)‘ < Crﬂ—l+2+)\;_+2mj/ ly'[% | f(y)| dy '
x L] = 22T +n+2m;
D o=yl ’
3lz—y|>4|z’|
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Here 5—l+2+)\j+2m]~ > —%. Since moreover l—ﬁ—% >\ = 2—m—)\j,
Lemma 3.1 implies [|r?~F2H 00T || 0y < c|fllr, 5 riam) for Ja| < 1 —2.
Analogously, this estimate holds for the term

A,S(z) - T(x) = /

D

((AuC(.9)) Gol,y) +2Val(@,) - VuGola,y) ) £(y) dy.

Here one can use the fact that @ < |2f] < M on the support of V(.
Hence,

||AS||V;,_62(D) S c ||f||Lp,5,l+2('D)'
The lemma is proved. O

The last three lemmas allow us to deduce the following result.

Theorem 3.5. Suppose that u 61/?/5(1?) is a solution of the problem (1), (2) with
the right-hand side f € W‘l(D)ﬂVp{gQ(D), where L, p, B satisfy the condition (6).
Then

u(z) = 5(x) + v(z),

where S is defined by (35) and v € V] 4(D). Furthermore,
Iollvs oy < el

with a constant ¢ independent of f.

Proof. By Lemmas 3.2 and 3.3, we have u = S + v, where v € V.);_,(D) and
[olve, o) < 1 i-2o

Using [12, Theorem 2.2.9], Lemma 3.4 and the equality Av = f — AS, we
conclude that v € V! ;(D) and

lellvy o < € (I1A01y2) + lollve, @) < € Iflyi-2oy
The theorem is proved. O

3.2. On the coefficients in the asymptotics. The coefficients H;; in the
representation (35) of S are extensions of the functions

hya(a”) = /D (A ey 2" — o) Fy) dy

to the domain D. We show in the last subsection that these coefficients can be
replaced by other suitable extensions of the functions h .
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First, we show that the assertion of Theorem 3.5 remains true if we replace
S(z) by the expression

~ A2k
S(a) = Z kZ4k k! (U¢i(:z(k /CZU y) ey, 2" —y") fy) dy.
A <o

Obviously, this follows directly from the next lemma.

Lemma 3.6. Suppose that the conditions of Theorem 3.5 on f,l,p, B are satis-
fied. Then S — S € V! 4(D) and

15 = Sllvt o < ellf vz (40)

with a constant ¢ independent of f.

Proof. We denote the expression

+
<—1)k7”>\j +2k¢j<wx>

by K;i(x,y). Then

S(x ZZ/KJka:y y) dy.

A <o k=0

(C(SE YA iy 2" —y") — AL (2 y) oy 2" — y”))

Using the estimates (38), (39) and the fact that @ < |2’ < M on the
support of the function V,»(, we obtain

YN

B I+ ’aa
‘Z—B+)\;'+n—2

Kjp(x, y)l c
lz —y

for |a] < 1. Thus, we can conclude from Lemma 3.1 that the operator with
the kernel 7=+l 92K, (z,5) is bounded from L, 5 ;12(D) into L,(D). This
implies (40). O

We introduce the function

_anmmmﬂ—ww@ﬁﬁ (41)

Then

:C” (I) At 42k
Z Z4kzk-| (0; + k) o r ¢j (W)

/\+<U k=0 (k)

It is evident that the functions H;(x) depend only on r = |2’| and z”. Further-
more, these functions have the following properties.
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Lemma 3.7. Suppose that [ € V;f’g,z(D) and L, p, B satisfy the condition (6).
Then

(i) 02H; = 0% 0% H; € Lpﬁ_l+Aj+|a‘(D) if |/ > 1.
(i) 0% H; € Lpﬂ_lwﬂa,q( ) if [o"| > o — AT
(iii) The trace of Hj on M coincides with the function (8) and belongs to the
=T
Besov space By . (R*=™).

Proof. Using (11), we get

05y (02" = o) < caly' P o=y
for every multi-index a.

If @« = (a/;a") and |&/| > 1, then the function 92((x,y)c;(y, 2" — y")
vanishes outside the region |$ U< ) < 3‘x Ul Therefore,
[y
‘x . y‘)\j—ﬁ+l—2+n

rb’—l—&-)\j-i-\al |3§C(m,y) cj(y’,m” o y//){ <e,

Consequently, it follows from Lemma 3.1 that
+ [0} (6%
= 02 Hyl| 1y py < alf |y s 1i00m)

with a constant ¢, independent of f.
Now, let o' =0 and [a"| > 1 — 5 — = — AS. Then

—l4at +
B l+)\++|a//| |xl|ﬁ l-‘r)\j -Ha//' |y/|>\]

C(:r; y) ey, 2" —y )’ Ca” o _y|2)\j72+n+\a”‘ '

Applying again Lemma 3.1, we obtain

—1+At
[ 0 Hy o) < o 1 2y pssot)

If we consider H; as a function on Ry x R (with the variables r and z”),
then it follows from (i) and (ii) in particular that

+ " o’
BN et 4 (9k o Hj € Ly(Ry x R*™) for k+[a”| >0 — AT,

Hence by [15, Section 2.9.2, Theorem 1]), the trace h; = Hj|y—o of H; on the
edge M exists and belongs to the Besov space B, ( ). Since ((z,y) =1 for

x’ = 0, the trace h; is given by the formula (8). This proves the lemma. ]
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Finally, we show that the coefficients (41) of S(x) can be replaced by other
extensions of h; satisfying the conditions (i) and (ii) of Lemma 3.7. In particular,
these extensions can be defined by means of extension operator

Eea) = [ T = ) dy (12)

where T is a smooth function on R"™™ with support in the unit ball |y”| <1
satisfying the following condition with Ny = [0 — A

/ () dy' = 1, / (") T(y") dy" = 0 for 1 < |a”| < No.  (43)

We show that the functions £h; have the properties (i) and (ii) of Lemma 3.7.

Lemma 3.8. If f € VZ?(D) and l,p, B satisfy the condition (6), then
(i) 92ER; = 0% 0% Eh; € Lypiint (D) if o] > 1.
(ll) agxl//gh] c Lp,,371+)\%r+‘oz”|(p) Zf |le//| >0 — )\j_

/K:cy y) dy,

m—n a2 ron 1" "
Kj(z,y) =7 i T( )Cj(y,z —y")dz"

r

Proof. 1t can be easily seen that

where

Since (£h;)(x) depends only on r and z”, we consider the derivatives

oo (en)(a) = [ Okt Ky (o) Fw)
We introduce the following subsets

Di={yeD: 3lz—y|<r},
Dy={yeD: g<]1‘—yl<3r},
Ds={yeD: |zv—y|>3r}

of D and show that the functions
zlka” / )f(y>dy7 V:172737

satisfy the estimate

10 k.ol < e[ fllzy 200y (44)

p,Bfl+Aj+k+\a”|(D)
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if k> 1 or || >0—)\j.
We start with the cases v =1 and v = 2. Obviously,

okor K (e.y) = [

where T (2") = 9%/ (2"). Since

2 — M

@If rm—n—|o/’| T(o/’)( ) ¢ (y/7 . y//) dZH,
r

n—m

k . .m—n—|a"| m(a’) a" — 2" m—n—k—|a'|
a'r T " <ecr )

we obtain

AT "
8015 )] < et 7
r Oprr 35\, Y) | = Ri—m (p2 + |y,, . Z,,|2>/\;r—1+%

L | A —m—)\T
:C,r,mnk|a\p2m/\]‘

If 3|z — y| < r, then 2|x — y| < p and 2r < 3p < 4r. Consequently by Holder’s
inequality,

p—1
Ui pa(2)|P < crP@n=d k=l / f ()P dy ( / dy)
Dy 3lz—y|<r
= Cre e [ gy

D1

This implies

/VM”””““M>WMQWMwaﬂ/d“4“*ﬂﬂwV</~ ‘”)d”
D ’? D 2|z—yl<p

Thus, (44) holds for v = 1. If £ < |z —y| < 3r, then

+ +
Tﬂ—l—l—)\j +K 2—m—)\j

P

rﬁ*l+/\j+k+|a"|
o=y

87],"’02‘/7[(]-(%3;)‘ <c

with arbitrary . Hence Lemma 3.1 yields (44) for v = 2.
We consider the case v = 3. First let k= 0 and || > 0 — A]. Integrating
by parts, we get

! — M

o K (x,y) = r™ " / T( ) ey, 2 —y") d2. (45)
n—m T

If [z —y| > 3r and [2” —2"| <7, then & [z —y|> < |2+ |y —2"]> < 2 |z —y|*.
Therefore,
C,OAJJ‘F p2—n—)\j—\o¢”|+n

n+|o¢”\

=~C -
(¢ + Iy’ = 2 e T ey

|8j,/,/cj(y/, Z” . yl/)| S
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for |z —y|[ > 3r and |2” — 2”| < r provided that x < 2X] — 2+ n + [a”|. This
means that

B—l+)\'ﬁ'+\a”| 2—n—-X\t—|a" |+K
PO+l ’ P !

Ko y)] < |z —yl

for [z —y| > 3r. If [@"| > 1 -3 - X\ — “%, then we can apply Lemma 3.1

and obtain ||7ﬁ_l+>\;_+|a”‘U3’0’a”||LP(D) < cl|fllz, s 1o(p)- Finally, let o” be an

arbitrary multi-index and k£ > 1. By (45),
oo K (2, y) = / T(2") 0k (—r) 1" o% ¢c; (2" — o' — 12") d2".

Here, 0F r=19"1 0%/ c;(y', 2" — 4" — rz") is a finite sum of terms of the form

p)\j (zll)'y (ZE” _ y// —rz

<p2 + |£L‘// . y// TZ//|2))\;F+I€+‘CW|71/71+% )

//)6

\If(p, Z”,l‘// o y// i TZ//) —¢c

where |y| = k and 2v+|d| = k+|a”|. Using the Taylor expansion of the function
U with respect to the variable r and the condition (43), we obtain

/ T(Z”) ‘If(p, z//’ 2 — y// _ T’Z”) dz"

S CTNO+1_k sup ‘aéVo-l—l—k\Ij(p’ Z”,{E” . y// o 921/)‘.
o<o<r

I[f0<O<r |2 <landy € Ds (ie. |x—y| > 3r), then 3|z"—y"—02"| < 4|x—y|
and 3 |z —y|> < p? + 2" —y" — 02"]* < 2 |z — y|*. This implies

)\+
}aé\f(ﬁl—k\p(p’ Z”,{BN . y// _ 92//)‘ <ec P

— + 7 :
|x . y|2)\j +n—1+]a’ |[+No

Consequently, we get

7B l+1+)\++|o/’\+N0p ]

,,,,8—1+Aj+k+\a“|
|2,\j++n—1+\a”|+No

avlf aozl’/’/KJ'(xa y)| <c

|z —y

for y € Dy and k > 1. Since No = [0 = A{] > 1= B —1—A] —|a"[ = 2, we can
apply Lemma 3.1 and get the estimate

e
([P +k+‘a”|U3,k o ll,@) < el fllzy i)

for k > 1. The proof of the lemma is complete. n
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Now it is easy to prove the main result of this section.
Theorem 3.9. Suppose that [ € I/Vog_l(D) N ‘/Z%Q(D) and 1, p, 3 satisfy the
condition (6). Then the solution uw €W3(D) of the problem (1), (2) admits the
decomposition (7) with the remainder v € VI ;(D).

Proof. Tt follows from Theorem 3.5 and Lemma 3.6 that
] 17) A +2k
T / ¢j(wz> + w(x>7 (46)
where w € Vplﬁ(D). We show that
07 (H; — &Ny) € L, 142t +1al (D) (47)

for every multi-index a. If 9% = 9% 9%, and |o/| > 1, this follows immediately

xT

from Lemmas 3.7 and 3.8. This is also the case if o/ =0 and || > o )\+ Suppose
that o] < o — AT Then 8% H;|ar = 0% Ehjlar = 0% by € By la (M) and
Hardy’s inequality implies

/D PO | 93 (1 — Ehy) | da

<c / pPE=EATHA ) | g 9ol (Hy — Ehy) [ da

< oo,D
since 3 — 14+ X + |a"| = AT + [ —o— <=7

Finally, let [o"| = 0 = AJ, i.e. =14+ )] +]a"| = —. Since 0% (H;—Eh;y) €
Lp75_l+/\J_++‘a,|(D), we have
9% (H; — Ehy)|y =0 for |o/| <o — AY
and
/ r=™ 0% (Hy — Ehy)|P dz < 0o for |o/| = 0 — AT

Moreover, (90‘(D — &hj) € Lyy-=(D) for |a] = o — A7 + 1. This implies
(cf. [12, Lemma 6.2.6] for m = 2, in the case m > 2 this result holds analogously)

that H; — Eh; € Vo ¢ AN (D) and, in particular, that

/ _mlﬁa i —Ehy)["dr < oo for [o"| =0 — AT
D

Thus, (47) is proved for all multi-indices . As an immediate consequence, we
get

AR, (Hy — Ehy) 42, (w,) € V! 4(D).
Consequently, we can replace H; by £h; in (46). The theorem is proved. ]
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