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Blow-Up Solutions and Global
Existence for a Kind of Quasilinear

Reaction-Diffusion Equations

Lingling Zhang, Na Zhang and Lixiang Li

Abstract. In this paper, we study the blow-up solutions and global existence for a
quasilinear reaction-diffusion equation including a gradient term and nonlinear bound-
ary condition:

(g(u))t = ∇ · (a(u)∇u) + f(x, u, |∇u|2, t) in D × (0, T )

∂u
∂n = r(u) on ∂D× (0,T)

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary ∂D. The sufficient con-
ditions are obtained for the existence of a global solution and a blow-up solution. An
upper bound for the “blow-up time”, an upper estimate of the “blow-up rate”, and an
upper estimate of the global solution are specified under some appropriate assump-
tions for the nonlinear system functions f, g, r, a, and initial value u0 by constructing
suitable auxiliary functions and using maximum principles.
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1. Introduction

Everyone knows that blow-up solutions and global existence for reaction diffu-
sion equations had played an important role in many fields. So many authors
always focus on the study of this field ([4–6, 9, 12]). In this paper, we study
the blow-up solution and global existence for the following initial-boundary-
value problem of quasilinear reaction-diffusion equation with a gradient term
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and nonlinear boundary condition:
(g(u))t = ∇ · (a(u)∇u) + f(x, u, q, t) in D× (0,T)

∂u

∂n
= r(u) on ∂D× (0,T)

u(x, 0) = u0(x) > 0 in D,

(1)

where q = |∇u|2, D ⊂ RN is a bounded domain with smooth boundary ∂D, ∂
∂n

represents the outward normal derivative on ∂D, u0 is the initial value, T is the
maximal existence time of u. Set R+ = (0,+∞), we assume that f(x, s, d, t)
is a nonnegative C1(D × R+ × R+ × R+) function, g(s) is a C2(R+) function,
g′(s) > 0 for any s > 0, r(s) is a positive C2(R+) function, a(s) is a C2(R+)
function. Under the assumptions above, the problem (1) has a unique classical
solution u(x, t) with some T > 0, and the solution is positive over D × [0, T ).

The problem (1) describes many physical phenomena in mechanics, physics
and biology, etc. We refer to [5, 10] and the reference therein for many other
applications. Souplet et al. [13] deal with the blow-up and global solutions of
initial value problems for the reaction-diffusion equations with a gradient term.
[1, 3, 14] study the existence of blow-up and global solutions for the reaction-
diffusion equations with a gradient term and initial-Dirichlet-boundary-value.
Zhang [16] and Ding and Guo [7] investigate the blow-up and global solutions
for the reaction-diffusion equations with gradient terms and initial-Neumann-
boundary-values.

Some special cases of (1) are also treated. Walter [15] studies the following
problem: 

ut = 4u in D× (0,T)

∂u

∂n
= r(u) on ∂D× (0,T)

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary. The sufficient
conditions characterized by function r are given for the existence of blow-up
and global solutions. Zhang [17] considers the following problem:

(g(u))t = 4u+ f(u) in D× (0,T)

∂u

∂n
= r(u) on ∂D× (0,T)

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary. The sufficient
conditions are obtained there for the existence of a global solution and a blow-
up solution. Meanwhile, the upper estimate of the global solution, the upper
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bound of the “blow-up time”, and the upper estimate of the “blow-up rate” are
also given. Ding and Guo [8] consider the following problem:

(g(u))t = 4u+ f(x, u, q, t) in D× (0,T)

∂u

∂n
= r(u) on ∂D× (0,T)

u(x, 0) = u0(x) > 0 in D,

where q = |∇u|2, D ⊂ RN is a bounded domain with smooth boundary. The
sufficient conditions for the existence of a blow-up solution, an upper bound
for the “blow-up time”, an upper estimate of the “blow-up rate”, the sufficient
conditions for the existence of the global solution, and an upper estimate of
the global solution are specified under some appropriate assumptions on the
nonlinear functions f, g, r, and initial value u0.

In this paper, we consider blow-up solutions and global solutions of (1).
We obtain some existence theorems for blow-up solutions, upper bounds of the
blow-up time, upper estimates of the blow-up rate, existence theorems for global
solutions, and upper estimates of global solutions. The results generalize and
deepen ones from corresponding work in [8, 15,17].

The plan of this paper is as follows. In Section 2 we give the proofs for
the main results. A few examples are presented in Section 3 to illustrate the
applications of the abstract results.

2. Main results

Our first result Theorem 2.1 is about the existence of a blow-up solution.

Theorem 2.1. Let u be a solution of (1). Assume that the following conditions
(i)–(iii) are satisfied:

(i) the initial value condition:

β = min
D

a(u0)[a′(u0)q0 + a(u0)∆u0 + f(x, u0, q0, 0)]

r(u0)g′(u0)
> 0,

q0 = |∇u0|2;

(2)

(ii) further restrictions for functions involved:
for any (x, s, d, t) ∈ D ×R+ ×R+ ×R+,

2fd(x, s, d, t)

(
r(s)

a(s)

)′
− r′2(s)

a(s)

(
a(s)

r′(s)

)′
≥ 0,(

a(s)

g′(s)

)′
≥ 0,

(
f(x, s, d, t)

r(s)

)′
s

≥ 0,

ft(x, s, d, t) ≥ 0, a′(s) ≥ 0;

(3)
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(iii) the integration condition:∫ +∞

M0

a(s)

r(s)
ds <∞, M0 = max

D
u0(x). (4)

Then the solution u of (1) must blow up in a finite time T , and

T ≤ 1

β

∫ +∞

M0

a(s)

r(s)
ds, u(x, t) ≤ H−1(β(T − t)),

where H(z) =
∫ +∞
z

a(s)
r(s)

ds, z > 0, and H−1 is the inverse function of H.

Proof. Consider the auxiliary function

Ψ(x, t) = − 1

r(u)
ut + β

1

a(u)
. (5)

We find that

∇Ψ =
r′

r2
ut∇u−

∇ut
r
− βa′∇u

a2
, (6)

∆Ψ = ∇ · (∇Ψ)

=
∇ · (utr′∇u)r2 − 2rr′2ut|∇u|2

r4
− r∇ · (∇ut)− r′∇u · ∇ut

r2

− a2β∇ · (a′∇u)− 2a · a′2β|∇u|2

a4
(7)

=
r′′|∇u|2ut + r′ut∆u+ 2r′∇u · ∇ut

r2
− 2r′2|∇u|2ut

r3
− ∆ut

r

− β(a′′|∇u|2 + a′∆u)

a2
+

2a′2|∇u|2β
a3

,

Ψt =
r′

r2
(ut)

2 − (ut)t
r
− βa′ut

a2
.

By (1) we have ut = a′|∇u|2+a∆u
g′

+ f
g′
,

Ψt =
r′

r2
(ut)

2− (ut)t
r
−βa

′ut
a2

=
r′

r2
(ut)

2− 1

r

(
a′|∇u|2+a∆u

g′
+
f

g′

)
t

−βa
′

a2

(
a′|∇u|2+a∆u

g′
+
f

g′

)
=
r′

r2
(ut)

2− a∆ut
rg′

+

(
a′g′′

rg′2
− a′′

rg′

)
ut|∇u|2+

(
ag′′

rg′2
− a′

rg′

)
ut∆u

+

(
fg′′

rg′2
− fu
rg′

)
ut−

2a′+2fq
rg′

∇ut∇u−
ft
rg′
−βa

′2

a2g′
|∇u|2−βa

′

ag′
∆u− a

′βf

a2g′
.

(8)
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It follows from (7) and (8) that

a

g′
∆Ψ =

(
ar′′

g′r2
− 2ar′2

g′r3

)
|∇u|2ut +

ar′

g′r2
ut∆u+

2ar′

g′r2
∇u · ∇ut

− a

g′r
∆ut +

(
2βa′2

g′a2
− βa′′

g′a

)
|∇u|2 − βa′

g′a
∆u,

a

g′
∆Ψ−Ψt

=

(
ar′′

g′r2
− 2ar′2

g′r3

)
|∇u|2ut +

ar′

g′r2
ut∆u+

2ar′

g′r2
∇u · ∇ut −

a

g′r
∆ut

+

(
2βa′2

g′a2
− βa′′

g′a

)
|∇u|2 − βa′

g′a
∆u− r′

r2
(ut)

2 +
a∆ut
rg′

−
(
a′g′′

rg′2
− a′′

rg′

)
ut|∇u|2 −

(
ag′′

rg′2
− a′

rg′

)
ut∆u−

(
fg′′

rg′2
− fu
rg′

)
ut

+
2a′ + 2fq

rg′
∇ut · ∇u+

ft
rg′

+
βa′2

a2g′
|∇u|2 +

βa′

ag′
∆u+

a′βf

a2g

=

(
ar′′

g′r2
− 2ar′2

g′r3
− a′g′′

rg′2
+
a′′

rg′

)
ut|∇u|2 +

(
ar′

g′r2
− ag′′

rg′2
+

a′

rg′

)
ut∆u

+

(
2ar′

g′r2
+

2a′ + 2fq
rg′

)
∇u · ∇ut +

(
2βa′2

g′a2
− βa′′

g′a
+
βa′2

a2g′

)
|∇u|2

− r′

r2
(ut)

2 −
(
fg′′

rg′2
− fu
rg′

)
ut +

ft
rg′

+
a′βf

a2g′
.

(9)

In view of (6), we have

∇ut =
r′

r
ut∇u−

rβa′∇u
a2

− r∇Ψ. (10)

Substitute (10) into (9) to obtain

a

g′
∆Ψ−Ψt

=

(
ar′′ + (2a+ 2fq)r

′

r2g′
− a′g′′

rg′2
+
a′′

rg′

)
ut|∇u|2 +

(
ar′

g′r2
− ag′′

rg′2
+

a′

rg′

)
ut∆u

+

(
βa′2

g′a2
− 2fqβa

′

g′a2
− 2βa′r′

g′ra
− βa′′

g′a

)
|∇u|2 −

(
2ar′

g′r
+

2a′ + 2fq
g′

)
∇u · ∇Ψ

− r′

r2
(ut)

2 −
(
fg′′

rg′2
− fu
rg′

)
ut +

ft
rg′

+
a′βf

a2g′
,
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a

g′
∆Ψ+

(
2ar′

g′r
+

2a′+2fq
g′

)
∇u·∇Ψ−Ψt

=

(
ar′′+(2a′+2fq)r

′

r2g′
− a

′g′′

rg′2
+
a′′

rg′

)
ut|∇u|2

+

(
ar′

g′r2
− ag

′′

rg′2
+
a′

rg′

)
ut∆u+

(
βa′2

g′a2
− 2fqβa

′

g′a2
− 2βa′r′

g′ra
−βa

′′

g′a

)
|∇u|2

− r
′

r2
(ut)

2−
(
fg′′

rg′2
− fu
rg′

)
ut+

ft
rg′

+
a′βf

a2g′
.

(11)

By (1) we have

∆u =
g′ut − f

a
− a′

a
|∇u|2. (12)

Substitute (12) into (11), to get

a

g′
∆Ψ +

(
2ar′

g′r
+

2a′ + 2fq
g′

)
∇u · ∇Ψ−Ψt

=

(
ar′′ + (a′ + 2fq)r

′

r2g′
− a′2

rag′
+
a′′

rg′

)
ut|∇u|2 +

(
a′

ra
− g′′

rg′

)
u2
t

+

(
fu
rg′
− fr′

g′r2
− fa′

arg′

)
ut +

(
βa′2

g′a2
− βa′′

g′a
− 2βa′r′

g′ra
− 2βa′fq

g′a2

)
|∇u|2

+
ft
rg′

+
a′βf

a2g′
.

(13)

With (5), we have

ut = −rΨ +
rβ

a
. (14)

Substitution of (14) into (13) gives

a

g′
∆Ψ +

(
2ar′

g′r
+

2a′ + 2fq
g′

)
∇u · ∇Ψ

−
[(
−ar

′′ + (a′ + 2fq)r
′

rg′
− a′′

g′
+
a′2

ag′

)
|∇u|2

+
2βrg′′

ag′
− 2a′rβ

a2
+
fr′

g′r
+
fa′

ag′
− fu
g′

+

(
ra′

a
− rg′′

g′

)
Ψ

]
Ψ−Ψt

=
β

rg′

(
2fq

(r
a

)′
− r′2

a

( a
r′

)′)
|∇u|2 +

β2rg′

a3

(
a

g′

)′
+
βr

ag′

(
f

r

)′
u

+
ft
rg′

.

(15)

From assumptions (2) and (3), the right-hand side of (15) is nonnegative, i.e.

a

g′
∆Ψ+

(
2ar′

g′r
+

2a′+2fq
g′

)
∇u·∇Ψ−

[(
−ar

′′+(a′+2fq)r
′

rg′
− a

′′

g′
+
a′2

ag′

)
|∇u|2

+
2βrg′′

ag′
− 2a′rβ

a2
− fu
g′

+
fr′

g′r
+
fa′

ag′
+

(
ra′

a
− rg

′′

g′

)
Ψ

]
Ψ−Ψt

≥ 0.

(16)
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Now by (2), we have

max
D

Ψ(x, 0) = max
D

(
− 1

r(u0)
ut + β

1

a(u0)

)
= max

D

(
−a
′(u0)q0 + a(u0)∆u0 + f(x, u0, q0, 0)

r(u0)g′(u0)
+

β

a(u0)

)
= 0.

(17)

It follows from (1) that, on ∂D × (0, T ),

∂Ψ

∂n
=
r′

r2
ut
∂u

∂n
− 1

r

∂ut
∂n
− βa′

a2

∂u

∂n

=
r′

r
ut −

1

r
rt −

βa′r

a2

=
r′

r
ut −

r′

r
ut −

βa′

a2
r

= −βa
′

a2
r

≤ 0.

(18)

Combining (16)–(18), and applying the maximum principles [11], we know that
the maximum of Ψ in D × [0, T ) is zero. Thus Ψ ≤ 0, in D × [0, T ), and

a(u)

βr(u)
ut ≥ 1. (19)

At the point x0 ∈ D where u0(x0) = M0, integrate (19) over [0, t] to produce

1

β

∫ t

0

a(u)

r(u)
utdt =

1

β

∫ u(x0,t)

M0

a(s)

r(s)
ds ≥

∫ t

0

ds = t.

This together with assumption (4) shows that u must blow up in the finite
time T and

T ≤ 1

β

∫ +∞

M0

a(s)

r(s)
ds.

By integrating the inequality (19) over [t, s](0 < t < s < T ), one has, for each
fixed x, that

H(u(x, t)) ≥ H(u(x, t))−H(u(x, s)) =

∫ u(x,s)

u(x,t)

a(s)

r(s)
ds ≥ β(s− t),

passing to the limit as s→ T yields H(u(x, t)) ≥ β(T − t), which implies that

u(x, t) ≤ H−1(β(T − t)).

The proof is complete.
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The result on the global solution is stated as Theorem 2.2 below.

Theorem 2.2. Let u be a solution of (1). Assume that the following conditions
are satisfied:

(i) the initial value condition:

µ = max
D

a(u0)[a′(u0)q0 + a(u0)∆u0 + f(x, u0, q0, 0)]

r(u0)g′(u0)
> 0,

q0 = |∇u0|2
(20)

(ii) further restrictions on functions involved:
for any (x, s, d, t) ∈ D ×R+ ×R+ ×R+,

2fd(x, s, d, t)

(
r(s)

a(s)

)′
− r′2(s)

a(s)

(
a(s)

r′(s)

)′
≤ 0,(

a(s)

g′(s)

)′
≤ 0,

(
f(x, s, d, t)

r(s)

)′
s

≤ 0,

ft(x, s, d, t) ≤ 0, a′(s) ≤ 0;

(21)

(iii) the integration condition:∫ +∞

m0

a(s)

r(s)
ds = +∞, m0 = min

D
u0(x). (22)

Then the solution u of (1) must be a global solution and

u(x, t) ≤ G−1(µt+G(u0(x))),

where G(z) =
∫ z

m0

a(s)
r(s)

ds, z ≥ m0, and G−1 is the inverse function of G.

Proof. Construct an auxiliary function

Φ(x, t) = − 1

r(u)
ut + µ

1

a(u)
. (23)

Replacing Ψ and β with Φ and µ in (15), we have

a

g′
∆Φ +

(
2ar′

g′r
+

2a′ + 2fq
g′

)
∇u · ∇Φ

−
[(
−ar

′′ + (a′ + 2fq)r
′

rg′
− a′′

g′
+
a′2

ag′

)
|∇u|2

+
2µrg′′

ag′
− 2a′rµ

a2
− fu
g′

+
fr′

g′r
+
fa′

ag′
+

(
ra′

a
− rg′′

g′

)
Φ

]
Φ− Φt (24)

=
µ

rg′

(
2fq

(r
a

)′
− r′2

a

( a
r′

)′)
|∇u|2 +

µ2rg′

a3

(
a

g′

)′
+
µr

ag′

(
f

r

)′
u

+
ft
rg′

.
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It is seen from assumptions (20) and (21) that the right-hand side of (24) is
nonpositive, i.e.

a

g′
∆Φ +

(
2ar′

g′r
+

2a′ + 2fq
g′

)
∇u · ∇Φ

−
[(
−ar

′′ + (a′ + 2fq)r
′

rg′
− a′′

g′
+
a′2

ag′

)
|∇u|2

+
2µrg′′

ag′
− 2a′rµ

a2
− fu
g′

+
fr′

g′r
+
fa′

ag′
+

(
ra′

a
− rg′′

g′

)
Φ

]
Φ− Φt

≤ 0.

(25)

By (20), we have

min
D

Φ(x, 0) = min
D

(
− a

′(u0)q0 + a(u0)∆u0 + f(x, u0, q0, 0)

r(u0)g′(u0)
+

µ

a(u0)

)
= 0. (26)

From (1) it follows that

∂Φ

∂n
=
r′

r2
ut
∂u

∂n
− 1

r

∂ut
∂n
− µa′

a2

∂u

∂n
=
r′

r
ut −

1

r
rt −

µa′r

a2
= −µa

′

a2
r ≥ 0 (27)

on ∂D× (0, T ). Combining (25)–(27) and applying the maximum principles, we
know that the minimum of Φ in D×[0, T ) is zero. Hence Φ≥0 in D×[0, T ), i.e.

a(u)

µr(u)
ut ≤ 1. (28)

For each fixed x ∈ D, integrate (28) over [0, t] to get

1

µ

∫ t

0

a(u)

r(u)
utdt =

1

µ

∫ u(x,t)

u0(x)

a(s)

r(s)
ds ≤ t.

This together with (22) shows that u must be a global solution. Moreover, (28)
implies that

G(u(x, t))−G(u0(x)) =

∫ u(x,t)

m0

a(s)

r(s)
ds−

∫ u0(x)

m0

a(s)

r(s)
ds =

∫ t

0

a(u)

r(u)
utdt ≤ µt.

Therefore

u(x, t) ≤ G−1(µt+G(u0(x))).

The proof is complete.
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3. Applications

Example 3.1. Let u be a solution of the following problem:

(
√
u+ u)t = ∇ · (u∇u) +

(
tu2 + q +

3∑
i=1

x2
i

)
u3 in D× (0,T)

∂u

∂n
=
u3

4
on ∂D× (0,T)

u(x, 0) = 1 +
3∑

i=1

x2
i in D,

(29)

where q = |∇u|2, D =
{
x = (x1, x2, x3)

∣∣∑3
i=1 x

2
i < 1

}
is the unit ball of R3.

Here

g(u) =
√
u+ u, f(x, u, q, t) =

(
tu2 + q +

3∑
i=1

x2
i

)
u3,

a(u) = u, r(u) =
u3

4
,

and

β = min
D

a(u0)[a′(u0)q0 + a(u0)∆u0 + f(x, u0, q0, 0)]

r(u0)g′(u0)

= 8 min
1≤u0≤2

5u4
0 − 5u3

0 + 10u0 − 4

u
3
2
0 + 2u2

0

= 16.

It is easy to check that (3) and (4) hold. It follows from Theorem 2.1 that u
must blow up in a finite time T , and

T ≤ 1

β

∫ +∞

M0

a(s)

r(s)
ds =

1

8
, u(x, t) ≤ H−1(β(T − t)) =

1

4(T − t)
.

Example 3.2. Let u be a solution of the following problem:

(ueu)t = ∇ · (e−u∇u) + e−u

(
e−t + q +

3∑
i=1

x2
i

)
in D× (0,T)

∂u

∂n
= 2e2−u on ∂D× (0,T)

u(x, 0) = 1 +
3∑

i=1

x2
i in D,

(30)



Blow-Up solutions and Global Existence 257

where q = |∇u|2, D =
{
x = (x1, x2, x3)

∣∣∑3
i=1 x

2
i < 1

}
is the unit ball of R3.

Now we have

g(u) = ueu, f(x, u, q, t) = e−u

(
e−t + q +

3∑
i=1

x2
i

)
,

a(u) = e−u, r(u) = 2e2−u,

and

µ = max
D

a(u0)[a′(u0)q0 + a(u0)∆u0 + f(x, u0, q0, 0)]

r(u0)g′(u0)

= max
1≤u0≤2

u0e
−u0 + 6e−u0

2e2(eu0 + u0eu0)

=
7

4
e−4.

It is easy to check that (21) and (22) hold. It follows from Theorem 2.2 that u
must be a global solution and

u(x, t) ≤ G−1(µt+G(u0(x))) =
7

2
e−2t+ u0(x).
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